Science.gov

Sample records for airborne pulsed doppler

  1. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  2. Radiometric Calibration of an Airborne CO2 Pulsed Doppler Lidar Using a Natural Earth Surface

    NASA Technical Reports Server (NTRS)

    Cutten, Dean R.; Rothermel, Jeffry; Jarzembski, Maurice A.; Hardesty, R. Michael; Howell, James N.; Tratt, David M.; Srivastava, Vandana; Arnold, James E. (Technical Monitor)

    2001-01-01

    Radiometric calibration of an airborne CO2 pulsed Doppler lidar has been accomplished using surface retro-reflection signals from the White Sands National Monument, New Mexico, USA. Two circular passes were made at altitudes of 6.26 and 9.26 km. The computed calibration factors for both altitudes are in excellent agreement with the value derived from standard ground-based measurements involving a fixed sandpaper target of known reflectance. This finding corroborates a previous study that successfully calibrated an airborne continuous-wave Doppler lidar using a variety of natural Earth surfaces. The present results indicate that relatively uniform Earth-surface targets can be used for in-flight calibration of pulsed airborne, and, in principal, spaceborne lidars.

  3. Radiometric calibration of an airborne CO2 pulsed Doppler lidar with a natural earth surface.

    PubMed

    Cutten, Dean R; Rothermel, Jeffry; Jarzembski, Maurice A; Hardesty, R Michael; Howell, James N; Tratt, David M; Srivastava, Vandana

    2002-06-20

    Radiometric calibration of an airborne CO2 pulsed Doppler lidar has been accomplished with surface retroreflection signals from the White Sands National Monument, New Mexico. Two circular passes were made at altitudes of 6.3 and 9.3 km. The computed calibration factors for both altitudes are in excellent agreement with the value derived from standard ground-based measurements involving a fixed sandpaper target of known reflectance. This finding corroborates a previous study that successfully calibrated an airborne cw Doppler lidar with a variety of natural Earth surfaces. The present results indicate that relatively uniform Earth surface targets can be used for in-flight calibration of CO2 pulsed airborne and, in principal, other infrared lidars.

  4. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  5. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  6. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  7. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  8. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  9. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  10. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  11. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  12. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  13. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  14. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  15. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  16. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  17. Evaluation of a pulsed ultrasonic Doppler flowmeter

    NASA Technical Reports Server (NTRS)

    Wells, M. K.

    1973-01-01

    The in vivo application of the pulsed ultrasound Doppler velocity meter (PUDVM) for measuring arterial velocity waveforms is reported. In particular, the performance of the PUDVM is compared with a hot film anemometer of proven accuracy.

  18. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  19. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  20. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  1. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  2. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended...

  3. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  4. Pulsed Doppler lidar at QinetiQ

    NASA Astrophysics Data System (ADS)

    Pearson, Guy N.

    2004-12-01

    Recent developments in pulsed Doppler lidar technology for range-resolved aerosol and hard-target imaging applications are presented. Systems based upon CO2 and fiber-optic technologies at wavelengths of 10.6 μm and 1.5 μm respectively are described. Data are presented showing aspects of system and component development as well as recent field deployments.

  5. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  6. Remote Sensing of Wind Fields and Aerosol Distributions with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric and surface processes and feature. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of about a 1 Joule/pulse (eyesafe) lidar transceiver, telescope, scanner, inertial measurement unit, and operations control system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically resolved wind fields. Horizontal resolution is about 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (on an order of 1 micron in diameter). Measurement coverage depends on aerosol spatial distribution and concentration. Velocity accuracy has been verified to be about 1 m/s. A variety of applications has been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; an upper tropospheric jet stream; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the

  7. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  8. NASA airborne Doppler lidar program: Data characteristics of 1981

    NASA Technical Reports Server (NTRS)

    Lee, R. W.

    1982-01-01

    The first flights of the NASA/Marshall airborne CO2 Doppler lidar wind measuring system were made during the summer of 1981. Successful measurements of two-dimensional flow fields were made to ranges of 15 km from the aircraft track. The characteristics of the data obtained are examined. A study of various artifacts introduced into the data set by incomplete compensation for aircraft dynamics is summarized. Most of these artifacts can be corrected by post processing, which reduces velocity errors in the reconstructed flow field to remarkably low levels.

  9. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; Hardesty, Michael; Brewer, Alan

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  10. Potential scientific research which will benefit from an airborne Doppler lidar measurement system

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1980-01-01

    Areas of research which can be significantly aided by the Doppler lidar airborne system are described. The need for systematic development of the airborne Doppler lidar is discussed. The technology development associated with the systematic development of the system will have direct application to satellite systems for which the lidar also promises to be an effective instrument for atmospheric research.

  11. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  12. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  13. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  14. Algorithms for airborne Doppler radar wind shear detection

    NASA Technical Reports Server (NTRS)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  15. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  16. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  17. A pulsed CO2 Doppler lidar for boundary layer monitoring

    NASA Technical Reports Server (NTRS)

    Pearson, Guy N.

    1992-01-01

    A monostatic, master oscillator power amplifier (MOPA), CO2 pulsed Doppler lidar was constructed and tested. The system is compact (120 x 60 cm), operates at high pulse repetition rates (greater than 1 kHz) and is intended for simultaneous Doppler/Differential Absorption Lidar (DIAL) monitoring of the planetary boundary layer. Details of the system design, hard target calibrations, and aerosol returns are presented.

  18. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  19. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  20. Airborne Doppler lidar detection of wind shear. Results of performance analysis

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1988-01-01

    Results of a performance analysis of an airborne Doppler radar wind shear detection system are given in vugraph form. It was concluded that both CO sub 2 and Ho:YAG lasers are feasible for dry microburst applications, but with limited performance in wet microbursts. The Ho:YAG performs better than the CO sub 2 for a set of identical lidar parameters.

  1. Clutter filter design considerations for Airborne Doppler radar detection of windshear

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1990-01-01

    The problem of clutter rejection when processing down-looking Doppler radar returns from a low altitude airborne platform is a paramount problem. With radar as a remote sensor for detecting and predicting windshear in the vicinity of an urban airport, dynamic range requirements can exceed 50 dB because of high clutter to signal ratios. This presentation describes signal processing considerations in the presence of distributed and/or discrete clutter interference. Previous analyses have considered conventional range cell processing of radar returns from a rigidly mounted radar platform using either the Fourier or the pulse-pair method to estimate average windspeed and windspeed variation within a cell. Clutter rejection has been based largely upon analyzing a particular environment in the vicinity of the radar and employing a variety of techniques to reduce interference effects including notch filtering, Fourier domain line editing, and use of clutter maps. For the airborne environment the clutter characteristics may be somewhat different. Conventional clutter rejection methods may have to be changed and new methods will probably be required to provide useful signal to noise ratios. Various considerations are described. A major thrust has been to evaluate the effect of clutter rejection filtering upon the ability to derive useful information from the post-filter radar data. This analysis software is briefly described. Finally, some ideas for future analysis are considered including the use of adaptive filtering for clutter rejection and the estimation of windspeed spatial gradient directly from radar returns as a means of reducing the effects of clutter on the determination of a windshear hazard.

  2. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  3. Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the PBL and Other Regions of Significant Beta and U Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave

    1998-01-01

    This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings.

  4. Evaluation of ejection murmurs by pulsed Doppler echocardiography.

    PubMed Central

    Kawabori, I; Stevenson, J G; Dooley, T K; Guntheroth, W G

    1980-01-01

    A common problem is a soft basal ejection murmur in an asymptomatic child with a normal electrocardiogram and chest x-ray films. If the diagnosis is aortic stenosis, there is a need for prophylaxis for subacute bacterial endocarditis and concern about development of calcific aortic stenosis. In 40 consecutive children referred for this differential diagnosis, aortic stenosis was diagnosed in 30, based on an ejection murmur at the second right interspace (not necessarily louder than at the second left), which transmitted well to the neck, accompanied by a normal second heart sound. Pulsed Doppler echocardiography confirmed turbulence at the aortic valve in 26. In the 10 children diagnosed clinically as having an innocent murmur, three had evidence on pulsed Doppler echocardiography for an abnormal aortic valve. The conventional echocardiographic findings of an eccentric aortic orifice were present in only 21 of 29 patients with aortic turbulence. Though our current clinical criteria are reasonably specific (87%), they are not as sensitive (70%). Pulsed Doppler echocardiography provides powerful non-invasive assistance for this important differential diagnosis. Images PMID:7426143

  5. Relativistic Doppler effect: universal spectra and zeptosecond pulses.

    PubMed

    Gordienko, S; Pukhov, A; Shorokhov, O; Baeva, T

    2004-09-10

    We report on a numerical observation of the train of zeptosecond pulses produced by the reflection of a relativistically intense femtosecond laser pulse from the oscillating boundary of an overdense plasma because of the Doppler effect. These pulses promise to become unique experimental and technological tools since their length is of the order of the Bohr radius and the intensity is extremely high proportional, variant 10(19) W/cm(2). We present the physical mechanism, analytical theory, and direct particle-in-cell simulations. We show that the harmonic spectrum is universal: the intensity of nth harmonic scales as 1/n(p) for n<4gamma(2), where gamma is the largest gamma factor of the electron fluid boundary, and p=3 and p=5/2 for the broadband and quasimonochromatic laser pulses, respectively.

  6. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP

    PubMed Central

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  7. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-06-04

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented.

  8. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  9. Simplified signal processing for an airborne CO2 Doppler lidar

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Spowart, M. P.

    1992-01-01

    In the development of the National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS), we have emphasized a simple, modular design to suit the instrument to its mission of providing measurements of atmospheric structure and dynamics from an aircraft platform. Based on our research to this point, we believe that a significant simplification of the signal processing approach compared to that now used is possible by using high speed digitization of the signal. The purpose here is to place signal processing in the context of the overall system design and to explore the basis of the alternative technique so that the community can comment on the approach.

  10. Pulsed photoacoustic Doppler flowmetry using a cross correlation method

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2010-02-01

    The feasibility of making spatially resolved measurements of blood flow using pulsed photoacoustic Doppler techniques has been explored. Doppler time shifts were quantified via cross-correlation of pairs of photoacoustic waveforms generated within a blood-simulating phantom using pairs of laser light pulses. The photoacoustic waves were detected using a focussed or planar PZT ultrasound transducer. This approach was found to be effective for quantifying the linear motion of micron-scale absorbers imprinted on an acetate sheet moving with velocities in the range 0.15 to 1.50 ms-1. The effect of the acoustic spot diameter and the time separation between the laser pulses on measurement resolution and the maximum measurable velocity is discussed. The distinguishing advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made. This offers the prospect of mapping flow within the microcirculation and thus providing insights into the perfusion of tumours and other pathologies characterised by abnormalities in flow status.

  11. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed... Doppler radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C65a, Airborne Doppler radar ground speed...

  12. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  13. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  14. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  15. A bistatic pulse-Doppler intruder-detection radar

    NASA Astrophysics Data System (ADS)

    Walker, B. C.; Callahan, M. W.

    The U.S. Air Force's Aircraft Security Radar (ASR) is a small pulse-Doppler radar designed to detect intruders on the ground near parked aircraft, with a moving target detection effectiveness that encompasses high speed vehicles and intruders moving at as little as 2 cm/sec. The ASR is comparatively insensitive to weather, and will be affected only by severe wind and rain storms. Five ASRs are typically used around an aircraft, in order to reduce the area of coverage. Attention is given to the ASR's theory of operation, radar parameters, and both intruder and nuisance alarm test results.

  16. Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel

  17. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  18. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  19. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  20. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  1. Amplified reference pulse storage for low-coherence pulsed Doppler lidar.

    PubMed

    Shen, Jyi-Lai; Künnemeyer, Rainer

    2006-11-10

    We present a lidar concept for wind-speed measurements, in which a pulsed laser is used as the source for measurement and reference beams. A fraction of the transmitted pulse is stored in a fiber-optic ring resonator with a path length longer than the pulse. The output of the resonator is a pulse train that is used as the reference beam and can be mixed with the Doppler-shifted measurement signal. Because this reference has traveled a distance equivalent to the measurement beam's path length, low-coherence sources can be used. Inserting an erbium-doped fiber amplifier into the resonator ensures that the stored pulses do not decay in amplitude. Experiments prove that 16 reference pulses of sufficiently constant amplitude and stability can be generated. This would correspond to a measurement range of 240 m in free air over which the returned signal is sampled at equal intervals. Velocity measurements of a hard target have been carried out in the range of 1-10 m/s. The Doppler-measured velocities agree with tachometer reference measurements within +/-0.09 m/s.

  2. Amplified reference pulse storage for low-coherence pulsed Doppler lidar.

    PubMed

    Shen, Jyi-Lai; Künnemeyer, Rainer

    2006-11-10

    We present a lidar concept for wind-speed measurements, in which a pulsed laser is used as the source for measurement and reference beams. A fraction of the transmitted pulse is stored in a fiber-optic ring resonator with a path length longer than the pulse. The output of the resonator is a pulse train that is used as the reference beam and can be mixed with the Doppler-shifted measurement signal. Because this reference has traveled a distance equivalent to the measurement beam's path length, low-coherence sources can be used. Inserting an erbium-doped fiber amplifier into the resonator ensures that the stored pulses do not decay in amplitude. Experiments prove that 16 reference pulses of sufficiently constant amplitude and stability can be generated. This would correspond to a measurement range of 240 m in free air over which the returned signal is sampled at equal intervals. Velocity measurements of a hard target have been carried out in the range of 1-10 m/s. The Doppler-measured velocities agree with tachometer reference measurements within +/-0.09 m/s. PMID:17068580

  3. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  4. All-fiber pulse coherent Doppler LIDAR and its validations

    NASA Astrophysics Data System (ADS)

    Bu, Lingbing; Qiu, Zujing; Gao, Haiyang; Zhu, Xiaopeng; Liu, Jiqiao

    2015-12-01

    An all-fiber pulsed coherent Doppler LIDAR (CDL) system is described. It uses a fiber laser as a light source at a 1.54-μm wavelength, producing 200 μJ pulses at 10 kHz. The local oscillator signal is mixed with the backscattered light (of different frequency) in the fiber. The atmospheric wind speed is determined through the fast Fourier transform applied to the difference frequency signal acquired by an analog-to-digital converter card. This system was used to measure the atmospheric wind above the upper-air meteorological observatory in Rongcheng (37.10°N, 122.25°E) of China between January 7 and 19, 2015. The CDL data are compared with sounding- and pilot-balloon measurements to assess the CDL performance. The results show that the correlation coefficient of the different wind-speed measurements is 0.93 and their discrepancy 0.64 m/s; the correlation coefficient for wind-direction values is 0.92 and their discrepancy 5.8 deg. A time serial of the wind field, which benefits the understanding of atmospheric dynamics, is presented after the comparisons between data from CDL and balloons. The CDL system has a compact structure and demonstrates good stability, reliability, and a potential for application to wind-field measurements in the atmospheric boundary layer.

  5. Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

    NASA Technical Reports Server (NTRS)

    Neece, Robert T.; Britt, Charles L.; White, Joseph H.; Mudukutore, Ashok; Nguyen, Chi; Hooper, Bill

    2005-01-01

    A 35 GHz, pulsed-Doppler radar system has been designed and assembled for wake vortex detection and tracking in low visibility conditions. Aircraft wake vortices continue to be an important factor in determining safe following distances or spacings for aircraft in the terminal area. Currently, under instrument meteorological conditions (IMC), aircraft adhere to conservative, fixed following-distance guidelines based primarily on aircraft weight classifications. When ambient conditions are such that vortices will either drift or dissipate, leaving the flight corridor clear, the prescribed spacings are unnecessarily long and result in decreased airport throughput. There is a potential for significant airport efficiency improvement, if a system can be employed to aid regulators and pilots in setting safe and efficient following distances based on airport conditions. The National Aeronautics and Space Administration (NASA), the Federal Aviation Agency, and Volpe National Transportation Systems Center have promoted and worked to develop systems that would increase airport capacity and provide for safe reductions in aircraft separation. The NASA Aircraft Vortex Spacing System (AVOSS), a wake vortex spacing system that can provide dynamic adjustment of spacings based on real-time airport weather conditions, has demonstrated that Lidar systems can be successfully used to detect and track vortices in clear air conditions. To fill the need for detection capability in low-visibility conditions, a 35 GHz, pulsed-Doppler radar system is being investigated for use as a complimentary, low-visibility sensor for wake vortices. The radar sensor provides spatial and temporal information similar to that provided by Lidar, but under weather conditions that a Lidar cannot penetrate. Currently, we are analyzing the radar design based upon the data and experience gained during the wake vortex Lidar deployment with AVOSS at Dallas/Fort Worth International Airport. As part of this study

  6. Pulse-Shape Control in an All Fiber Multi-Wavelength Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Töws, Albert; Lehmann, Jan; Kurtz, Alfred

    2016-06-01

    Pulse distortion during amplification in fiber amplifiers due to gain saturation and cross talk in a multi-wavelength Doppler lidar are discussed. We present a feedback control technique which is capable of adjusting any predefined pulse shape and show some examples of feedback controlled pulse shapes.

  7. Analysis of the NASA/MSFC airborne Doppler lidar results from San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.

    1985-01-01

    The NASA/MSFC Airborne Doppler Lidar System was flown in July 1981 aboard the NASA/Ames Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. At this region, the maritime layer from the west coast accelerates through the pass and spreads out over the valley floor on the east side of the pass. The experiment was selected in order to study accelerated flow in and at the exit of the canyon. Ground truth wind data taken concurrently with the flight data were available from approximately 12 meteorological towers and 3 tala kites for limited comparison purposes. The experiment provided the first spatial data for ensemble averaging of spatial correlations to compute lateral and longitudinal length scales in the lateral and longitudinal directions for both components, and information on atmospheric flow in this region of interest from wind energy resource considerations.

  8. Advanced airborne Doppler Wind Lidar signal processing for observations in complex terrain

    NASA Astrophysics Data System (ADS)

    Emmitt, G. D.; Godwin, K.

    2014-10-01

    An airborne Doppler Wind Lidar has been used in several atmospheric boundary layer field experiments over the past decade. These experiments have taken place in California (Salinas Valley and the Monterey Peninsula), Arizona (Yuma Proving Grounds), and Utah (Dugway Proving Grounds). A primary objective of these field experiments was to compare model predicted winds in mountainous areas with wind observations obtained from the lidar measurements. To accomplish this, there is a basic challenge to determine when a comparison is valid in space and time. Here we have introduced the case for combining 12 pint step stare scans (conical) with near nadir stares to better represent the vertical air motions in complex terrain. We have also described a new scanning pattern that allows for LOS intersections for desired altitudes such as a ridge line or a valley floor.

  9. Low-level atmospheric flows studied by pulsed Doppler lidar

    NASA Technical Reports Server (NTRS)

    Banta, Robert M.; Olivier, Lisa D.; Hardesty, R. Michael

    1992-01-01

    A pulsed Doppler radar gains a tremendous advantage in studying atmospheric flows when it has the ability to scan. The Wave Propagation Laboratory (WPL) has been operating a scanning, 10.59 micron CO2 system for over 10 years. Recently, the WPL lidar has been a featured instrument in several investigations of mesoscale wind fields in the lowest 3-4 km of the atmosphere. These include four experiments: a study of the initiation and growth of the sea breeze off the coast of California, a study of the snake column of a prescribed forest fire, a study of the nighttime flow over the complex terrain near Rocky Flats, Colorado as it affects the dispersion of atmospheric contaminants, and a study of the wind flow in the Grand Canyon. We have analyzed much data from these experiments, and we have found that the lidar provides new insight into the structure of these flows. Many of these studies took place in rugged or mountainous terrain, thus using one of the major benefits of the lidar: the narrow, 90 microrad beam of the lidar makes it an ideal instrument for studying flow close to topography.

  10. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison

    SciTech Connect

    Bowdle, D.A. ); Rothermel, J. ); Vaughan, J.M.; Brown, D.W. ); Post, M.J. )

    1991-03-20

    An airborne continuous wave (CW) focused CO{sub 2} Doppler lidar and a ground-based pulsed CO{sub 2} Doppler lidar were used to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6 {mu}m wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter the two lidars show good agreement, with differences usually less than {approximately}50% near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  11. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation.

  12. Decompression induced venous gas emboli in sport diving: detection with 2D echocardiography and pulsed Doppler.

    PubMed

    Boussuges, A; Carturan, D; Ambrosi, P; Habib, G; Sainty, J M; Luccioni, R

    1998-01-01

    The aim of this study was to determine the utility of pulsed Doppler and 2D echocardiography for the detection and the quantification of circulating bubbles after decompression. Twenty-three sport divers performed 60 SCUBA dives (mean 32 msw). An evaluation of circulating bubbles was performed using 2D images one hour after diving. Circulating bubbles were also detected with pulsed Doppler. The sample volume was placed in the outflow area of the right ventricle 1-2 cm below the pulmonary valve. 2D echocardiography showed circulating bubbles in right cavities of the heart in 32 cases. Short axis parasternal view and right cavities long axis view were the best incidences. Pulsed Doppler confirmed the results in these 32 cases and detected circulating bubbles in seven other cases. Isometric contraction of muscle limb must be performed to increase the sensitivity of detection. The count of the bubbles may be evaluated when using a combination of Spencer's and Powell's grading. We conclude that 2D echocardiography is less accurate than pulsed Doppler in the detection of circulating bubbles after decompression. Further studies are needed to compare pulsed Doppler guided by 2D echocardiography to continuous Doppler for the detection of circulating bubbles.

  13. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  14. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  15. Pulse Compression with Very Low Sidelobes in an Airborne Rain Mapping Rada

    NASA Technical Reports Server (NTRS)

    Tanner, A.; Durden, S.; Im, E.; Li, F.; Ricketts, W.; Wilsons, W.

    1993-01-01

    The pulse compression system for an airborne rain mapping rada is described. This system uses time domain weighting of the transmit pulse and is able to achive a pulse compression sidelobe level of -55 dB. This is significantly lower than any values previously reported in the open literature.

  16. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  17. Results from 1984 airborne Doppler lidar wind measurement program. Flight 6: Analysis of line-of-sight elevation angle errors and apparent Doppler velocities

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1987-01-01

    During the summer of 1984 the Marshall Space Flight Center's Airborne Doppler Lidar System (ADLS) made a series of wind measurements in the California Central Valley. This study quantifies the lidar beam angle errors and velocity errors through analysis of ground return signals. Line-of-sight elevation (LOSE) angle errors are under 1 deg. Apparent Doppler ground velocities, as large as 2m/s, are considerably less than in a previous flight experiment in 1981. No evidence was found of a Schuler resonance phenomenon common to inertial navigation systems (INS), however the aperiodic nature of the apparent velocities implies an error in the INS-derived ground speeds. Certain features and subtleties in the ground returns are explained in terms of atmospheric structure and characteristics of the ADLS hardware and software. Finally, least squares and low-pass filtering techniques are suggested for eliminating errors during post-processing.

  18. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  19. Evaluating the accuracy and representativeness of Airborne Doppler Wind Lidar winds in complex terrain

    NASA Astrophysics Data System (ADS)

    Godwin, K.; Emmitt, G. D.; Greco, S.; De Wekker, S.

    2013-12-01

    An Airborne Doppler Wind Lidar (ADWL) was flown during the MATERHORN experiment in October 2012. The ADWL was used to obtain profiles of u,v,w,σlos and aerosol structure between the surface and flight level (~2500m AGL). The lidar returns were processed to obtain a vertical resolution of 50m and a complete profile every 1.5km. The aircraft (Navy Twin Otter) was flown in a 'lawnmower' pattern near and over Granite Mountain located at the Dugway Proving Grounds, Utah. Combining multiple Lines of Sight (LOS) measurements to construct a vertical profile in complex terrain presents several challenges that must be met before using these data in numerical models. In addition to the wind profiles obtained with a nadir conical scan, we pointed the beam straight down to obtain a direct measure of the vertical velocity of the air. With a precision of < 10 cm/s, mountain waves, katabatic flows and other complex terrain induced flow features are resolved and provide validation of model resolved flow features. Examples of ADWL profile grids will be presented along with a discussion of the methodology(s) used to evaluate the accuracy and representativeness of the ADWL winds. We will also illustrate how we are making comparisons with numerical model wind fields (WRF) by using a forward operator with lidar LOS observations. Particular attention will be paid to interpreting the non-conventional ADWL's estimate(s) of turbulent kinetic energy.

  20. Analysis of the NASA/MSFC Airborne Doppler Lidar results from San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.

    1984-01-01

    Two days during July of 1981 the NASA/MSFC Airborne Doppler Lidar System (ADLS) was flown aboard the NASA/AMES Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. The vertical and horizontal extent of the fast moving atmospheric flow discharging from the San Gorgonio Pass were examined. Conventional ground measurements were also taken during the tests to assist in validating the ADLS results. This particular region is recognized as a high wind resource region and, as such, a knowledge of the horizontal and vertical extent of this flow was of interest for wind energy applications. The statistics of the atmospheric flow field itself as it discharges from the pass and then spreads out over the desert were also of scientific interests. This data provided the first spatial data for ensemble averaging of spatial correlations to compute longitudinal and lateral integral length scales in the longitudinal and lateral directions for both components.

  1. Coupling airborne laser scanning and acoustic Doppler current profiler data to model stream rating curves

    NASA Astrophysics Data System (ADS)

    Lam, N.; Lyon, S. W.; Kean, J. W.

    2015-12-01

    The rating curve enables the translation of water depth into discharge through a reference cross section. Errors in estimating stream channel geometry can therefore result in increased discharge uncertainty. This study investigates coupling national-scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. Specifically, stream channel geometries were generated from coupled ALS and ADCP scanning data collected for a well-monitored site located in northern Sweden. These data were used to define the hydraulic geometry required by a physically-based 1-D hydraulic model. The results of our study demonstrate that the effects of potential scanning data errors on the model generated rating curve were less than the uncertainties due to stream gauging measurements and empirical rating curve fitting. Further analysis of the ALS data showed that an overestimation of the streambank elevation (the main scanning data error) was primarily due to vegetation that could be adjusted for through a root-mean-square-error bias correction. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establish rating curves at gauging stations.

  2. Performance of hybrid chirp/DS signals under Doppler and pulsed jamming

    NASA Astrophysics Data System (ADS)

    Elhakeem, A. K.; Targi, Ali

    The bit-error probability is evaluated for a hybrid chirp/direct sequence (DS) spread-spectrum communication system. The received signal is received in Doppler; the channel is contaminated by a pulsed barrage jammer with a varying duty factor. Moreover, the DS correlation loss due to imperfect code synchronization is taken into account. The tradeoffs involved in dividing the total RF bandwidth into the DS and chirp bandwidths to combat both the jamming and the Doppler are discussed.

  3. Reference-beam storage for long-range low-coherence pulsed Doppler lidar.

    PubMed

    Dorrington, A A; Kunnemeyer, R; Danehy, P M

    2001-06-20

    We present a laser Doppler velocimeter that stores and delays the reference beam to preserve coherence with a long-path-length measurement beam. Our storage and delay technique relaxes the strict coherence requirements associated with lidar laser sources, permitting the use of low-coherence lasers. This technique potentially could reduce the cost and size of lidar systems for commercial applications. Experiments that use fiber-optic ring resonators to store the reference beams and generate reference pulse trains validated the concept. We obtained results at several simulated distances by beating each usable reference pulse with a delayed Doppler-shifted measurement beam reflected off a rotating mirror.

  4. Hurricane Georges' Landfall in the Dominican Republic: Detailed Airborne Doppler Radar Imagery

    NASA Technical Reports Server (NTRS)

    Geerts, B.; Heymsfield, G. M.; Tian, L.; Halverson, J. B.; Guillory, A.; Mejia, M. I.

    1999-01-01

    Current understanding of landfalling tropical cyclones is limited, especially with regard to convective scale processes. On 22 September 1998 Hurricane Georges made landfall on the island of Hispaniola, leaving behind a trail of death and devastation, largely the result of excessive rainfall, not sea level surge or wind. Detailed airborne measurements were taken as part of the Third Convection and Moisture Experiment (CAMEX-3). Of Particular interest are the ER-2 nadir X-band Doppler radar (EDOP) data, which provide a first-time high-resolution view of the precipitation and airflow changes as a hurricane interacts with mountainous terrain. The circulation of hurricane Georges underwent an obvious transition during landfall, evident in the rapid increase in minimum sea-level pressure, the subsidence of the eyewall anvil, and a decrease in average ice concentrations in the eyewall. The eye, as seen in satellite imagery, disappeared, but contrary to current understanding, this was not due to eyewall contraction but rather to convective eruption within the eye. The main convective event within the eye, with upper-level updraft magnitudes near 20 m/s and 89 GHz brightness temperatures below 100 K, occurred when the eye moved over the Cordillera Central, the island's main mountain chain. The location, intensity and evolution of this convection indicate that it was coupled to the surface orography. It is likely that surface rain rates increased during landfall, because of effective droplet collection, both in the convection and in the more widespread stratiform rainfall areas over the island. Evidence for this is the increase in radar reflectivity below the bright band of 1-2 dB/km down to ground-level. Such increase was absent offshore. Such low-level rain enhancement, which cannot be detected in satellite images of upwelling infrared or microwave radiation, must be due to the ascent of boundary-layer air over the topography.

  5. Inner Core Structure of Hurricane Alicia from Airborne Doppler Radar Observations.

    NASA Astrophysics Data System (ADS)

    Marks, Frank D., Jr.; Houze, Robert A., Jr.

    1987-05-01

    Airborne Doppler radar measurements are used to determine the horizontal winds, vertical air motions, radar reflectivity and hydrometer fallspeeds over much of the inner-core region (within 40 km of the eye) of Hurricane Alicia (1983). The reconstructed flow field is more complete and detailed than any obtained previously. The data show both the primary (azimuthal) and secondary (radial-height) circulations. The primary circulation was characterized by an outward sloping maximum of tangential wind. The secondary circulation was characterized by a deep layer of radial inflow in the lower troposphere and a layer of intense outflow above 10 km altitude. The rising branch of the secondary circulation was located in the eyewall and sloped radially outward. Discrete convective-scale bubbles of more intense upward motion were superimposed on this mean rising current, and convective-scale downdrafts were located throughout and below the core of maximum precipitation in the eyewall.Precipitation particles in the eyewall rainshaft circulated 18-20 km downwind as they fell, consistent with the typical upwind slope with increasing altitude of eyewall precipitation cores Outside the eyewall, the precipitation was predominantly stratiform. A radar bright band was evident at the melting level. Above the melting level, ice particles were advected into the stratiform region from the upper levels of the eyewall and drifted downward through a mesoscale region of ascent. Hypothetical precipitation particle trajectories showed that as these particles fell slowly through the mesoscale updraft toward the melting level, they were carried azimuthally as many as 1 1/2 times around the storm. During this spiraling descent, the particles evidently grew vigorously. The amount of water condensed by the ambient mesoscale ascent exceeded that transported into the stratiform region by the eyewall outflow by a factor of 3. As the particles fell into the lower troposphere, they entered a mesoscale

  6. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  7. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability. Second Corrected Copy Issued May 23, 2011

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  8. Time division multiplexed laser Doppler anemometry using pulsed laser diodes and optical fibers

    SciTech Connect

    Lockey, R.A.; Tatam, R.P.

    1995-12-31

    Laser Doppler anemometry (LDA) is a well established technique for non-invasive measurement of fluid flow, by measuring the frequency shift of light scattered by particles entrained in the flow. A time division multiplexed laser Doppler anemometer is reported, using a single high frequency pulsed laser diode as a source. Time division multiplexing requires a single detector channel, removing the need for multiple detectors and wavelength separation optics found in conventional CW laser Doppler systems. By incorporating optical fibers into the system to distribute the pulses into each channel and impose a delay between channels, the electronic requirements of such an instrument are reduced. Results for a two-dimensional system are presented, measured on a water-seeded air jet. Individual velocity components of up to 16 ms{sup {minus}1} and overall velocities of up to 20 ms{sup {minus}1} have been detected, but the potential range of the instrument is very much greater.

  9. Rain Fallspeeds and Rates Derived from Airborne Nadir-Pointing Doppler Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, L.; Geerts, Bart

    1999-01-01

    The use of vertical-incidence Doppler velocity in addition to radar reflectivity may yield information on drop size distribution and therefore result in better rainrate estimates. Doppler velocity can provide useful information on the raindrop size distribution. Doppler velocities from a zenith-pointing radar represent the sum of the mean reflectivity-weighted hydrometeor fallspeed and the vertical air motion. Dual-parameter rain estimation methods using the Doppler velocity, require that the latter can be removed, or is negligible. Atlas et al. (1972) derived relations between Doppler velocity, reflectivity, and rain rate assuming an exponential size distribution for rain. Ulbrich (1994) expanded on this work by deriving the relation between the Doppler velocity and the reflectivity assuming a Gamma size distribution. This distribution provides a more realistic representation of the small rain drops. To get accurate information on raindrop size distributions with the above method, the air motions must be removed from the observed Doppler velocities

  10. Doppler and Band-width Characteristics of Periodic Binary Code Compressed to Several Sub-pulses

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinichi; Shinriki, Masanori; Susaki, Hironori

    The new periodic binary codes compressed to several sub-pulses are shown. The Doppler characteristics and band-width characteristics are studied by using of MATLAB / Simulink. The results are compared with the characteristics of the M-sequence. It is demonstrated the new periodic binary codes have better these characteristics than M-sequences.

  11. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  12. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  13. Doppler cooling with coherent trains of laser pulses and a tunable velocity comb

    SciTech Connect

    Ilinova, Ekaterina; Ahmad, Mahmoud; Derevianko, Andrei

    2011-09-15

    We explore the possibility of decelerating and Doppler cooling an ensemble of two-level atoms by a coherent train of short, nonoverlapping laser pulses. We derive analytical expressions for mechanical force exerted by the train. In frequency space the force pattern reflects the underlying frequency comb structure. The pattern depends strongly on the ratio of the atomic lifetime to the repetition time between the pulses and pulse area. For example, in the limit of short lifetimes, the frequency-space peaks of the optical force wash out. We propose to tune the carrier-envelope offset frequency to follow the Doppler-shifted detuning as atoms decelerate; this leads to compression of atomic velocity distribution about comb teeth and results in a ''velocity comb''--a series of narrow equidistant peaks in the velocity space.

  14. Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  15. Experimental demonstration of noncontact pulse wave velocity monitoring using multiple Doppler radar sensors.

    PubMed

    Lu, Li; Li, Changzhi; Lie, Donald Y C

    2010-01-01

    In this paper, two Doppler radars are used to monitor the pulse movements at the heart and the calf in order to measure the pulse wave velocity (PWV) wirelessly. Both simulation and experiment have been performed to demonstrate the feasibility of the proposed noncontact PWV monitoring. A three-stage calibration procedure, including DC offset calibration, circuit delay calibration and antenna radiation pattern calibration, has been developed for reliable long-term PWV monitoring. The measurement results have been verified by wired contact measurement with pulse transducers.

  16. Two-dimensional SLIM with application to pulse Doppler MIMO radars

    NASA Astrophysics Data System (ADS)

    Jabbarian-Jahromi, Mohammad; Kahaei, Mohammad Hossein

    2015-12-01

    A two-dimensional (2D) sparse signal model is developed for pulse Doppler MIMO radars. Using this model, we develop the 2D sparse learning via iterative minimization (2D SLIM) algorithm. Simulation results show that the 2D SLIM compared to the 1D SLIM drastically reduces the computational burden while both of them have the same performance. Also, for estimation of range-angle-Doppler parameters, the 2D SLIM outperforms the matched filter (MF), smoothed L0-norm (SL0), iterative adaptive approach (IAA), and spectral projected gradient for l 1-norm minimization (SPGL1) algorithms.

  17. Hidden state dynamics in laser Doppler vibrometery measurements of the carotid pulse under resting conditions.

    PubMed

    Kaplan, Alan D; O'Sullivan, Joseph A; Sirevaag, Erik J; Kristjansson, Sean D; Lai, Po-Hsiang; Rohrbaugh, John W

    2010-01-01

    A laser Doppler vibrometer (LDV) is used to sense movements of the skin overlying the carotid artery. Fluctuations in carotid artery diameter due to variations in the underlying blood pressure are sensed at the surface of the skin. Portions of the LDV signal corresponding to single heartbeats, called the LDV pulses, are extracted. This paper introduces the use of hidden Markov models (HMMs) to model the dynamics of the LDV pulse from beat to beat based on pulse morphology, which under resting conditions are primarily due to breathing effects. LDV pulses are classified according to state, by computing the optimal state path through the data using trained HMMs. HMM state dynamics are compared to simultaneous recordings of strain gauges placed on the abdomen. The work presented here provides a robust statistical approach to modeling the dependence of the LDV pulse on latent states.

  18. Doppler effects in the propagation of a few-cycle pulse through a dense medium.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2015-06-29

    This numerical study demonstrates that Doppler redshift exists in the reflected spectrum of a few-cycle pulse, propagating through a dense medium. It manifests itself in two different forms, a sharp low-frequency spike (LFS) located at the red edge of the reflected spectrum and a relatively broader redshift near the carrier frequency. With the variation of the laser and medium parameters, the dominant reflection mechanism changes between bulk generation of backwards propagation waves and nonlinear reflection near the front face. This leads to the manifestation of Doppler effect changing accordingly between the two different forms. This study unifies the physical mechanism behind the LFS and dynamic nonlinear optical skin effect, which enriches the theoretical explanation of the spectral redshift of few-cycle pulse propagation beyond the intrapulse four-wave mixing. PMID:26191713

  19. Correlation of hemodynamically significant internal carotid stenosis with pulsed Doppler frequency analysis.

    PubMed Central

    Blackshear, W M; Lamb, S L; Kollipara, V S; Anderson, J D; Murtagh, F R; Shah, C P; Farber, M S

    1984-01-01

    Systolic and mean pressure gradients across internal carotid stenoses were measured at the time of carotid endarterectomy in the arteries of 90 patients, all of whom underwent angiography. Eighty-two of these patients also had pulsed Doppler ultrasonic arteriography with real-time spectrum analysis. There were 71 (79%) high grade stenoses of greater than 50% diameter reduction by angiography. Significant systolic pressure gradients (greater than or equal to 10 mmHg) were identified in 41 patients (46%), 38 (46%) of whom underwent ultrasonic evaluation. A pulsed Doppler frequency measured within the stenosis equal to or greater than 6.5 kiloHertz had a sensitivity of 94.7% (36/38) in identifying pressure reducing lesions with a specificity of 47.7% (21/44). Positive predictive value was 61% (36/59). Angiographic criteria (50% diameter reduction) exhibited a sensitivity of 97.6% (40/41), a specificity of 36.7% (18/49) and a positive predictive value of 56.3% (40/71). Negative predictive value was 94.7% for angiography and 91.3% for ultrasonic arteriography. A pulsed Doppler frequency equal to or greater than 6.5 kiloHertz appears to accurately identify lesions that are at risk to reduce distal internal carotid pressure under operative conditions with a sensitivity similar to angiography. This criterion has a positive predictive value and specificity that is slightly superior to angiography and a high negative predictive value. Pulsed Doppler spectrum analysis provides physiologic information relative to blood flow velocity that is complimentary to the anatomic data provided by angiography for assessing the potential for hemodynamic significance of internal carotid stenoses. Images Fig. 1. PMID:6712324

  20. Minimum operational performance standards for airborne weather and ground mapping pulsed radars

    NASA Astrophysics Data System (ADS)

    1980-11-01

    Minimum operational performance standards for airborne weather and ground mapping pulsed radars, including both air carrier and large aircraft-type radar systems, are described. Those requirements and technologies pertinent to general aviation, where limitations on space and/or weight may apply are taken into account.

  1. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  2. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  3. [Doppler effect on width of characteristic line in plasma induced by pulsed laser ablating Al].

    PubMed

    Song, Yi-Zhong; He, An-Zhi

    2005-05-01

    Aluminum (Al) plasma was induced with a pulsed Nd: YAG laser beam ablating Al target in Ar. Time-resolved information of the plasma radiation was taken with time-resolved technique, and the spectra of the radiation were recorded with an optical multi-path analyzer (OMA III ), whereupon, time-resolved spectra of the plasma radiation induced by pulsed laser were acquired. Based on the experiment data, Al resonant double lines, Al I 396.15 nm, Al I 394.40 nm, were respectively fitted with Lorentz, Gauss and their linear integrated function (abbr. Integrated function), whereupon, Lorentz and Gauss elements were separated from the experiment data profile curve. By contrasting Lorentz with Gauss curve separated, it was found that the experiment curve mainly consisted of Lorentz element, a with little Gauss. By contrasting Lorentz with Integrated fitting curve for experiment data, a visual picture of the characteristic lines broadened by Doppler effect was exhibited. According to the visual picture, the increase of full half-high width of the characteristic line broadened by Doppler effect was estimated. It was about 2 x 10(-)3 -8 x 10(-3) nm, approximating the theoretical value 6.7 x 10(-)3 nm. As a result, Doppler effect on the width of characteristic lines in the plasma could be reasonably explained by curve fitting analysis and theoretical calculation.

  4. The pulsed Doppler ultrasound flowmeter: experimental evaluation of velocity accuracy and range resolution.

    PubMed

    Griffith, J M; McLeod, F D; Leroy, A F

    1977-01-01

    Accurate quantitation of blood flow patterns, particularly in the physiological state, is important to the successful study of several problems in biomedical research. The pulsed Doppler ultrasonic flowmeter offers promise of overcoming some of the difficulties present in other methods. This flowmeter can be either implantable or noninvasive. Although a number of papers describe important design criteria, the design or selection of a Doppler system for a given task remains a complex matter involving many compromises based on theoretical considerations and very limited data. Experimental data from well-defined flows are needed to help identify those areas in which ultrasonic flowmeters can be most useful. This paper defines and evaluates two important parameters for the pulsed Doppler ultrasonic flowmeter by comparing experimental results with those predicted theorectically. The first parameter is velocity accuracy; the second parameter is range resolution. Findings show that centerline flow velocities in circular tubes can be estimated to within a few percent of the correct value, and that a 1.5-mm range resolution can be realized with the system tested.

  5. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  6. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  7. Laser Doppler vibrometry measurements of the carotid pulse: biometrics using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Kaplan, Alan D.; O'Sullivan, Joseph A.; Sirevaag, Erik J.; Rohrbaugh, John W.

    2009-05-01

    Small movements of the skin overlying the carotid artery, arising from pressure pulse changes in the carotid during the cardiac cycle, can be detected using the method of Laser Doppler Vibrometry (LDV). Based on the premise that there is a high degree of individuality in cardiovascular function, the pulse-related movements were modeled for biometric use. Short time variations in the signal due to physiological factors are described and these variations are shown to be informative for identity verification and recognition. Hidden Markov models (HMMs) are used to exploit the dependence between the pulse signals over successive cardiac cycles. The resulting biometric classification performance confirms that the LDV signal contains information that is unique to the individual.

  8. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2015-02-01

    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  9. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement.

    PubMed

    Li, Yanlu; Segers, Patrick; Dirckx, Joris; Baets, Roel

    2013-07-01

    Pulse wave velocity (PWV) is an important marker for cardiovascular risk. The Laser Doppler vibrometry has been suggested as a potential technique to measure the local carotid PWV by measuring the transit time of the pulse wave between two locations along the common carotid artery (CCA) from skin surface vibrations. However, the present LDV setups are still bulky and difficult to handle. We present in this paper a more compact LDV system integrated on a CMOS-compatible silicon-on-insulator substrate. In this system, a chip with two homodyne LDVs is utilized to simultaneously measure the pulse wave at two different locations along the CCA. Measurement results show that the dual-LDV chip can successfully conduct the PWV measurement.

  10. Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delnore, Victor E.; Goodrich, Michael S.; Vonhagel, Chris

    1992-01-01

    Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program.

  11. Comparing Pulsed Doppler LIDAR with SODAR and Direct Measurements for Wind Assessment

    SciTech Connect

    Kelley, N. D.; Jonkman, B. J.; Scott, G. N.; Pichugina, Y. L.

    2007-07-01

    There is a pressing need for good wind-speed measurements at greater and greater heights to assess the availability of the resource in terms of power production and to identify any frequently occurring atmospheric structural characteristics that may create turbulence that impacts the operational reliability and lifetime of wind turbines and their components. In this paper, we summarize the results of a short study that compares the relative accuracies of wind speeds derived from a high-resolution pulsed Doppler LIDAR operated by the National Oceanic and Atmospheric Administration (NOAA) and a midrange Doppler SODAR with wind speeds measured by four levels of tower-based sonic anemometry up to a height of 116 m.

  12. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  13. Hidden state models for noncontact measurements of the carotid pulse using a laser Doppler vibrometer.

    PubMed

    Kaplan, Alan D; O'Sullivan, Joseph A; Sirevaag, Erik J; Lai, Po-Hsiang; Rohrbaugh, John W

    2012-03-01

    The method of laser Doppler vibrometry (LDV) is used to sense movements of the skin overlying the carotid artery. When pointed at the skin overlying the carotid artery, the mechanical movements of the skin disclose physiological activity relating to the blood pressure pulse over the cardiac cycle. In this paper, signal modeling is addressed, with close attention to the underlying physiology. Segments of the LDV signal corresponding to single heartbeats, called LDV pulses, are extracted. Hidden Markov models (HMMs) are used to capture the dynamics of the LDV pulses from beat to beat based on pulse morphology; under resting conditions these dynamics are primarily due to respiration-related effects. LDV pulses are classified according to state, by computing the optimal state path through the data using trained HMMs. HMM state dynamics are examined within the context of respiratory effort using strain gauges placed around the abdomen. This study presented here provides a graphical model approach to modeling the dependence of the LDV pulse on latent states.

  14. Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Zhang, Fuqing; Weng, Yonghui; Gamache, John F.; Marks, Frank D.

    2011-08-01

    This study examines a hurricane prediction system that uses an ensemble Kalman filter (EnKF) to assimilate high-resolution airborne radar observations for convection-permitting hurricane initialization and forecasting. This system demonstrated very promising performance, especially on hurricane intensity forecasts, through experiments over all 61 applicable NOAA P-3 airborne Doppler missions during the 2008-2010 Atlantic hurricane seasons. The mean absolute intensity forecast errors initialized with the EnKF-analysis of the airborne Doppler observations at the 24- to 120-h lead forecast times were 20-40% lower than the National Hurricane Center's official forecasts issued at similar times. This prototype system was first implemented in real-time for Hurricane Ike (2008). It represents the first time that airborne Doppler radar observations were successfully assimilated in real-time into a hurricane prediction model. It also represents the first time that the convection-permitting ensemble analyses and forecasts for hurricanes were performed in real-time. Also unprecedented was the on-demand usage of more than 23,000 computer cluster processors simultaneously in real-time.

  15. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  16. First Scientific Working Group Meeting of Airborne Doppler Lidar Wind Velocity Measurement Program

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Editor)

    1980-01-01

    The purpose of the first scientific working group meeting was fourfold: (1) to identify flight test options for engineering verification of the MSFC Doppler Lidar; (2) to identify flight test options for gathering data for scientific/technology applications; (3) to identify additional support equipment needed on the CV 990 aircraft for the flight tests; and (4) to identify postflight data processing and data sets requirements. The working group identified approximately ten flight options for gathering data on atmospheric dynamics processes, including turbulence, valley breezes, and thunderstorm cloud anvil and cold air outflow dynamics. These test options will be used as a basis for planning the fiscal year 1981 tests of the Doppler Lidar system.

  17. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  18. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  19. Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser.

    PubMed

    Bai, Yan; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Qian, Liming; Chen, Zhenlei

    2012-01-16

    In this study, heterodyne detection is adopted to measure the velocity of a target simulated by a rapidly rotating plate by using a mode-locked pulse laser as the resource. The coherent beat frequency of the signal light reflected by target and local oscillation light occurred on the surface of the detector. Then the waveform of beat frequency was processed by filtering to obtain the Doppler frequency shift of the signal light induced by target. With this frequency shift, the velocity of target could be obtained by calculation. Results indicate that the measurement has a high precision. The error on average is within 0.4 m/s. PMID:22274421

  20. Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser.

    PubMed

    Bai, Yan; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Qian, Liming; Chen, Zhenlei

    2012-01-16

    In this study, heterodyne detection is adopted to measure the velocity of a target simulated by a rapidly rotating plate by using a mode-locked pulse laser as the resource. The coherent beat frequency of the signal light reflected by target and local oscillation light occurred on the surface of the detector. Then the waveform of beat frequency was processed by filtering to obtain the Doppler frequency shift of the signal light induced by target. With this frequency shift, the velocity of target could be obtained by calculation. Results indicate that the measurement has a high precision. The error on average is within 0.4 m/s.

  1. Transcranial Doppler Sonography: Atypical Dicrotic Pulse Waveforms in a Man with HIV Infection and Severe Cardiomyopathy.

    PubMed

    Suwatcharangkoon, Sureerat; Meads, Dana B; Tegeler, Charles H; Reynolds, Patrick S

    2015-01-01

    A 27-year-old human immunodeficiency virus--positive man presented with abdominal pain. Computed tomography of the abdomen revealed large right pleural effusion, pericardial effusion and marked ascites with diffuse intra- and extraperitoneal lymphadenopathy. Echocardiography showed severely reduced left ventricular systolic function. After drainage of pleural and pericardial fluid, the patient developed severe hypotension and hypoxic respiratory failure. Extra- and intracranial neurovascular sonography demonstrated low carotid artery flow volume and dicrotic pulse waveforms in all vessels insonated bilaterally. This case report demonstrates an atypical dicrotic waveform pattern of transcranial Doppler in advanced ventricular dysfunction with shock.

  2. Fpga based L-band pulse doppler radar design and implementation

    NASA Astrophysics Data System (ADS)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  3. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  4. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  5. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  6. Left ventricular radial colour and longitudinal pulsed-wave tissue Doppler echocardiography in 39 healthy domestic pet rabbits.

    PubMed

    Casamian-Sorrosal, Domingo; Saunders, Richard; Browne, William; Elliot, Sarah; Fonfara, Sonja

    2014-10-01

    This paper reports radial colour and longitudinal mitral annulus pulsed-wave tissue Doppler findings in a large cohort of healthy, adult pet rabbits. Thirty-nine rabbits (22 Dwarf Lops, 14 French Lops and three Alaskans) underwent conscious echocardiography. The median age of the rabbits was 22 months and the median weight was 2.8 kg (Dwarf Lop 2.4 kg/French Lop 6.0 kg). Adequate radial colour and longitudinal pulsed-wave tissue Doppler traces were obtained in 100% and 85% of cases, respectively. Most systolic tissue Doppler parameters were significantly higher in French Lops than in Dwarf Lops. Separation of mitral inflow diastolic waves was present in 40% of cases using conventional spectral Doppler and in >60% of cases using pulsed-wave tissue Doppler which could be beneficial when evaluating diastolic function in rabbits. This study can be used as a reference for normal echocardiographic tissue Doppler values for adult rabbits undergoing conscious echocardiography in clinical practice. PMID:25089025

  7. Serial pulsed Doppler assessment of pulmonary artery pressure in very low birth-weight infants.

    PubMed

    Murase, M; Ishida, A

    2000-01-01

    We assessed pulmonary artery pressure (PAP) during the early neonatal period in very low birth-weight (VLBW) infants using serial echocardiographic measurements of the ratio of the pulmonary artery acceleration time to the right ventricular ejection time corrected by heart rate [AT:RVET(c)]. Eighty-four VLBW infants weighing less than 1,500 g were examined using serial color Doppler echocardiography from 3 hours to day 7 after birth. The AT:RVET(c) of infants born after 30 weeks of gestation showed a rapid, significant increase during the early neonatal period, whereas those of the groups born at less than 30 weeks showed no significant increase before day 14. At 24 hours after birth, the AT:RVET(c) values of VLBW infants did not correlate well with either the ratio of the right preejection period to the right ventricular ejection time on M-mode echocardiography or the pressure gradient between the right ventricle and the right atrium, as estimated by tricuspid regurgitation on pulsed Doppler echocardiography. The AT:RVET(c) value for the chronic lung disease (CLD) group did not differ significantly from that for the oxygen-dependent group at any assessment point. During the early neonatal period, the AT:RVET(c) of VLBW infants, as calculated by pulsed Doppler echocardiography, differed with their gestational age and did not appear to correlate well with PAP. Our data also suggest that AT:RVET(c) values may not be a good predictor of the subsequent occurrence of CLD in VLBW infants.

  8. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  9. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  10. Airborne profiling of ice thickness using a short pulse radar

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.; Heighway, J. E.; Gedney, R.

    1973-01-01

    The acquisition and interpretation of ice thickness data from a mobile platform has for some time been a goal of the remote sensing community. Such data, once obtainable, is of value in monitoring the changes in ice thickness over large areas, and in mapping the potential hazards to traffic in shipping lanes. Measurements made from a helicopter-borne ice thickness profiler of ice in Lake Superior, Lake St. Clair and the St. Clair river as part of NASA's program to develop an ice information system are described. The profiler described is a high resolution, non-imaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm. and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.

  11. Pulse transit times to the capillary bed evaluated by laser Doppler flowmetry

    PubMed Central

    Bernjak, Alan; Stefanovska, Aneta

    2010-01-01

    The pulse transit time (PTT) of a wave over a specified distance along a blood vessel provides a simple non-invasive index that can be used for the evaluation of arterial distensibility. Current methods of measuring the PTT determine the propagation times of pulses only in the larger arteries. We have evaluated the pulse arrival time (PAT) to the capillary bed, through the microcirculation, and have investigated its relationship to the arterial PAT to a fingertip. To do so, we detected cardiac-induced pulse waves in skin microcirculation using laser Doppler flowmetry (LDF). Using the ECG as a reference, PATs to the microcirculation were measured on the four extremities of 108 healthy subjects. Simultaneously, PATs to the radial artery of the left index finger were obtained from blood pressure recordings using a piezoelectric sensor. Both PATs correlate in similar ways with heart rate and age. That to the microcirculation is shown to be sensitive to local changes in skin perfusion induced by cooling. We introduce a measure for the PTT through the microcirculation. We conclude that a combination of LDF and pressure measurements enables simultaneous characterization of the states of the macro and microvasculature. Information about the microcirculation, including an assessment of endothelial function, may be obtained from the responses to perturbations in skin perfusion, such as temperature stress or vasoactive substances. PMID:19202235

  12. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  13. A numerical simulation of Hurricane Bret on 22-23 August 1999 initialized with airborne Doppler radar and dropsonde data

    NASA Astrophysics Data System (ADS)

    Nuissier, Olivier; Rogers, Robert F.; Roux, Frank

    2005-01-01

    This study concerns the simulation of Hurricane Bret on 22-23 August 1999 with the MésoNH nonhydrostatic, two-way interactive, quadruple-nested grid mesoscale model. A 30 h integration, from 0000 UTC 22 August to 0600UTC 23 August, covers the period of maximum intensity over the Gulf of Mexico and landfall over Texas. Special attention is paid to the initial conditions from which the model is integrated. A balanced vortex, derived from airborne Doppler radar data, is used to replace the ill-defined cyclone in the large-scale analysis. In addition, the analysed humidity field over the Gulf of Mexico is modified in accordance with specific dropsonde observations. A comparison between the simulated storm track and intensity for three different numerical experiments shows that the inclusion of the radar-derived vortex and high spatial resolution are necessary to obtain a realistic simulation. After an initial period of adjustment, the simulation with the inserted radar-derived vortex and high resolution produces a storm only 10 hPa weaker than the observation after 24 h, compared to the control run that is nearly 50 hPa weaker at the same time. The characteristics of this simulated storm at its mature stage are then presented, with particular emphasis on the processes that modulate the intensity of the inner core region.

  14. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar.

    PubMed

    Singh, Aditya; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    The use of a Continuous Wave (CW) quadrature Doppler radar is proposed here for continuous non-invasive Pulse Pressure monitoring. A correspondence between the variation in systemic pulse and variation in the displacement of the chest due to heart is demonstrated, establishing feasibility for the approach. Arctangent demodulation technique was used to process baseband data from radar measurements on two test subjects, in order to determine the absolute cardiac motion. An Omron digital Blood pressure cuff was used to measure the systolic and diastolic blood pressures from which the pulse pressure was calculated. Correlation between pulse pressure and cardiac motion was observed through changes induced due to different postures of the body.

  15. Study of software application of airborne laser doppler system for severe storms measurement

    NASA Technical Reports Server (NTRS)

    Alley, P. L.

    1979-01-01

    Significant considerations are described for performing a Severe Storms Measurement program in real time. Particular emphasis is placed on the sizing and timing requirements for a minicomputer-based system. Analyses of several factors which could impact the effectiveness of the system are presented. The analyses encompass the problems of data acquisition, data storage, data registration, correlation, and flow field computation, and error induced by aircraft motion, moment estimation, and pulse integration.

  16. Ultrasonic detection of photothermal interaction of lasers with tissue using a pulsed Doppler system

    NASA Astrophysics Data System (ADS)

    Ying, Hao; Azeemi, Aamer; Hartley, Craig J.; Motamedi, Massoud; Bell, Brent A.; Rastegar, Sohi; Sheppard, L. C.

    1995-05-01

    Thermal therapy using various heating sources such as lasers or microwaves to destroy benign and malignant lesions has recently gained widespread acceptance. However, the accurate prediction of thermal damage in tissue according to theoretical or computer modeling is difficult and unreliable due to target variability with respect to physical properties, geometry, and blood perfusion. Thus, one of the major obstacles to application of thermal therapies has been the lack of a noninvasive, real-time method that could determine the extent and geometry of treated tissue. To evaluate the effects of laser heating on tissue, we have developed an analog-digital hybrid Doppler ultrasound system to measure the phase and amplitude of ultrasonic echoes returned from the heated tissue. The system consists of an eight-gate pulsed Doppler detector, a 16-channel 12-bit A/D converter, and a signal analysis and visualization software package. In vitro studies using canine liver showed two distinct types of modulation of the echoes along the ultrasound beam path during laser irradiation using an 810 nm diode laser. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 2 signals showed large and rapid variations in amplitude and phase which usually appeared after tissue surface explosion and were indicative of tissue ablation. We hypothesize that the observed phase changes in type 1 signals are due to thermal effects within the tissue consistent with tissue expansion and contraction while the phase changes in type 2 signals are likely due to formation and motion of gas bubbles in the tissue. A further development of the Doppler ultrasound technique could lead to the generation of feedback information needed for monitoring and automatic control of thermal treatment using various heating modalities such as

  17. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. PMID:22293750

  18. Laser-tissue interaction with fs pulses: measurement of the recoil momentum by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Mittnacht, Dirk; Sessa, Gaetano; Travaglini, Michele; Foth, Hans-Jochen

    2004-06-01

    In the field of otolaryngology a precise contactless treatment of the bones in the middle ear is eligible. For this reason lasers are investgiated for the use in this field. The main risk during laser surgery in the middle ear (e.g. stapedotomy) is the damage of hair cells in the inner ear due to heat diffusion or high pressure fluctuations. While the temperature problem has been resolved by shortening the pulse durations; the transfer of a recoil momentum due to the ablation process rises as another problem. To measure this momentum, special spring plates were designed as vibration disks for the mounting of the tissue. The probes were exposed to amplified Ti:Sapphire laser pulses with a pulse length of 45 fs and a power density up to 5,6×1013 W/cm2. The beam of a laser Doppler vibrometer was focused on backside of the plate to monitor its motion. The results were compared to a damage threshold of hair cells in the inner ear calculated by a literature value for the Sound Pressure Level (SPL)-Threshold. The results lead to SPL values below the critical value of 160 dB. Measurements with higher time resolution and high speed photography are used to approve these results.

  19. Laser-tissue interaction with fs pulses: measurement of the recoil momentum by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Mittnacht, Dirk, IV; Sessa, Gaetano; Travaglini, Michele; Foth, Hans-Jochen

    2003-10-01

    In the field of otolaryngology a precise contactless treatment of the bones in the middle ear is eligible. For this reason lasers are investigated for the use in this field. The main risk during laser surgery in the middle ear (e.g. stapedotomy) is the damage of hair cells in the inner ear due to heat diffusion or high pressure fluctuations. While the temperature problem has been resolved by shortening the pulse durations; the transfer of a recoil momentum due to the ablation process rises as another problem. To measure this momentum, special spring plates were designed as vibration disks for the mounting of the tissue. The probes were exposed to amplified Ti:Sapphire Laser pulses with a pulse length of 100fs and a power density up to 6,4*1013W/cm2. The beam of a Laser Doppler Vibrometer was focused on backside of the plate to monitor its motion. The results were compared to a damage threshold of hair cells in the inner ear calculated by a literature value for the Sound Pressure Level (SPL)-Threshold. The first results lead to SPL values below the critical value but measurements with a higher time resolution are necessary to verify this conclusion.

  20. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    PubMed Central

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  1. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  2. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  3. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  4. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  5. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  6. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    NASA Astrophysics Data System (ADS)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  7. Laser-tissue interaction with fs pulses: measurement of the recoil momentum by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Sessa, Gaetano; Travaglini, Michele; Mittnacht, Dirk; Foth, Hans-Jochen

    2003-07-01

    Currently ultra short pulses with pluse duration close to 100 fs are investigated for tissue ablation to perform laser surgery in a microscopic scale without any damage to the remaining tissue. Several groups showed already that the risk of thermal damage can be avoided; however the ablated material leaves the surface with a high velocity which leads to significant recoil momentum to the tissue. This paper focuses on the experimental set-up to measure this momentum transfer. Various set-ups had been developd over the last years like a pendulum that is highly senstive but cannot ensure that in a train of pulses each pulse will impact at exactly the same spot. A sliding rod in a glass tube ensured the constant impact point but is sensitive to several environmental conditions, which are hard to control. Recently, special swing plates were designed as vibration disks. The small sample was mounted in the center of this plate and exposed by fs pulses of a TiSa laser. The beam of a laser Doppler vibrometer was focused onto the backside of the plate monitored its motion. This set-up enabled us to measure the recoil momentum. While the total momentum transfer could be well determined to Δp=6 10-3 g mm/s, the question about a mechanical damage, for example for hair cells in the inner ear is much more difficult to answer, since this depends on the time in which the ablated materials leaves the surface. Evaporation times of 40 ps would lead to serious risk ofhar cell damage.

  8. Saharan dust long-range transport across the Atlantic studied by an airborne Doppler wind lidar and the MACC model

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Benedetti, Angela; Weinzierl, Bernadett

    2016-09-01

    A huge amount of dust is transported every year from north Africa into the Caribbean region. This paper presents an investigation of this long-range transport process based on airborne Doppler wind lidar (DWL) measurements conducted during the SALTRACE campaign (June-July 2013), as well as an evaluation of the ability of the MACC (Monitoring Atmospheric Composition and Climate) global aerosol model to reproduce it and its associated features. Although both the modeled winds from MACC and the measurements from the DWL show a generally good agreement, some differences, particularly in the African easterly jet (AEJ) intensity, were noted. The observed differences between modeled and measured wind jet speeds are between 5 and 10 m s-1. The vertical aerosol distribution within the Saharan dust plume and the marine boundary layer is investigated during the June-July 2013 period based on the MACC aerosol model results and the CALIOP satellite lidar measurements. While the modeled Saharan dust plume extent shows a good agreement with the measurements, a systematic underestimation of the marine boundary layer extinction is observed. Additionally, three selected case studies covering different aspects of the Saharan dust long-range transport along the west African coast, over the North Atlantic Ocean and the Caribbean are presented. For the first time, DWL measurements are used to investigate the Saharan dust long-range transport. Simultaneous wind and backscatter measurements from the DWL are used, in combination with the MACC model, to analyze different features associated with the long-range transport, including an African easterly wave trough, the AEJ and the intertropical convergence zone.

  9. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  10. The Effectiveness of Real-Time Feedback with an Audible Pulse: A Preliminary Study in Renal Doppler Ultrasonography

    PubMed Central

    Lee, Min Hee; Lee, Hae Kyung; Choi, Seo-Youn; Yi, Boem Ha

    2016-01-01

    Purpose The effectiveness of real-time feedback using an audible pulse in renal Doppler ultrasonography was evaluated. Methods This study was approved by the institutional review board of our hospital. Written informed consent was provided by all volunteers at enrollment. The 26 healthy volunteers enrolled in this study underwent Doppler ultrasound of both kidneys using audible and inaudible pulses in randomized order and at 1-week intervals. Doppler waveforms were obtained at the interlobar or arcuate arteries using a 2-mm Doppler gate. Each session was considered complete when reproducible waveforms were obtained for 5 s in three predefined regions of the kidney. The scan times needed to obtain waveforms of the right and left kidneys were recorded separately. Measurements were compared using a paired t-test and a two-sample Wilcoxon rank-sum test. Results The total recorded Doppler sonography scan time for each kidney ranged from 33 to 146 s. The mean scan time was 56.83 s (right, 58.19 s; left, 55.46 s) in the audible session and 72.58 s (right, 72.08 s; left, 73.08 s) in the inaudible session. The scan times were significantly shorter in the audible than inaudible session (p<0.001), whereas the difference in the scan times between the right and left kidneys was not significant. The order of the sessions had no effect on the total scan time. Conclusion Real-time feedback using an audible pulse may encourage patient cooperation during breath-holding and can shorten the time needed to perform Doppler ultrasonography. PMID:27685667

  11. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  12. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  13. Interatrial shunt flow profiles in newborn infants: a colour flow and pulsed Doppler echocardiographic study.

    PubMed Central

    Hiraishi, S; Agata, Y; Saito, K; Oguchi, K; Misawa, H; Fujino, N; Horiguchi, Y; Yashiro, K

    1991-01-01

    Interatrial shunt flow profiles in 36 normal term infants were examined serially by colour flow and pulsed Doppler echocardiographic techniques from within an hour of birth to four or five days after birth. Shunt flow across the foramen ovale was detected in 33 normal infants (92%) within an hour of birth (mean 40 minutes). The occurrence of interatrial shunting decreased with age, but a shunt signal was still detected in 17 infants (47%) on the fourth or fifth day of life, by then the ductus arteriosus had already closed in all the normal infants. The direction of interatrial shunt flow was predominantly left-to-right, but in 64% there was a coexistent small right-to-left shunt in diastole within an hour of birth; by four to five days it was found in 19%. In the six patients with persistent fetal circulation the direction of the interatrial shunt flow was predominantly right-to-left with biphasic peaks in diastole and systole at the early stage of the disease, and the period of right-to-left shunt flow during each cardiac cycle was significantly longer than that in normal infants examined within 1 hour of birth. In all patients the ductus closed before the foramen ovale. At the time of ductal closure in all patients with persistent fetal circulation right-to-left shunt flow was seen during diastole and its period was still prolonged. These findings suggest that interatrial shunting, predominantly left-to-right, is common in normal newborn infants. Evaluation of the characteristics of the interatrial shunt by Doppler echocardiography may be useful for predicting the progress of or improvement in neonates with persistent fetal circulation. Images PMID:1993129

  14. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges.

    PubMed

    Abay, T Y; Kyriacou, P A

    2016-04-01

    Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p  <  0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG.

  15. Beat-by-beat stroke volume assessment by pulsed Doppler in upright and supine exercise

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Greene, E. R.; Hoekenga, D. E.; Caprihan, A.; Luft, U. C.

    1981-01-01

    The instantaneous stroke volume (SV) and cardiac output (Q) in eight male subjects during steady-state supine (S) and upright (U) exercises at 300 kpm/min is assessed by a 3.0-MHz pulsed Doppler echocardiograph. The mean transients in heart rate (HR), SV, and Q for each posture were determined and the center-line blood velocities obtained in the ascending aorta. Results show that the mean supine values for SV and Q at rest and exercise were 111 ml and 6.4 l/min and 112 ml and 9.7 l/min, respectively. The corresponding results for U were 76 ml and 5.6 l/min and 92 ml and 8.4 l/min, respectively. The values compare favorably with previous studies utilizing invasive procedures. The transient response of Q following the onset of exercise in U was about twice as fast as in S because of the rapid and almost immediate upsurge in SV. The faster rise in aortic flow in U with exercise represented and additional volume (184 ml) of blood passing through the aorta compared with S in the first 20 exercises. It is suggested that the rapid mobilization of pooled venous blood from the leg veins during U was responsible for the increased blood flow.

  16. Noninvasive Method for Measuring Local Pulse Wave Velocity by Dual Pulse Wave Doppler: In Vitro and In Vivo Studies

    PubMed Central

    Wang, Zhen; Yang, Yong; Yuan, Li-jun; Liu, Jie; Duan, Yun-you; Cao, Tie-sheng

    2015-01-01

    Objectives To evaluate the validity and reproducibility of a noninvasive dual pulse wave Doppler (DPWD) method, which involves simultaneous recording of flow velocity of two independent sample volumes with a measurable distance, for measuring the local arterial pulse wave velocity (PWV) through in vitro and in vivo studies. Methods The DPWD mode of Hitachi HI Vision Preirus ultrasound system with a 5–13MHz transducer was used. An in vitro model was designed to compare the PWV of a homogeneous rubber tubing with the local PWV of its middle part measured by DPWD method. In the in vivo study, local PWV of 45 hypertensive patients (25 male, 49.8±3.1 years) and 45 matched healthy subjects (25 male, 49.3±3.0 years) were investigated at the left common carotid artery (LCCA) by DPWD method. Results In the in vitro study, the local PWV measured by DPWP method and the PWV of the homogeneous rubber tubing did not show statistical difference (5.16 ± 0.28 m/s vs 5.03 ± 0.15 m/s, p = 0.075). The coefficient of variation (CV) of the intra- and inter- measurements for local PWV were 3.46% and 4.96%, for the PWV of the homogeneous rubber tubing were 0.99% and 1.98%. In the in vivo study, a significantly higher local PWV of LCCA was found in the hypertensive patients as compared to that in healthy subjects (6.29±1.04m/s vs. 5.31±0.72m/s, P = 0.019). The CV of the intra- and inter- measurements in hypertensive patients were 2.22% and 3.94%, in healthy subjects were 2.07% and 4.14%. Conclusions This study demonstrated the feasibility of the noninvasive DPWD method to determine the local PWV, which was accurate and reproducible not only in vitro but also in vivo studies. This noninvasive echocardiographic method may be illuminating to clinical use. PMID:25786124

  17. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar.

    PubMed

    Singh, Aditya; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    The use of a Continuous Wave (CW) quadrature Doppler radar is proposed here for continuous non-invasive Pulse Pressure monitoring. A correspondence between the variation in systemic pulse and variation in the displacement of the chest due to heart is demonstrated, establishing feasibility for the approach. Arctangent demodulation technique was used to process baseband data from radar measurements on two test subjects, in order to determine the absolute cardiac motion. An Omron digital Blood pressure cuff was used to measure the systolic and diastolic blood pressures from which the pulse pressure was calculated. Correlation between pulse pressure and cardiac motion was observed through changes induced due to different postures of the body. PMID:22255299

  18. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  19. [Isovolumic relaxation flow patterns evaluated by pulsed Doppler echocardiography: comparison with invasive parameters].

    PubMed

    Kuroiwa, N; Nakamura, K; Kawahira, M; Sanada, J; Hashimoto, S

    1986-03-01

    Left ventricular relaxation property was evaluated by pulsed Doppler echocardiography. The indices obtained from Doppler signals within the left ventricle (LV) during the isovolumic relaxation period (IRF) were compared with the hemodynamic parameters obtained from cardiac catheterization studies. Subjects of this study were four patients with hypertrophic cardiomyopathy, four with hypertensive heart disease, three with angina pectoris, and seven normal subjects. All of them had no wall motion abnormalities and their ejection fractions were more than 0.60. The three indices of IRF were the time interval from the start of IRF to the time immediately before the rapid filling flow (isovolumic relaxation time; IRT), the time interval from the start to the peak (acceleration time; AcT), and the slope from the start to the peak (acceleration rate; AcR). The peak pressure (peak P) was measured at the same time. The positive and negative deflections of the first derivative of left ventricular (LV) pressure (+dp/dt and -dp/dt) and the time constant of LV pressure fall (time constant T) were calculated from LV pressure using a micromanometer-tipped angiocatheter. The end-diastolic volume index (EDVI), end-systolic volume index (ESVI), and ejection fraction (EF) were calculated from the LV angiogram. There were no significant correlations between the three IRF indices (IRT, AcT and AcR) and the hemodynamic parameters (peak P, EDVI, +dp/dt and -dp/dt). However, the time constant T, which is a good index of LV relaxation property and which is relatively free from afterload and preload, correlated well with IRT (r = 0.75, p less than 0.001), AcT (r = 0.60, p less than 0.01), and AcR (r = -0.66, p less than 0.01). It was concluded that the indices obtained from the blood flow patterns of the left ventricle during isovolumic relaxation were useful for estimating left ventricular relaxation property non-invasively and quantitatively.

  20. A feasibility study for measuring accurate tendon displacements using an audio-based Fourier analysis of pulsed-wave Doppler ultrasound signals.

    PubMed

    Stegman, K J; Podhorodeski, R P; Park, E J

    2009-01-01

    The accuracy of Pulsed-Wave Doppler Ultrasound displacement measurements of a slow moving "tendon-like" string was investigated in this study. This was accomplished by estimating string displacements using an audio-based Fourier analysis of a Pulsed-Wave Doppler signal from a commercial ultrasound scanner. Our feasibility study showed that the proposed technique is much more accurate at estimating the actual string displacement in comparison to the scanner's onboard software. Furthermore, this study also shows that a real-time Doppler data acquisition from an ultrasound scanner is possible for the ultimate purpose of real-time biological tendon displacement monitoring.

  1. Ultrasonic position and velocity measurement for a moving object by M-sequence pulse compression using Doppler velocity estimation by spectrum-pattern analysis

    NASA Astrophysics Data System (ADS)

    Ikari, Yohei; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    Pulse compression using a maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo in the pulse-echo method. In the case of a moving object, however, the echo is modulated owing to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal that corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation by spectrum-pattern analysis of a cyclic M-sequence-modulated signal and cross correlations with Doppler-shifted reference signals that correspond to the estimated Doppler velocities has been proposed. In this paper, measurements of the position and velocity of a moving object by the proposed method are described. First, Doppler velocities of the object are estimated using a microphone array. Secondly, the received signal from each microphone is correlated with each Doppler-shifted reference signal. Then, the position of the object is determined from the B-mode image formed from all cross-correlation functions. After that, the velocity of the object is calculated from velocity components estimated from the Doppler velocities and the position. Finally, the estimated Doppler velocities, determined positions, and calculated velocities are evaluated.

  2. Multi-wave ultrasonic Doppler method for measuring high flow-rates using staggered pulse intervals

    NASA Astrophysics Data System (ADS)

    Muramatsu, Ei; Murakawa, Hideki; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2016-02-01

    The ultrasonic pulsed Doppler method (UDM) can obtain a velocity profile along the path of an ultrasonic beam. However, the UDM measurement volume is relatively large and it is known that the measurement volume affects the measurement accuracy. In this study, the effect of the measurement volume on velocity and flow rate measurements is analytically and experimentally evaluated. The velocities measured using UDM are considered to be ensemble-averaged values over the measurement volume in order to analyze the velocity error due to the measurement volume, while the flow rates are calculated from the integration of the velocity profile across the pipe. The analytical results show that the channel width, i.e. the spatial resolution along the ultrasonic beam axis, rather than the ultrasonic beam diameter, strongly influences the flow rate measurement. To improve the accuracy of the flow rate, a novel method using a multi-wave ultrasonic transducer consisting of two piezo-electric elements with different basic frequencies is proposed to minimize the size of the measurement volume in the near-wall region of a pipe flow. The velocity profiles in the near-wall region are measured using an 8 MHz sensor with a small diameter, while those far from the transducer are measured using a hollow 2 MHz sensor in the multi-wave transducer. The applicability of the multi-wave transducer was experimentally investigated using the water flow-rate calibration facility at the National Institute of Advanced Industrial Science and Technology (AIST). As a result, the errors in the flow rate were found to be below  -1%, while the multi-wave method is shown to be particularly effective for measuring higher flow rates in a large-diameter pipe.

  3. Reference values for pulsed Doppler signals from the blood flow velocity on both sides of the pulmonary valve.

    PubMed

    van Oort, A; de Knecht, S; van Dam, I; Heringa, A; de Boo, T; Alsters, J; Hopman, J; Fast, J; van der Werf, T; Daniels, O

    1988-04-01

    Pulsed Doppler signals were recorded from the pulmonary artery and the right ventricular outflow tract in 215 healthy subjects (120 males, 95 females; 1-65 years). Amplitude spectra from these Doppler signals were stored in digital form together with adjustment data for the instrument and the simultaneously recorded ECG. From these Doppler spectra the median of the maximal velocity (Vmax), the maximal acceleration (Amax) and the dispersion of the velocity distribution around Vmax (width) were calculated. These three median values were used to characterize the Doppler spectra and to define normal values for bloodflow velocities. Thus, calculations were made without observer interacting using a well-defined computer program. The effect of age, gender, body surface area and heart rate were studied. Reference ranges were calculated. There is a slight decrease of the median value of Vmax and Amax in the pulmonary artery during lifetime from 80 to 70 cm s-1 and from 1,200 to 800 cm s-2, respectively. On the other hand, there is no correlation between age and Vmax and Amax in the right ventricular outflow tract. The width of the spectra increases with age at both sites. No significant changes with age were seen with the other variables. PMID:3383877

  4. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  5. Measurement of coronary flow using high-frequency intravascular ultrasound imaging and pulsed Doppler velocimetry: in vitro feasibility studies.

    PubMed

    Grayburn, P A; Willard, J E; Haagen, D R; Brickner, M E; Alvarez, L G; Eichhorn, E J

    1992-01-01

    The recent development of intravascular ultrasound imaging offers the potential to measure blood flow as the product of vessel cross-sectional area and mean velocity derived from pulsed Doppler velocimetry. To determine the feasibility of this approach for measuring coronary artery flow, we constructed a flow model of the coronary circulation that allowed flow to be varied by adjusting downstream resistance and aortic driving pressure. Assessment of intracoronary flow velocity was accomplished using a commercially available end-mounted pulsed Doppler catheter. Cross-sectional area of the coronary artery was measured using a 20 MHz mechanical imaging transducer mounted on a 4.8 F catheter. The product of mean velocity and cross-sectional area was compared with coronary flow measured by timed collection in a graduated cylinder by linear regression analysis. Excellent correlations were obtained between coronary flow calculated by the ultrasound method and measured coronary flow at both ostial (r = 0.99, standard error of the estimate [SEE] = 13.9 ml/min) and distal (r = 0.98, SEE = 23.0 ml/min) vessel locations under steady flow conditions. During pulsatile flow, calculated and measured coronary flow also correlated well for ostial (r = 0.98, SEE = 12.7 ml/min) and downstream (r = 0.99, SEE = 9.3 ml/min) locations. That the SEE was lower for pulsatile as compared with steady flow may be explained by the blunting of the flow profile across the vessel lumen by the acceleration phase of pulsatile flow. These data establish the feasibility of measuring coronary artery blood flow using intravascular ultrasound imaging and pulsed Doppler techniques. PMID:1531416

  6. Non-invasive measurement of pulse wave velocity using transputer-based analysis of Doppler flow audio signals.

    PubMed

    Stewart, W R; Ramsey, M W; Jones, C J

    1994-08-01

    A system for the measurement of arterial pulse wave velocity is described. A personal computer (PC) plug-in transputer board is used to process the audio signals from two pocket Doppler ultrasound units. The transputer is used to provide a set of bandpass digital filters on two channels. The times of excursion of power through thresholds in each filter are recorded and used to estimate the onset of systolic flow. The system does not require an additional spectrum analyser and can work in real time. The transputer architecture provides for easy integration into any wider physiological measurement system. PMID:7994208

  7. Development of the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2010-01-01

    A general overview of the development of a data acquisition and processing system is presented for a pulsed, 2-micron coherent Doppler Lidar system located in NASA Langley Research Center in Hampton, Virginia, USA. It is a comprehensive system that performs high-speed data acquisition, analysis, and data display both in real time and offline. The first flight missions are scheduled for the summer of 2010 as part of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The system as well as the control software is reviewed and its requirements and unique features are discussed.

  8. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation: Doppler Aerosol WiNd Lidar (DAWN). Interim Review #1 (6 months)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Trieu, Bo C.; Petros, Mulugeta

    2006-01-01

    A new project, selected in 2005 by NASA's Science Mission Directorate (SMD), under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The state-of-the-art 2-micron coherent DWL breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent DWL system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid DWL solution to the need for global tropospheric wind measurements.

  9. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  10. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  11. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  12. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Muramatsu, Ei; Sugimoto, Katsumi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2015-08-01

    The ultrasonic pulsed Doppler method (UDM) is a powerful tool for measuring velocity profiles in a pipe. However, the maximum detectable velocity is limited by the Nyquist sampling theorem. Furthermore, the maximum detectable velocity (also called Nyquist velocity), vmax, and the maximum measurable length are related and cannot be increased at the same time. If the velocity is greater than vmax, velocity aliasing occurs. Hence, the higher velocity that occurs with a larger pipe diameter, i.e. under higher flow rate conditions, cannot be measured with the conventional UDM. To overcome these limitations, dual-pulse repetition frequency (dual PRF) and feedback methods were employed in this study to measure velocity profiles in a pipe. The velocity distributions obtained with the feedback method were found to be more accurate than those obtained with the dual PRF method. However, misdetection of the Nyquist folding number using the feedback method was found to increase with the flow velocity. A feedback method with a moving average is proposed to improve the measurement accuracy. The method can accurately measure the velocity distributions at a velocity five times greater than the maximum velocity that can be measured with the conventional UDM. The measurement volume was found to be among the important parameters that must be considered in assessing the traceability of the reflector during the pulse emission interval. Hence, a larger measurement volume is required to measure higher velocities using the dual PRF method. Integrating velocity distributions measured using the feedback method with a moving average makes it possible to accurately determine flow rates six times greater than those that can be determined using the conventional pulsed Doppler method.

  13. Boundary Layer CO2 mixing ratio measurements by an airborne pulsed IPDA lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Allan, G. R.

    2014-12-01

    Since the primary signature of CO2 fluxes at the surface occurs in the planetary boundary layer (PBL), remote sensing measurements of CO2 that can resolve the CO2 absorption in the PBL separate from the total column are more sensitive to fluxes than those that can only measure a total column. The NASA Goddard CO2 sounder is a pulsed, range-resolved lidar that samples multiple (presently 30) wavelengths across the 1572.335 nm CO2 absorption line. The range resolution and line shape measurement enable CO2 mixing ratio measurements to be made in two or more altitude layers including the PBL via lidar cloud-slicing and multi-layer retrievals techniques. The pulsed lidar approach allows range-resolved backscatter of scattering from ground and cloud tops. Post flight data analysis can be used split the vertical CO2 column into layers (lidar cloud-slicing) and solve for the CO2 mixing ratio in each layer. We have demonstrated lidar cloud slicing with lidar measurements from a flight over Iowa, USA in August 2011 during the corn-growing season, remotely measuring a ≈15 ppm drawdown in the PBL CO2. We will present results using an improved lidar cloud slicing retrieval algorithm as well as preliminary measurements from the upcoming ASCENDS 2014 flight campaign. The CO2 absorption line is also more pressure broadened at lower altitudes. Analyzing the line shape also allows solving for some vertical resolution in the CO2 distribution. By allowing the retrieval process to independently vary the column concentrations in two or more altitude layers, one can perform a best-fit retrieval to obtain the CO2 mixing ratios in each of the layers. Analysis of airborne lidar measurements (in 2011) over Iowa, USA and Four Corners, New Mexico, USA show that for altitudes above 8 km, the CO2 sounder can detect and measure enhanced or diminished CO2 mixing ratios in the PBL even in the absence of clouds. We will present these results as well as preliminary measurements from the upcoming

  14. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  15. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  16. Impacts of 4D-VAR Assimilation of Airborne Doppler Radar Observations on Numerical Simulations of the Genesis of Typhoon Nuri (2008)

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Li, Z.

    2014-12-01

    The Weather Research and Forecasting model and its four-dimensional variational data assimilation system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). The ELDORA airborne radar data, collected during the Office of Naval Research-sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as it enhances the development of convective systems and improves the inner core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation lead to developing and nondeveloping disturbances for Nuri's genesis in the numerical simulations. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri's genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea-level pressure.

  17. Speed of particles ejected from animal skin by CO2 laser pulses, measured by laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Nicola, J. H.; Nicola, E. M. D.; Vieira, R.; Braile, D. M.; Tanabe, M. M.; Baldin, D. H. Z.

    2002-03-01

    During ablation of tissue with laser pulses rapid sublimation of matter occurs and high pressures are exerted within the tissue, resulting in steam, smoke and particles being expelled. In this paper we report the speed of particles ejected from animal tissue exposed to CO2 laser pulses measured directly by laser Doppler velocimetry (LDV). Speeds recorded just above animal skin were in the range of 9 to 18 m s-1 for laser pulses of 128 to 384 J cm-2 respectively. Aerodynamic turbulence slowed the particles down to a critical speed Vc of 4 m s-1 within a few millimetres above the laser ablation site. Once the particles reach this minimum speed, if no collisions occur, they will only decelerate by gravitational action and the residual kinetic energy will send the particles up to about 0.87 m from the skin surface. Since ejected particles may carry viable cells, acting as disease vectors during laser surgery, our results suggest that the LDV technique should be used to measure the speed of particles ejected from healthy or pathological human tissues, helping to establish safe conditions during laser surgery.

  18. Accuracy of velocity and shear rate measurements using pulsed Doppler ultrasound: a comparison of signal analysis techniques.

    PubMed

    Markou, C P; Ku, D N

    1991-01-01

    An experimental investigation was instituted to evaluate the performance of Doppler ultrasound signal processing techniques for measuring fluid velocity under well-defined flow conditions using a 10-MHz multigated pulsed ultrasound instrument. Conditions of fully developed flow in a rigid, circular tube were varied over a Reynolds number range between 500 and 8000. The velocity across the tube was determined using analog and digital zero crossing detectors and three digital spectrum estimators. Determination of the Doppler frequency from analog or digital zero crossing detectors gave accurate velocity values for laminar and moderately turbulent flow away from the wall (0.969 less than or equal to r less than or equal to 0.986). Three digital spectrum estimators, Fast Fourier Transform, Burg autoregressive method, and minimum variance method, were slightly more accurate than the zero crossing detector (0.984 less than or equal to r less than or equal to 0.994), especially at points close to the walls and with higher levels of turbulence. Steep velocity gradients and transit-time-effects from high velocities produced significantly larger errors in velocity measurement. Wall shear rate estimates were most precise when calculated using the position of the wall and two velocity points. The calculated wall shears were within 20%-30% of theoretically predicted values. PMID:1808798

  19. Wind flow in the Fraser Valley as measured by a pulsed CO{sub 2} Doppler lidar

    SciTech Connect

    Olivier, L.D.; Banta, R.M.; Hardesty, R.M.

    1994-12-31

    The Vancouver, British Columbia metropolitan area, with a population close to 1.5 million people, experiences high levels of tropospheric ozone during the summer months. The transport of pollution, including tropospheric ozone, in the Vancouver area, is influenced by a local land/sea breeze circulation, the valley flows associated with the Lower Fraser River Valley to the east of the city, and the complex terrain to the north and northeast of the city. In July and August of 1993, an experiment was conducted in the Vancouver area to assess the distribution and transport of tropospheric ozone. Wind flow and aerosol measurements were obtained with a pulsed CO(sub 2) Doppler lidar and wind fields and their interactions with the complex terrain were mapped. The combination of Doppler lidar measurements of wind velocity and backscattered signal intensity, obtained simultaneously, will help identify wind flow patterns that enhanced the transport of urban pollution from the city of Vancouver to the Lower Fraser River Valley, and the possible recirculation of these pollutants back into Vancouver.

  20. [Coronary artery blood flow velocity non-invasively measured using a vessel-tracking pulsed Doppler system].

    PubMed

    Tateishi, O; Aizawa, O; Okamura, T; Yoshida, T; Furuhata, H; Seo, Y; Iinuma, K; Shiki, E

    1988-09-01

    A newly-developed noninvasive method was used to measure left coronary blood flow during phantom experiments. Two techniques were used in which: (1) the sample position can always be set in a fluctuating vessel using a wall echo-tracking method with a phase-locked-loop, and (2) the Doppler reference signal was generated separately synchronous with the wall echo signal. These techniques were combined, using a commercially available pulsed Doppler apparatus (SSH-40B: Toshiba). Basic experiments were performed using a blood vessel phantom to verify the validity of these systems. Blood flow velocity in the fluctuating tube could be measured clearly using a vessel-tracking method. The blood flow velocity of the left anterior descending artery was measured in three normal subjects and in seven patients from the third intercostal space along the left sternal border. The velocity pattern was characterized by a crescendo-decrescendo shape in diastole. The peak velocity which appeared in diastole ranged from 19 to 69 cm/sec, with no difference by disease entity. However, in all cases, the blood flow velocity signals were marred by extraneous signals, making it impossible to measure blood flow velocity during systole. Further improvement of the system is mandatory in order to use this flowmeter clinically.

  1. Reference values for pulsed Doppler signals from the blood flow on both sides of the aortic valve.

    PubMed

    van Dam, I; Heringa, A; de Boo, T; Alsters, J; van Oort, A; Hopman, J; Fast, J; de Knecht, S; van der Werf, T; Daniels, O

    1987-11-01

    Pulsed Doppler signals were recorded in 215 healthy subjects, 120 males and 95 females, between 1 and 65 years of age. The measurements were performed in the left ventricular outflow tract (LVOT) and in the ascending aorta (AAO). Amplitude spectra from the Doppler signals were stored in digital form together with adjustment data for the instrument, the simultaneously registered ECG and respiration signal. The maximum velocity (Vmax), the maximum acceleration (Amax) and the width of the velocity distribution around Vmax (width) were derived from these spectra and used for the characterization of the signals. These parameters were computed without observer interaction using a computer program. Effects of age, sex, body surface area, heart rate and respiration were studied. Reference ranges were calculated. The following conclusions can be drawn: Vmax and Amax in the AAO decrease clearly with increasing age from approximately 100 to 60 cm s-1 and from 2000 to 1000 cm s-2 (medians), respectively. The variation of the width in the AAO is greater for people over 45 years. Vmax, Amax and width in the LVOT increase slightly with advancing age from approximately 60 to 80 cm s-1, 800 to 1000 cm s-2 and 12 to 15 cm s-1 (medians), respectively. These parameters of flow were either unrelated or only weakly related to other physiological variables in this study group. PMID:3691558

  2. Noninvasive diagnosis of extracranial carotid arterial disease: a prospective evaluation of pulsed-Doppler imaging and oculoplethysmography.

    PubMed

    Sumner, D S; Russell, J B; Ramsey, D E; Hajjar, W M; Miles, R D

    1979-11-01

    Two hundred consecutive internal carotid arteries were examined with the Hokanson-pulsed Doppler ultrasonic arteriograph (UA) and the Kartchner-McCrae oculoplethysmograph (OPG). Roentgenographic studies were used to assess the relative accuracy of these two noninvasive tests. Diameter stenoses estimated from the UA and roentgenographic images agreed within +/- 20% in 81% of the studies. The UA detected 61% of all stenoses of 20% to 39% and 89% of all stenoses greater than 40%. A sensitivity of 86% and a specificity of 90% were achieved with the UA compared with a sensitivity of 64% and a specificity of 85% with the OPG. When the UA and OPG agreed (67% of the vessels), the sensitivity was 95% and the specificity was 94%. When they disagreed, the UA was the better test having a sensitivity of 81% compared with 21% with the OPG.

  3. Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Hodges, Ryan; Endo, Masayuki; La Gerche, Andre; Eixarch, Elisenda; DeKoninck, Philip; Ferferieva, Vessilina; D'hooge, Jan; Wallace, Euan M.; Deprest, Jan

    2013-01-01

    Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is

  4. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  5. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  6. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  7. Effect of Doppler-shifted photons on subnanosecond breakdown in high-voltage pulse discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2016-06-01

    The experiments in high-voltage open discharge in helium [1, 2] showed a controlled current growth rate of 500 A/(cm2ns) for an applied voltage of 20 kV and gas pressure of 6 Torr. A kinetic model of the subnanosecond breakdown is developed to analyze the mechanism of current growth, which takes into account the kinetics of electrons, ions, fast atoms and photons with a Doppler shift (DS). DS photons appear in discharge due to collisions of heavy particles. Using particle in cell simulations, we show a critical role of DS photons in the electron emission from the cathode during the breakdown. Our experimental and calculation results show a decrease of the breakdown time with increasing gas pressure from 3 Torr to 16 Torr.

  8. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  9. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  10. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    SciTech Connect

    Welch, E. C.; Zhang, P.; He, Z.-H.; Dollar, F.; Krushelnick, K.; Thomas, A. G. R.

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  11. Impact of assimilating airborne Doppler radar velocity data using the ARPS 3DVAR on the analysis and prediction of Hurricane Ike (2008)

    NASA Astrophysics Data System (ADS)

    Du, Ningzhu; Xue, Ming; Zhao, Kun; Min, Jinzhong

    2012-09-01

    The ARPS 3DVAR data assimilation system is enhanced and used for the first time to assimilate airborne Doppler radar wind observations. It is applied to Hurricane Ike (2008), where radar observations taken along four flight legs through the hurricane vortex 14 to 18 h before it made landfall are assimilated. An optimal horizontal de-correlation scale for the background error is determined through sensitivity experiments. A comparison is made between assimilating retrieved winds and assimilating radial velocity data directly. The effect of the number of assimilation cycles, each analyzing data from one flight leg, is also examined. The assimilation of retrieved wind data and of radial velocity data produces similar results. However, direct assimilation of radial velocity data is recommended for both theoretical and practical reasons. In both cases, velocity data assimilation improves the analyzed hurricane structure and intensity as well as leads to better prediction of the intensity. Improvement to the track forecasting is also found. The assimilation of radial velocity observations from all four flight legs through intermittent assimilation cycles produces the best analyses and forecasts. The first analysis in the first cycle tends to produce the largest analysis increment. It is through the mutual adjustments among model variables during the forecast periods that a balanced vortex with lowered central pressure is established. The wind speeds extracted from the assimilated model state agree very well with independent surface wind measurements by the stepped-frequency microwave radiometer onboard the aircraft, and with independent flight-level wind speeds detected by the NOAA P-3 aircraft in-flight measurements. Twenty-four hour accumulated precipitation is noticeably improved over the case without radar data assimilation.

  12. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.; Zhang, Fuqing

    2014-03-01

    the Pennsylvania State University (PSU) real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) that assimilates airborne Doppler radar observations, the sensitivity and uncertainty of forecasts initialized several days prior to landfall of Hurricane Sandy (2012) are assessed. The performance of the track and intensity forecasts of both the deterministic and ensemble forecasts by the PSU WRF-EnKF system show significant skill and are comparable to or better than forecasts produced by operational dynamical models, even at lead times of 4-5 days prior to landfall. Many of the ensemble members correctly capture the interaction of Sandy with an approaching midlatitude trough, which precedes Sandy's forecasted landfall in the Mid-Atlantic region of the United States. However, the ensemble reveals considerable forecast uncertainties in the prediction of Sandy. For example, in the ensemble forecast initialized at 0000 UTC 26 October 2012, 10 of the 60 members do not predict a United States landfall. Using ensemble composite and sensitivity analyses, the essential dynamics and initial condition uncertainties that lead to forecast divergence among the members in tracks and precipitation are examined. It is observed that uncertainties in the environmental steering flow are the most impactful factor on the divergence of Sandy's track forecasts, and its subsequent interaction with the approaching midlatitude trough. Though the midlatitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land.

  13. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  14. Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: rapid passage, free induction decay, and the ac Stark effect.

    PubMed

    Duxbury, Geoffrey; Kelly, James F; Blake, Thomas A; Langford, Nigel

    2012-05-01

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.

  15. Localisation and direction of mitral regurgitant flow in mitral orifice studied with combined use of ultrasonic pulsed Doppler technique and two dimensional echocardiography.

    PubMed Central

    Miyatake, K; Nimura, Y; Sakakibara, H; Kinoshita, N; Okamoto, M; Nagata, S; Kawazoe, K; Fujita, T

    1982-01-01

    Regurgitant flow was analysed in 40 cases of mitral regurgitation, using combined ultrasonic pulsed Doppler technique and two dimensional echocardiography. Abnormal Doppler signals indicative of mitral regurgitant flow were detected in reference to the two dimensional image of the long axis view of the heart and the short axis view at the level of the mitral orifice. The overall direction of regurgitant flow into the left atrium was clearly seen in 28 of 40 cases, and the localisation of regurgitant flow in the mitral orifice in 38 cases. In cases with mitral valve prolapse of the anterior leaflet or posterior leaflet the regurgitant flow was directed posteriorly or anteriorly, respectively. The prolapse occurred at the anterolateral commissure or posteromedial commissure and resulted in regurgitant flow located near the anterolateral commissure or posteromedial commissure of the mitral orifice, respectively. In cases with rheumatic mitral regurgitation the regurgitant flow is usually towards the central portion of the left atrium and is sited in the mid-part of the orifice. The Doppler findings were consistent with left ventriculography and surgical findings. The ultrasonic pulsed Doppler technique combined with two dimensional echocardiography is useful for non-invasive analysis and preoperative assessment of mitral regurgitation. Images PMID:7138708

  16. Beam-forming techniques with applications to pulsed Doppler ultrasonic flowmeters

    NASA Astrophysics Data System (ADS)

    Fu, C. C.

    The near-field and array approaches to beam forming appear to be the most practical and useful methods for providing uniform illumination of the cross section of blood vessels. Through the near-field approach, the required beam patterns are produced in the near field of pulsed transducers and, as a result, it is most suitable for peripheral applications. Field patterns of pulsed transducers are defined and are investigated by theoretical analysis, numerical simulation, and experimental characterization to verify the validity and indicate the limitations of this approach. Transducers are designed and fabricated, based on these results, and are employed in the preliminary flowmeter system evaluation. The use of transducer arrays is the only viable approach to deepbody measurements and flexible beamwidth adjustment. A theory, founded on the finite Fourier-Bessel and Dini series expansions, is developed to synthesize circularly symmetrical beam patterns by means of concentric annular arrays. Its application to the generation of variable-width uniform beams results in a canonical design procedure. A prototype transducer array suitable for transcutaneous cardiac-output estimation was developed.

  17. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  18. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  19. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision. PMID:20968394

  20. Analysis of Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Rothermel, J.

    1985-01-01

    Dual Doppler lidar analyses of data taken by pulsed lidars demonstrated feasibility of deriving wind fields from coordinated lidar scans. Limited case histories of thunderstorm outflows were obtained. Co-located comparison between Marshall Space Flight Center lidar and NCAR 5.5 cm radar demonstrated desirability of lidar in cases of marginal radar reflectivity in clear air and low-elevation scans. Analysis continued on backscattered intensity and velocity measurements made from April 1983 to February 1984. A slant path method was used to calculate vertical profiles of volumetric backscatter and adsorption in the lower troposphere. High-quality VAD scans were identified as candidates for investigating feasibility of calculating horizontal motion fields using single Doppler lidar. Activities during FY-85 also included participation in Fall 1984 airborne Doppler lidar flight experiments. Preliminary data review was begun using McIdas system. Analysis of backscatter and absorpiton profiles continues. Focus is on understanding spatial and temporal variations, as well as frequency distribution, of backscatter at several tropospheric levels. Results from this study provide input to evaluation of clean/dirty airmass hypothesis of aerosol distribution. Assistance is being given to preparation of a comprehensive, global backscatter measurement plan. Analysis of data from Fall 1984 flight experiments is just beginning. Work has begun on preprocessing data to minimize errors due to electro-optic modulator malfunction during flights.

  1. Analysis of Doppler Effect on the Pulse Compression of Different Codes Emitted by an Ultrasonic LPS

    PubMed Central

    Paredes, José A.; Aguilera, Teodoro; Álvarez, Fernando J.; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an Ultrasonic Local Positioning System. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver. PMID:22346670

  2. Analysis of Doppler effect on the pulse compression of different codes emitted by an ultrasonic LPS.

    PubMed

    Paredes, José A; Aguilera, Teodoro; Alvarez, Fernando J; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an ultrasonic local positioning system. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver.

  3. Lightweight, broadband, pulsed, frequency agile, self-screening jammer for airborne deployment

    NASA Astrophysics Data System (ADS)

    Gagliardi, Richard P.

    1989-12-01

    A broadband RF microwave source is used to generate a high-energy, narrow pulse which is used to provide the illuminating signal for an active radar system while simultaneously jamming other active radar systems. The generation of the RF microwave energy utilizes a spark gap generation systems. Jamming is accomplished by overload ringing of the receiver portion of the other radar system.

  4. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  5. Atrial Mechanical Function Before and After Electrical or Amiodarone Cardioversion in Atrial Fibrillation: Assessment by Transesophageal Echocardiography and Pulsed Doppler.

    PubMed

    Maria Amuchastegui, Luis; Cravero, Cecilia; Salomone, Oscar; Amuchastegui, Marcos

    1996-03-01

    In some patients with atrial fibrillation (AF), it has been suggested that left atrial mechanical dysfunction can develop after successful electrical cardioversion, justifying postcardioversion anticoagulant treatment. The purpose of this study was to investigate differences in left atrial appendage peak flow velocities and the incidence of left atrial spontaneous echo contrast in patients with AF before and after electrical cardioversion or intravenous amiodarone, studied using transesophageal echocardiography (TEE) and pulsed Doppler. We performed a control TEE in 7 patients in the electrical group and 6 in the amiodarone group, with no significant clinical differences between both groups. A second TEE was performed immediately in the 7 patients with successful electrical cardioversion. The peak flow velocities in the appendage before and after the procedure were: filling 43.3 +/- 22 vs 27.7 +/- 28 cm/sec (P = 0.01) and emptying 35.5 +/- 22 vs 23.6 +/- 17 cm/sec (P = 0.01), respectively. The spontaneous echo contrast increased in 4 of the 7 patients. In 4 patients of the amiodarone group, the peak flow velocities in the appendage during AF and within the first 24 hours after restoration of sinus rhythm were: filling 37.4 +/- 12 vs 37.8 +/- 18 cm/sec and emptying 36.4 +/- 18 vs 35.9 +/- 18 cm/sec, respectively (P = NS). There was no change in spontaneous echo contrast. In conclusion, patients with AF reverted to sinus rhythm using amiodarone did not show changes in left atrial mechanical function; however, patients with electrical cardioversion showed mechanical dysfunction. Further investigations on the effects of amiodarone and other drugs on the mechanical function of the atria are needed to determine if patients reverted pharmacologically require anticoagulation post reversion. (ECHOCARDIOGRAPHY, Volume 13, March 1996)

  6. Sub-Doppler Spectra of Infrared Hyperfine Transitions of Nitric Oxide Using a Pulse Modulated Quantum Cascade Laser: Rapid Passage, Free Induction Decay and the AC Stark Effect

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.

  7. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  8. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  9. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  10. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  11. Recent Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption to 13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Mao, J.; Hasselbrack, W.; Sun, X.; Rodriguez, M. R.

    2010-12-01

    We have developed a lidar technique for measuring atmospheric CO2 concentrations as a candidate for NASA’s ASCENDS mission. It uses pulsed laser transmitters to simultaneously measure a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers step in wavelength across the CO2 line and an O2 line pair during the measurement. The receiver uses a telescope and photon counting detectors, and measures the time resolved backscatter of the laser echoes. Signal processing is used to isolate the laser echo signals from the surface, estimate their range, and reject laser photons scattered in the atmosphere. The gas extinction and column densities for the CO2 and O2 gases are estimated via the IPDA technique. We developed a lidar to demonstrate the CO2 measurement from aricraft. The lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 or 30 steps per scan. The line scan rate is 450 Hz and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. During July and August 2009 we made 5 two hour long flights while installed on the NASA Glenn Lear-25 aircraft. We measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surfaces in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with the NASA LaRC/ITT CO2 lidar on their UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell

  12. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  13. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  14. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign: Measurement Analysis

    NASA Astrophysics Data System (ADS)

    Ramanathan, A.; Mao, J.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W.; Riris, H.; Sun, X.; Abshire, J. B.

    2012-12-01

    Trace gas LIDAR has the potential to actively sense greenhouse gas concentrations in the earth's atmosphere continuously without being affected by day or night. This will enable identifying greenhouse gas sources and sinks, which will help better predict future atmospheric trends of these gases. However, in order to ensure reliable and accurate measurements, it is important to establish metrics to quantify performance. As part of the ASCENDS (Active Sensing of Co2 over Nights, Days and Seasons) program, we conducted an airborne campaign of our CO2 pulsed LIDAR system in August 2011, flying over a variety of terrain and conditions, including snow, ocean, clouds, desert and mountains. Our instrument uses an IPDA (Integrated Path Differential Absorption) approach probing 30 wavelengths across a 1572 nm CO2 absorption line. Our multi-wavelength approach provides redundancy for evaluating the stability of the instrument, and also allows us to perform spectroscopic analysis of the atmosphere. Here, we present our detailed analysis and results. Tracking long-term stability of our instrument by using the Allan deviation formalism for wavelengths away from the absorption line-center, we find that the measured pulse energy (normalized to eliminate ground reflectivity) is stable down to 0.2% across varying terrain, surface reflectivity, flight altitude and LIDAR range. Comparing our measured CO2 absorption line-shape (at regions of constant, known CO2 concentrations) with the predicted line-shape based on the LIDAR range, flight altitude and relevant atmosphere parameters (based on in situ measurements by instruments aboard the aircraft), we find the agreement to be better than 1% (RMS error), once we average 50 s to eliminate shot noise. Our multi-wavelength approach also allows us to track the position of the line-center. The altitude dependence of the atmospheric pressure causes a shift in the CO2 absorption as a function of aircraft altitude. Our measured pressure shift

  16. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  17. 77 FR 53962 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... of TSO-C65a as published in 77 FR 37470, June 21, 2012, produced no comments. Conclusion TSO-C65a is... Speed and/or Drift Angle Measuring Equipment (For Air Carrier Aircraft) AGENCY: Federal Aviation... Doppler Radar Ground Speed and/or Drift Angle Measuring Equipment (For Air Carrier Aircraft)....

  18. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J

    2015-02-20

    Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented. PMID:25968204

  19. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J

    2015-02-20

    Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented.

  20. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  1. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  2. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption during the ASCENDS 2009-2011 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G.; Hasselbrack, W.; Browell, E. V.

    2011-12-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  3. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  4. Doppler effect for sound emitted by a moving airborne source and received by acoustic sensors located above and below the sea surface.

    PubMed

    Ferguson, B G

    1993-12-01

    The acoustic emissions from a propeller-driven aircraft are received by a microphone mounted just above ground level and then by a hydrophone located below the sea surface. The dominant feature in the output spectrum of each acoustic sensor is the spectral line corresponding to the propeller blade rate. A frequency estimation technique is applied to the acoustic data from each sensor so that the Doppler shift in the blade rate can be observed at short time intervals during the aircraft's transit overhead. For each acoustic sensor, the observed variation with time of the Doppler-shifted blade rate is compared with the variation predicted by a simple ray-theory model that assumes the atmosphere and the sea are distinct isospeed sound propagation media separated by a plane boundary. The results of the comparison are shown for an aircraft flying with a speed of about 250 kn at altitudes of 500, 700, and 1000 ft.

  5. Transverse-mode selection in apertured super-Gaussian resonators: an experimental and numerical investigation for a pulsed CO(2) Doppler lidar transmitter.

    PubMed

    Galletti, E; Stucchi, E; Willetts, D V; Harris, M R

    1997-02-20

    A representative prototype of a high-energy, long-pulse, and narrow-bandwidth pulsed CO(2) laser suitable for a spaceborne Doppler wind lidar application has been developed. We obtained 10 J of output energy at greater than 8% efficiency in long, narrow-bandwidth, single-longitudinal, and transverse-mode pulses. We used a positive branch unstable resonator with a fourth-order super-Gaussian mirror as the output coupler. Experiments were carried out to assess the effect of intracavity hard apertures of different diameters that induce diffractive perturbation of the theoretical field and reduce the transverse-mode selectivity of the cavity. An upper limit to the choice of the mirror soft radius has been found, which allows optimization of the trade-off between laser efficiency and beam quality. We determined experimentally that a value of 0.75-0.8 for the ratio between the exp(-1) diameter of the beam intensity and the laser clear aperture gave a single-transverse-mode operation without significant loss of efficiency. PMID:18250800

  6. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  7. The Multiple Doppler Radar Workshop, November 1979.

    NASA Astrophysics Data System (ADS)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for

  8. Automated calculation of stenosis diameters from the width of the velocity jet with the use of a multi-gate pulsed Doppler system.

    PubMed

    de Knecht, S; Hopman, J C; Alsters, J L; Daniëls, O; Hoeks, A P; Reneman, R S

    1988-01-01

    The aim of this study was to evaluate an algorithm for automated estimation of the width of a jet stream originating from a stenosis. The evaluation was performed in a pulsatile flow model. The width of the jetstream was assessed by measuring the diameter of the region with relatively high velocities (the jet) in the velocity profiles, as recorded with a multi-gate pulsed Doppler system. Measurements were performed at 3, 6, and 9 mm downstream of three different stenoses (stenosis diameter: 3, 5, or 8 mm) at different Reynolds numbers (200-1600) based on time averaged flow velocity for a tube of diameter 15 mm. The developed algorithm was used successfully for automated detection and quantification of jet flow diameters downstream to a stenosis. The algorithm can be used for calculating the stenosis diameter notwithstanding a theoretically predictable overestimation of about 1 mm, depending on the Reynolds number and the distance from the stenosis. PMID:2974211

  9. Simultaneous and Independent Measurement of Atmospheric Water Vapor and Carbon Dioxide using a Triple-Pulsed, 2-micron Airborne IPDA Lidar - A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Refaat, T. F.; Yu, J.; Petros, M.

    2013-12-01

    Water vapor (H2O) and carbon dioxide (CO2) are dominant greenhouse gases that are critical for Earth's radiation budget and global warming through the eco-system and the carbon cycle. NASA Langley Research Center (LaRC) has a strong heritage in atmospheric remote sensing of both gases using several instruments adopting various DIAL techniques. This communication presents a feasibility study for measuring both H2O and CO2 simultaneously and independently using a single instrument. This instrument utilizes the Integrated Path Differential Absorption (IPDA) lidar technique to measure the weighted-average column dry-air mixing ratios of CO2 (XCO2) and H2O (XH2O) independently and simultaneously from an airborne platform. The key component of this instrument is a tunable triple-pulse 2-micron laser. The three laser pulses are transmitted sequentially within a short time interval of 200 microsec. The wavelength of each of the laser pulses can be tuned separately. The IPDA receiver design is based on low-risk, commercially available components, including 300-micron diameter InGaAs 2-micron pin detector, a low-noise, high speed trans-impedance amplifier (TIA) and 12-bit 400 MHz digitizer.

  10. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km.

  11. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.; Allan, G. R.; Mao, J.; Hasselbrack, W.; Abshire, J. B.

    2013-12-01

    We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate atmospheric temperature and pressure measurements are required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. Since O2 in uniformly mixed in the atmosphere, its absorption spectra can be used to estimate atmospheric pressure. In its airborne configuration, the IPDA lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at multiple discrete wavelengths in the oxygen A-band near 765 nm. This instrument has been deployed three times aboard NASA's DC-8 airborne laboratory as part of campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes between 3 km and 13 km. The O2 IPDA lidar flew seven flights in 2011 and six flights in 2013 in the continental United States and British Columbia, Canada. Our results from 2011 showed good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km after a systematic bias correction of approximately 8% was applied. The random noise component was 2.5-3.0 %. The most recent data recorded in 2013 show better agreement between experimental optical depth measurements and theoretical predictions and much smaller systematic errors. The random error remained comparable with 2011 at 2-3%. The main source of random error is primarily the low energy (power) of the laser transmitter and the high solar background. We are in the process of addressing this issue with a new, higher energy amplifier that we anticipate will reduce the random noise component by a factor of 3-5 to less than 0.5%. The results from these flights show that the IPDA technique is a viable method

  12. Five years use of Pulse Doppler RADAR-utechnology in debris-flows monitoring - experience at three test sites so far

    NASA Astrophysics Data System (ADS)

    Koschuch, Richard; Brauner, Michael; Hu, Kaiheng; Hübl, Johannes

    2016-04-01

    Automatic monitoring of alpine mass movement is a major challenge in dealing with natural hazards. The presented research project shows a new approach in measurment and alarming technology for water level changes an debris flow by using a high-frequency Pulse Doppler RADAR. The detection system was implemented on 3 places (2 in Tirol/Austria within the monitoring systems of the IAN/BOKU; 1 in Dongchuan/China within the monitoring systems of the IMHE/Chinese Academy of Science) in order to prove the applicability of the RADAR in monitoring torrential activities (e.g. debris-flows, mudflows, flash floods, etc.). The main objective is to illustrate the principles and the potential of an innovative RADAR system and its versatility as an automatic detection system for fast (> 1 km/h - 300 km/h) alpine mass movements of any kind. The high frequency RADAR device was already successfully tested for snow avalanches in Sedrun/Switzerland (Lussi et al., 2012), in Ischgl/Austria (Kogelnig et al., 2012). The experience and the data of the five year showed the enormous potential of the presented RADAR technology in use as an independent warning and monitoring system in the field of natural hazard. We have been able to measure water level changes, surface velocities and several debris flows and can compare this data with the other installed systems.

  13. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients.

    PubMed

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-06-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance.

  14. Ultrasonic Doppler Modes

    NASA Astrophysics Data System (ADS)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  15. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  16. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  17. Correction of Doppler Rada Data for Aircraft Motion Using Surface Measurements and Recursive Least-Squares Estimation

    NASA Technical Reports Server (NTRS)

    Durden, S.; Haddad, Z.

    1998-01-01

    Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.

  18. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  19. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  20. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  1. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  2. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6 km.

  3. [Pilot study of echocardiographic studies using color- and pulsed-wave spectral Doppler methods in blue-crowned amazons (Amazona ventralis) and blue-fronted amazons (Amazona a. aestiva)].

    PubMed

    Pees, M; Straub, J; Schumacher, J; Gompf, R; Krautwald-Junghanns, M E

    2005-02-01

    Colour-flow and pulsed-wave spectral Doppler echocardiography was performed on 6 healthy, adult Hispaniolan amazon parrots (Amazona ventralis) and 6 blue-fronted amazon parrots (Amazona a. aestiva) to establish normal reference values. Birds were anesthetized with isoflurane in oxygen and placed in dorsal recumbency. An electrocardiogram was recorded continuously and birds were imaged with a micro-phased-array scanner with a frequency of 7.0 MHz. After assessment of cardiac function in 2-D-echocardiography, blood flow across the left and the right atrioventricular valve and across the aortic valve was determined using color-flow and pulsed-wave spectral Doppler echocardiography. Diastolic inflow (mean value +/- standard deviation) into the left ventricle was 0.17 +/- 0.02 m/s (Hispaniolan amazons) and 0.18 +/- 0.03 m/s (Blue fronted amazons). Diastolic inflow into the right ventricle was 0.22 +/- 0.05 m/s (Hispaniolan amazons) and 0.22 +/- 0.04 m/s (Blue fronted amazons). Velocity across the aortic valve was 0.84 +/- 0.07 m/s (Hispaniolan amazons) and 0.83 +/- 0.08 m/s (Blue fronted amazons). Systolic pulmonary flow could not be detected in any of the birds in this study. No significant differences were evident between the two species examined. Results of this study indicate that Doppler echocardiography is a promising technique to determine blood flow in the avian heart. Further studies in other avian species are needed to establish reference values for assessment of cardiac function in diseased birds.

  4. Doppler instrumentation for measuring blood velocity and flow

    NASA Technical Reports Server (NTRS)

    Gill, R. W.; Hottinger, C. F.; Meindl, J. D.

    1975-01-01

    Doppler ultrasonic blood flowmeters are reviewed in detail. The importance of measurement accuracy for transcutaneous flowmeters and their clinical application is stressed. Doppler imaging was combined with conventional pulse echo imaging, and diagnostic information was extracted from flow signals. The range and extent of applications of Doppler instruments was also presented.

  5. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  6. Juneau Airport Doppler Lidar Deployment: Extraction of Accurate Turbulent Wind Statistics

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Frehlich, Rod; Cornman, Larry; Goodrich, Robert; Norris, Douglas; Williams, John

    1999-01-01

    A 2 micrometer pulsed Doppler lidar was deployed to the Juneau Airport in 1998 to measure turbulence and wind shear in and around the departure and arrival corridors. The primary objective of the measurement program was to demonstrate and evaluate the capability of a pulsed coherent lidar to remotely and unambiguously measure wind turbulence. Lidar measurements were coordinated with flights of an instrumented research aircraft operated by representatives of the University of North Dakota (UND) under the direction of the National Center for Atmospheric Research (NCAR). The data collected is expected to aid both turbulence characterization as well as airborne turbulence detection algorithm development activities within NASA and the FAA. This paper presents a summary of the deployment and results of analysis and simulation which address important issues regarding the measurement requirements for accurate turbulent wind statistics extraction.

  7. WIND MEASUREMENTS WITH HIGH-ENERGY DOPPLER LIDAR

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Kavaya, Michael J.; Barnes, Bruce W.; Beyon, Jeffrey Y.; Petros, Mulugeta; Jirong, Yu; Amzajerdian, Farzin; Slingh, Upendra N.

    2006-01-01

    Coherent lidars at 2-micron wavelengths from holmium or thulium solid-state lasers have been in use to measure wind for applications in meteorology, aircraft wake vortex tracking, and turbulence detection [1,2,3] These field-deployed lidars, however, have generally been of a pulse energy of a few millijoules, limiting their range capability or restricting operation to regions of high aerosol concentration such as the atmospheric boundary layer. Technology improvements in the form of high-energy pulsed lasers, low noise detectors, and high optical quality telescopes are being evaluated to make wind measurements to long ranges or low aerosol concentrations. This research is aimed at developing lidar technology for satellite-based observation of wind on a global scale. The VALIDAR project was initiated to demonstrate a high pulse energy coherent Doppler lidar. VALIDAR gets its name from the concept of validation lidar, in that it can serve as a calibration and validation source for future airborne and spaceborne lidar missions. VALIDAR is housed within a mobile trailer for field measurements.

  8. Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Petzar, Paul J.

    2009-01-01

    We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center.

  9. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  10. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  11. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  12. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  13. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  14. [Feasibility study of the Doppler exploration of the renal artery].

    PubMed

    Milon, P; Clavier, E; Genevois, A; Benozio, M

    1990-03-01

    Using arteriography as a reference, the authors investigate the feasibility of pulsed doppler exploration of the normal or pathological renal arteries in 46 successive patients. The poor sensitivity of pulsed doppler, mainly due to the considerable anatomical variations of the renal pedicle, does not currently allow using this technique for the detection of renal arterial stenosis. When combined with angiography, pulsed doppler becomes a definite asset in therapeutic radiology to help in the choice of a treatment and in follow-up. PMID:2191123

  15. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  16. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  17. Doppler lidar results from the San Gorgonio Pass experiments

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.

    1984-01-01

    During FY-84, the Doppler Lidar data from the San Gorgonio Pass experiments were analyzed, evaluated, and interpreted with regard to signal strength, signal width, magnitude and direction of velocity component and a goodness parameter associated with the expected noise level of the signal. From these parameters, a screening criteria was developed to eliminate questionable data. For the most part analysis supports the validity of Doppler Lidar data obtained at San Gorgonio Pass with respect to the mean velocity magnitude and direction. The question as to whether the Doppler width could be interpreted as a measure of the variance of the turbulence within the Doppler Lidar System (DLS) focal volume was not resolved. The stochastic nature of the Doppler broadening from finite residence time of the particles in the beam as well as other Doppler broadening phenomenon tend to mask the Doppler spread associated with small scale turbulence. Future tests with longer pulses may assist in better understanding.

  18. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  19. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  20. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  1. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Howell, Burgess F.; Hardesty, Robert M.; Tratt, David M.; Darby, Lisa S.

    1999-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, Jet Propulsion Laboratory and NASA Marshall Space Flight Center jointly developed an airborne scanning coherent Doppler Lidar. We describe the system, present recent measurement (including the first wind fields measured within a hurricane using Doppler lidar), and describe prospective instrument improvements and research applications.

  2. DOPPLER WEATHER SYSTEM

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  3. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  4. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  5. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  6. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  7. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  8. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  9. Accommodations assessment: Spaceborne Doppler lidar wind measuring system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An accommodations analysis performed by the MSFC Preliminary Design Office for a spaceborne Doppler lidar wind measuring system is summarized. A dedicated, free-flying spacecraft design concept is described. Mass and beginning-of-life power requirements are estimated at 2260 kg and 6.0 - 8.5 kW respectively, to support a pulsed, CO2, Doppler lidar having a pulse energy of 10 J, pulse rate of 8 Hz, and efficiency of approximately 5%. Under the assumptions of the analysis, such a system would provide wind measurements on a global scale, with accuracies of a few meters per second.

  10. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  11. Compression of polyphase codes with Doppler shift

    NASA Astrophysics Data System (ADS)

    Wirth, W. D.

    It is shown that pulse compression with sufficient Doppler tolerance may be achieved with polyphase codes derived from linear frequency modulation (LFM) and nonlinear frequency modulation (NLFM). Low sidelobes in range and Doppler are required especially for the radar search function. These may be achieved by an LFM derived phase coder together with Hamming weighting or by applying a PNL polyphase code derived from NLFM. For a discrete and known Doppler frequency with an expanded and mismatched reference vector a sidelobe reduction is possible. The compression is then achieved without a loss in resolution. A set up for the expanded reference gives zero sidelobes only in an interval around the signal peak or a least square minimization for all range elements. This version may be useful for target tracking.

  12. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  13. Doppler and Zeeman Doppler Imaging of Stars

    NASA Astrophysics Data System (ADS)

    Kochukhov, Oleg

    In this chapter we discuss the problem of reconstructing two-dimensional stellar surface maps from the variability of intensity and/or polarisation profiles of spectral lines. We start by outlining the main principles of the scalar Doppler imaging problem concerned with recovering maps of chemical spots, temperature or brightness from the intensity spectra. After presenting the physical and mathematical foundations of this remote sensing method, we review its applications to mapping different types of spots in early-type chemically peculiar and late-type active stars, and non-radial pulsations in early-type stars. We also discuss an extension of Doppler imaging to the problem of recovering vector distributions of stellar magnetic fields from spectropolarimetric observations and review applications of this Zeeman Doppler imaging technique in the context of stellar magnetism studies.

  14. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  15. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  16. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  17. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize effective…

  18. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  19. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  20. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  1. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  2. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  3. Micro-Doppler processing for ultra-wideband radar data

    NASA Astrophysics Data System (ADS)

    Smith, Graeme E.; Ahmad, Fauzia; Amin, Moeness G.

    2012-06-01

    In this paper, we describe an operational pulse Doppler radar imaging system for indoor target localization and classification, and show how a target's micro-Doppler signature (μDS) can be processed when ultra-wideband (UWB) waveforms are employed. Unlike narrowband radars where time-frequency signal representations can be applied to reveal the target time-Doppler frequency signatures, the UWB system permits joint range-time-frequency representation (JRTFR). JRTFR outputs the data in a 3D domain representing range, frequency, and time, allowing both the μDS and high range resolution (HRR) signatures to be observed. We delineate the relationship between the μDS and the HRR signature, showing how they would form a complimentary joint feature for classification. We use real-data to demonstrate the effectiveness of the UWB pulse-Doppler radar, combined with nonstationary signal analyses, in gaining valuable insights into human positioning and motions.

  4. Coherent Doppler lidar signal covariance including wind shear and wind turbulence

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal is presented for random atmospheric wind fields with wind shear. The random component is described by a Kolmogorov turbulence spectrum. The signal parameters are clarified for a general coherent Doppler lidar system. There are two distinct physical regimes: one where the transmitted pulse determines the signal statistics and the other where the wind field dominates the signal statistics. The Doppler shift of the signal is identified in terms of the wind field and system parameters.

  5. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A New NASA Instrument Incubator Program Project

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Amzajerdian, Farzin; Wang, Jinxue; Petros, Mulugeta

    2005-01-01

    A new project, selected in 2005 by NASA s Science Mission Directorate (SMD) under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The packaged DWL will utilize the numerous advances in pulsed, solid-state, 2-micron laser technology at NASA s Langley Research Center (LaRC) in such areas as crystal composition, architecture, efficiency, cooling techniques, pulse energy, and beam quality. The extensive experience of Raytheon Space and Airborne Systems (RSAS) in coherent lidar systems, in spacebased sensors, and in packaging rugged lidar systems will be applied to this project. The packaged transceiver will be as close to an envisioned space-based DWL system as the resources and technology readiness allow. We will attempt to facilitate a future upgrade to a coherent lidar system capable of simultaneous wind and CO2 concentration profile measurements. Since aerosol and dust concentration is also available from the lidar signal, the potential for a triple measurement lidar system is attractive for both Earth and Mars remote sensing. A key follow on step after the IIP will be to add a telescope, scanner, and software for aircraft validation. This IIP should also put us in a position to begin a parallel formulation study in the 2006-2007 timeframe for a space-based DWL demonstration mission early next decade.

  6. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  7. Target motion detecting impulse Doppler radar system

    NASA Astrophysics Data System (ADS)

    Jehle, Robert E.; Hudson, David F.

    1992-03-01

    Radiant energy intermittently emitted from a transmitter is reflected as echo pulses from a moving target being interrogated to produce Doppler signals by counting of photons of the echo pulses during time domain intervals between emission from the transmitter. Such counting of photons is limited to the time domain intervals by operational control of a laser pump through which a reference beam is generated at an energy level activating detectors irradiated by such beam to count the photons absorbed therein after capture of the photons by a receiving antenna.

  8. Target motion detecting impulse Doppler radar system

    NASA Astrophysics Data System (ADS)

    Jehle, Robert E.; Hudson, David F.

    1993-06-01

    Radiant energy intermittently emitted from a transmitter is reflected as echo pulses from a moving target being interrogated to produce Doppler signals by counting of photons of the echo pulses during time domain intervals between emission from the transmitter. Such counting of photons is limited to the time domain intervals by operational control of a laser pump through which a reference beam is generated at an energy level activating detectors irradiated by such beam to count the photons absorbed therein after capture or the photons by a receiving antenna.

  9. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  10. ARMAR: An airborne rain-mapping radar

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Im, E.; Li, F. K.; Ricketts, W.; Tanner, A.; Wilson, W.

    1994-01-01

    A new airborne rain-mapping radar (ARMAR) has been developed by NASA and the Jet Propulsion Laboratory for operation on the NASA Ames DC-8 aircraft. The radar operates at 13.8 GHz, the frequency to be used by the radar on the Tropical Rainfall Measuring Mission (TRMM). ARMAR simulates the TRMM radar geometry by looking downward and scanning its antenna in the cross-track direction. This basic compatibility between ARMAR and TRMM allows ARMAR to provide information useful for the TRMM radar design, for rain retrieval algorithm development, and for postlaunch calibration. ARMAR has additional capabilities, including multiple polarization, Doppler velocity measurement, and a radiometer channel for brightness temperature measurement. The system has been tested in both ground-based and airborne configurations. This paper describes the design of the system and shows results of field tests.

  11. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  12. Cosmology with Doppler lensing

    NASA Astrophysics Data System (ADS)

    Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy

    2014-09-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialized overdensities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3D potential maps of large volumes of the Universe using Doppler lensing.

  13. Efficient pulse compression for LPI waveforms based on a nonparametric iterative adaptive approach

    NASA Astrophysics Data System (ADS)

    Li, Zhengzheng; Nepal, Ramesh; Zhang, Yan; Blake, WIlliam

    2015-05-01

    In order to achieve low probability-of-intercept (LPI), radar waveforms are usually long and randomly generated. Due to the randomized nature, Matched filter responses (autocorrelation) of those waveforms can have high sidelobes which would mask weaker targets near a strong target, limiting radar's ability to distinguish close-by targets. To improve resolution and reduced sidelobe contaminations, a waveform independent pulse compression filter is desired. Furthermore, the pulse compression filter needs to be able to adapt to received signal to achieve optimized performance. As many existing pulse techniques require intensive computation, real-time implementation is infeasible. This paper introduces a new adaptive pulse compression technique for LPI waveforms that is based on a nonparametric iterative adaptive approach (IAA). Due to the nonparametric nature, no parameter tuning is required for different waveforms. IAA can achieve super-resolution and sidelobe suppression in both range and Doppler domains. Also it can be extended to directly handle the matched filter (MF) output (called MF-IAA), which further reduces the computational load. The practical impact of LPI waveform operations on IAA and MF-IAA has not been carefully studied in previous work. Herein the typical LPI waveforms such as random phase coding and other non- PI waveforms are tested with both single-pulse and multi-pulse IAA processing. A realistic airborne radar simulator as well as actual measured radar data are used for the validations. It is validated that in spite of noticeable difference with different test waveforms, the IAA algorithms and its improvement can effectively achieve range-Doppler super-resolution in realistic data.

  14. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  15. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  16. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  17. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 1

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Modification, construction, test and operation of an advanced airborne carbon dioxide laser Doppler system for detecting clear air turbulence are described. The second generation CAT program and those auxiliary activities required to support and verify such a first-of-a-kind system are detailed: aircraft interface; ground and flight verification tests; data analysis; and laboratory examinations.

  18. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.

  19. Clutter reduction using Doppler sonar in a harbor environment.

    PubMed

    Yang, T C; Schindall, J; Huang, Chen-Fen; Liu, Jin-Yuan

    2012-11-01

    A high frequency experiment was conducted in the Woods Hole Harbor in Massachusetts to evaluate the effectiveness of Doppler sonar for discriminating targets from reverberation. Using a pulsed linear frequency modulated signal, one finds that the matched filtered outputs are filled with high-level discrete backscattered returns, referred to as clutter, which are often confused with the target echo. The high level non-target returns have an amplitude distribution that is heavy-tailed. Using a Doppler-sensitive binary-phase-shift-keying signal coded with an m-sequence, the target echo and clutter can be separated by Doppler and delay, and tracked using the Doppler spectrogram (Dopplergram). The Doppler filtered time series show a background reverberation with a Rayleigh-like amplitude distribution, with an improved signal-to-(peak) reverberation ratio compared with that without Doppler filtering. The reduced reverberation level with Doppler processing decreases the probability of false alarm (Pfa) for a given threshold level. Conversely, for a given Pfa, the higher signal-to-(peak) reverberation ratio implies a higher probability of detection. Transmission loss measurement was conducted to estimate some of the system parameters, e.g., the source level and target strength relative to the noise level.

  20. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  1. Laser Doppler projection tomography.

    PubMed

    Zeng, Yaguang; Xiong, Ke; Lu, Xuanlong; Feng, Guanping; Han, Dingan; Wu, Jing

    2014-02-15

    We propose a laser Doppler projection tomography (LDPT) method to obtain visualization of three-dimensional (3D) flowing structures. With LDPT, the flowing signal is extracted by a modified laser Doppler method, and the 3D flowing image is reconstructed by the filtered backprojection algorithm. Phantom experiments are performed to demonstrate that LDPT is able to obtain 3D flowing structure with higher signal-to-noise ratio and spatial resolution. Our experiment results display its potentially useful application to develop 3D label-free optical angiography for the circulation system of live small animal models or microfluidic experiments.

  2. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  3. Atmospheric probing by Doppler radar

    NASA Technical Reports Server (NTRS)

    Lhermitte, R. M.

    1969-01-01

    A survey is presented of the application of Doppler techniques to the study of atmospheric phenomena. Particular emphasis is placed on the requirement of adequate digital processing means for the Doppler signal and the Doppler data which are acquired at a very high rate. The need is discussed of a two or three Doppler method as an ultimate approach to the problem of observing the three-dimensional field of particle motion inside convective storms.

  4. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  5. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  6. Photonic doppler velocimetry

    SciTech Connect

    Lowry, M E; Molau, N E; Sargis, P D; Strand, O T; Sweider, D

    1999-01-01

    We are developing a novel fiber-optic approach to laser Doppler velocimetry as a diagnostic for high explosives tests. Using hardware that was originally developed for the telecommunications industry, we are able to measure surface velocities ranging from centimeters per second to kilometers per second. Laboratory measurements and field trials have shown excellent agreement with other diagnostics.

  7. Reducing Spaceborne-Doppler-Radar Rainfall-Velocity Error

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood; Durden, Stephen L.

    2008-01-01

    A combined frequency-time (CFT) spectral moment estimation technique has been devised for calculating rainfall velocity from measurement data acquired by a nadir-looking spaceborne Doppler weather radar system. Prior spectral moment estimation techniques used for this purpose are based partly on the assumption that the radar resolution volume is uniformly filled with rainfall. The assumption is unrealistic in general but introduces negligible error in application to airborne radar systems. However, for spaceborne systems, the combination of this assumption and inhomogeneities in rainfall [denoted non-uniform beam filling (NUBF)] can result in velocity measurement errors of several meters per second. The present CFT spectral moment estimation technique includes coherent processing of a series of Doppler spectra generated in a standard manner from data over measurement volumes that are partially overlapping in the along-track direction. Performance simulation of this technique using high-resolution data from an airborne rain-mapping radar shows that a spaceborne Ku-band Doppler radar operating at signal-to-noise ratios greater than 10 dB can achieve root-mean-square accuracy between 0.5 and 0.6 m/s in vertical-velocity estimates.

  8. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  9. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  10. Laser Doppler flowmetry imaging

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  11. Holographic laser Doppler ophthalmoscopy.

    PubMed

    Simonutti, M; Paques, M; Sahel, J A; Gross, M; Samson, B; Magnain, C; Atlan, M

    2010-06-15

    We report laser Doppler ophthalmoscopic fundus imaging in the rat eye with near-IR heterodyne holography. Sequential sampling of the beat of the reflected radiation against a frequency-shifted optical local oscillator is made onto an array detector. Wide-field maps of fluctuation spectra in the 10 Hz to 25 kHz band exhibit angiographic contrasts in the retinal vascular tree without requirement of an exogenous marker.

  12. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  13. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  14. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  15. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  16. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  17. Reference beam laser Doppler velocimeter incorporating fiber optic components

    SciTech Connect

    James, S.W.; Lockey, R.A.; Egan, D.; Tatam, R.P.

    1995-12-31

    A compact reference beam laser Doppler velocimeter, constructed using a semiconductor laser diode, optical fiber components and semiconductor detectors, is reported. The device has been designed to overcome many of the problems commonly associated with reference beam configurations. The anemometer may be operated with the laser diode operating in cw and pulsed modes, demonstrating its applicability to wavelength and time division multiplexing schemes for 3D laser Doppler velocimetry. The probe is used to measure the velocity of a spinning disk in the range {minus}20 m/s to +20 m/s.

  18. System-on-chip based Doppler radar occupancy sensor.

    PubMed

    Yavari, Ehsan; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    System-on-Chip (SoC) based Doppler radar occupancy sensor is developed through non contact detection of respiratory signals. The radio was developed using off the shelf low power RF CC2530 SoC chip by Texas Instruments. In order to save power, the transmitter sends signal intermittently at 2.405 GHz. Reflected pulses are demodulated, and the baseband signals are processed to recover periodic motion. The system was tested both with mechanical target and a human subject. In both cases Doppler radar detected periodic motion closely matched the actual motion, and it has been shown that an SoC based system can be used for subject detection.

  19. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.

    PubMed

    Rees, D; McDermid, I S

    1990-10-01

    We reevaluate the performance of an incoherent Doppler lidar system operating at 354.7 nm, based on recent but well-proven Nd:YAG laser technology and currently available optical sensors. For measurements in the lower troposphere, up to ~5 km altitude, and also in the Junge-layer of the lower stratosphere, a wind component accuracy of +/- 2 m/s and a vertical resolution of 1 km should be obtained with a single pulse from a 1-J laser, operating at Polar Platform altitudes (700-850 km) and high scan angles (55 degrees ). For wind measurements in the upper troposphere (above ~5 km altitude) and stratosphere (above and below the Junge layer) the concentration of scatterers is much lower and higher energies would be required to maintain +/-2m/s accuracy and 1 km vertical resolution, using single laser pulses. Except for the region in the vicinity of the tropopause (10 km altitude), a 5-J pulse would be appropriate to make measurements in these regions. The worst case is encountered near 10 km altitude, where we calculate that a 15-J pulse would be required. To reduce this energy requirement, we would propose to degrade the altitude resolution from 1 km to 2-3 km, and also to consider averaging multiple pulses. Degrading the vertical and horizontal resolution could provide an acceptable method of obtaining the required wind accuracy without the penalty of using a laser of higher output power. We believe that a Doppler lidar system, employing a near ultraviolet laser with a pulse energy of 5 J, could achieve the performance objectives required by the major potential users of a global space-borne wind observing system.

  20. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  1. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  2. Analysis of MSFC ground-based Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Rothermel, J.

    1984-01-01

    Analysis of data collected during the participation of the MSFC 10.6 micron pulsed Doppler lidar system (DLS) in the Joint Airport Weather Studies (JAWS) experiment is concluded. Observations from more than one Doppler lidar are combined to derive the three-dimensional Cartesian wind field. A comparison of radial velocity estimates at low elevations made by the MSFC lidar and the NCAR 5.5 cm Doppler radar revealed a substantial r.m.s. difference of 3 mls, and a mean difference of lmls. Detailed measurements of the horizontal wind fields and tropospheric backscattering were acquired at MSFC. These data are useful for defining future flight experiments, instrument design, and satellite DLS development.

  3. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  4. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  5. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  6. Brief history of vector Doppler

    NASA Astrophysics Data System (ADS)

    Dunmire, Barbrina; Beach, Kirk W.

    2001-05-01

    Since the development of the directional Doppler by McLeod in 1967, methods of acquiring, analyzing, and displaying blood velocity information have been under constant exploration. These efforts are motivated by a variety of interest and objectives including, to: a) simplify clinical examination, examiner training, and study interpretation, b) provide more hemodynamic information, and c) reduce examination variability and improve accuracy. The vector Doppler technique has been proposed as one potential avenue to achieve these objects. Vector Doppler systems are those that determine the true 2D or 3D blood flow velocity by combining multiple independent velocity component measurements. Most instruments can be divided into two broad categories: 1) cross-beam and 2) time-domain. This paper provides a brief synopsis of the progression of vector Doppler techniques, from its onset in 1970 to present, as well as possible avenues for future work. This is not intended to be a comprehensive review of all vector Doppler systems.

  7. Peak velocity overestimation and linear-array spectral Doppler.

    PubMed

    Eicke, B M; Kremkau, F W; Hinson, H; Tegeler, C H

    1995-04-01

    Ultrasound instruments are used to evaluate blood flow velocities in the human body. Most clinical instruments perform velocity calculations based on the Doppler principle and measure the frequency shift of a reflected ultrasound beam. Doppler-only instruments use single-frequency, single-crystal transducers. Linear- and annular-array multiple-crystal transducers are used for duplex scanning (simultaneous B-mode image and Doppler). Clinical interpretation relies primarily on determination of peak velocities or frequency shifts as identified by the Doppler spectrum. Understanding of the validity of these measurements is important for instruments in clinical use. The present study examined the accuracy with which several ultrasound instruments could estimate velocities based on the identification of the peak of the Doppler spectrum, across a range of different angles of insonation, on a Doppler string phantom. The string was running in a water tank at constant speeds of 50, 100, and 150 cm/sec and also in a sine wave pattern at 100- or 150-cm/sec amplitude. Angles of insonation were 30, 45, 60, and 70 degrees. The single-frequency, single-crystal transducers (PC Dop 842, 2-MHz pulsed-wave, 4-MHz continuous-wave) provided acceptably accurate velocity estimates at all tested velocities independent of the angle of insonation. All duplex Doppler instruments with linear-array transducers (Philips P700, 5.0-MHz; Hewlett-Packard Sonos 1000, 7.5-MHz; ATL Ultramark 9 HDI, 7.5-MHz) exhibited a consistent overestimation of the true flow velocity due to increasing intrinsic spectral broadening with increasing angle of insonation.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  9. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  10. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Implantable pulsed Doppler ultrasonic flowmeter development has resulted in designs for application to the aortas of dogs and humans, and to human renal and coronary arteries. A figure of merit was derived for each design, indicating the degree of its precision. An H-array design for transcutaneous observation of blood flow was developed and tested in vitro. Two other simplified designs for the same purpose obviate the need to determine vessel orientation. One of these will be developed in the next time period. Techniques for intraoperative use and for implantation have had mixed success. While satisfactory on large vessels, higher ultrasonic frequencies and alteration of transducer design are required for satisfactory operation of pulsed Doppler flowmeters with small vessels.

  11. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  12. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. Observations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Zhang, Hongwei; Song, Xiaoquan; Zhang, Kailin

    2016-06-01

    Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, the paper introduces the attitude correction algorithm and comparison results.

  14. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  15. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  16. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  17. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  18. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  19. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  20. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  1. Investigation of airborne lidar for avoidance of windshear hazards

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1988-01-01

    The present generalized windshear hazard index is formulated in terms of wind conditions at the given aircraft position and of remotely-sensed information obtained along the extended flight path. Overall system functional requirements are addressed by comparing microwave Doppler radar, Doppler lidar, and IR radiometry candidate techniques, giving attention to airborne CO2 and Ho:YAG lidar windshear-detection systems; these furnish pilots with data on the line-of-sight component of windshear threats over as much as 1-3 km, for a warning time of 15-45 sec. While the technology for a 10.6-micron, CO2 laser-based lidar is available, additional development is required for 2-micron, Ho:YAG laser-based systems.

  2. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced.

  3. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced. PMID:14694774

  4. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  5. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  6. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  7. CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance

    NASA Technical Reports Server (NTRS)

    Targ, Russell

    1991-01-01

    The coherent lidar airborne shear sensor (CLASS) is an airborne CO2 lidar system being designed and developed by Lockheed Missiles and Space Company, Inc. (LMSC) under contract to NASA Langley Research Center. The goal of this program is to develop a system with a 2- to 4-kilometer range that will provide a warning time of 20 to 40 seconds, so that the pilot can avoid the hazards of low-altitude wind shear under all weather conditions. It is a predictive system which will warn the pilot about a hazard that the aircraft will experience at some later time. The ability of the system to provide predictive warnings of clear air turbulence will also be evaluated. A one-year flight evaluation program will measure the line-of-sight wind velocity from a wide variety of wind fields obtained by an airborne radar, an accelerometer-based reactive wind-sensing system, and a ground-based Doppler radar. The success of the airborne lidar system will be determined by its correlation with the windfield as indicated by the onboard reactive system, which indicates the winds actually experienced by the NASA Boeing 737 aircraft.

  8. Derivation of systolic time intervals from Doppler measurement of temporal arterial blood flow.

    PubMed

    Rothendler, J A; Schick, E C; Ryan, T J

    1981-01-01

    The carotid pulse method of recording systolic time intervals is limited by significant motion-induced artifact, making it unsuitable for studying patients during exercise. As an approach to overcoming this limitation, a new method utilizing the blood velocity profile of the superficial temporal artery measured by Doppler ultrasound has been developed. When compared with the values obtained from the conventional carotid pulse method, Doppler-derived left ventricular ejection time and preejection period showed excellent correlation (r = 0.99 for both) and the Doppler-derived measurements showed little intra- or interobserver variability. Studies performed during treadmill exercise showed that in 8 of 10 subjects, suitable tracing could be recorded through stage 3 of the Bruce protocol, confirming the enhanced stability of the technique compared with the carotid pulse method.

  9. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  10. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  11. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  12. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  13. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability.

    PubMed

    McGill, M J; Hart, W D; McKay, J A; Spinhirne, J D

    1999-10-20

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10-20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design. PMID:18324169

  14. Modeling the Performance of Direct-Detection Doppler Lidar Systems in Real Atmospheres

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Hart, William D.; McKay, Jack A.; Spinhirne, James D.

    1999-01-01

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems has assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar systems: the double-edge and the multi-channel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only about 10-20% compared to nighttime performance, provided a proper solar filter is included in the instrument design.

  15. Pulsed Lidar Performance/Technical Maturity Assessment

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; West, Leanne L.; Wood, Jack W.; Frehlich, Rod

    2004-01-01

    This report describes the results of investigations performed by the Georgia Tech Research Institute (GTRI) and the National Center for Atmospheric Research (NCAR) under a task entitled 'Pulsed Lidar Performance/Technical Maturity Assessment' funded by the Crew Systems Branch of the Airborne Systems Competency at the NASA Langley Research Center. The investigations included two tasks, 1.1(a) and 1.1(b). The Tasks discussed in this report are in support of the NASA Virtual Airspace Modeling and Simulation (VAMS) program and are designed to evaluate a pulsed lidar that will be required for active wake vortex avoidance solutions. The Coherent Technologies, Inc. (CTI) WindTracer LIDAR is an eye-safe, 2-micron, coherent, pulsed Doppler lidar with wake tracking capability. The actual performance of the WindTracer system was to be quantified. In addition, the sensor performance has been assessed and modeled, and the models have been included in simulation efforts. The WindTracer LIDAR was purchased by the Federal Aviation Administration (FAA) for use in near-term field data collection efforts as part of a joint NASA/FAA wake vortex research program. In the joint research program, a minimum common wake and weather data collection platform will be defined. NASA Langley will use the field data to support wake model development and operational concept investigation in support of the VAMS project, where the ultimate goal is to improve airport capacity and safety. Task 1.1(a), performed by NCAR in Boulder, Colorado to analyze the lidar system to determine its performance and capabilities based on results from simulated lidar data with analytic wake vortex models provided by NASA, which were then compared to the vendor's claims for the operational specifications of the lidar. Task 1.1(a) is described in Section 3, including the vortex model, lidar parameters and simulations, and results for both detection and tracking of wake vortices generated by Boeing 737s and 747s. Task 1

  16. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  17. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  18. The US color Doppler in acute renal failure.

    PubMed

    Nori, G; Granata, A; Leonardi, G; Sicurezza, E; Spata, C

    2004-12-01

    Imaging techniques, especially ultrasonography and Doppler, can give an effective assistance in the differential diagnosis of acute renal failure (ARF). An resistance Index (RI) value >0.75 is reported as optimal in attempting differential diagnosis between acute tubular necrosis (ANT) and prerenal ARF. In hepatorenal syndrome (HRS) RIs is very increased. In some renal vasculitis, as nodose panarteritis (PN), hemolytic-uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP), parenchymal perfusion is reduced and RI increased. In lupus nephritis the RI values are correlated with creatinine level and normal RI are considered as a good prognostic tool. In acute primitive or secondary glomerulonephritis (GN), RI value is normal, with diffuse parenchymal hypervascularization. In acute crescentic and proliferative GN and tubulo-interstitial disease, color Doppler (CD) and power Doppler (PD) reveal a decreased renal parenchymal perfusion, which correlates with increased RI values. In acute thrombosis of renal artery, US color Doppler (DUS) reveals either an absence of Doppler signal or a tardus-parvus pulse distal to the vascular obstruction. In this situation it is possible to visualize hyperthropic perforating vessels that redirect their flow from the capsular plexus to the renal parenchyma. In acute thrombosis of the renal vein Doppler analysis of parenchymal vessels reveals remarkable RI values, sometimes with reversed diastolic flow. In postrenal ARF an adjunct to the differentiation between obstruction and non obstructive dilatation can be found through RIs. Diagnostic criteria of obstruction as reported by literature are: RI>0.70 in the obstructed kidney and, mostly, a difference in RI between the 2 kidneys >0.06-0.1.

  19. Enhanced optical precursors by Doppler effect via active Raman gain process.

    PubMed

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input.

  20. Enhanced optical precursors by Doppler effect via active Raman gain process.

    PubMed

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input. PMID:23381248

  1. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  2. Comparison of winds, waves, and turbulence as observed by airborne lidar, ground-based radars, and instrumented tower

    NASA Technical Reports Server (NTRS)

    Eilts, M. D.; Doviak, R. J.; Sundara-Rajan, A.

    1984-01-01

    On June 29, 1981, two ground-based Doppler radars, an airborne Doppler optical radar (lidar), an instrumented tower, and a rawinsonde were employed to collect wind data in the planetary boundary layer (PBL) in central Oklahoma. The main objectives of this experiment were related to a comparison of wind estimates and the visualization of the three-dimensional eddy structure in the convective atmospheric boundary layer. Discrepancies in the mean wind and wind profile detected by the different sensing systems were explained as being caused by a Schuler resonance of the aircraft's inertial navigation system, which caused an erroneous component of the aircraft's ground-relative velocity vector to be subtracted from the lidar-measured radial velocities. It is concluded that NASA's airborne Doppler optical radar system is capable of measuring wind fields in clear air on a smaller scale than was previously available with fixed remote sensors.

  3. Summary of flight tests of an airborne lighting locator system and comparison with ground-based measurements of precipitation and turbulence

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Crabill, N. L.

    1981-01-01

    Data from an airborne lightning locator system and data relating to storm intensity obtained by ground-based Doppler radars and the S-band research radar are presented. When comparing lightning locations from the airborne lightning locator system with ground-based Doppler radar measurements of reflectivity and spectrum width, the lightning locations tended to be further from the aircraft position than the Doppler radar contours, but at the same relative bearing from the aircraft as the Doppler contours. The results also show that convective storms generate little or no lightning for a significant part of their life cycle, but can produce at least moderate turbulence. Therefore, it is concluded that a lack of lightning activity cannot be accepted as an inference of a corresponding lack of other hazards to the flight of aircraft through convective storms.

  4. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  5. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  6. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  7. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  8. Analytical model of range-Doppler image of rough rotating cones

    NASA Astrophysics Data System (ADS)

    Luo, Long-gang; Wu, Zhen-sen; Liao, Run-gui

    2013-09-01

    The technique of laser range-Doppler image has get growing attentions from aerospace and national defense experts. Recently, in laser range-Doppler image system, laser scatter feature has been used for target ranging and orientation. Laser range-Doppler image can identify the moving components of the aeroplane, and detect the moving disk and sphere. Meanwhile, it is also widely used in detection of the moving gesture of the aerospace, discover of the target micro-motion and the measurement of the local fluid velocity. The laser range-Doppler image of target is the pulse laser scatter feature of the rotating target, which can reflect the shape, attitude and surface material of the target. For instance, detection of the flight gesture of target, identification of the warhead, the rotation of structures in a target, and the target torsional state. An analytical model of laser range-Doppler image of cones rotating around their axes is proposed in this paper. The analytical model can provide the effects of geometric parameters, the roughness of the surface, attitude and pulse duration on laser range-Doppler image. This analytical model can degenerate into the analytical model of Doppler spectra for plane waves. The influences of geometry parameters and attitude are analyzed numerically by using the analytical model. The results indicate that the laser range-Doppler image of cone can show the information about geometrical shape and attitude of target. Combining the theory and measurements, the analytical model can be used for identifying physical parameters and geometrical parameters of cone. This analytical solution may contribute to the laser Doppler velocimetry and ladar applications.

  9. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  10. Airborne lidar detection of subsurface oceanic scattering layers

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Krabill, William B.; Buntzen, Rodney R.; Gilbert, Gary D.

    1988-01-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the air-water interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf.

  11. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  12. [Doppler ultrasound of penis arteries].

    PubMed

    Jünemann, K P; Siegsmund, M; Löbelenz, M; Alken, P

    1990-05-01

    In addition to pharmaco testing, pharmaco-Doppler sonography of the penile arteries is part of the basic work-up for erectile dysfunction. Insufficient training with the Doppler method, lack of standardized criteria for evaluation of the penis, and analysis of the Doppler curves all make it difficult to use Doppler sonography for the evaluation of impotent men. The aim of this study was to explain the principal criteria of the method and demonstrate the most important details for analyzing the form of the Doppler waves. Pharmaco-Doppler sonography includes the evaluation of blood-flow velocities within the dorsal and deep cavernous arteries of the penis before and after intracavernous application of a vasoactive drug. The following main criteria have proven to be most important for analysis of the Doppler curves: evaluation of the amplitude height, the actual wave form, differences between the left and right arteries and along the individual vessel, amplitude increase, and elevation of the curve baseline after pharmaco stimulation. The most frequent mistakes made during evaluation of the penile arteries are changes in the probe angle, pressure put on the artery by the probe during evaluation and a false estimation of the evaluation time after pharmaco stimulation. Recently, duplex sonography of the penile arteries has been introduced, and this method allows an accurate measurement of the blood-flow velocity and arterial diameter changes before and after application of the drug. Furthermore, additional calculation of the resistancy index permits determination of the vascular resistance and optimizes the evaluation of the penile arterial status. The technical details, the method, and the analyzation criteria are all explained in detail.

  13. Robust population transfer in atomic beams induced by Doppler shifts

    NASA Astrophysics Data System (ADS)

    Unanyan, R. G.

    2016-10-01

    The influence of photon momentum recoil on adiabatic population transfer in an atomic three-level lambda system is studied. It is shown that the Doppler frequency shifts, due to atomic motion, can play an important role in adiabatic population transfer processes of atomic internal states by a pair of laser fields. For the limiting case of slow atoms (Doppler shift much smaller than the photon recoil energy), the atoms occupy the same target state regardless of the order of switching of laser fields, while for the case of fast atoms interacting with the intuitive sequence of pulses, the target state is the intermediate atomic state. Furthermore, it is shown that this novel technique for adiabatic population transfer is related to a level crossing in the bright-intermediate state basis (rather than in the original atomic basis). It is shown that these processes are robust with respect to parameter fluctuations, such as the laser pulse area and the relative spatial offset (delay) of the laser beams. The obtained results can be used for the control of temporal evolution of atomic populations in cold atomic beams by externally adjustable Doppler shifts.

  14. Coherent Doppler Lidar Data Products from Space-Based Platforms

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1999-01-01

    Coherent Doppler lidar is a promising technique for the global measurements of winds using a space-based platform. Doppler lidar produces estimates of the radial component of the velocity vector averaged over the resolution volume of the measurement. Profiles of the horizontal vector winds are produced by scanning the lidar beam or stepping the lidar beam through a sequence of different angles (step-stare). The first design for space-based measurements proposed a conical scan which requires a high power laser to produce acceptable signal levels for every laser pulse. Performance is improved by fixing the laser beam and accumulating the signal from many lidar pulses for each range-gate. This also improves the spatial averaging of the wind estimates and reduces the threshold signal energy required for a good estimate. Coherent Doppler lidar performance for space-based operation is determined using computer simulations and including the wind variability over the measurement volume as well as the variations of the atmospheric aerosol backscatter.

  15. Investigation of airborne lidar for avoidance of windshear hazards

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1990-01-01

    A generalized windshear hazard index is defined, which is derived from considerations of wind conditions at the present position of an aircraft and from remotely sensed information along the extended flight path. Candidate airborne sensor technologies based on microwave Doppler radar, Doppler lidar, and infrared radiometric techniques are discussed in the context of overall system functional requirements. Initial results of a performance and technology assessment study for competing lidars are presented. Based on a systems approach to the windshear threat, lidar appears to be a viable technology for windshear detection and avoidance, even in conditions of moderately heavy precipitation. The proposed airborne CO2 and Ho:YAG lidar windshear-detection systems analyzed here can give the pilot information about the line-of-sight component of windshear threat from his present position to a region extending 1 to 3 km in front of the aircraft. This constitutes a warning time of 15 to 45 seconds. The technology necessary to design, build, and test such a brassboard 10.6 micron CO2 lidar is now available. However, for 2-micron systems, additional analytical and laboratory investigations are needed to arrive at optimum 2-micron rare-earth-based laser crystals.

  16. Doppler echocardiography in stress testing.

    PubMed

    Teague, S M

    1991-06-01

    Doppler ultrasound may have a role in the stress testing laboratory for the identification of patients with coronary disease through the assessment of dynamic ventricular systolic function. Quantitative systolic ejection phase indexes of maximal acceleration, peak velocity, and volume of blood ejected from the left ventricle can be obtained in the exercising patient. Trials comparing stress Doppler ultrasound with ST-segment changes, gated blood pool radionuclide or echocardiographic studies of ejection fraction or wall motion abnormality, and thallium scintigraphic perfusion defects have returned comparable or better sensitivity and specificity referencing coronary angiography. Graded treadmill exercise, stationary bicycle exercise, and pharmacological stress (dipyridamole) have been used. The normal Doppler stress response is a near linear increase in peak ejection velocity with increasing cardiac work, as reflected in heart rate. Patients with coronary artery disease show blunted augmentation of Doppler ejection dynamics between rest and peak stress, and the degree of blunting appears to be proportional to the anatomic extent of coronary disease and the magnitude of ventricular perfusion and performance impairment. Stress Doppler ultrasound achieves diagnostic power for coronary disease with ultrasonic technology, inexpensive equipment, without ionizing radiation, and few personnel.

  17. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  18. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  19. Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow.

    PubMed

    Schmoll, Tilman; Leitgeb, Rainer A

    2013-03-01

    We introduce a Doppler OCT (DOCT) platform that is fully synchronized with the heart-beat via a pulse oximeter. The system allows reconstructing heart-beat-phase-coherent quantitative DOCT volumes. The method is to acquire a series of DOCT volumes and to record the pulse in parallel. The heartbeat data is used for triggering the start of each DOCT volume acquisition. The recorded volume series is registered to the level of capillaries using a cross-volume registration. The information of the pulse phase is used to rearrange the tomograms in time, to obtain a series of phase coherent DOCT volumes over a pulse. We present Doppler angle independent quantitative evaluation of the absolute pulsatile blood flow within individual retinal vessels as well as of the total retinal blood flow over a full heartbeat cycle.

  20. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  1. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar. PMID:26738052

  2. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  3. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  4. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  5. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.

    PubMed

    Fredriksen, Tonje D; Avdal, Jorgen; Ekroll, Ingvild K; Dahl, Torbjorn; Lovstakken, Lasse; Torp, Hans

    2014-07-01

    An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.

  6. System-on-chip based Doppler radar occupancy sensor.

    PubMed

    Yavari, Ehsan; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    System-on-Chip (SoC) based Doppler radar occupancy sensor is developed through non contact detection of respiratory signals. The radio was developed using off the shelf low power RF CC2530 SoC chip by Texas Instruments. In order to save power, the transmitter sends signal intermittently at 2.405 GHz. Reflected pulses are demodulated, and the baseband signals are processed to recover periodic motion. The system was tested both with mechanical target and a human subject. In both cases Doppler radar detected periodic motion closely matched the actual motion, and it has been shown that an SoC based system can be used for subject detection. PMID:22254705

  7. Analysis on wind retrieval methods for Rayleigh Doppler lidar

    NASA Astrophysics Data System (ADS)

    Han, Yuli; Dou, Xiankang; Sun, Dongsong; Xia, Haiyun; Shu, Zhifeng

    2014-06-01

    A modification method is described for Rayleigh Doppler lidar wind retrieval. Compared to the double-edge theory of Korb et al. [Appl. Opt., 38, 432 (1999)] and the retrieval algorithm of Chanin et al. [Geophys. Res. Lett., 16, 1273 (1989)], it has a greater sensitivity. The signal-to-noise ratio of the energy monitor channel is involved in error estimation. When the splitting ratio of the two signal channels is 1.2, which usually happened during wind detection, it will improve the measurement accuracy by about 1% at 30 km altitude for a Doppler shift of 250 MHz (44 m/s). Stabilities of retrieval methods, i.e., errors caused by the spectrum width deviation including laser pulse, Rayleigh backscatter, and filter transmission curve are first discussed. The proposed method increases the resultant precision by about 15% at 30-km altitude assuming an 8-MHz deviation in full width at half maximum of the Fabry-Perot interferometer.

  8. Prospects for Doppler cooling of three-electronic-level molecules

    SciTech Connect

    Nguyen, J. H. V.; Odom, B.

    2011-05-15

    Analogous to the extension of laser cooling techniques from two-level to three-level atoms, Doppler cooling of molecules with an intermediate electronic state is considered. In particular, we use a rate-equation approach to simulate cooling of SiO{sup +}, in which population buildup in the intermediate state is prevented by its short lifetime. We determine that Doppler cooling of SiO{sup +} can be accomplished without optically repumping from the intermediate state, at the cost of causing undesirable parity flips and rotational diffusion. Since the necessary repumping would require a large number of continuous-wave lasers, optical pulse shaping of a femtosecond laser is proposed as an attractive alternative. Other candidate three-electron-level molecules are also discussed.

  9. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA). In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  10. Differential Doppler as a diagnostic

    SciTech Connect

    Dzieciuch, M.; Munk, W. )

    1994-10-01

    Differential Doppler compression and travel time of individual peaks in the arrival sequence (relative to an overall average) are measured for the 5500-km acoustic transmissions from a moving source at Heard Island to Christmas (Crab) Island. The differentials cannot be explained by simple adiabatic propagation models. A hybrid theory, coupling polar and temperate models at the Antarctic Front can account for some of the qualitative features. Differential Doppler could be a useful tool for identifying ray arrivals. 10 refs., 11 figs., 3 tabs.

  11. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses

    NASA Astrophysics Data System (ADS)

    Boonman, Arjan M.; Parsons, Stuart; Jones, Gareth

    2003-01-01

    Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.

  12. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  13. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  14. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  15. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  16. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  17. Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Singh, Upendra N.; Trieu, Bo C.; Modlin, Ed A.; Petros, Mulugeta; Bai, Yingxin; Reithmaier, Karl; Petzar, Paul J.

    2007-01-01

    High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology.

  18. Characteristics of an airborne demonstrator for MERLIN

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Büdenbender, C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Dieter, H.; Löhring, J.; Klein, V.

    2012-12-01

    After three years development time, first test measurements on DLR's (Deutsches Zentrum für Luft- und Raumfahrt) CO2 and CH4 airborne Lidar have started. It is an integrated path differential absorption (IPDA) lidar for the simultaneous measurement of CO2 and CH4 columns, designed for operation onboard the new German research aircraft HALO. In the framework of the project "CHARM-F", funded by the German ministry of education and research, the lidar was developed in collaboration with Fraunhofer Institut für Lasertechnik and Kayser-Threde. Due to the special features of the aircraft, such as the maximum flight altitude of 15 km and its long range, as well as the special design of the lidar, the system is particularly suitable to be an airborne demonstrator for the French-German MERLIN project, a spaceborne IPDA lidar sounder for methane. The layout of the receiver optics allows a large field of view, i.e. a large laser footprint on ground is possible, comparable to the size obtained by a spaceborne system. So, important features that come along with ground reflectivity issues, such as albedo variations on different spatial scales, can be taken into account in the same way and can be investigated in detail. Furthermore, two detector types are used, PIN photodiodes and APDs, each with specially adapted telescopes, to compare their respective properties. The basic design of the transmitter is identical to the one envisaged for MERLIN. Also important subsystems of the presented lidar, like wavelengths stabilization and output power monitoring, can serve as demonstrators for the satellite system. The main features of the airborne system are: Two almost identical laser systems for CH4 and CO2. Nd:YAG lasers serve as the pump sources for optical parametric oscillators (OPO), injection seeded by laser diodes, to generate the desired online and offline wavelengths in single mode operation. The online wavelength is tuned to an absorption line of the measured trace gas, the

  19. Airborne Interferometry using GNSS Reflections for Surface Level Estimation

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Beyerle, Georg; Schön, Steffen; Stosius, Ralf; Gerber, Thomas; Beckheinrich, Jamila; Markgraf, Markus; Ge, Maorong; Wickert, Jens

    2013-04-01

    The interferometric use of GNSS reflections for ocean altimetry can fill the gap in coverage of ocean observations. Today radar altimeters are used for large scale ocean observations to monitor e.g. global sea level change or circulation processes like El Niño. Spacial and temporal resolution of a single radar altimeter, however, is insufficient to observe mesoscale ocean phenomena like large oceanic eddies that are important indicators of climate change. The high coverage expected for a spaceborne altimeter based on GNSS reflections stimulated investigations on according interferometric methods. Several airborne experiments have been conducted using code observations. Carrier observations have a better precision but are severely affected by noise and have mostly been used in ground-based experiments. A new interferometric approach is presented using carrier observations for airborne application. Implementing a spectral retrieval noise reduction is achieved. A flight experiment was conducted with a Zeppelin airship on 2010/10/12 over Lake Constance at the border between Austria, Germany and Switzerland. The lake surface with an area of 536km2 is suitable for altimetric study as its decimeter range Geoid undulations are well-known. Three GNSS receiver were installed on the airship. A Javad Delta receiver recording direct signals for navigation. The DLR G-REX receiver recording reflected signals for scatterometry and the GORS (GNSS Occultation Reflectometry Scatterometry) receiver recording direct and reflected signals for interferometry. The airship's trajectory is determined from navigation data with a precision better than 10cm using regional augmentation. This presentation focuses on the interferometric analysis of GORS observations. Ray tracing calculations are used to model the difference of direct and reflected signals' path. Spectral retrieval is applied to determine Doppler residuals of modelled path difference and interferometric observations. Lake level

  20. Arterial pulse shape measurement using self-mixing effect in a diode laser

    SciTech Connect

    Hast, J; Myllylae, Risto; Sorvoja, H; Miettinen, J

    2002-11-30

    The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry. (laser biology and medicine)

  1. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  2. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  3. High-frequency Ultrasound Doppler System for Biomedical Applications with a 30 MHz Linear Array

    PubMed Central

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M.; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30 MHz linear array transducer to assess the cardiovascular functions in small animal. This array based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers, and analog front-ends. The beamformed echoes acquired by the 16 channel analog beamformer, were directly fed to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a PC. The Doppler spectrogram was displayed on a PC in real time. The two-way beam-widths were determined to be 160 μm to 320 μm when the array was electronically focused at different focal points at depths from 5–10 mm. A micro flow phantom, consisting of a polyimide tube with inner diameter of 127 μm, and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127 μm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels with diameters of approximately 200 μm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array based imaging systems for small animal studies. PMID:17993243

  4. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  5. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  6. Simulating photospheric Doppler velocity fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.

  7. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  8. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  9. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  10. Development of an airborne laser bathymeter

    NASA Technical Reports Server (NTRS)

    Kim, H., H.; Cervenka, P. O.; Lankford, C. B.

    1975-01-01

    An airborne laser depth sounding system was built and taken through a complete series of field tests. Two green laser sources were tried: a pulsed neon laser at 540 nm and a frequency-doubled Nd:YAG transmitter at 532 nm. To obtain a depth resolution of better than 20 cm, the pulses had a duration of 5 to 7 nanoseconds and could be fired up to at rates of 50 pulses per second. In the receiver, the signal was detected by a photomultiplier tube connected to a 28 cm diameter Cassegrainian telescope that was aimed vertically downward. Oscilloscopic traces of the signal reflected from the sea surface and the ocean floor could either be recorded by a movie camera on 35 mm film or digitized into 500 discrete channels of information and stored on magnetic tape, from which depth information could be extracted. An aerial color movie camera recorded the geographic footprint while a boat crew of oceanographers measured depth and other relevant water parameters. About two hundred hours of flight time on the NASA C-54 airplane in the area of Chincoteague, Virginia, the Chesapeake Bay, and in Key West, Florida, have yielded information on the actual operating conditions of such a system and helped to optimize the design. One can predict the maximum depth attainable in a mission by measuring the effective attenuation coefficient in flight. This quantity is four times smaller than the usual narrow beam attenuation coefficient. Several square miles of a varied underwater landscape were also mapped.

  11. Even Shallower Exploration with Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  12. Modeling of Doppler frequency shift in multipath radiochannels

    NASA Astrophysics Data System (ADS)

    Penzin, Maksim; Iyin, Nikolay

    2016-06-01

    We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase change in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of change in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.

  13. Human polarimetric micro-doppler

    NASA Astrophysics Data System (ADS)

    Tahmoush, David; Silvious, Jerry

    2011-06-01

    Modern radars can pick up target motions other than just the principle target Doppler; they pick out the small micro-Doppler variations as well. These can be used to visually identify both the target type as well as the target activity. We model and measure some of the micro-Doppler motions that are amenable to polarimetric measurement. Understanding the capabilities and limitations of radar systems that utilize micro-Doppler to measure human characteristics is important for improving the effectiveness of these systems at securing areas. In security applications one would like to observe humans unobtrusively and without privacy issues, which make radar an effective approach. In this paper we focus on the characteristics of radar systems designed for the estimation of human motion for the determination of whether someone is loaded. Radar can be used to measure the direction, distance, and radial velocity of a walking person as a function of time. Detailed radar processing can reveal more characteristics of the walking human. The parts of the human body do not move with constant radial velocity; the small micro-Doppler signatures are timevarying and therefore analysis techniques can be used to obtain more characteristics. Looking for modulations of the radar return from arms, legs, and even body sway are being assessed by researchers. We analyze these techniques and focus on the improved performance that fully polarimetric radar techniques can add. We perform simulations and fully polarimetric measurements of the varying micro-Doppler signatures of humans as a function of elevation angle and azimuthal angle in order to try to optimize this type of system for the detection of arm motion, especially for the determination of whether someone is carrying something in their arms. The arm is often bent at the elbow, providing a surface similar to a dihedral. This is distinct from the more planar surfaces of the body and allows us to separate the signals from the arm (and

  14. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  15. Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles.

    PubMed

    Tiemann, K; Pohl, C; Schlosser, T; Goenechea, J; Bruce, M; Veltmann, C; Kuntz, S; Bangard, M; Becher, H

    2000-09-01

    The purpose of this study was to evaluate the appearance and the characteristics of stimulated acoustic emission (SAE) as an echo contrast-specific color Doppler phenomenon with impact on myocardial contrast echocardiography (MCE). Stationary microbubbles of the new contrast agent SH-U 563A (Schering AG) were embedded within a tissue-mimicking gel material. Harmonic power Doppler imaging (H-PDI), color Doppler and pulse-wave Doppler data were acquired using an HDI-5000 equipped with a phased-array transducer (1.67/3.3 MHz). In color Doppler mode, bubble destruction resulted in random noise like Doppler signals. PW-Doppler revealed short "pseudo-Doppler" shifts with a broadband frequency spectrum. Quantification of SAE events by H-PDI demonstrated an exponential decay of signal intensities over successive frames. A strong linear relationship was found between bubble concentration and the square root of the linearized H-PDI signal for a range of concentrations of more than two orders of magnitude (R = 0.993, p < 0.0001). Intensity of the H-PDI signals correlated well with emission power (R = 0.96, p = 0.0014). SAE results from disintegration of microbubbles and can be demonstrated by all Doppler imaging modalities, including H-PDI. Intensity of SAE signals is influenced by the applied acoustic power and correlates highly with the concentration of microbubbles. Because intensity of SAE signals correlates highly with echo contrast concentrations, analysis of SAE signals might be used for quantitative MCE. PMID:11053751

  16. 315mJ, 2-micrometers Double-Pulsed Coherent Differential Absorption Lidar Transmitter for Atmospheric CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.

  17. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  18. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  19. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  20. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  1. Doppler-shifted self-reflected wave from a semiconductor

    NASA Astrophysics Data System (ADS)

    Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser

    1997-06-01

    We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.

  2. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  3. Cooperative pulses

    NASA Astrophysics Data System (ADS)

    Braun, Michael; Glaser, Steffen J.

    2010-11-01

    We introduce the concept of cooperative (COOP) pulses which are designed to compensate each other's imperfections. In multi-scan experiments, COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. COOP pulses can be efficiently optimized using an extended version of the optimal-control-based gradient ascent pulse engineering (GRAPE) algorithm. The advantage of the COOP approach is experimentally demonstrated for broadband and band-selective pulses.

  4. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  5. Photoacoustic and high-frequency power Doppler ultrasound biomicroscopy: a comparative study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Ranasinghesagara, Janaka; Zemp, Roger J.

    2010-09-01

    Both photoacoustic imaging and power Doppler ultrasound are capable of producing images of the vasculature of living subjects, however, the contrast mechanisms of the two modalities are very different. We present a quantitative and objective comparison of the two methods using phantom data, highlighting relative merits and shortcomings. An imaging system for combined photoacoustic and high-frequency power Doppler ultrasound microscopy is presented. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and power Doppler ultrasound images can be coregistered. Experiments are performed on flow phantoms with various combinations of vessel size, flow velocity, and optical wavelength. For the task of blood volume detection, power Doppler is seen to be advantageous for large vessels and high flow speeds. For small vessels with low flow speeds, photoacoustic imaging is seen to be more effective than power Doppler at the detection of blood as quantified by receiver operating characteristic analysis. A combination of the two modes could provide improved estimates of fractional blood volume in comparison with either mode used alone.

  6. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    PubMed

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity. PMID:26021719

  7. Pulse transit time differential measurement by fiber Bragg grating pulse recorder

    NASA Astrophysics Data System (ADS)

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  8. Development of an Airborne Micropulse Water Vapor DIAL

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  9. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  10. UWB micro-doppler radar for human gait analysis using joint range-time-frequency representation

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Fathy, Aly E.

    2013-05-01

    In this paper, we present a novel, standalone ultra wideband (UWB) micro-Doppler radar sensor that goes beyond simple range or micro-Doppler detection to combined range-time-Doppler frequency analysis. Moreover, it can monitor more than one human object in both line-of-sight (LOS) and through wall scenarios, thus have full human objects tracking capabilities. The unique radar design is based on narrow pulse transceiver, high speed data acquisition module, and wideband antenna array. For advanced radar post-data processing, joint range-time-frequency representation has been performed. Characteristics of human walking activity have been analyzed using the radar sensor by precisely tracking the radar object and acquiring range-time-Doppler information simultaneously. The UWB micro-Doppler radar prototype is capable of detecting Doppler frequency range from -180 Hz to +180 Hz, which allows a maximum target velocity of 9 m/s. The developed radar sensor can also be extended for many other applications, such as respiration and heartbeat detection of trapped survivors under building debris.

  11. Ultrafast Doppler reveals the mapping of cerebral vascular resistivity in neonates

    PubMed Central

    Demené, Charlie; Pernot, Mathieu; Biran, Valérie; Alison, Marianne; Fink, Mathias; Baud, Olivier; Tanter, Mickaël

    2014-01-01

    In vivo mapping of the full vasculature dynamics based on Ultrafast Doppler is showed noninvasively in the challenging case of the neonatal brain. Contrary to conventional pulsed-wave (PW) Doppler Ultrasound limited for >40 years to the estimation of vascular indices at a single location, the ultrafast frame rate (5,000 Hz) obtained using plane-wave transmissions leads to simultaneous estimation of full Doppler spectra in all pixels of wide field-of-view images within a single cardiac cycle and high sensitivity Doppler imaging. Consequently, 2D quantitative maps of the cerebro-vascular resistivity index (RI) are processed and found in agreement with local measurements obtained on large arteries of healthy neonates using conventional PW Doppler. Changes in 2D resistivity maps are monitored during recovery after therapeutic whole-body cooling of full-term neonates treated for hypoxic ischemic encephalopathy. Arterial and venous vessels are unambiguously differentiated on the basis of their distinct hemodynamics. The high spatial (250 × 250 μm2) and temporal resolution (<1 ms) of Ultrafast Doppler imaging combined with deep tissue penetration enable precise quantitative mapping of deep brain vascular dynamics and RI, which is far beyond the capabilities of any other imaging modality. PMID:24667916

  12. [Determination of the severity of tricuspid valve insufficiency using Doppler echocardiography].

    PubMed

    Jacksch, R; Karsch, K R; Seipel, L

    1986-12-01

    In 187 patients with combined mitral and aortic valve lesions, to assess and quantify tricuspid regurgitation, biplane right ventriculograms were obtained and Doppler echocardiography performed for study of the tricuspid valve and right atrium. After definition of regurgitant turbulance across the tricuspid valve with pulsed Doppler, on mapping the right atrium the maximal length of regurgitant flow in the right ventricular inflow tract was determined from the short-axis parasternal view. In seven of 70 patients in whom angiographically tricuspid regurgitation was not detected, Doppler echocardiography demonstrated holosystolic insufficiency of the valve. In all patients with the angiographic diagnosis of tricuspid regurgitation grades I to III, this lesion was also documented Doppler echocardiographically with only slight divergence of the regurgitant area in the right atrium as viewed from the short-axis parasternal transducer position. In all patients, the tricuspid valve was morphologically unremarkable. In 32 patients, in agreement with angiographic findings, grade I tricuspid regurgitation was diagnosed; in seven patients the angiographic severity was overestimated by one grade. In 44 patients, in agreement with angiographic findings, tricuspid regurgitation grade II was detected; in four patients the Doppler echocardiographic severity was overestimated and five patients underestimated by one grade. In 23 patients with grade II tricuspid regurgitation angiographically, there was agreement with Doppler echocardiographic findings; in two patients the severity was underestimated by one grade.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3817726

  13. A 10 cm dual frequency Doppler weather radar. Part 1: The radar system

    NASA Astrophysics Data System (ADS)

    Bishop, A. W.; Armstrong, G. M.

    1982-10-01

    Design concepts and test results are summarized for a Doppler weather radar system suitable for precipitation measurements over a wide span of radial velocities and slant ranges, even in the presence of ground clutter. The radar transmits two uniform pulse trains at 2.710 and 2.760 GHz. Uniformly spaced pulses permit ground clutter cancellation of up to 50 dB to be achieved with a three-pole elliptic filter. Pulse spacing at one frequency is consistent with long-range coverage in reflectivity, while spacing of the second is consistent with a wide unambiguous velocity measurement span.

  14. Doppler-resolved kinetics of saturation recovery

    DOE PAGES

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  15. Doppler-Resolved Kinetics of Saturation Recovery.

    PubMed

    Forthomme, Damien; Hause, Michael L; Yu, Hua-Gen; Dagdigian, Paul J; Sears, Trevor J; Hall, Gregory E

    2015-07-16

    Frequency-modulated laser transient absorption has been used to monitor the ground-state rotational energy-transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground-state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  16. Doppler-resolved kinetics of saturation recovery

    SciTech Connect

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  17. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  18. PULSE SORTER

    DOEpatents

    Wade, E.J.

    1958-07-29

    An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.

  19. Characterization of turbulent wake of wind turbine by coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Li, Rongzhong; Wang, Xitao; Feng, Changzhong; Zhuang, Quanfeng; Zhang, Kailin

    2014-11-01

    The indispensable access to real turbulent wake behavior is provided by the pulsed coherent Doppler Light Detection and Ranging (LIDAR) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. The Doppler shift in the frequency of the backscattered signal is analyzed to obtain the line-of-sight (LOS) velocity component of the air motion. From the LOS velocities the characteristic of the turbulent wake can be deduced. The Coherent Doppler LIDAR (CDL) is based on all-fiber laser technology and fast digital-signal-processing technology. The 1.5 µm eye-safe Doppler LIDAR system has a pulse length of 200ns and a pulse repetition frequency of 10 kHz. The speed measurement range is ±50m/s and the speed measurement uncertainty is 0.3 m/s. The 2-axis beam scanner and detection range of 3000m enable the system to monitor the whole wind farming filed. Because of the all-fiber structure adoption, the system is stable, reliable and high-integrated. The wake vortices of wind turbine blades with different spatial and temporal scales have been observed by LIDAR. In this paper, the authors discuss the possibility of using LIDAR measurements to characterize the complicated wind field, specifically wind velocity deficit and terrain effects.

  20. CO2 laser for spaceborne Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Harris, Michael R.; Armandillo, Errico; Norrie, Callum J.; Schwarzenberger, Paul M.; Wallace, Steven; Schaeper, Wolfgang; Gollor, Matthias; Galletti, Enrico; Stucchi, Emanuele S.

    1994-12-01

    The transmitter laser is recognised to be one of the most critical technologies for space-based Doppler windlidar [1]. We present initial evaluation of the performance of an e-beam sustained device in the 1OJ, 10 Hz class. Lifetime issues are addressed in a subsidiary paper. We describe the design of the device and the results of a number of characterisation studies: 1) General nonoptical tests of gas circulation and heat exchanger efficiency. 2) Performance optimisation to maximise multimode efficiency as a function of energy loading, main discharge E/N and gas composition, all tests allowed for optimisation of cavity extraction. 3) Characterisation of the novel plasma anode electron gun with respect to beam uniformity, secondary electron concentration, and current constancy. 4) Optical characterisation to examine operating wavelength, pulse shape, beam profile in the near and far-field, output energy and electrical to optical conversion efficiency, and frequency behaviour during the pulse.

  1. Coherent Doppler lidar signal spectrum with wind turbulence.

    PubMed

    Frehlich, R; Cornman, L

    1999-12-20

    The average signal spectrum (periodogram) for coherent Doppler lidar is calculated for a turbulent wind field. Simple approximations are compared with the exact calculation. The effects of random errors in the zero velocity reference, the effects of averaging spectral estimates by use of multiple lidar pulses, and the effects of the range dependence of the lidar signal power over the range gate are included. For high spatial resolution measurements the lidar signal power is concentrated around one spectral estimate (spectral bin), and correct interpretation of the contribution from turbulence is difficult because of the effects of spectral leakage. For range gates that are larger than the lidar pulse volume, the signal power is contained in many spectral bins and the effects of turbulence can be determined accurately for constant signal power over the range gate and for the far-field range dependence of the signal power.

  2. Use of a tethersonde measurement system to conduct a Doppler SODAR performance audit

    SciTech Connect

    Wilkerson, G.W.; Catizone, P.A.; Coble, T.D.

    1994-12-31

    With the increased usage of dispersion models that require stack top wind information, such as the Complex Terrain Dispersion Model (CTDM), the need for a reliable method to collect elevated wind data has also increased. Doppler Sound Detection and Ranging (SODAR) instruments have gained recognition as a viable means of collecting such data. SODAR technology has improved greatly over the last decade and is now a cost effective alternative to tall meteorological towers. SODARs are remote sensing devices that sample the atmosphere and calculate wind speed and wind direction data at different altitudes. This is accomplished by measuring the doppler shift of an acoustic pulse emitted by a ground level antenna.

  3. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  4. The structure of the convective atmospheric boundary layer as revealed by lidar and Doppler radars

    NASA Technical Reports Server (NTRS)

    Eilts, M. D.; Sundara-Rajan, A.; Doviak, R. J.

    1985-01-01

    Results on the structure of the convective atmospheric boundary layer based on the analyses of data from the instrumented NSSL-KTVY tower, airborne Doppler lidar, and ground-based Doppler radars are presented. The vertically averaged wind over the boundary layer was found to be insensitive to baroclinicity, supporting the hypothesis of Arya and Wyngaard (1975). The computed momentum flux profiles were affected by baroclinicity. Horizontal wind spectra from lidar, radar, and tower data compared well with each other both in shape and magnitude. A consistent peak found near 4 km in all the computed spectra might have been caused by horizontally symmetric cells with horizontal wavelength 4 times the boundary-layer height as shown in Kuettner (1971) for the case of weak wind shear.

  5. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  6. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  7. Applications of the NCAR Electra Doppler radar for the study of physical parameters of clouds

    NASA Astrophysics Data System (ADS)

    Walther, Craig; Frush, Charles; Hildebrand, Peter

    An airborne Doppler X-band radar to be mounted in the tail of a Lockheed Electra (ELDORA) is presented. The ELDORA is designed with a primary emphasis on the study of storm and mesoscale weather phenomena. However, the radar will also be very useful for the study of cloud physical parameters. Because the aircraft can be positioned close to the area of interest, reasonably fine scale data can be taken in a very short length of time. Since these types of measurements are not available, there is much to be learned even with the moderately course resolution of the ELDORA. The use of a larger, vertically pointing antenna will further enhance the ability of the ELDORA to measure these properties. Once this effort is completed, the information obtained will greatly enhance the cloud physics community's ability to determine what specific properties of airborne radar are necessary to measure their phenomena of interest.

  8. Error Correction Method for Wind Speed Measured with Doppler Wind LIDAR at Low Altitude

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Feng, Changzhong; Liu, Zhishen

    2014-11-01

    For the purpose of obtaining global vertical wind profiles, the Atmospheric Dynamics Mission Aeolus of European Space Agency (ESA), carrying the first spaceborne Doppler lidar ALADIN (Atmospheric LAser Doppler INstrument), is going to be launched in 2015. DLR (German Aerospace Center) developed the A2D (ALADIN Airborne Demonstrator) for the prelaunch validation. A ground-based wind lidar for wind profile and wind field scanning measurement developed by Ocean University of China is going to be used for the ground-based validation after the launch of Aeolus. In order to provide validation data with higher accuracy, an error correction method is investigated to improve the accuracy of low altitude wind data measured with Doppler lidar based on iodine absorption filter. The error due to nonlinear wind sensitivity is corrected, and the method for merging atmospheric return signal is improved. The correction method is validated by synchronous wind measurements with lidar and radiosonde. The results show that the accuracy of wind data measured with Doppler lidar at low altitude can be improved by the proposed error correction method.

  9. Doppler lidar studies of atmospheric wind field dynamics

    NASA Technical Reports Server (NTRS)

    Hardesty, R. M.; Post, M. J.; Lawrence, T. R.; Hall, F. F., Jr.

    1986-01-01

    For the past 5 years the Wave Propagation Lab. has operated a pulsed CO2 Doppler lidar system to evaluate coherent laser radar technology and to investigate applications of the technique in atmospheric research. The capability of the system to provide measurements of atmospheric winds, backscatter, and water vapor has been extensively studied over this period. Because Doppler lidar can measure atmospheric wind structure in the clear air without degradation by terrain features, it offers a unique capability as a research tool for studies of many transient or local scale atmospheric events. This capability was demonstrated in recent field experiments near Boulder, Colo. and Midland, Tex., in which the lidar clearly depicted the wind field structure associated with several types of phenomena, including thunderstorm microbursts, valley drainage flow, and passage of a dryline front. To improve sensitivity during the periods of low aerosol backscatter, the system has recently been upgraded with new transmitter/receiver hardware. The upgraded system, which transmit 2 J per pulse of output energy at a rate of 50 Hz and incorporates computer control for automated operation, underwent calibration testing during the spring of 1986.

  10. Delay/Doppler Radar Altimetry for Outer Planet Applications

    NASA Astrophysics Data System (ADS)

    Jensen, J. R.; Raney, R. K.

    2001-01-01

    New concepts, which improve the design and performance of spaceborne radar altimeters for remote sensing of the Earth, can be applied to the mapping of extraterrestrial bodies. An inherent advantage of a radar altimeter is that it is capable of application where the atmosphere of the body being observed is opaque to micron-scale wavelengths. Furthermore, radar altimeters are typically pulse-limited, so the measurement area is determined by the intersection of the transmitted pulse with the surface. This limits the sensitivity of the altitude measurement to the spacecraft attitude knowledge. The recently developed and demonstrated delay/Doppler concept combines these advantages with a reduction in the size of the altimeter through more efficient use of the backscattered power and improvement in the along-track spatial resolution. The delay/Doppler altimeter was originally proposed because of its many advantages in Earth altimetry (open water, sea ice, continental ice sheets, etc.), but the basic concept has wide application, including subsurface sounding as well as altimetry. This sounding application is being considered for the search for subsurface water on Mars and Europa. Altimetry is also a primary data set for geophysical studies (e.g., measurements of planetary tides, rotation state/libration) which provide fundamental constraints on origins and evolution, as well as geological processes (e.g., volcanic, tectonic) that affect topography. This instrument orbiting Europa or Triton can provide key measurements for the understanding of crustal tidal effects, which have implications for geologic processes that may contribute to resurfacing. A delay/Doppler altimeter can distinguish between diffuses and specular reflecting surfaces and therefore between solid and liquid surfaces which can be useful in determining the presence of methane ponds on Titan. Additional information is contained in the original extended abstract.

  11. Airborne astronomy with a 150 micrometer - 500 micrometer heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1991-01-01

    This report summarizes work done under NASA Grant NAG2-254 awarded to the University of California. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory (KAO), and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved; the spectrometer is now in routine use aboard the KAO. Detections of particular note have been the 370 micrometers line of neutral atomic carbon, the 158 micrometers transition of ionized carbon, many of the high-J rotational lines of 12CO and 13CO between J=9-8 and J=22-21, the 119 micron ground-state rotational line of OH, and the 219 micron ground-state rotational line of H2D(+). All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.

  12. The use of airborne lasers in terrestrial and water environments

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Link, L. E.; Swift, R. N.

    1983-01-01

    This document has the objective to provide some information regarding the applications for which an airborne laser system can be utilized. The considered data have been collected with the NASA Airborne Oceanographic Lidar (AOL), operational since 1977 as a flying laser laboratory. The most basic mode of operation of the AOL involves operation as a profiler. The data collected are similar to those which would be collected by a ground survey party. In the fluorosensing mode, pulsed laser light is used to induce fluorescence in various pigments contained in land and water targets. A capability for reliably mapping bottom geometry in clear ocean water to depths of 10-12 meters was also demonstrated, while other studies are related to the utilization of the AOL for synoptic mapping of surface layer concentrations of chlorophyll and other photopigments contained in phytoplankton.

  13. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  14. LASER BIOLOGY AND MEDICINE: Arterial pulse shape measurement using self-mixing effect in a diode laser

    NASA Astrophysics Data System (ADS)

    Hast, J.; Myllylä, Risto; Sorvoja, H.; Miettinen, J.

    2002-11-01

    The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry.

  15. Doppler effects on periodicities in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.

    2015-11-01

    The magnetosphere of Saturn exhibits a wide variety of periodic phenomena in magnetic fields, charged particles, and radio emissions. The periodicities are observed from a moving spacecraft, so an issue arises about the periodicities being influenced by the Doppler effects. Doppler effects can be investigated using models of the periodicities and then flying the spacecraft through the model, effectively measuring any Doppler phenomena with the simulation. Using 200 days of typical elliptical orbits from the Cassini mission at Saturn, three models were tested: an azimuthal wave (or "searchlight") model, a radial wave (or "pond ripple") model, and a model of an outwardly traveling spiral wave. The azimuthal wave model produced virtually no Doppler effects in the periodicities because its wave vector is nearly perpendicular to the spacecraft trajectory. The radial wave model generated strong Doppler effects of an upshifted and a downshifted signal (a dual period) on either side of the true period, because the wave vector is either parallel or antiparallel to the spacecraft trajectory. Being intermediate to the searchlight and radial waves, the spiral wave produced Doppler effects but only for low wave speeds (<10 RS/h). For higher wave speeds the Doppler effects were not as clear. The Doppler effects can be mitigated by employing only observations beyond ~15 RS where the spacecraft speed is low compared to the wave speed. The observed periodicities over the same 200 day interval do not show evidence of Doppler effects but generally display a single feature at the expected ~10.7 h period.

  16. Theoretical simulation of a 2 micron airborne solid state laser anemometer

    NASA Technical Reports Server (NTRS)

    Imbert, Beatrice; Cariou, Jean-Pierre

    1992-01-01

    In the near future, military aircraft will need to know precisely their true airspeed in order to optimize flight conditions. In comparison with classical anemometer probes, an airborne Doppler lidar allows measurement of the air velocity without influence from aircraft aerodynamic disturbance. While several demonstration systems of heterodyne detection using a CO2 laser have been reported, improvements in the technology of solid state lasers have recently opened up the possibility that these devices can be used as an alternative to CO2 laser systems. In particular, a diode pumped Tm:Ho:YAG laser allows a reliable compact airborne system with an eye safe wavelength (lambda = 2.09 microns) to be achieved. The theoretical study of performances of a coherent lidar using a solid state diode pumped Tm:Ho:YAG laser, caled SALSA, for measuring aircraft airspeed relative to atmospheric aerosols is described. A computer simulation was developed in order to modelize the Doppler anemometer in the function of atmospheric propagation and optical design. A clever analysis of the power budget on the detector area allows optical characteristic parameters of the system to be calculated, and then it can be used to predict performances of the Doppler system. Estimating signal to noise ratios (SNR) and heterodyne efficiency provides the available energy of speed measurement as well as a useful measurement of the alignment of the backscattered and reference fields on the detector.

  17. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  18. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  19. A 3-D PW ultrasonic Doppler flowmeter: theory and experimental characterization.

    PubMed

    Calzolai, M; Capineri, L; Fort, A; Masotti, L; Rocchi, S; Scabia, M

    1999-01-01

    A complete 3-D ultrasonic pulsed Doppler system has been developed to measure quantitatively the velocity vector field of a fluid flow independently of the probe position. The probe consists of four 2.5 MHz piezocomposite ultrasonic transducers (one central transmitter and three receivers separated by 120 degrees ) to measure the velocity projections along three different directions. The Doppler shift of the three channels is calculated by analog phase and quadrature demodulation, then digitally processed to extract the mean velocity from the complex spectrum. The accuracy of the 3-D Doppler technique has been tested on a moving string phantom providing an error of about 4% for both amplitude and direction with an acquisition window of 100 ms. PMID:18238403

  20. Limitations of quantitative oculoplethysmography and of directional Doppler ultrasonography in cerebrovascular diagnosis: assessment of an air-filled OPG system.

    PubMed

    Ginsberg, M D; Greenwood, S A; Goldberg, H I

    1981-01-01

    500 consecutive patients were evaluated for extracranial disease of the internal carotid arteries by an automated, air-filled, digital oculoplethysmographic system (OPG) of the Kartchner type (Zira) and by supraorbital (SO) and supratrochlear (ST) directional Doppler ultrasonography. Cerebral arteriograms were performed in 58 patients (110 vessels), and OPG timing criteria for detecting hemodynamically significant carotid artery stenosis (60% or greater diameter reduction) were ascertained. Optimal criteria were a delay of one ocular pulse, relative to the other, of greater than 12 msec; and a delay of an ocular pulse, relative to the earlier ear (external carotid) pulse, of greater than 36 msec. These criteria correctly identified 73% of vessels with 0 to 59% stenosis and 76% of vessels with 60 to 100% stenosis. However, in 26% of the vessels, OPG was either inconclusive or inaccurate. Correct diagnosis of bilateral hemodynamically significant carotid artery stenoses was made by OPG in 6 of 9 affected patients. SO Doppler was normal in 70% of vessels with 0-59% stenosis, and abnormal in 75% of vessels with 60-100% stenosis. Corresponding percentages for ST Doppler were 95% and 44%. Abnormal Doppler responses to compression of contralateral facial branches were predictive of intracranial cross-collateralization in only 25% of patients. These results suggest that both quantitative OPG in its present form and directional Doppler studies have serious limitations as non-invasive diagnostic methods.

  1. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  2. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  3. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  4. The Doppler signal: where does it come from and what does it mean?

    PubMed

    Nelson, T R; Pretorius, D H

    1988-09-01

    Doppler sonographic measurement of blood velocity and associated physiologic parameters is a powerful diagnostic technique. State-of-the-art instrumentation incorporates velocity measurement with two-dimensional imaging capability; it uses intensity and color coding to display complex physiologic and anatomic data to the observer in an easily understood format. Although the concepts underlying Doppler sonography are not complex, mastery of the technique requires extra training and commitment. The principal features and clinical practicalities associated with Doppler sonography are summarized in the following paragraphs. Continuous-wave Doppler is very sensitive to small vessels and has no upper velocity limit. In addition, the instrumentation is not complex and produces relatively low acoustic power. A significant drawback to continuous-wave Doppler is that there is no depth sensitivity, and thus complex structures or multiple vessels can give conflicting information. Pulsed Doppler (including duplex and color-flow) instrumentation has the capability of depth resolution and a variable sample volume. Pulsed Doppler equipment is prone to aliasing (false velocity indications) under some circumstances and also produces higher peak power levels than does continuous-wave equipment. Duplex equipment is more complex and expensive than continuous-wave equipment because the two-dimensional and Doppler modes must be synchronized in operation and display. Color-flow equipment is extremely complex and expensive. Color flow provides information of a qualitative and limited quantitative value. Absolute measurement still requires range-gate measurements. Technical and anatomic factors will affect the measured velocity profiles. Thus, it is important to fully appreciate the anatomy of the vessel and the angle between the vessel and the ultrasound beam when making quantitative measurements. Measurements that evaluate the velocity waveform and make use of ratios, such as the

  5. Airborne Transmission of Bordetella pertussis

    PubMed Central

    Warfel, Jason M.; Beren, Joel; Merkel, Tod J.

    2012-01-01

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets. PMID:22807521

  6. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  7. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  8. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  9. Doppler tomography in fusion plasmas and astrophysics

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures and flow patterns. Fusion plasma Doppler tomography has led to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications.

  10. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.

    PubMed

    Miller, Ryan M; Zhang, Xi; Maxwell, Adam D; Cain, Charles A; Xu, Zhen

    2016-03-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high-intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with two-cycle histotripsy pulses at [Formula: see text] using a 500-kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression.

  11. Blood flow velocity in monocular retinoblastoma assessed by color doppler

    PubMed Central

    Bonanomi, Maria Teresa B C; Saito, Osmar C; de Lima, Patricia Picciarelli; Bonanomi, Roberta Chizzotti; Chammas, Maria Cristina

    2015-01-01

    OBJECTIVE: To analyze the flow of retrobulbar vessels in retinoblastoma by color Doppler imaging. METHODS: A prospective study of monocular retinoblastoma treated by enucleation between 2010 and 2014. The examination comprised fundoscopy, magnetic resonance imaging, ultrasonography and color Doppler imaging. The peak blood velocities in the central retinal artery and central retinal vein of tumor-containing eyes (tuCRAv and tuCRVv, respectively) were assessed. The velocities were compared with those for normal eyes (nlCRAv and nlCRVv) and correlated with clinical and pathological findings. Tumor dimensions in the pathological sections were compared with those in magnetic resonance imaging and ultrasonography and were correlated with tuCRAv and tuCRVv. In tumor-containing eyes, the resistivity index in the central retinal artery and the pulse index in the central retinal vein were studied in relation to all variables. RESULTS: Eighteen patients were included. Comparisons between tuCRAv and nlCRAv and between tuCRVv and nlCRVv revealed higher velocities in tumor-containing eyes (p<0.001 for both), with a greater effect in the central retinal artery than in the central retinal vein (p=0.024). Magnetic resonance imaging and ultrasonography measurements were as reliable as pathology assessments (p=0.675 and p=0.375, respectively). A positive relationship was found between tuCRAv and the tumor volume (p=0.027). The pulse index in the central retinal vein was lower in male patients (p=0.017) and in eyes with optic nerve invasion (p=0.0088). CONCLUSIONS: TuCRAv and tuCRVv are higher in tumor-containing eyes than in normal eyes. Magnetic resonance imaging and ultrasonography measurements are reliable. The tumor volume is correlated with a higher tuCRAv and a reduced pulse in the central retinal vein is correlated with male sex and optic nerve invasion. PMID:26735219

  12. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  13. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  14. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  15. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  16. Observation of the Zero Doppler Effect

    PubMed Central

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  17. Observation of the Zero Doppler Effect

    NASA Astrophysics Data System (ADS)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  18. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  19. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-05

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  20. Development of the doppler electron velocimeter: theory.

    SciTech Connect

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  1. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  2. Photoacoustic and Doppler ultrasound for oxygen consumption estimation: implementation on a clinical array system

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Recently, we have developed a combined photoacoustic and high-frequency Doppler ultrasound system with a single element transducer to estimate the metabolic rate of oxygen consumption in small animal models. However, the long scanning time due to mechanical motion may be a limitation of our swept-scan system. In this work, the single element transducer was replaced by a clinical array transducer which may provide more accurate flow velocity estimations, higher frame rates, improved penetration depth, and improved depth-of-field due to dynamic focusing capabilities. We used an array system from Verasonics Inc. which enables flexible pulse-sequence programming and parallel channel data acquisition, along with a pulsed laser and optical parametric oscillator. For flow estimation, we implemented a flash- Doppler sequence which transmits ensembles of plane-wave excitations. Echo signals are beamformed and subjected to wall-filtering and Kasai flow estimation algorithms. High frame rates over a wide region can be achieved. Combined interlaced photoacoustic and Doppler imaging on flow phantoms has been performed on this system. We demonstrate the ability to image animal blood to depths of 1.5-cm with high signal-to-noise with both modalities. The light penetration is 2-cm. We discuss the performance of Doppler flow estimation and photoacoustic oxygen saturation estimation and their role in future work of estimating oxygen consumption.

  3. PATH TO NEXRAD: Doppler Radar Development at the National Severe Storms Laboratory.

    NASA Astrophysics Data System (ADS)

    Brown, Rodger A.; Lewis, John M.

    2005-10-01

    In this historical paper, we trace the scientific- and engineering-based steps at the National Severe Storms Laboratory (NSSL) and in the larger weather radar community that led to the development of NSSL's first 10-cm-wavelength pulsed Doppler radar. This radar was the prototype for the current Next Generation Weather Radar (NEXRAD), or Weather Surveillance Radar-1998 Doppler (WSR-88D) network.We track events, both political and scientific, that led to the establishment of NSSL in 1964. The vision of NSSL's first director, Edwin Kessler, is reconstructed through access to historical documents and oral histories. This vision included the development of Doppler radar, where research was to be meshed with the operational needs of the U.S. Weather Bureau and its successor—the National Weather Service.Realization of the vision came through steps that were often fit-ful, where complications arose due to personnel concerns, and where there were always financial concerns. The historical research indicates that 1) the engineering prowess and mentorship of Roger Lhermitte was at the heart of Doppler radar development at NSSL; 2) key decisions by Kessler in the wake of Lhermitte's sudden departure in 1967 proved crucial to the ultimate success of the project; 3) research results indicated that Doppler velocity signatures of mesocyclones are a precursor of damaging thunderstorms and tornadoes; and 4) results from field testing of the Doppler-derived products during the 1977 79 Joint Doppler Operational Project—especially the noticeable increase in the verification of tornado warnings and an associated marked decrease in false alarms—led to the government decision to establish the NEXRAD network.

  4. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  5. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  6. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  7. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  8. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  9. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  10. Airborne chemicals and forest health

    SciTech Connect

    Woodman, J.N.; Cowling, E.B.

    1987-02-01

    Over the past few years the possible contribution of acid rain to the problem of forest decline has been a cause of increasing public concern. Research has begun to determine whether airborne chemicals are causing or contributing to visible damage and mortality in eastern spruce-fir and sugar maple forests and to changes in tree growth, usually without visible symptoms, in other parts of North America. This paper describes some of the complex biological relationships that determine health and productivity of forests and that make it difficult to distinguish effects of airborne chemicals from effects of natural stress. It describes four major research approaches for assessment of the effects of airborne chemicals on forests, and it summarizes current understanding of the known and possible effects of airborne chemicals on forest trees in North America and Europe. It also briefly describes the major air quality and forest health research programs in North America, and it assesses how ell these programs are likely to meet information needs during the coming decade. 69 references, 2 figures, 1 table.

  11. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  12. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  13. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  14. Design criteria and comparison between conventional and subaperture SAR processing in airborne systems

    NASA Astrophysics Data System (ADS)

    Prats, Pau; Bara, Marc; Broquetas, Antoni

    2002-02-01

    This paper compares two different approaches for designing airborne SAR systems. The first one is the most common where conventional processing is employed, and therefore wide antenna beams are to be used in order to avoid ambiguities in the final image due to attitude variations. A second approach is proposed to lower the requirements such system imposes based on subaperture processing. The idea is to follow the azimuth variations of the Doppler centroid, without increasing the hardware requirements of the system. As it is shown in this paper, this processing procedure must be complemented with precise radiometric corrections, because the platform may experience small attitude variations, which could increase/decrease the target observation time, inducing a significant azimuth modulation in the final image. This leads to the definition of a new criterion concerning maximum attitude deviations for an airborne platform.

  15. Gosling's Doppler pulsatility index revisited.

    PubMed

    Michel, E; Zernikow, B

    1998-05-01

    In Doppler sonography, the physiological meaning of Gosling's pulsatility index (PI) as a measure of downstream resistance is still under dispute. We deliver the theoretical derivation of its physiological significance. We present a mathematical model based on the linked theories of critical closing pressure (CCP) and cerebrovascular impedance, verified in preterm neonates. Mathematical transformation results in a series of equations interrelating several physiological parameters. Instead of indicating cerebrovascular resistance, PI is linked to the ratio of cerebrovascular impedances at the heart rate and at zero frequency. Next to arterial blood pressure, CCP is the principal determinant of PI. PI is identical to the ratio of the alternate and the direct component of the effective driving force. Thus, PI has no distinctive physiological meaning by itself. At present, our model is confined to physiological conditions where the lowest velocity is the end diastolic, and always more than zero.

  16. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  17. Observations and Analysis of Turbulent Wake of Wind Turbine by Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Li, Rongzhong; Wang, Xitao; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Turbulent wake of wind turbine will reduce the power output of wind farm. The access to real turbulent wake of wind turbine blades with different spatial and temporal scales is provided by the pulsed Coherent Doppler Lidar (CDL) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. In this paper, the authors discuss the possibility of using lidar measurements to characterize the complicated wind field, specifically wind velocity deficit by the turbine wake.

  18. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  19. Simulation of the Performances of WIND, an Airborne CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Oh, D.; Dabas, A.; Lieutaud, F.; Loth, C.; Flamant, P. H.

    1992-01-01

    An airborne Doppler coherent lidar is under development as a joint project between France and Germany. The instrument is designed around CO2 laser technology, heterodyne detection, and a conical scanning of the line-of-site. The 10 micron domain is suitable for long range measurements due to the maturity of the technology and because it corresponds to an atmospheric window. The objectives of WIND are twofold: (1) to conduct mesoscale scientific studies in particular over oceanic and inhomogeneous terrain areas; and (2) to support the Earth-orbiting wind lidar projects.

  20. Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Rao, Bin; Choi, Bernard; Chen, Zhongping

    2010-02-01

    We present a combined optical Doppler tomography/spectral Doppler imaging modality to quantitatively evaluate the dynamic blood circulation and the artery blockage before and after a localized ischemic stroke in a mouse model. Optical Doppler Tomography (ODT) combines the Doppler principle with optical coherence tomography for noninvasive localization and measurement of particle flow velocity in highly scattering media with micrometer scale spatial resolution. Spectral Doppler imaging (SDI) provides complementary temporal flow information to the spatially distributed flow information of Doppler imaging. Fast, repeated, ODT scans across an entire vessel were performed to record flow dynamic information with high temporal resolution of cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time for scatters within the imaging volume using spectral Doppler waveforms. Furthermore, vascular conditions can be quantified with various Doppler-angle-independent flow indices. Non-invasive in-vivo mice experiments were performed to evaluate microvascular blood circulation of a localized ischemic stroke mouse model.