Science.gov

Sample records for airborne radar altimetry

  1. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  2. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  3. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Escolà, Roger; Garcia-Mondejar, Albert; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrozio, Americo; Restano, Marco; Benveniste, Jérôme

    2016-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  4. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Mondéjar, Albert; Benveniste, Jérôme; Naeije, Marc; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Ambrózio, Américo; Restano, Marco

    2016-07-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Études Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  5. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  6. Basic Radar Altimetry Toolbox & Tutorial

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Benveniste, Jerome; Breebaart, Leo; Bronner, Emilie; Dinardo, Salvatore; Earith, Didier; Lucas, Bruno Manuel; Niejmeier, Sander; Picot, Nicolas

    2010-12-01

    The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data, including the last mission launched, CryoSat. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. Nearly 1200 people downloaded it (as of end of June 2010), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been added and/or improved in version 2. Others are ongoing, some are in discussion. The Basic Radar Altimetry Toolbox is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason- 1, Envisat, Jason- 2, CryoSat and also the future Saral and Sentinel 3 missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool both, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data, additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. BRAT is developed under contract with ESA and CNES. It is available at http://www.altimetry.info and http://earth.esa.int/brat/

  7. Basic Radar Altimetry Toolbox & Tutorial

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Benveniste, Jerome; Bronner, Emilie; Dinardo, Salvatore; Lucas, Bruno Manuel; Niejmeier, Sander; Picot, Nicolas; Breebaart, Leo; Earith, Didier

    2010-05-01

    The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data, including the next mission to be launched, CryoSat. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 900 people downloaded it (January 2009), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been added and/or improved in version 2. Others are ongoing, some are in discussion. The Basic Radar Altimetry Toolbox is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, and the furure CryoSat and Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. Version 2 has been released in April 2009, including, among other improvements, a Mac OS X version, River&Lake data reading capability, full waveform processing and plotting, new plotting capabilities, export in GeoTiff, including a Google Earth export feature, easier export in Ascii, a rethinking of the Graphical user

  8. Radar altimetry systems cost analysis

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Heuring, F. T.; Denman, W. F.

    1976-01-01

    This report discusses the application and cost of two types of altimeter systems (spaceborne (satellite and shuttle) and airborne) to twelve user requirements. The overall design of the systems defined to meet these requirements is predicated on an unconstrained altimetry technology; that is, any level of altimeter or supporting equipment performance is possible.

  9. Basic Radar Altimetry Toolbox: tools to teach altimetry for ocean

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Benveniste, Jerome; Bronner, Emilie; Niemeijer, Sander; Lucas, Bruno Manuel; Dinardo, Salvatore

    2013-04-01

    The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data, including the next mission to be launched, CryoSat. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. More than 2000 people downloaded it (January 2013), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been added and/or improved in version 2 and 3. Others are in discussion for the future, including addition of the future Sentinel-3. The Basic Radar Altimetry Toolbox is able: - to read most distributed radar altimetry data, including the one from future missions like Saral, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways, including as an educational tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. Example from education uses will be presented, and feedback from those who used it as such will be most welcome. BRAT is developed under contract with ESA and CNES. It is available at http://www.altimetry.info and http://earth.esa.int/brat/

  10. Basic Radar Altimetry Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Niejmeier, Sander; Bronner, Emilie; Benveniste, Jérôme

    The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data, including the next mission to be launched, CryoSat. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 900 people downloaded it (January 2009), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been added and/or improved in version 2. Others are ongoing, some are in discussion. The Basic Radar Altimetry Toolbox is able: • to read most distributed radar altimetry data, from ERS-1 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason-2, and the furure CryoSat and Saral missions, • to perform some processing, data editing and statistic, • and to visualize the results. It can be used at several levels/several ways: • as a data reading tool, with APIs for C, Fortran, Matlab and IDL • as processing/extraction routines, through the on-line command mode • as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documen-tation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. Version 2 has been released in April 2009, including, among other improvements, a Mac OS X version, RiverLake data reading capability, full waveform processing and plotting, new plotting capabilities, export in GeoTiff, including a Google Earth export feature, easier export in Ascii, a rethinking of the Graphical

  11. Radar altimetry and global climatic change

    SciTech Connect

    Dobson, E.B.; Monaldo, F.M.; Porter, D.L.; Robinson, A.R.; Kilgus, C.C.; Goldhirsh, J.; Glenn, S.M. Harvard Univ., Cambridge, MA Rutgers Univ., New Brunswick, NJ )

    1992-09-01

    The use of satellite radar altimetry for monitoring global climatic variables is examined in the context of the altimeter for the Geosat Follow-On program. The requirements of studying climate and ocean circulation are described for the particular case of the North Atlantic, and the use of spaceborne altimetry is discussed for three measurement types. Altimeters measure sea-surface height and the ice edge to give data on mesoscale variability and circulation, interannual variability, and air-sea interactions. The altimeters for the Geosat program are expected to include orbit-determination systems for removal of the orbital signature and a radiometer for measuring water vapor. The altimeters are expected to be useful in studying ocean circulation and climate, and existing data support in situ measurements. Spaceborne radar altimetry can provide important data for understanding CO[sub 2] uptake, biogeochemical fluxes, and the thermocline conveyor belt. 30 refs.

  12. Basic Radar Altimetry Toolbox: Tools and Tutorial To Use Radar Altimetry For Cryosphere

    NASA Astrophysics Data System (ADS)

    Benveniste, J. J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.

    2010-12-01

    Radar altimetry is very much a technique expanding its applications. If quite a lot of efforts have been made for oceanography users (including easy-to-use data), the use of those data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious, especially for new Altimetry data products users. ESA and CNES thus had the Basic Radar Altimetry Toolbox developed a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat and the future Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 1200 people downloaded it (Summer 2010), with many "newcomers" to altimetry among them, including teachers

  13. Amazon river altimetry through satellite radar altimetry and GPS positionning

    NASA Astrophysics Data System (ADS)

    Kosuth, P.; Cazenave, A.; Blitzkow, D.

    2003-04-01

    Due to extremely poor road infrastructure and resulting difficulties in direct topographic levelling, Amazon river basin lacks a consistent topographical referential. Space based altimetric techniques appear to be the only feasible alternative to establish such a referential. Extensive processing of Topex/Poseidon satellite radar altimeter data upon continental open water bodies of the Amazon Basin over 1993-2000 period has been realised. Due to relatively poor reliability of Topex/Poseidon data at river low stage, processing focussed on maximum annual water levels. Such maximum annual water levels have been determined for more than 150 intersections between satellite ground traces and rivers, accuracy being improved by correlation analysis with continuous water level time series at closest gauging station. Results have been translated to a geoidal referential using EGM96 geoid model. Annual upper enveloppes of rivers longitudinal water profiles have been interpolated, allowing to quantify maximum annual water levels at existing gauging stations. Confrontation between satellite determined and field measured maximum water levels at these stations allowed to quantify the geoidal altitude of more than 80 stations with a decimetric accuracy (<0.5m). This method has been checked and validated through internal consistency analysis, hydrological consistency analysis and confrontation with bi-frequency GPS positionning measurement results at 22 stations. Mean difference between geoidal altitudes determined by satellite radar altimetry and bi-frequency GPS positionning for these 22 stations is +0.29 m +/- 0.63 m, GPS positionning results being lower than satellite radar altimetry ones. Till now about 30 000 km of Amazon Basin rivers over Brazil, Bolivia, Peru and Ecuador benefit from these altimetric references. This opens way for improved understanding of Amazon river dynamics and enlightens possible improvements in applying satellite radar altimetry techniques over

  14. Basic Radar Altimetry Toolbox: Tools to Use Radar Altimetry for Geodesy

    NASA Astrophysics Data System (ADS)

    Rosmorduc, V.; Benveniste, J. J.; Bronner, E.; Niejmeier, S.

    2010-12-01

    Radar altimetry is very much a technique expanding its applications and uses. If quite a lot of efforts have been made for oceanography users (including easy-to-use data), the use of those data for geodesy, especially combined witht ESA GOCE mission data is still somehow hard. ESA and CNES thus had the Basic Radar Altimetry Toolbox developed (as well as, on ESA side, the GOCE User Toolbox, both being linked). The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat and the future Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 1200 people downloaded it (Summer 2010), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been

  15. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  16. Land subsidence measured by satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Brooks, R. L.

    1981-01-01

    Radar altimeter measurements from the GEOS-3 and SEASAT satellites are being evaluated to assess their potential contribution to terrain mapping. The primary evaluation area is the San Joaquin Valley of southern California; 40,000/sq km of the Valley have been mapped at a contour interval of 10 m from the satellite altimeter measurements. The accuracy of the altimeter derived terrain elevations is being assessed by comparison with 1:24,000 and digitized 1:250,000 maps and by intercomparisons at the crossover altimeter intersections. Comparisons of the altimeter derived elevations with historical maps archived at the U.S. Geological Survey confirms the USGS 1926-1972 subsidence contours for this area. Preliminary results from a similar analysis in the Houston-Galveston area of subsidence also demonstrates a capability of measuring land subsidence by satellite altimetry.

  17. Airborne laser altimetry survey of Glaciar Tyndall, Patagonia

    NASA Astrophysics Data System (ADS)

    Keller, Kristian; Casassa, Gino; Rivera, Andrés; Forsberg, Rene; Gundestrup, Niels

    2007-10-01

    The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser-INS-GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of - 3.1 ± 1.0 m a - 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of - 7.7 ± 1.0 m a - 1 at the calving front at 50 m a.s.l. and minimum values of between - 1.0 and - 2.0 ± 1.0 m a - 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at ˜ 600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of - 3.2 m a - 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239-247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation

  18. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  19. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  20. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  1. Soil Moisture From Satellite Radar Altimetry (SMALT)

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Salloway, M. K.; Berry, P. A. M.; Dowson, M.; Hahn, S.; Wagner, W.; Egibo, A.; Benveniste, J.

    2013-12-01

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth's land surface, resulting from changes in surface roughness and composition. These DREAMS are complicated to build and require multiple stages of processing and manual intervention. However, this approach obviates the requirement for detailed ground truth to populate theoretical models, facilitating derivation of surface soil moisture estimates over arid regions, where detailed survey data are generally not available. DREAMS have been produced over a number of deserts worldwide and a selection are presented in this paper. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. In order to validate these products comparisons with other remote sensing techniques and in-situ data have been performed over a number of desert regions. SMALT products are made freely available to the scientific community through the website http://tethys.eaprs.cse.dmu.ac.uk/SMALT

  2. Soil moisture estimation from radar altimetry

    NASA Astrophysics Data System (ADS)

    Mougin, E.; Frappart, F.; Famiglietti, J. S.

    2006-12-01

    The climate of West African Sahel is controlled by a complex system of interactions between the atmosphere, biosphere and hydrosphere, known as the West African monsoon. The rainfall dynamics at various spatial and temporal scales, which have a strong impact on human activities, are mainly governed by surface conditions - vegetation cover and soil moisture. This important parameter of the hydrological cycle is poorly described at regional, continental or global scale. Space-borne sensors exhibit a strong potential for the study of continental surfaces. Radar altimetry, initially developed to make accurate measurements of ocean topography, is commonly used for the survey of ice sheets and river stages. Several studies showed that changes in snow cover, soil water content and vegetation properties are responsible for variations of the backscatter response. Over the Sahel region, maxima of the backscatter coefficients are correlated to rain events. We present the results of an analysis of the backscatter coefficients from Topex/Poseidon and ENVISAT/RA-2 over the Gourma site (Mali) and compare them with in- situ and satellite measurements of precipitation, soil moisture and vegetation.

  3. Envisat Radar Altimetry Products For Cryospheric Studies

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Roca, M.; Baker, S.; Wingham, D.; Laxon, S.; Zanife, O.-Z.; Legresy, B.; Remy, F.

    Ice sheets and sea ice play a key role in the global climate system due to their albedo and as a huge store of freshwater. Sea-ice is also a barrier between the ocean and the atmosphere and drives the thermohaline circulation of the oceans. These critical components of the climate system are not well modelled but are clearly important if accurate predictions of the consequences of global warming are to be made. The vast, remote and inhospitable polar regions experience frequent cloud cover and long periods of darkness. They are best observed by satellite-borne active radars. The Altimetry mission on-board ENVISAT, ESA's largest environmental remote sens- ing satellite to be launched on 1st March 2002, is designed to guarantee the continu- ity of observations started by ERS-1 and ERS-2. It includes an advanced dual fre- quency new generation Radar Altimeter (RA-2), the Microwave Radiometer (MWR), the positioning instrument DORIS and the laser retro reflector (LRR). RA-2 has a new tracker philosophy: robust collection of accurately quantified radar echo data, particularly robust at handling non-ocean like echoes and conversion to meaningful geophysical quantities (re-tracking) done solely on ground. Moreover, RA-2 switches autonomously between 3 different range window width to adapt to different surfaces and avoid losing track. RA-2 has also the new capability of providing limited bursts of individual, i.e. un-averaged, Ku-band echoes at 1800 Hz, for theoretical research on backscattering and precise monitoring of bright targets. The data products are greatly improved. All data -over all surfaces- are processed si- multaneously by 4 different retrackers (Ocean, Ice1, Ice2 and Sea-Ice) to let the users choose the most suitable for their particular application. The Ice1 retracking is the range estimation technique for ice-sheet echoes used on ERS data. Ice 2 retracking is aimed at ocean-like echoes returned from ice-sheets. The Sea-Ice retracking is for specular echoes

  4. Today radar altimetry to prepare SWOT

    NASA Astrophysics Data System (ADS)

    Paris, adrien; Calmant, Stephane; Collischonn, Walter; Paiva, Rodrigo; Bonnet, Marie-Paule; Santos da Silva, Joecila; Seyler, Frederique

    2013-04-01

    We present a study conducted in the Amazon basin to compute distributed discharge with ENVISAT and JASON-2 altimetry in the one hand and the rain/discharge MGB model in the other hand. The MGB model is run over the 1998-2008 period with TRMM rain input. The altimetry data of ~500 series throughout the basin are used to determine rating curves that enable to tune the model parameters such as the depth and slope of small contributors still un-monitored, or the variations in Manning coefficient; and to make discharge series exceeding the time window of the model runs. With this case study, we show that the measurements collected today by conventional altimetry missions can be used to prepare SWOT in two directions: get geophysical values that will be necessary for the discharge algorithms of SWOT and compute discharge time series which will constitute an archive to be continued by SWOT.

  5. Geoscience Applications of Airborne and Spaceborne Lidar Altimetry

    NASA Technical Reports Server (NTRS)

    Harding David J.

    1999-01-01

    Recent advances in lidar altimetry technology have enabled new methods to describe the vertical structure of the Earth's surface with great accuracy. Application of these methods in several geoscience disciplines will be described. Airborne characterization of vegetation canopy structure will be illustrated, including a validation of lidar-derived Canopy Height Profiles for closed-canopy, broadleaf forests. Airborne detection of tectonic landforms beneath dense canopy will also be illustrated, with an application mapping active fault traces in the Puget Lowland of Washington state for earthquake hazard assessment purposes. Application of data from the first and second flights of the Shuttle Laser Altimeter will also be discussed in an assessment of global digital elevation model accuracy and error characteristics. Two upcoming space flight missions will be described, the Vegetation Canopy Lidar (VCL) and the Ice, Cloud and Land Elevation Mission (ICESat), which will provide comprehensive lidar altimeter observations of the Earth's topography and vegetation cover.

  6. Gulf of Mexico satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Parra, C. G.; Forsythe, R. G.; Parsons, C. L.

    1981-01-01

    The dynamic topography of the sea surface was measured. The radar altimeter measurements yield average ocean topographic data which are mapped. Seasonal deviations from a 3 year mean topography are presented. The altimeters are also instrumented with sample and hold gates which provide information about the shape and amplitude of the return waveform. Parameters including ocean surface wind speed and the significant wave height are determined. One hundred eighty six wind speed and significant wave height histograms are presented.

  7. Radar altimetry of South Tharsis, Mars

    NASA Astrophysics Data System (ADS)

    Roth, L. E.; Downs, G. S.; Saunders, R. S.; Schubert, G.

    1980-06-01

    The paper discusses Martian altitudes measured by radar during the oppositions of 1971 and 1973 using the 64-m antenna at Goldstone, Calif. The resultant topographic profiles substantiate a zonal classification of the volanic flows blanketing the south flanks of Arsia Mons, and they confirm the existence of a secondary, parasitic shield, attached from the SSW to the main Arsia shield. The secondary shield is about 400 km in diameter at its base and at least 4 km high at its center. The distribution and orientation of the lunar mare - like ridges in Sinai Planum appear to be independent of the regional gradients. Segments of the chaotic terrain at the eastern terminus of Valles Marineris are located down to 6 km below the level of the surrounding plains.

  8. The Basic Radar Altimetry Toolbox for Sentinel 3 Users

    NASA Astrophysics Data System (ADS)

    Lucas, Bruno; Rosmorduc, Vinca; Niemeijer, Sander; Bronner, Emilie; Dinardo, Salvatore; Benveniste, Jérôme

    2013-04-01

    The Basic Radar Altimetry Toolbox (BRAT) is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2006 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales). The latest version of the software, 3.1, was released on March 2012. The tools enable users to interact with the most common altimetry data formats, being the most used way, the Graphical User Interface (BratGui). This GUI is a front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. The BratDisplay (graphic visualizer) can be launched from BratGui, or used as a stand-alone tool to visualize netCDF files - it is distributed with another ESA toolbox (GUT) as the visualizer. The most frequent uses of BRAT are teaching remote sensing, altimetry data reading (all missions from ERS-1 to Saral and soon Sentinel-3), quick data visualization/export and simple computation on the data fields. BRAT can be used for importing data and having a quick look at his contents, with several different types of plotting available. One can also use it to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BratGui involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas (MSS, -SSH, MSLA, editing of spurious data, etc.). The documentation collection includes the standard user manual explaining all the ways to interact with the set of software tools but the most important item is the Radar Altimeter Tutorial, that contains a strong introduction to

  9. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  10. A digital elevation model of the Greenland Ice Sheet derived from combined laser and radar altimetry data

    NASA Astrophysics Data System (ADS)

    Fredenslund Levinsen, Joanna; Smith, Ben; Sørensen, Louise S.; Forsberg, René

    2014-05-01

    When estimating elevation changes of ice-covered surfaces from radar altimetry, it is important to correct for slope-induced errors. They cause the reflecting point of the pulse to move up-slope and thus return estimates in the wrong coordinates. Slope-induced errors can be corrected for by introducing a Digital Elevation Model (DEM). In this work, such a DEM is developed for the Greenland Ice Sheet using a combination of Envisat radar and ICESat laser altimetry. If time permits, CryoSat radar altimetry will be included as well. The reference year is 2010 and the spatial resolution 2.5 x 2.5 km. This is in accordance with the results obtained in the ESA Ice Sheets CCI project showing that a 5 x 5 km grid spacing is reasonable for ice sheet-wide change detection (Levinsen et al., 2013). Separate DEMs will be created for the given data sets, and the geostatistical spatial interpolation method collocation will be used to merge them, thus adjusting for potential inter-satellite biases. The final DEM is validated with temporally and spatially agreeing airborne lidar data acquired in the NASA IceBridge and ESA CryoVex campaigns. The motivation for developing a new DEM is based on 1) large surface changes presently being observed, and mainly in margin regions, hence necessitating updated topography maps for accurately deriving and correcting surface elevation changes, and 2) although radar altimetry is subject to surface penetration of the signal into the snowpack, data is acquired continuously in time. This is not the case with e.g. ICESat, where laser altimetry data were obtained in periods of active lasers, i.e. three times a year with a 35-day repeat track. Previous DEMs e.g. have 2007 as the nominal reference year, or they are built merely from ICESat data. These have elevation errors as small as 10 cm, which is lower than for Envisat and CryoSat. The advantage of an updated DEM consisting of combined radar and laser altimetry therefore is the possibility of

  11. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  12. Short arc reduction of radar altimetry computer program

    NASA Technical Reports Server (NTRS)

    Hadgigeorge, G.; Trotter, J.

    1978-01-01

    The Air Force Geophysics Laboratory computer program SARRA (Short Arc Reduction of Radar Altimetry) has been used for geoid determination with altimetric observations from the GEOS-3 satellite. An important feature of SARRA is the simultaneous recovery of the orbit parameters and the surface coefficients as defined by covariance function weights. Orbits good to approximately 20 meters are adequate for precise geoid determinations by virtue of the orbital adjustment in the reductions. Altimetric data over a portion of the North Atlantic Ocean have been processed to derive the regional geoid and gravity field. Analyses of altimeter residuals resulting from the short arc adjustment show that the residuals can be used to define the neglected higher order geoidal undulations with high fidelity and continuity.

  13. The application of Seasat-1 radar altimetry to continental shelf circulation modeling

    NASA Technical Reports Server (NTRS)

    Cornillon, P.; Reed, M.; Spaulding, M.; Swanson, C.

    1980-01-01

    Seasat-1 radar altimetry data have been used to verify a continental shelf circulation model subjected to tidal forcing on the open boundary. The model makes use of the semi-implicit mode of time integration, removing the surface gravity wave time step restriction. Both the altimetry and the model predictions are compared with empirically determined tidal fluctuations and generally good agreement is obtained.

  14. Estimation of Antarctic Sea Ice Thickness From Satellite Radar Altimetry

    NASA Astrophysics Data System (ADS)

    Potter, R. C. H.; Laxon, S. W.; Peacock, N.

    The spatial and temporal variability of Antarctic sea-ice extent and thickness are re- quired by the climate modelling community to understand the complex coupling be- tween sea ice and ocean-atmosphere. Recent investigations have provided estimates of Arctic sea ice thickness determined from satellite radar altimetry, which have been validated using Upward Looking Sonar data from submarines. In the present study, we aim to explore the potential for estimation of the thickness of Antarctic sea ice. In the boreal summer, the Arctic Ocean is pre-dominantly inhabited by old, multiyear sea-ice that may survive through each melt season and subsequently refreeze and in- crease in thickness under autumn cooling and winter growth. However, aside from the Weddell Sea, the Antarctic sea ice is subject to almost complete seasonal melt/freeze with the formation of pre-dominant first year ice. To estimate ice thickness from mea- surements of ice elevation it is necessary to establish the vertical origin of the radar echo's received over snow covered ice. Assuming reflection originates at the snow/ice interface, the ice freeboard can be estimated. The freeboard is converted to ice thick- ness using fixed densities for ice and seawater and a recently generated Antarctic Snow depth climatology. However, the developed altimetry techniques are designed for rela- tively thick Arctic sea ice and therefore may not be directly applicable to the relatively thin non-compacted first year Antarctic sea ice. In particular, snow loading owing to high precipitation rates is likely to be much larger compared to ice thickness. In ex- treme conditions this may lead to negative freeboard. Nevertheless, data on Antarctic ice thickness is even more sparse than the Arctic and hence information on thickness would be of significant value. We present preliminary results of Antarctic ice thickness estimates and validation using ULS data.

  15. Basic Radar Altimetry Toolbox: Tools and Tutorial to Use Cryosat Data

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.; Niemeijer, S.

    2011-12-01

    Radar altimetry is very much a technique expanding its applications. Even If quite a lot of effort has been invested for oceanography users, the use of Altimetry data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious for new Altimetry data products users. ESA and CNES therfore developed the Basic Radar Altimetry Toolbox a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat, the future Saral missions and is ready for adaptation to Sentinel-3 products - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available since April 2007, and had been demonstrated during training courses and scientific meetings. About 2000 people downloaded it (Summer 2011), with many "newcomers" to altimetry among them

  16. Airborne Gravimetry and Laser Altimetry over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Richter, T. G.; Kempf, S. D.; Holt, J. W.; Morse, D. L.; Blankenship, D. D.; Peters, M. E.

    2002-05-01

    In response to an NSF-OPP proposal from Lamont Doherty Earth Observatory (R. Bell and M. Studinger) to study Lake Vostok, a team from the University of Texas Institute for Geophysics (UTIG) conducted the first comprehensive aerogeophysical survey of Lake Vostok during the 2000/01 austral summer. A Twin Otter was instrumented for measurements of gravity, magnetics, ice thickness, and surface elevation. The survey grid was 165 x 330 km (line spacing 7.5 km with 11.25 km and 22.5 km tie-lines), augmented by 12 regional lines extending 180 - 440 km from the primary grid. The remote polar location, high altitude, and extreme cold presented significant technical and physiological challenges, but the survey was completed successfully in 36 flights over 26 days, and has resulted in excellent geophysical data sets. We describe here the acquisition and reduction of the gravity field and ice-surface elevation data sets. Gravimetry and laser altimetry both require high-quality, precise positioning for use in data reduction. Three carrier-phase GPS receivers were operated in parallel aboard the aircraft, with an identical suite at the surface camp. All GPS data sets were reduced using two different software packages -- K&RS and GIPSY-OASIS. K&RS produced the most accurate positions but is inappropriate for long baselines. While GIPSY-OASIS yields positions in circumstances unfavorable to K&RS (i.e., long baselines and lines without closure), it was about half as accurate as K&RS and was insufficient for achieving the desired accuracy of 1-2 mGal in the reduced gravity data. Gravity was measured with a Bell Aerospace BGM-3 marine gravimeter provided by the Naval Oceanographic Office and modified for airborne use. GPS data are used to correct for inertial accelerations induced by aircraft movement. Up to 21 GPS solutions were available for each line. Selection was made through correlation of the high-frequency accelerations recorded by the gravity meter and those derived from the

  17. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  18. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  19. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  20. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  1. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  2. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  3. Studies of Austfonna Ice Cap (Svalbard) Using Radar Altimetry in Andother Satellite Techniques

    NASA Astrophysics Data System (ADS)

    Kouraev, A. V.; Legresy, B.; Remy, F.

    2006-07-01

    We presen t resu lts of application of radar altimetry and other satellite techniqu es for studies of th e Austfonna ice cap (Svalbard). We assess spatial and temporal d ata availab ility over Austfonna. Th en we d iscuss temporal variab ility of ENVISA T altimetr ic and radio metric measures. We also discuss potential of combination of altimetry and Dig ital Elev ation Models (D EM) for DEM improvement and interpretation of altimeter measurements.

  4. Recent Advances in Satellite and Airborne Altimetry over Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Newman, T.; Richter-Menge, J.; Haas, C.; Petty, A.; McAdoo, D. C.; Connor, L. N.

    2014-12-01

    Over the last two decades altimeters on satellite and aircraft platforms have revolutionized our understanding of Arctic sea ice mass balance. Satellite laser and radar altimeters provide unique measurements of sea ice elevation, from which ice thickness may be derived, across basin scales and interdecadal time periods. Meanwhile airborne altimetry, together with high-resolution digital imagery, provides a range of novel observations that describe key features of the ice pack including its snow cover, surface morphology and deformation characteristics. We provide an update on current Arctic sea ice thickness conditions based on IceBridge measurements, discussing these in the context of previously observed decadal change. Fundamental to the goal of understanding interannual variability, and monitoring long-term trends in sea ice volume, is the accurate characterization of measurement uncertainty. This is particularly true when linking observations from different sensors. We discuss recent advances in tracking and quantifying the major components of the altimetric sea ice thickness error budget. We pay particular attention to two major components of the error: freeboard and snow loading uncertainty. We describe novel measurement techniques that are helping to reduce measurement uncertainty and allowing, for the first time, quantification of errors with respect to ice type.

  5. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  6. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  7. Toward Automated Generation of Reservoir Water Elevation Changes From Satellite Radar Altimetry.

    NASA Astrophysics Data System (ADS)

    Okeowo, M. A.; Lee, H.; Hossain, F.

    2015-12-01

    Until now, processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to contaminated measurements from their surrounding topography. It becomes more challenging if the size of the water body is small and thus the number of available high-rate measurements from the water surface is limited. A manual removal of outliers is time consuming which limits a global generation of reservoir elevation profiles. This has limited a global study of lakes and reservoir elevation profiles for monitoring storage changes and hydrologic modeling. We have proposed a new method to automatically generate a time-series information from raw satellite radar altimetry without user intervention. With this method, scientist with little knowledge of altimetry can now independently process radar altimetry for diverse purposes. The method is based on K-means clustering, backscatter coefficient and statistical analysis of the dataset for outlier detection. The result of this method will be validated using in-situ gauges from US, Indus and Bangladesh reservoirs. In addition, a sensitivity analysis will be done to ascertain the limitations of this algorithm based on the surrounding topography, and the length of altimetry track overlap with the lake/reservoir. ­­ Finally, a reservoir storage change will be estimated on the study sites using MODIS and Landsat water classification for estimating the area of reservoir and the height will be estimated using Jason-2 and SARAL/Altika satellites.

  8. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia

    NASA Astrophysics Data System (ADS)

    Sulistioadi, Y. B.; Tseng, K.-H.; Shum, C. K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S.

    2015-01-01

    Remote sensing and satellite geodetic observations are capable of hydrologic monitoring of freshwater resources. Although satellite radar altimetry has been used in monitoring water level or discharge, its use is often limited to monitoring large rivers (>1 km) with longer interval periods (>1 week) because of its low temporal and spatial resolutions (i.e., satellite revisit period). Several studies have reported successful retrieval of water levels for small rivers as narrow as 40 m. However, processing current satellite altimetry signals for such small water bodies to retrieve water levels accurately remains challenging. Physically, the radar signal returned by water bodies smaller than the satellite footprint is most likely contaminated by non-water surfaces, which may degrade the measurement quality. In order to address this scientific challenge, we carefully selected the waveform shapes corresponding to the range measurement resulting from standard retrackers for the European Space Agency's (ESA's) Envisat (Environmental Satellite) radar altimetry. We applied this approach to small (40-200 m in width) and medium-sized (200-800 m in width) rivers and small lakes (extent <1000 km2) in the humid tropics of Southeast Asia, specifically in Indonesia. This is the first study that explored the ability of satellite altimetry to monitor small water bodies in Indonesia. The major challenges in this study include the size of the water bodies that are much smaller than the nominal extent of the Envisat satellite footprint (e.g., ~250 m compared to ~1.7 km, respectively) and slightly smaller than the along-track distance (i.e., ~370 m). We addressed this challenge by optimally using geospatial information and optical remote sensing data to define the water bodies accurately, thus minimizing the probability of non-water contamination in the altimetry measurement. Considering that satellite altimetry processing may vary with different geographical regions, meteorological

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  10. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  14. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  15. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  17. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  18. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  19. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  20. Experimental and theoretical determination of sea-state bias in radar altimetry

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.

    1991-01-01

    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.

  1. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China

    PubMed Central

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C. K.; Galloway, Devin L.; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-01-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and icesheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992–2015 show time-varying trends with respect to displacement over time in California’s San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm yr−1 with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm yr−1. Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm yr−1 and cumulative subsidence as much as 155 cm. PMID:27324935

  2. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China.

    PubMed

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C K; Galloway, Devin L; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-01-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and icesheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992-2015 show time-varying trends with respect to displacement over time in California's San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm yr(-1) with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm yr(-1). Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm yr(-1) and cumulative subsidence as much as 155 cm. PMID:27324935

  3. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C. K.; Galloway, Devin L.; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-06-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and icesheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992–2015 show time-varying trends with respect to displacement over time in California’s San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm yr‑1 with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm yr‑1. Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm yr‑1 and cumulative subsidence as much as 155 cm.

  4. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China

    USGS Publications Warehouse

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C.K.; Galloway, Devin L.; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-01-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and ice sheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992–2015 show time-varying trends with respect to displacement over time in California’s San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm/yr with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm/yr. Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm/yr and cumulative subsidence as much as 155 cm.

  5. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  6. Geostatistical evaluation of satellite radar altimetry for high-resolution mapping of Lambert Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; Lingle, Craig S.; Lee, Li-Her

    1993-01-01

    The potential of satellite radar altimetry for high-resolution mapping of Antarctic ice streams is evaluated, using retracked and slope-corrected data from the Lambert Glacier and Amery Ice Shelf area, East Antarctica, acquired by Geosat during the Exact Repeat Mission (ERM), 1986-89. The map area includes lower Lambert Glacier north of 72.18 deg S, the southern Amery Ice Shelf, and the grounded inland ice sheet on both sides. The Geosat ERM altimetry is found to provide substantially more complete coverage than the 1978 Seasat altimetry, due to improved tracking. Variogram methods are used to estimate the noise levels in the data as a function of position throughout the map area. The spatial structure in the data is quantified by constructing experimental variograms using altimetry from the area of the grounding zone of Lambert Glacier, which is the area chiefly of interest in this topographically complex region. Kriging is employed to invert the along-track height measurements onto a fine-scale 3 km grid. The unsmoothed along-track Geosat ERM altimetry yields spatially continuous maps showing the main topographic features of lower Lambert Glacier, upper Amery Ice Shelf and the adjacent inland ice sheet. The probable position of the grounding line of Lambert Glacier is identified from a break in slope at the grounded ice/floating ice transition. The approximate standard error of the kriged map is inferred from the data noise levels.

  7. A review of satellite radar altimetry applied to coastal ocean studies

    NASA Astrophysics Data System (ADS)

    Vignudelli, Stefano

    2016-07-01

    Satellite radar altimetry is today considered a mature technique in open ocean. The data stream from the various satellite missions are routinely used for a number of applications. In the last decade, significant research has been carried out into overcoming the problems to extend the capabilities of radar altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. More/better (and new) datasets are being produced. Moreover, the advent of new satellite missions, both nadir-viewing (e.g., Sentinel-3) and wide-swath (e.g. SWOT), should globally improve both quantity and quality of coastal altimetry data. In this talk, after a brief review of the challenges in coastal altimetry and description of the new products, we showcase some application examples how the new products can be exploited, and we discuss directions for a global coastal altimetry dataset as an asset for long term monitoring of sea level and sea state in the coastal ocean.

  8. Comparison of TRMM Precipitation Radar and Airborne Radar Data.

    NASA Astrophysics Data System (ADS)

    Durden, S. L.; Im, E.; Haddad, Z. S.; Li, L.

    2003-06-01

    The first spaceborne weather radar is the precipitation radar (PR) on the Tropical Rainfall Measuring Mission (TRMM), which was launched in 1997. As part of the TRMM calibration and validation effort, an airborne rain-mapping radar (ARMAR) was used to make underflights of TRMM during the B portion of the Texas and Florida Underflights (TEFLUN-B) and the third Convection and Moisture Experiment (CAMEX-3) in 1998 and the Kwajalein Experiment (KWAJEX) in 1999. The TRMM PR and ARMAR both operate at 14 GHz, and both instruments use a downward-looking, cross-track scanning geometry, which allows direct comparison of data. Nearly simultaneous PR and ARMAR data were acquired in seven separate cases. These data are compared to examine the effects of larger resolution volume and lower sensitivity in the PR data relative to ARMAR. The PR and ARMAR data show similar structures, although the PR data tend to have lower maximum reflectivities and path attenuations because of nonuniform beam-filling effects. Nonuniform beam filling can also cause a bias in the observed path attenuation relative to that corresponding to the beam-averaged rain rate. The PR rain-type classification is usually consistent with the ARMAR data.

  9. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.

    2000-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  10. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  11. Radar Altimetry for Hydrological Modeling and Monitoring in the Zambezi River Basin

    NASA Astrophysics Data System (ADS)

    Michailovsky, C. I.; Berry, P. A.; Smith, R. G.; Bauer-Gottwein, P.

    2011-12-01

    Hydrological model forecasts are subject to large uncertainties stemming from uncertain input data, model structure, parameterization and lack of sufficient calibration/validation data. For real-time or near-real-time applications data assimilation techniques such as the Ensemble Kalman Filter (EnKF) can be used to reduce forecast uncertainty by updating model states as new data becomes available. The use of remote sensing data is attractive for such applications as it provides wide geographical coverage and continuous time-series without the typically long delays that exist in obtaining in-situ data. River discharge is one of the main hydrological variables of interest, and while it cannot currently be directly measured remotely, water levels in rivers can be obtained from satellite based radar altimetry and converted to discharge through rating curves. This study aims to give a realistic assessment of the improvements that can be derived from the use of satellite radar altimetry measurements from the Envisat mission for discharge monitoring and modeling on the basin scale for the Zambezi River. The altimetry data used is the Radar AlTimetry (RAT) product developed at the Earth and Planetary Remote Sensing Laboratory at the De Montfort University. The first step in analyzing the data is the determination of potential altimetry targets which are the locations at which the Envisat orbit and the river network cross in order to select data points corresponding to surface water. The quality of the water level time-series is then analyzed for all targets and the exploitable targets identified. Rating curves are derived from in-situ or remotely-sensed data depending on data-availability at the various locations and discharge time-series are established. A Monte Carlo analysis is carried out to assess the uncertainties on the computed discharge. It was found that having a single cross-section and associated discharge measurement at one point in time significantly reduces

  12. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    NASA Astrophysics Data System (ADS)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  13. Sea-surface altimetry airborne observations using synoptic GNSS reflectometry at the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Ribó, Serni; Fabra, Fran; Cardellach, Estel; Li, Weiqiang; Rius, Antonio; Praks, Jaan; Rouhe, Erkka; Seppänen, Jaakko; Martín-Neira, Manuel

    2016-04-01

    Recent GNSS-R (Global Navigation Satellite System-Reflections) observations over the Baltic Sea have been taken using the SPIR (Software PARIS Interferometric Receiver) from an airborne platform at 3 km altitude. This newly developed instrument is capable of acquiring GNSS signals transmitted by multiple satellites simultaneously that have been reflected of the sea-surface. Reflections are usually gathered in off-nadir configuration using the instrument's beam-forming capabilities, which results in an increase of the instrument's swath. In this way, this technique opens the door to densify in space and time sea-altimetry observations to enhance future mesoscale and sub-mesoscale ocean altimetry. The altimetric observations collected during the Baltic Sea campaign have been analysed in terms of their power spectral densities. We consider the sequence of observations as an ergodic process that has contributions from the actual true altimetry as well as the observation noise. In this way it is possible to relate the expected ground resolution of the observations with the obtainable altimetric uncertainty. Results will be presented.

  14. Radar Altimetry for Inland Water: Current and Potential Applications

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; da Silva, Joecila Santos; Calmant, Stephane

    2015-12-01

    Apart from oceans and ice-sheets, radar altimeters are shown by a plethora of works to be of considerable interest in monitoring inland water bodies such as rivers, lakes, wetlands and floodplains. More than a decade of research on the application in the field of continental hydrology has demonstrated the advantages of providing global coverage, regular temporal sampling and short delivery delays, especially via the acquisition of numerous useful measurements over ungauged areas. With the aim to investigate the benefits that can be achieved by Sentinel-3 mission, two applications are here shown for selected pilot rivers and the results on discharge estimation are analyzed and discussed in terms of performance measures.

  15. Robust estimation of radar altimetry based lake levels

    NASA Astrophysics Data System (ADS)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole; Villadsen, Heidi; Knudsen, Per

    2015-04-01

    The high along-track resolution in synthetic aperture radar (SAR) mode makes it possible to accurately measure closer to the lakes shores than previously. However, the footprint width is still up to 15 km in the across-track direction, which implies that some waveforms will be polluted with signals from the surrounding land. In some cases retracking of these contaminated waveforms lead to incorrect height estimates of the water surface. It is therefor important to account for these polluted observations when estimating the mean water levels and subsequent time series to obtain an optimal solution. Here we present a novel method to estimate the mean lake level. Instead of attempting to identify and remove the polluted observations we use a mixture distribution to describe the observation noise, which prevents the polluted observations from biasing our final reconstructed time series. We demonstrate the potential of the method with CryoSat-2 data from lake Vänern (Sweden)

  16. Satellite Radar Altimetry and Hydrological Applications: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.

    2001-12-01

    Although their primary priorities are aimed at ocean and ice studies, satellite radar altimeters can be successful at detecting surface water height variations over inland water targets. In particular, the ability to monitor stage variations in lakes, inland seas, rivers, wetlands and flood plains has been demonstrated. The results demonstrate how sub-monthly, seasonal, and interannual variations can be monitored with accuracy's ranging from 3-4cm rms (lakes) to greater than 10cm rms (rivers/wetlands). The instruments sample the surface at pre-defined geographical and temporal resolutions, have day/nighttime operational capability and are not hindered by the presence of clouds. These are keen advantages where traditional ground-based gauges are lacking or where there is little or slow dissemination of data. This presentation gives a review of past and present capabilities and demonstrates various applications within a number of interdisciplinary projects. Note will be made of the contribution towards the determination of surface water fluxes and dynamics in the Amazon Basin, its use as a validation tool within the Global Rainforest Mapping Project, and its capability to monitor both the effects of large-scale climatic and small-scale flooding events. Such studies now pose new questions regarding the future potential to a) reduce the minimum target size observable, b) improve the accuracy of the height measurements, c) to have global information on a near-real time basis, and d) to have higher-level products such as lake volume and river discharge. In lieu of these requirements, a number of dedicated water observing instruments are being discussed under the `HYRDA-SAT' concept. In addition, focus is now on the forthcoming radar altimeters missions Jason-1 and ENVISAT, and on the new lidar mission, ICESAT.

  17. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  18. Title: Satellite radar altimetry in the Arctic: An analysis of Envisat/RA-2 and CryoSat-2 measurements over sea ice.

    NASA Astrophysics Data System (ADS)

    Connor, L. N.; McAdoo, D. C.; Laxon, S.; Ridout, A.

    2012-12-01

    Over the past decade, satellite altimetry has emerged as a valuable tool for taking sea ice monitoring from traditional extent measurements (ie. passive microwave) into the third dimension - estimates of sea ice thickness and volume. Thickness estimates are fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS-2, Envisat/RA-2, CryoSat-2) and laser (ICESat/GLAS) altimeters for determining sea ice thickness. Sea ice, however, is complex and the task of precisely determining its thickness from satellite measurements remains a challenge. Understanding and validating radar returns from sea ice is key to meeting this challenge. Several satellite validation underflights, conducted over Arctic sea ice between 2006 and 2011 using NASA's P-3 and DC-8 aircraft, are evaluated with the goal of understanding and cataloguing particular features, benefits, and caveats of using radar altimeters to measure sea ice. The underflights include ~1000 km Envisat tracks north of the Canadian Archipelago flown in 2006, 2009, 2010, and 2011, and 700 km CryoSat-2 tracks in the northern Arctic Ocean during 2010, 2011, and 2012. All but the 2006 flight were part of Operation Ice Bridge (OIB). Airborne data collected during these flights include data from two laser altimeters, Ku-band and snow thickness radar altimeters, high-resolution digital photography, and gravimetry. Out-and-back flight tracks combined with georegistered digital photography allow a quantitative assessment of lead "snagging" and off-ranging found in radar altimeter measurements over sea ice. Particular attention is given to the measurement of lead elevations with radar altimetry and its impact on sea ice freeboard estimates.

  19. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas W. K.; Bacon, Sheldon; Ridout, Andy L.; Thomas, Sam F.; Aksenov, Yevgeny; Wingham, Duncan J.

    2016-06-01

    Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the ice-covered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT) from radar altimetry south of 81.5°N and combine this with GRACE ocean mass to estimate steric height. Our SSH and steric height estimates show good agreement with tide gauge records and geopotential height derived from Ice-Tethered Profilers. The large seasonal cycle of Arctic SSH (amplitude ˜5 cm) is dominated by seasonal steric height variation associated with seasonal freshwater fluxes, and peaks in October-November. Overall, the annual mean steric height increased by 2.2 ± 1.4 cm between 2003 and 2012 before falling to circa 2003 levels between 2012 and 2014 due to large reductions on the Siberian shelf seas. The total secular change in SSH between 2003 and 2014 is then dominated by a 2.1 ± 0.7 cm increase in ocean mass. We estimate that by 2010, the Beaufort Gyre had accumulated 4600 km3 of freshwater relative to the 2003-2006 mean. Doming of Arctic DOT in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with regional reductions in the Siberian Arctic. We estimate that the Siberian shelf seas lost ˜180 km3 of freshwater between 2003 and 2014, associated with an increase in annual mean salinity of 0.15 psu yr-1. Finally, ocean storage flux estimates from altimetry agree well with high-resolution model results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle.

  20. Establishment of an Altimetric Reference Network Over the Amazon Basin Using Satellite Radar Altimetry (TOPEX POSEIDON)

    NASA Astrophysics Data System (ADS)

    Kosuth, P.; Blitzkow, D.; Cochonneau, G.

    2006-07-01

    Satellite radar altimetry (Topex/Poseidon T/P) was used to establish a consistent altimetric reference network over the Amazon basin. A methodolody was developed that uses radar altimetry to quantify maximum annual water levels (referred to the geoid) at intersections between the satellite ground tracks and the river network and derive, through spatial interpolation, maximum annual water levels at hydrometric stations. Comparison with maximum annuyal readings at gauges allowed the determination of local orthometric heights at these stations. Altimetric levelling from Topex/Poseidon measurements has been realized for 97 hydrometric stations along 27 740 km of the Amazon hydrographic network. Validation has been realized both by checking the overall hydraulic consistency of longitudinal river profiles at low and high river stages and by comparing, for 23 hydrometric stations, orthometric heights obtrained from T/P measurements with values obtained from bi-frequency GPS positioning. These results are of major importance for the study of Amazon river flow dynamics and sediment transport.

  1. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  2. Identification of human motion signature using airborne radar data

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Damini, Anthony

    2013-09-01

    Data containing the radar signature of amoving person on the groundwere collected at ranges of up to 30 kmfroma moving airborne platform using the DRDC Ottawa X-bandWideband Experimental Airborne Radar (XWEAR). The human target radar echo returns were found to possess a characteristic amplitude modulated (AM) and frequency modulated (FM) signature which could be usefully characterized in terms of conventional AM and FM modulation parameters. Human detection performance after space time adaptive processing is frequently limited by false alarms arising from incomplete cancellation of large radar cross-section discretes during the whitening step. However, the clutter discretes possess different modulation characteristics from the human targets discussed above. The ability of pattern classification techniques to use this parameter measurement space to distinguish between human targets and clutter discretes is explored and preliminary results presented.

  3. Improving Aboveground Carbon Estimates in Dryland Ecosystems with Airborne LiDAR and Satellite Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Shrestha, R.; Li, A.; Spaete, L.

    2014-12-01

    Numerous studies have demonstrated the utility of ground and airborne LiDAR data to quantify ecosystem structure. In addition, data from satellite-based laser altimetry (e.g. ICESat's GLAS instrument) have been used to estimate vegetation heights, aboveground carbon, and topography in forested areas. With the upcoming ICESAT-2 satellite scheduled to launch in 2017, we have the potential to map vegetation characteristics and dynamics in other ecosystems, including semiarid and low-height ecosystems, at global and regional scales. The ICESat-2 satellite will include the Advanced Topographic Laser Altimeter System (ATLAS) with a configuration of 6 laser beams with 532 nm wavelength and photon counting detectors. We will demonstrate the potential of ICESat-2 to provide estimates of vegetation structure and topography in a dryland ecosystem by simulating the configuration of the ATLAS mission. We will also examine how airborne LiDAR can be used together with ICESat-2 and other satellite data to achieve estimates of aboveground carbon. We will explore how these data may be used for future monitoring and quantification of spatial and temporal changes in aboveground carbon and topography.

  4. Monitoring Small Bodies of Water Using Retracked Satellite Radar Altimetry: Feasibility Study as a GGOS Data Product

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Shum, C.; Alsdorf, D. E.; Lee, H.; Yang, T.; Tseng, K.

    2011-12-01

    In the framework of developing Global Geodetic Observing Systems (GGOS) data sets for hydrologic research and application, here we present a study to potentially exploit a recent new and innovative use of satellite radar altimetry data from abundant historic, present and future missions, including Geosat GM/ERM, ERS-1/-2, TOPEX/Poseidon, GFO, Envisat, Jason-1/-2/-3, CryoSat-2, AltiKa, HY-2, and Sentinel-3. Satellite altimetry has demonstrated its ability to measure accurate, long-term climate records such as the evolutions of sea-level and inland hydrologic water level changes. In particular, recent studies have demonstrated the ability of radar altimetry, via waveform retracking and other innovative processing, to monitor water level variations of small water bodies like rivers (as narrow as 100-200 m, approaching the along-track spatial sampling limit of a 20-Hz altimeter measurement onboard of a spacecraft with speed of ~7.5 km/sec) and small lakes over flat terrains. In this contribution, we address an additional challenge to examine the feasibility of the use of contemporary pulse-limited nadir radar altimetry to observe water level variations over mountainous or terrains with relatively steep gradients, or surfaces with varying seasonal land-covers. In this case, the returned radar waveforms from satellite radar altimetry, if the altimeter measurements remain locked, are much noisier over these complex and steep terrains or rough surfaces. This study will present results on the use of retracked Envisat altimetry data (i.e., not using the retracked heights already available on the GDR) via various waveform retracking algorithms over the Tseng Wen Reservoir, Taiwan, and evaluating the accuracy of retracked measurements by comparing to the available in situ water gauge records. The Tseng Wen Reservoir is a relatively small reservoir (12 km x 2 km, the width of the reservoir crossed by Envisat is 1.5~2 km), located in Chiayi County, Taiwan, with an elevation of

  5. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  6. Observation of mesoscale ocean features in the northeast Pacific using Geosat radar altimetry data

    NASA Technical Reports Server (NTRS)

    Matthews, Paul E.; Johnson, Mark A.; O'Brien, James J.

    1992-01-01

    Mesoscale circulation in the Gulf of Alaska is studied by means of processed Geosat radar altimetry results with comparisons to observations of mesoscale eddies and surface circulation. The first set of Geosat data is treated by sea-surface height (SSH) binning in 1-deg latitude x 2-deg longitude boxes and analyzed by complex empirical orthogonal functions and 2D spectral analysis. The second set is taken from ascending Geosat tracks and analyzed as a time series. The Geosat data are compared to observational data including mesoscale eddies and fluctuations in mean surface circulation as well as sea-surface signals generated by numerical models. The data demonstrate the feasibility of a westward propagation of sea-level anomalies, and the Geosat SSH data are found to agree well with model solutions of seasonal variations in sea level in the northeast Pacific.

  7. The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves

    NASA Technical Reports Server (NTRS)

    Song, Tony Y.; Ji, Chen; Fu, L. -L.; Zlotnicki, Victor; Shum, C. K.; Yi, Yuchan; Hjorleifsdottir, Vala

    2005-01-01

    The 26 December 2004 Indian Ocean tsunami was the first earthquake tsunami of its magnitude to occur since the advent of both digital seismometry and satellite radar altimetry. Both have independently recorded the event from different physical aspects. The seismic data has then been used to estimate the earthquake fault parameters, and a three-dimensional ocean-general-circulation-model (OGCM) coupled with the fault information has been used to simulate the satellite-observed tsunami waves. Here we show that these two datasets consistently provide the tsunami source using independent methodologies of seismic waveform inversion and ocean modeling. Cross-examining the two independent results confirms that the slip function is the most important condition controlling the tsunami strength, while the geometry and the rupture velocity of the tectonic plane determine the spatial patterns of the tsunami.

  8. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    USGS Publications Warehouse

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  9. Application of Radar Altimetry Methods to Monitoring of Parasitic Disease Transmission: Schistosomiasis in Poyang Lake, China

    NASA Astrophysics Data System (ADS)

    McCandless, M.; Ibaraki, M.; Shum, C.; Lee, H.; Liang, S.

    2008-12-01

    Schistosomiasis is the second-most prevalent tropical disease after malaria affecting two-hundred million people annually world-wide; it shortens lifespan on average by ten years in endemic areas and no vaccine exists. The current control methods of human host chemotherapy and application of molluscicides to the environment do not break the disease transmission cycle. Schistosomiasis transmission in southern China involves an amphibious intermediate host snail for which hydrology is a key factor because the adults need moist vegetation while the juveniles are fully aquatic. Thus, hydrology is a key factor in schistosomiasis transmission and understanding its role can inform control measures. Our objective is to integrate hydrologic, ecologic, and other environmental factors to determine the changes in available snail habitat through space and time. We use radar altimetry measurements to determine water level every 35 days when the Envisat (Environmental Satellite) passes over the lake. The radar altimetry readings have been calibrated to levels from in-situ gauging stations and will support remote analysis of disease transmission potential without the need for gauging station data. A geographic information system was used to combine key factors including water level, topography, and air temperature data to identify areas of available snail habitat. In order to accomplish this, we conducted three steps including: delineating the watershed, specifying potential snail habitat areas through topography and air temperature classification, and calculating the intersection between potential snail habitat and non-flooded areas in the watershed. Statistical analyses of total available habitat area are also conducted. These maps and statistics analyses can be used by public health agencies to monitor snail habitat trends over time. Coupling remote sensing of water levels with a geographic information system model will continue to be important as the hydrology of the lake

  10. Louisiana/Everglades wetland water level monitoring using satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Shum, C.; Lu, Z.; Alsdorf, D.; Ibaraki, M.; Braun, A.; Kuo, C.

    2008-05-01

    Coastal estuaries, which connect coastal ocean, wetlands and coastal land region, play important roles in ecological environments. Wetlands typically occur in low-lying areas on the edges of lakes, and rivers, or in coastal areas protected from waves and are found in a variety of climates on every continent except Antarctica. Wetlands not only provide habitat for thousands of aquatic/terrestrial plant and animal species but also control floods by holding water much like a sponge by absorbing and reducing the velocity of storm-water. Human activities have so many negative impacts on wetlands and they became main contributing factors to the wetlands losses. For example, Louisiana's wetlands have lost more than 100 km2 of its area per year (Walker et al., 1987; Bourne, 2000). The loss of Louisiana wetlands as a result of ecological erosion or geological subsidence potentially have had significant impacts in slowing down storm surge from the devastating Hurricane Katrina. The ability to quantitatively measure accurate wetland water level changes in Louisiana has impacts on ecology and natural hazards mitigation including improved storm surge modeling resulting from hurricanes. Interferometric synthetic aperture radar (InSAR) has been proven to be useful to measure centimeter-scale water level changes over Amazon flood plain and Everglades wetland using L-band SAR imagery. This is based on the fact that flooded forests permit double-bounce returns, which allow InSAR coherence to be maintained. Furthermore, ERS-1/2 C-band InSAR data have been used to demonstrate its feasibility to monitor water level changes over Louisiana wetlands. In addition, satellite radar altimetry has been used to measure inland water level variation over large river basins. In this study, we use the decadal (1992-2002) Topex/Poseidon (T/P) measurements from cycle 9 to 364 to detect water level changes of Louisiana's and Everglades' wetlands, where the water surfaces are calm or vegetated, causing

  11. The NASA Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim, Yunjin; van Zyl, Jakob

    1996-01-01

    None given. (From introduction): ...we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the [rogress of the data processing effort, especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  12. Airborne Radar Sounding and Ice Thickness Measurements over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.; Holt, J. W.; Kempf, S. D.; Richter, T. G.; Falola, B.; Oliason, S.

    2002-05-01

    Lake Vostok was discovered using airborne ice-sounding radar in East Antarctica during the mid 1970's, but interest in this largest known subglacial lake has increased in recent years. Frozen microbial discoveries from ice cores taken just above Lake Vostok suggest its potential for being an isolated biological ecosystem. Also, the lake's unique combination of glaciologic, hydrologic and geological processes make it a possible terrestrial analogue for sub-ice water on other planetary bodies. Satellite radar has mapped the spatial extent of the lake from surface topography, and Russian ground traverses have gathered radar and seismic data along select profiles, but the full subglacial environment has remained uncharted. In response to a proposal by R.E. Bell and M. Studinger at Lamont Doherty Earth Observatory, the University of Texas Institute for Geophysics (UTIG) conducted an airborne geophysical survey over Lake Vostok and its surroundings during the 2000/01 field season. The survey included 21,000 line-km of geophysical observations with a line spacing of 7.5 km and a tie-line spacing of 11.25 or 22.5 km. The instrument suite included incoherent ice-sounding radar, laser altimetry, and precise GPS positioning and navigation, as well as airborne gravity and magnetics measurements. The radar system consisted of a 60 MHz, 8000 watt peak power transmitter operating in pulsed continuous-wave mode at 12.5 kHz (with 250 ns pulse width), a log-detection incoherent receiver (with 80 dB dynamic range), and a signal digitizer with a unique capability to average signals rapidly. Incoherent radar observations constructed from 2048 averaged transmissions occurred roughly every 12 m along-track. Ice thicknesses in excess of 4000 m were routinely sounded over Lake Vostok using this system. In addition to the incoherent radar, a new acquisition system was developed on an experimental basis to coherently integrate radar signals utilizing synthetic aperture radar techniques

  13. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, S. J.; Bamber, J. L.

    2015-12-01

    Ice shelf thickness for the whole of Antarctica is derived from 4 years (2011-2014) of CryoSat-2 (CS2) radar altimetry measurements using the assumption that the shelves are in hydrostatic equilibrium. The satellite orbit and novel synthetic aperture radar interferometric mode of CS2 results in 92.3% data coverage over the ice shelves, with particular improvements around the grounding zone. When compared to ICESat data, surface elevations have a mean bias of less than 1 m and a fourfold reduction in standard deviation compared with the previous data set. Over the Amery Ice Shelf there is a mean thickness difference of 3.3% between radio echo sounding measurements and the CS2-derived thicknesses, rising to 4.7% within 10 km of the grounding line. Our new data set provides key improvements in accuracy and coverage, especially in the grounding zone, allowing for reduced uncertainties in mass budget calculations, subshelf ocean and ice sheet-shelf modeling.

  14. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  15. Crop classification using airborne radar and LANDSAT data. [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Li, R. Y.; Shanmugam, K. S.

    1981-01-01

    Airborne radar data acquired with a 13.3 GHz scatterometer over a test-site near Colby, Kansas were used to investigate the statistical properties of the scattering coefficient of three types of vegetation cover and of bare soil. A statistical model for radar data was developed that incorporates signal-fading and natural within-field variabilities. Estimates of the within-field and between-field coefficients of variation were obtained for each cover-type and compared with similar quantities derived from LANDSAT images of the same fields. The classification accuracy provided by LANDSAT alone, radar alone, and both sensors combined was investigated. The results indicate that the addition of radar to LANDSAT improves the classification accuracy by about 10; percentage-points when the classification is performed on a pixel basis and by about 15 points when performed on a field-average basis.

  16. Characterizing Englacial and Subglacial Temperature Structure Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Seroussi, H. L.

    2015-12-01

    The temperature structure of ice sheet and glaciers is a fundamental control on ice flow, rheology, and stability. However, it is difficult to observationally constrain temperature structures at the catchment to ice-sheet scale. The englacial attenuation of radar sounding data is strongly dependent on the temperature structure of the ice sheets. Therefore, echo strength profiles from airborne radar sounding observation do contain temperature information. However, direct interpretation of englacial attenuation rates from radar sounding profiles is often difficult or impossible due to the ambiguous contribution the geometric and material properties of the bed to echo strength variations. To overcome this challenge, we presents techniques that treat radar sounding echo strength and ice thickness profiles as continuous signals, taking advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of englacial attenuation and basal reflectivity. We then apply these techniques to an airborne radar sounding survey in order to characterize the englacial and subglacial temperature structure of the Thwaites Glacier catchment in West Antarctic. We then interpreted this structure in context of local ice sheet velocity, advection, force balance, and bed conditions using the ISSM ice sheet model.

  17. A Consistent Radar Altimetry Dataset for Major World Rivers: Extraction Methods and Preliminary Data Products

    NASA Astrophysics Data System (ADS)

    Coss, S. P.; Durand, M. T.; Tuozzolo, S.; Yi, Y.; Jia, Y.; Guo, Q.; Shum, C. K.

    2015-12-01

    Our group has made several efforts to develop the systematics for processing multiple satellite mission inland altimetry data with the purpose of creating a pre-SWOT climate data record of world's rivers greater than 900m in width. The project is a component of a NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments) project undertaken by UCLA, Princeton U., NASA/GSFC and Ohio State Univ. The first method developed allows for the identification of measurements that represent the target river through height filtering and is based on USGS flow data from 105 gauges on rivers with watersheds over 20,000 km2. Proximal topographic variations led to some contamination of the radar returns. We were able to identify them using the previously mentioned height filter, and correlated their frequency with near-river topographic indices. Significant efforts have also been made to detect river ice using only radar backscatter. Over 631 Landsat images were processed and given an ice cover designation then compared with measured backscatter profiles; demonstrating that isolating a one- to-one relationship between ice and backscatter will be challenging. An additional focus of the group has been automation of detecting altimeter/river intersections as well as the creation of "virtual stations" or masks for data extraction at those locations. Using RivWidth parameters to generate polygons and a raster proximity based intersection detection methods have both shown promising results for automation of this process. This project will soon be producing validated climate data records in the form of geocentric river height changes, both in terms of scale of the study area and access to previously unmonitored regions. Once established, these methods will also be applicable to the study of future satellite cycles. Preliminary river height change data products have been produced for the Mississippi, St Lawrence, Yukon, Mackenzie, and part of the Ganges

  18. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  19. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  20. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  1. Radarclinometry - Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    NASA Technical Reports Server (NTRS)

    Wildey, Robert L.

    1988-01-01

    A method for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image is derived. The method is based on enforcing mathematical consistency between the frequency distribution of the images' pixel signals and a one-dimensional frequency distribution of slope component, which is obtained from a radar or laser altimetry profile in or near the imaged area. To test the resulting algorithm, an arbitrarily selected reflectance function is used to generate an artificial radar image from a digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S. It is found that, for 99 percent of the data, the maximum error is 1 degree.

  2. Preliminary Global Topographic Model of Mars Based on MOLA Altimetry, Earth-Based Radar, and Viking, Mariner and MGS Occultations

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    1999-01-01

    The recent altimetry data acquired by MOLA over the northern hemisphere of Mars have been combined with the Earth-based radar data obtained between 1971 and 1982, and occultation measurements of the Viking 1 and 2 Orbiters, Mariner 9, and MGS to derive a global model of the shape and topography of Mars. This preliminary model has a horizontal resolution of about 300 km. Vertical accuracy is on average a few hundred meters in the region of the data. Datasets: The altimetry and radar datasets were individually binned in 1.25 degree grids and merged with the occultation data. The Viking and Mariner occultation data in the northern hemisphere were excluded from the combined dataset where MOLA altimetry were available. The laser altimetry provided extensive and almost complete coverage of the northern hemisphere north of latitude 30 while the radar provided longitudinal coverage at several latitude bands between 23N and 23S. South of this region the only data were occultations. The majority of the occultations were obtained from Mariner 9, and the rest from Viking 1 & 2, and MGS. Earlier studies had shown that the Viking and Mariner occultations were on average only accurate to 500 meters. The recent MGS occultations are accurate to a few tens of meters. However, the highest southern latitude reached by the MGS occultations is only about 64S and data near the target region for the Mars 98 lander is limited to a few Viking and Mariner observations of relatively poor quality. In addition to the above datasets the locations of the Viking 1, Viking 2, and Pathfinder landers, obtained from the radio tracking of their signals, were included.

  3. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  4. Lake levels based on CryoSat-2 SAR radar altimetry

    NASA Astrophysics Data System (ADS)

    Nielsen, K.; Villadsen, H.; Stenseng, L.; Andersen, O. B.; Knudsen, P.

    2015-12-01

    CryoSat-2 is the satellite that carries a synthetic aperture radar (SAR) altimeter on-board. The SAR technology provides an along-track resolution of approximately 300 m. The higher resolution makes it possible to accurately monitor much smaller water bodies than previously. In this study, which is part of the FP7 project Land and Ocean take up from Sentinel-3 (LOTUS), we investigate the potential of SAR altimetry. To derive lake levels we use novel empirical threshold retrackers and the physical SAMOSA retracker. We consider lakes at various sizes and evaluate the CryoSat-2 derived lake levels in terms of along-track precision and agreement with in-situ data. We find that the precision of the along-track mean water level is a few cm, even for lakes with a surface area of just 9 km^2. The high precision makes it possible to detect water level variations below the decimeter level. To derive lake level time series we apply a state-space model with a robust handling of erroneous data. Instead of attempting to identify and remove the polluted observations we use a mixture distribution to describe the observation noise, which prevents the polluted observations from biasing our final reconstructed time series. These results demonstrate the promising possibilities of the upcoming Sentinel-3 mission, which potentially will be able to provide accurate time series for small lakes.

  5. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  6. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  7. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  8. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  9. Discharge forecasting using MODIS and radar altimetry: potential application for transboundary flood risk management in Niger-Benue River basin

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Amarnath, Giriraj; Brocca, Luca; Moramarco, Tommaso

    2016-04-01

    Flooding is one of most widespread natural disasters in the world. Its impact is particularly severe and destructive in Asia and Africa, because the living conditions of some settlements are inadequate to cope with this type of natural hazard. In this context, the estimation of discharge is extremely important to address water management and flood risk assessment. However, the inadequate monitoring network hampers any control and prediction activity that could improve these disastrous situations. In the last few years, remote sensing sensors have demonstrated their effectiveness in retrieving river discharge, especially in supporting discharge nowcasting and forecasting activities. Recently, the potential of radar altimetry was apparent when used for estimating water levels in an ungauged river site with good accuracy. It has also become a very useful tool for estimation and prediction of river discharge. However, the low temporal resolution of radar altimeter observations (10 or 35 days, depending on the satellite mission) may be not suitable for day-by-day hydrological forecasting. Differently, MODerate resolution Imaging Spectroradiometer (MODIS), considering its proven potential for quantifying the variations in discharge of the rivers at daily time resolution may be more suited to this end. For these reasons, MODIS and radar altimetry data were used in this study to predicting and forecasting the river discharge along the Niger-Benue River, where severe flooding with extensive damage to property and loss of lives occurred. Therefore, an effective method to forecast flooding can support efforts towards creating an early warning system. In order to estimate river discharge, four MODIS products (daily, 8-day, and from AQUA and TERRA satellites) connected at three sites (two gauged and one ungauged) were used. The capability of remote sensing sensors to forecast discharge a few days in advance at a downstream section using MODIS and ENVISAT radar altimetry data

  10. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  11. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, Stephen; Bamber, Jonathan

    2016-04-01

    The Antarctic ice shelves provide buttressing to the inland grounded ice sheet, and therefore play a controlling role in regulating ice dynamics and mass imbalance. Accurate knowledge of ice shelf thickness is essential for input-output method mass balance calculations, sub-ice shelf ocean models and buttressing parameterisations in ice sheet models. Ice shelf thickness has previously been inferred from satellite altimetry elevation measurements using the assumption of hydrostatic equilibrium, as direct measurements of ice thickness do not provide the spatial coverage necessary for these applications. The sensor limitations of previous radar altimeters have led to poor data coverage and a lack of accuracy, particularly the grounding zone where a break in slope exists. We present a new ice shelf thickness dataset using four years (2011-2014) of CryoSat-2 elevation measurements, with its SARIn dual antennae mode of operation alleviating the issues affecting previous sensors. These improvements and the dense across track spacing of the satellite has resulted in ˜92% coverage of the ice shelves, with substantial improvements, for example, of over 50% across the Venable and Totten Ice Shelves in comparison to the previous dataset. Significant improvements in coverage and accuracy are also seen south of 81.5° for the Ross and Filchner-Ronne Ice Shelves. Validation of the surface elevation measurements, used to derive ice thickness, against NASA ICESat laser altimetry data shows a mean bias of less than 1 m (equivalent to less than 9 m in ice thickness) and a fourfold decrease in standard deviation in comparison to the previous continental dataset. Importantly, the most substantial improvements are found in the grounding zone. Validation of the derived thickness data has been carried out using multiple Radio Echo Sounding (RES) campaigns across the continent. Over the Amery ice shelf, where extensive RES measurements exist, the mean difference between the datasets is 3

  12. Improved gravity anomaly fields from retracked multimission satellite radar altimetry observations over the Persian Gulf and the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Forootan, E.; Sharifi, M. A.; Awange, J.; Kuhn, M.

    2015-09-01

    Satellite radar altimetry observations are used to derive short wavelength gravity anomaly fields over the Persian Gulf and the Caspian Sea, where in situ and ship-borne gravity measurements have limited spatial coverage. In this study the retracking algorithm `Extrema Retracking' (ExtR) was employed to improve sea surface height (SSH) measurements that are highly biased in the study regions due to land contaminations in the footprints of the satellite altimetry observations. ExtR was applied to the waveforms sampled by the five satellite radar altimetry missions: TOPEX/POSEIDON, JASON-1, JASON-2, GFO and ERS-1. Along-track slopes have been estimated from the improved SSH measurements and used in an iterative process to estimate deflections of the vertical, and subsequently, the desired gravity anomalies. The main steps of the gravity anomaly computations involve estimating improved SSH using the ExtR technique, computing deflections of the vertical from interpolated SSHs on a regular grid using a biharmonic spline interpolation and finally estimating gridded gravity anomalies. A remove-compute-restore algorithm, based on the fast Fourier transform, has been applied to convert deflections of the vertical into gravity anomalies. Finally, spline interpolation has been used to estimate regular gravity anomaly grids over the two study regions. Results were evaluated by comparing the estimated altimetry-derived gravity anomalies (with and without implementing the ExtR algorithm) with ship-borne free air gravity anomaly observations, and free air gravity anomalies from the Earth Gravitational Model 2008 (EGM2008). The comparison indicates a range of 3-5 mGal in the residuals, which were computed by taking the differences between the retracked altimetry-derived gravity anomaly and the ship-borne data. The comparison of retracked data with ship-borne data indicates a range in the root-mean-square-error (RMSE) between approximately 1.8 and 4.4 mGal and a bias between 0

  13. Observations of Florida Convective Storms using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL-FACE convective case on 16 July 2002 that produced extensive anvil. During CRYSTAL-FACE, up to 5 aircraft flying from low- to high-altitudes, were coordinated for the study of thunderstorm-generated cirrus. The NASA high-altitude (20 km) ER-2 aircraft with remote sensing objectives flew above the convection, and other aircraft such as the WB-57 performing in situ measurements flew below the ER-2. The ER-2 remote sensing instruments included two nadir viewing airborne radars. The CRS 94 GHz radar and the EDOP 9.6 GHz radar were flown together for the first time during CRYSTAL-FACE and they provided a unique opportunity to examine the structure of 16 July case from a dual-wavelength perspective. EDOP and CRS are complementary for studying convection and cirrus since CRS is more sensitive than EDOP for cirrus, and EDOP is considerably less attenuating in convective regions. In addition to the aircraft, coordinated ground-based radar measurements were taken with the NPOL S-Band (3 GHz) multiparameter radar. One of the initial goals was to determine whether dual-wavelength airborne measurements could identify supercooled water regions.

  14. development of a medium repetition rate (10 Hz - 500 Hz) diode pumped laser transmitter for airborne scanning altimetry

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Lindauer, Steven J., II; Kay, Richard B.

    1998-01-01

    Since the late 1980's, NASA has developed several small, all-solid state lasers of low repetition rates for use as transmitters in prototype LIDAR and raster scanned altimetry retrieval systems. Our early laser transmitters were developed for high resolution airborne altimetry which employed cavity dumping techniques to produce a pulse shape with a 1 ns rise time. The first such laser was the SUMR (Sub-millimeter resolution) transmitter which used a side pumped, D-shaped half-rod of Nd:YAG for the oscillator active media and produced approximately 3 ns pulses of 100 micro-J energy at a 40 Hz repetition rate. (Coyle and Blair, 1993; Coyle et al., 1995) After several upgrades to improve rep rate and pulse energy, the final version produced 1.2 mJ pulses at 120 Hz with a 3.7 ns pulse width. The laser has become known as SPLT (Sharp Pulsed Laser Transmitter), and has flown successfully on a variety of airborne altimetry missions. (Coyle and Blair, 1995; Blair et al., 1994) From building these systems, we have accrued valuable experience in delivering field-deployable lasers and have become aware of the advantages and disadvantages of employing new technologies. For example, even though the laser's main operating environment is in a "cold" aircraft during flight, the laser must still operate in very warm temperatures. This is important if the mission is based in the desert or a tropical climate since ground calibration data from stationary targets must be gathered before and after each data flight. Because conductive cooling is much more convenient than closed loop water flow, achieving the highest possible laser efficiency is becoming a high priority when designing a flight laser. This is especially true for lasers with higher pulse energies and repetition rates which are needed for high altitude scanning altimeters and LIDARs.

  15. Surface Water Dynamics in the Amazon Basin: Application of Satellite Radar Altimetry

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Mertes, L. A.; Dunne, T.; Costa, M. H.; Jasinski, M. J.

    2001-05-01

    Satellite radar altimetry has the ability to monitor variations in surface water height (or stage) for large lakes, wetlands, rivers, and their floodplains. As part of an international programme a complete altimetric analysis of the Amazon Basin is being undertaken based on the ERS and TOPEX/POSEIDON (T/P) satellite missions. Here, an updated and more rigorous evaluation of the T/P data is presented for the first 7.5 years of the mission. For an initial study group of 230 targets, stage variability can be observed for 30-50%, the range reflecting the clarity of the noted seasonality. An assessment of the instrument performance confirms that the minimum river width attainable is set at 1 km in the presence of some inundated floodplain. This does allow observation of many of the large tributaries, but in the outer regions, mountainous terrain additionally places severe limitations. With ground-based stage measurements, validation exercises show that the overall 1992-1999 results can be accurate to 0.4 m rms, but that this is highly variable (>0.13 m) depending of target width and season. The Solimoes and Amazon are particularly well observed with seasonal altimetric amplitudes <13 m, and variations in peak level timing from May to July. The gradient of the main stem is also estimated ranging from 1.4 cm/km for downstream reaches to 3.8 cm/km for more upstream regions. The seasonal variability of this gradient is also explored, noting that downstream of the confluence of the Negro river, a hysteresis characteristic is in effect, suggesting a kinematic nature to the peak-flow flood wave. All the altimetric results demonstrate that the T/P mission is successfully contributing to this long-term surface water dynamics programme.

  16. Regional sea level seasonal cycle within the Gulf of Cadiz from radar altimetry

    NASA Astrophysics Data System (ADS)

    Gomez-Enri, Jesus; Laiz, Irene; Tejedor, Begoña; Aboitiz, Alazne; Villares, Pilar

    2013-04-01

    AVISO sea level anomaly weekely maps from radar altimetry were retrieved for the Gulf of Cadiz (GoC) (1997-2008), along with maps of Dynamic Atmospheric Correction (DAC), atmospheric pressure at sea level and satellite Sea Surface Temperature (SST). Data were averaged in time to obtain maps of monthly mean time series in order to analyze the seasonal variability of sea level and its main forcing agents along the GoC. Moreover, a very high resolution climatology for the region was combined with the SST maps to explore the steric contribution with enough spatial resolution near the coast. The AVISO sea level anomaly monthly maps were initially de-corrected using the DAC product and then corrected using the inverted barometer method. Atmospheric pressure explained more than 55% of the sea level variance offshore and between 35-45% within the continental shelf. The amplitude of the pressure-adjusted sea level semiannual signal was considerably reduced, confirming its meteorological origin. The steric contribution on the pressure-adjusted sea level was addressed by considering local, open ocean, basin-wide and continental shelf steric effects. The open ocean contribution explained the highest percentage of variance all over the basin with the exception of the western shelf, where the best results were obtained with the local contribution. After correcting for the best steric contribution, the amplitude of the remaining offshore annual signal was negligible (0.5-1.0 ± 1 cm). As for the continental shelves, 2-3 cm (± 0.5-1 cm) of the annual signal remained unexplained, probably due to local effects related with the shelves dynamics.

  17. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  18. Algorithms for airborne Doppler radar wind shear detection

    NASA Technical Reports Server (NTRS)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  19. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  20. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  1. A Digital Elevation Model of the Greenland Ice Sheet based on Envisat and CryoSat-2 Radar Altimetry

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Smith, B. E.; Sandberg Sørensen, L.; Khvorostovsky, K.; Forsberg, R.

    2014-12-01

    With the launch of the first radar altimeter by ESA in 1992, more than two decades of radar altimetry data are now available. Therefore, one goal of ESA's Ice Sheet Climate Change Initiative is the estimation of surface elevation changes of the Greenland Ice Sheet (GrIS) based on ERS-1, -2, Envisat, CryoSat-2, and, in the longer term, Sentinel-3 data. This will create a data record from 1992 until present date. In addition to elevation-change records, such data can be processed to produce digital elevation models, or DEMs, of the ice sheets. The DEMs can be used to correct radar altimetry data for slope-induced errors resulting from the large footprint (e.g. 2-10 km for Envisat vs. 60 m for ICESat laser altimetry) or to correct for the underlying surface topography when applying the repeat-track method. DEMs also provide key information in e.g. SAR remote sensing of ice velocities to remove the interferograms' topographic signal or in regional climate modeling. This work focuses on the development of a GrIS DEM from Envisat and CryoSat-2 altimetry, corrected with temporally and spatially coincident NASA ICESat, ATM, and LVIS laser data. The spatial resolution is 2 x 2 km and the reference year 2010. It is based on 2009 and 2010 data, the 2009 data adjusted to 2010 by accounting for the intermediate elevation changes. This increases the spatial data coverage and reduces data errors. The GIMP DEM has been corrected for negative elevations and errors in the north, and used to constrain the final DEM. The recently acquired observations and increased data coverage give a strong advantage to this DEM relative to previous models, based on lower-resolution, more temporally scattered data (e.g. a decade of observations or only ICESat data, limited to three annual 35-day acquisition periods). Furthermore, as surface changes occur continuously, an up-to-date DEM is necessary to correctly constrain the observations, thereby ensuring an accurate change detection or modeling

  2. Probing Shallow Aquifers in Northern Kuwait Using Airborne Sounding Radars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Fadlelmawla, A.; Farr, T. G.; Al-Rashed, M.

    2011-12-01

    Most of the global warming observations, scientific interest and data analyses have concentrated on the earth Polar Regions and forested areas, as they provide direct measurable impacts of large scale environmental changes. Unfortunately, the arid environments, which represent ~20% of the earth surface, have remained poorly studied. Yet water rarity and freshness, drastic changes in rainfall, flash floods, high rates of aquifer discharge and an accelerated large-scale desertification process are all alarming signs that suggest a substantial large-scale climatic variation in those areas that can be correlated to the global change that is affecting the volatile dynamic in arid zones. Unfortunately the correlations, forcings and feedbacks between the relevant processes (precipitation, surface fresh water, aquifer discharge, sea water rise and desertification) in these zones remain poorly observed, modeled, let alone understood. Currently, local studies are often oriented toward understanding small-scale or regional water resources and neither benefit from nor feedback to the global monitoring of water vapor, precipitation and soil moisture in arid and semi-arid areas. Furthermore techniques to explore deep subsurface water on a large scale in desertic environments remain poorly developed making current understanding of earth paleo-environment, water assessment and exploration efforts poorly productive and out-phased with current and future needs to quantitatively understand the evolution of earth water balance. To address those deficiencies we performed a comprehensive test mapping of shallow subsurface hydro-geological structures in the western Arabic peninsula in Kuwait, using airborne low frequency sounding radars with the main objectives to characterize shallow fossil aquifers in term of depth, sizes and water freshness. In May 2011, an experimental airborne radar sounder operating at 50 MHz was deployed in Kuwait and demonstrated an ability to penetrate down to

  3. Surface Water Dynamics in the Amazon Basin: Application of Satellite Radar Altimetry

    NASA Astrophysics Data System (ADS)

    Birkett, C.; Mertes, L.; Dunne, T.; Costa, M.; Jasinski, M.

    2003-04-01

    Satellite radar altimetry has the ability to monitor variations in surface water height (stage) for large wetlands, rivers, and associated floodplains. A clear advantage is the provision of data where traditional gauges are absent. As part of an international program a complete altimetric analysis of the Amazon Basin is being undertaken. Here, an updated and more rigorous evaluation of the TOPEX/POSEIDON (T/P) dataset is presented for the first ~7.5 years of the mission. With an initial study group of 230 targets, height variability at many ungauged locations can be observed for 30-50%, the range reflecting the clarity of the variations in lieu of instrument limitations. An assessment of the instrument performance confirms that the minimum river width attainable is ~1 km in the presence of some inundated floodplain. This constraint does allow observation of the main stem (Solimões/Amazon) and the larger tributaries, but rugged terrain in the vicinity of the target additionally places severe limitations on data retrieval. First-order validation exercises with the deduced 1992-1999 time series of stage fluctuations reveal accuracies ranging from tens of centimeters to several metres (mean ~1.1 m rms). Altimetric water levels in the Solimões and Amazon are particularly well defined with amplitudes <13 m and variations in peak level timing from May to July. The water-surface gradient of the main stem is found to vary both spatially and temporally, with values ranging from 1.5 cm/km downstream, to 4.0 cm/km for more upstream reaches. In agreement with ground-based estimates, the seasonal variability of the gradients reveals that the hysteresis characteristic of the flood wave varies along the main stem and the derived altimetric velocity of this flood wave is estimated to be ~0.35 m/s. Overall, the altimetric results demonstrate that the T/P mission is successfully monitoring the transient flood waves of this continental-scale basin.

  4. Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Mertes, L. A. K.; Dunne, T.; Costa, M. H.; Jasinski, M. J.

    2002-10-01

    Satellite radar altimetry has the ability to monitor variations in surface water height (stage) for large wetlands, rivers, and associated floodplains. A clear advantage is the provision of data where traditional gauges are absent. As part of an international program, a complete altimetric analysis of the Amazon Basin is being undertaken. Here, an updated and more rigorous evaluation of the TOPEX/POSEIDON (T/P) data set is presented for the first ˜7.5 years of the mission. With an initial study group of 230 targets, height variability at many ungauged locations can be observed for 30-50%, the range reflecting the clarity of the variations in lieu of instrument limitations. An assessment of the instrument performance confirms that the minimum river width attainable is ˜1 km in the presence of some inundated floodplain. This constraint does allow observation of the main stem (Solimões/Amazon) and the larger tributaries, but rugged terrain in the vicinity of the target additionally places severe limitations on data retrieval. First-order validation exercises with the deduced 1992-1999 time series of stage fluctuations reveal accuracies ranging from tens of centimeters to several meters (mean ˜1.1 m rms). Altimetric water levels in the Solimões and Amazon are particularly well defined with amplitudes <13 m and variations in peak-level timing from May to July. The water-surface gradient of the main stem is found to vary both spatially and temporally, with values ranging from 1.5 cm/km downstream to 4.0 cm/km for more upstream reaches. In agreement with ground-based estimates, the seasonal variability of the gradients reveals that the hysteresis characteristic of the flood wave varies along the main stem and the derived altimetric velocity of this flood wave is estimated to be ˜0.35 m/s. Overall, the altimetric results demonstrate that the T/P mission is successfully monitoring the transient flood waves of this continental-scale river basin.

  5. Characterizing Subglacial Interfaces With Airborne Radar Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.

    2004-12-01

    Ice sheets are sensitive indicators of global change including sea-level rise. An ice sheet's subglacial interface is an important factor controlling its dynamic behavior. In particular, the grounding zones of ice streams and subglacial lakes are complex systems involving the interaction of the moving ice mass with underlying materials such as liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. Imaging and characterizing the subglacial environment of ice sheets is fundamental to understanding these complex systems. Airborne radar sounding is a powerful and well-known technique for studying ice sheets and glaciers and their contiguous underlying environments. We present results from data acquired in 2001 over the ice stream C grounding zone in West Antarctica, as well as over a hypothesized subglacial lake near the South Pole. These data were acquired using a uniquely configured coherent airborne radar system. Our focus has been to characterize the subglacial interface through radar echo analysis based on reflection and scattering theory. The radar system uses a programmable signal source linked to a 10 kW transmitter and a dual-channel coherent down-conversion receiver. The radar operates in chirped pulse mode at 60 MHz with 15 MHz bandwidth. High and low-gain channels allow for recording a wide dynamic range of echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and synthetic aperture radar (SAR) processing were components of data analysis. Subglacial echoes are influenced by the physical properties of the interface such as the composition and roughness of the materials at the interface. Other important factors include dielectric losses and volumetric scattering losses from propagation through the ice as well as transmission and refraction at the air-ice interface. Unfocussed SAR narrows the along

  6. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency

  7. Technical guidance and analytic services in support of SEASAT-A. [radar altimeters for altimetry and ocean wave height

    NASA Technical Reports Server (NTRS)

    Brooks, W. L.; Dooley, R. P.

    1975-01-01

    The design of a high resolution radar for altimetry and ocean wave height estimation was studied. From basic principles, it is shown that a short pulse wide beam radar is the most appropriate and recommended technique for measuring both altitude and ocean wave height. To achieve a topographic resolution of + or - 10 cm RMS at 5.0 meter RMS wave heights, as required for SEASAT-A, it is recommended that the altimeter design include an onboard adaptive processor. The resulting design, which assumes a maximum likelihood estimation (MLE) processor, is shown to satisfy all performance requirements. A design summary is given for the recommended radar altimeter, which includes a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns as well as the assumed MLE processor. The feedback loop implementation of the MLE on a digital computer was examined in detail, and computer size, estimation accuracies, and bias due to range sidelobes are given for the MLE with typical SEASAT-A parameters. The standard deviation of the altitude estimate was developed and evaluated for several adaptive and nonadaptive split-gate trackers. Split-gate tracker biases due to range sidelobes and transmitter noise are examined. An approximate closed form solution for the altimeter power return is derived and evaluated. The feasibility of utilizing the basic radar altimeter design for the measurement of ocean wave spectra was examined.

  8. Recent Airborne Radar Depth Sounding of Recovery Glacier

    NASA Astrophysics Data System (ADS)

    Li, Jilu; Gogineni, Sivaprasad; Yan, Stephen; Mahmood, Ali; Awasthi, Abhishek; Rodriguez-Morales, Fernando

    2015-04-01

    Recovery Glacier in East Antarctica drains a large volume of ice into Filchner Ice Shelf towards Weddell Sea. The existence of several subglacial lakes beneath the channel has been speculated based on satellite observations of elevation changes on the ice surface. Because of its important role in East Antarctic ice mass balance and its unique function in the ice-flow dynamics of Recovery Ice Stream, two NASA Operation IceBridge (OIB) missions have been flown over Recovery Glacier, the first in October 2012 and the second in October 2014. The airborne radar depth sounder (RDS) data collected during these two missions by the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-channel Coherent Radar Depth Sounder/Imager (MCoRDS/I) have revealed both the presence of a very deep channel and its complex shape, data that contribute to the study of the ice-flow dynamics of the glacier and estimations of its mass balance. In this paper, we will report the results of measurements collected during the 2014 Antarctica DC-8 mission for OIB. Data were collected using an improved version of the CReSIS MCoRDS/I. We increased transmit power to each element of the transmit-array from about 200 W to 1000 W and increased the chirp bandwidth to 50 MHz, compared to 9.5 MHz used in earlier OIB missions. These improvements have led to a more complete mapping of the deepest part of the channel, which is more than 3.7 km deep, and fine-resolution mapping of internal layers. Our preliminary analysis of radar echoes does not indicate the presence of water or a wet surface in subglacier lakes. This paper presents an overview of the radar system, results from our recent measurements, and analysis of these results.

  9. Millimeter-wave radar sensing of airborne chemicals.

    SciTech Connect

    Gopalsami, N.; Raptis, A. C.; Energy Technology

    2001-04-01

    This paper discusses the development of a millimeter-wave radar chemical sensor for applications in environmental monitoring and arms-control treaty verification. The purpose of this paper is to investigate the use of fingerprint-type molecular rotational signatures in the millimeter-wave spectrum to sense airborne chemicals. The millimeter-wave sensor, operating in the frequency range of 225-315 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the millimeter-wave sensor is a monostatic swept-frequency radar that consists of a millimeter-wave sweeper, a hot-electron bolometer or Schottky barrier detector, and a corner-cube reflector. The chemical plume to be detected is situated between the transmitter/detector and reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this paper by designing a fast sweeping source over a broad frequency range. The heart of the system is a backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the BWO tube, we built a millimeter-wave radar system and field-tested it at the Department of Energy Nevada Test Site, Frenchman Flat, near Mercury, NV, at a standoff distance of 60 m, The millimeter-wave system detected chemical plumes very well; detection sensitivity for polar molecules such as methylchloride was down to 12 ppm for a 4-m two-way pathlength.

  10. Radar Altimetry and Velocimetry for Inertial Navigation: A Lunar Landing Example

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Chau, Alexandra H.

    2011-01-01

    The traditional role that altimetry and velocimetry have played in spacecraft landings is to provide a direct measure of the spacecraft's surface altitude and surface relative velocity; however, their role in determining an inertial position and velocity has seen limited investigation. In this study, inertially sensitive measurement models for altimetry and velocimetry are formulated that include relevant instrument and environment error models. These models are applied and simulated for a realistic lunar landing scenario that is based on recent work for NASA's Altair lander. The preliminary results indicate that inertial landing accuracies of several meters are possible.

  11. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  12. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  13. Studies of ice clouds using 95 GHz airborne radar

    NASA Astrophysics Data System (ADS)

    Wolde, Mengistu Yirdaw

    2000-12-01

    This study presents results from analyses of 95 GHz airborne polarimetric radar measurements and other in situ data in a variety of ice clouds. Measurements were made in winter clouds over Wyoming and Colorado. Radar parameters analyzed were the differential reflectivity factor (ZDR) and the linear depolarization ratio (LDR). Examination of the specific signatures for different crystal forms, and the dependence of the signatures on beam angle, led to a diagnostic matrix in terms ZDR and LDR values. Planar crystals, columnar crystals, and melting particles can be differentiated based on combined ZDR and LDR measurements at various radar elevation angles. Unique LDR signatures were also observed in Cu con. clouds containing large graupel particles and high concentrations of small particles. It is also shown that among planar crystals P1a and P1d types can be differentiated from P1e types. Overall, the frequencies of occurrence of significant polarimetric signatures were only few percent in the cloud volumes examined, but can approach near 100% in certain clouds. Polarimetric signatures were found to be most frequent in the temperature interval -10 to -18°C due to plate-like crystals growing there. The presence of significant polarimetric signatures is associated with the absence of riming and provides a means of identifying cloud regions where diffusional crystal growth dominates. In the second part of the dissertation, cloud structure and crystal growth in Ns clouds sampled in Wyoming and Oregon are presented. In spite of differences in location and time, the two Ns data sets have shown similar features. In both cases, generating cells were present near cloud top and the melting layer was well defined in the radar images. Thin dry layers just above the melting layer were also observed in both cases. In accordance with earlier studies, particle spectra in these clouds are adequately described by exponential relationships. The slope and intercept parameters of the

  14. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  15. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  16. Ice island detection and characterization with airborne synthetic aperture radar

    SciTech Connect

    Jeffries, M.O.; Sackinger, W.M. )

    1990-04-15

    A 1:300,000 scale airborne synthetic aperture radar (SAR) image of an area of the Arctic Ocean adjacent to the Queen Elizabeth Islands, Canadian High Arctic, is examined to determine the number and characteristics of ice islands in the image and to assess the capability of airborne and satellite SAR to detect ice islands. Twelve ice islands have been identified, and their dimensions range from as large as 5.7 km by 8.7 km to as small as 0.15 km by 0.25 km. A significant SAR characteristic of the shelf ice portions of ice islands is a return with a ribbed texture of alternating lighter and darker grey tones resulting from the indulating shelf ice surfaces of the ice islands. The appearance of the ribbed texture varies according to the ice islands' orientation relative to the illumination direction and consequently the incidence angle. Some ice islands also include extensive areas of textureless dark tone attached to the shelf ice. The weak returns correspond to (1) multiyear landfast sea ice that was attached to the front of the Ward Hunt Ice Shelf at the time of calving and which has remained attached since then and (2) multiyear pack ice that has become attached and consolidated since the calving, indicating that ice islands can increase their area and mass significantly as they drift. Ice islands are easily discernible in SAR images and for the future SAR represents a promising technique to obtain a census of ice islands in the Arctic Ocean. However, any SAR-based census probably will be conservative because ice islands smaller than 300-400 m across are likely to remain undetected, particularly in areas of heavy ice ridging which produces strong SAR clutter.

  17. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  18. Combined use of glider, radar and altimetry data to study a coastal current in the western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Troupin, Charles; Pascual, Ananda; Lana, Arancha; Valladeau, Guillaume; Pujol, Isabelle; Tintoré, Joaquin

    2014-05-01

    The Mediterranean Sea is characterized by a small Rossby radius of deformation, hence small structures and eddies. The Ibiza Channel, located in the Balearic Sea, is of particular importance since it controls the exchanges in the western Mediterranean Sea. In order to understand and describe the upper ocean dynamics, a multi-sensor/integrated approach was applied in the Ibiza Channel in the first days of August 2013 during the G-AltiKa mission. This approach combines: Sea-level anomaly (SLA) measurements from Saral-AltiKa track no. 16, which passed west of Ibiza island. 1-Hz and 40-Hz data were considered. Glider data obtained along the satellite track a few hours after its passage. The horizontal resolution ranges from 5 km offshore to about 1 km in the coastal area. HF radar hourly velocities on a 3 km-resolution grid that partially covers the study region (range up to 74 km offshore). Dynamic height (DH) was derived from the glider temperature and salinity profiles, while Absolute Dynamic Topography (ADT) was obtained by combining SLA and the new Mean Dynamic Topography (MDT) jointly produced by CLS and SOCIB. From DH and SLA, the cross-track velocities were derived using geostrophy relations. Different filters were applied on SLA data and different reference levels were tested for the DH computation. DH and ADT both displayed very weak variations, on the order of 2-3 cm, along the glider trajectory. The glider- and the altimetry-derived velocities exhibit the signal of a meander centered at 38.65°N and a narrow coastal current flowing northward a few kilometers off Ibiza. These computed velocities are on the order of 20 cm/s, as confirmed by the HF radar. The time separation between the passage of the satellite and the glider can explain the discrepancies observed between the two platforms. Our results highlight the promising measurements offered by SARAL/AltiKa in the coastal band. In particular, the satellite was able is able to capture the northern edge of

  19. Full-waveform Airborne and Spaceborne Laser Altimetry for Mapping and Sampling the Earth's Forests, Cryosphere, and Land surfaces

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Dubayah, R.; Hofton, M. A.; Luthcke, S. B.; Rabine, D.; Wake, S.; Coyle, B.; Stysley, P.; Salerno, C.

    2014-12-01

    Laser altimetry is an established technique for providing precise and accurate measurements of topography, vegetation, ice sheets, glaciers and sea ice. The Land, Vegetation, and Ice Sensor (LVIS) is a wide swath, full-waveform laser altimeter that has been operational since the late 1990's and has mapped 100,000's of square kilometers around the globe. NASA is developing a Facility version of the LVIS sensor to make it more cost-effective and more easily available to the broader science community. Based heavily on the existing LVIS sensor, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring, lower cost for integration and ops, and data consistency. Building upon the foundation provided by LVIS, the Global Ecosystem Dynamics Investigation (GEDI) Lidar was recently selected for funding as a part of NASA's Earth Venture Program and will use multiple laser beams to measure high-resolution forest structure and surface topography from the International Space Station (ISS). Dependent on the funding profile and availability of launch options to ISS, GEDI could launch as early as 2018. Within a single year of operations GEDI will provide billions of vegetation height and structure measurements for the precise estimation of biomass within the orbital coverage provided by ISS (+/- 51.6 degrees latitude). GEDI uses the same high-SNR waveform measurement technique as the airborne LVIS sensor. LVIS will provide calibration and validation of GEDI's on-orbit performance.

  20. Flight test evaluation of a video tracker for enhanced offshore airborne radar approach capability

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Cooper, P. G.

    1982-01-01

    As a part of NASA's Rotorcraft All-Weather Operations Research Program, advanced airborne radar approach (ARA) concepts are being investigated. Since data from previous NASA/FAA flight tests showed significant ARA limitations, a research program was initiated at NASA Ames Research Center to determine the benefit that could be derived by automating certain radar functions and superimposing course display data on the radar display. To evaluate these concepts, a newly developed video tracking system which interfaces with weather radar was acquired. After the pilot designates a destination target, the system tracks the target video as it moves on the radar indicator. Using a small, efficient microprocessor, the autotracker presents valuable approach data on the radar screen and automatically adjusts the radar gain and tilt. Results of a limited flight test evaluation of the autotracker show that the course display concept, combined with automated gain and tilt functions, is effective for improving ARA's and reducing radar operator workload.

  1. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  2. Satellite radar altimetry over ice. Volume 1: Processing and corrections of Seasat data over Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.

    1990-01-01

    The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.

  3. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  4. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  5. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  6. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  7. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  8. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  9. Extraction of tidal channel networks from airborne scanning laser altimetry and aerial photography

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Wang, Hai-Jing; Lohani, Bharat

    2003-03-01

    The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of meters wide and meters deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitizing of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetery. The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels uing a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that nay network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.

  10. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  11. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  12. Ocean eddy structure by satellite radar altimetry required for iceberg towing

    USGS Publications Warehouse

    Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.

    1980-01-01

    Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface current. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state current systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean eddies. These rings and eddies have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. Current velocities as great as 3 knots have been observed in rings, and currents of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and eddies. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean current and eddy structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and eddies which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.

  13. Mapping diverse forest cover with multipolarization airborne radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Sharitz, R. R.

    1985-01-01

    Imaging radar backscatter in continuously forested areas contains information about the forest canopy; it also contains data about topography, landforms, and terrain texture. For purposes of radar image interpretation and geologic mapping researchers were interested in identifying and separating forest canopy effects from geologic or geomorphic effects on radar images. The objectives of this investigation was to evaluate forest canopy variables in multipolarization radar images under conditions where geologic and topographic variables are at a minimum. A subsidiary objective was to compare the discriminatory capabilities of the radar images with corresponding optical images of similar spatial resolution. It appears that the multipolarization images discriminate variation in tree density, but no evidence was found for discrimination between evergreen and deciduous forest types.

  14. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  15. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  16. Calibration of hydrological models using TOPEX/Poseidon radar altimetry observations

    NASA Astrophysics Data System (ADS)

    Sun, W.; Song, H.; Cheng, T.; Yu, J.

    2015-05-01

    This paper describes an approach for calibrating hydrological models using satellite radar altimetric observations of river water level at the basin outlet, aiming at providing a new direction for solving the calibration problem in ungauged basins where streamflow observations are unavailable. The methodology is illustrated by a case study in the Upper Mississippi basin. The water level data are derived from the TOPEX/Poseidon (T/P) satellite. The Generalized Likelihood Uncertainty Estimation (GLUE) method is employed for model calibration and uncertainty analysis. The Nash-Sutcliffe efficiency of averaged simulated streamflow by behavioural parameter sets is 64.50%. And the uncertainty bounds of the ensemble simulation embrace about 65% of daily streamflow. These results indicate that the hydrological model has been calibrated effectively. At the same time, comparison with traditional calibration using streamflow data illustrates that the proposed method is only valuable for applications in ungauged basins.

  17. Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  18. Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  19. Impact of accounting for coloured noise in radar altimetry data on a regional quasi-geoid model

    NASA Astrophysics Data System (ADS)

    Farahani, H. H.; Slobbe, D. C.; Klees, R.; Seitz, Kurt

    2016-07-01

    We study the impact of an accurate computation and incorporation of coloured noise in radar altimeter data when computing a regional quasi-geoid model using least-squares techniques. Our test area comprises the Southern North Sea including the Netherlands, Belgium, and parts of France, Germany, and the UK. We perform the study by modelling the disturbing potential with spherical radial base functions. To that end, we use the traditional remove-compute-restore procedure with a recent GRACE/GOCE static gravity field model. Apart from radar altimeter data, we use terrestrial, airborne, and shipboard gravity data. Radar altimeter sea surface heights are corrected for the instantaneous dynamic topography and used in the form of along-track quasi-geoid height differences. Noise in these data are estimated using repeat-track and post-fit residual analysis techniques and then modelled as an auto regressive moving average process. Quasi-geoid models are computed with and without taking the modelled coloured noise into account. The difference between them is used as a measure of the impact of coloured noise in radar altimeter along-track quasi-geoid height differences on the estimated quasi-geoid model. The impact strongly depends on the availability of shipboard gravity data. If no such data are available, the impact may attain values exceeding 10 centimetres in particular areas. In case shipboard gravity data are used, the impact is reduced, though it still attains values of several centimetres. We use geometric quasi-geoid heights from GPS/levelling data at height markers as control data to analyse the quality of the quasi-geoid models. The quasi-geoid model computed using a model of the coloured noise in radar altimeter along-track quasi-geoid height differences shows in some areas a significant improvement over a model that assumes white noise in these data. However, the interpretation in other areas remains a challenge due to the limited quality of the control data.

  20. Multiparametric airborne radar observations of the melting layer during the Wakasa Bay experiment

    NASA Technical Reports Server (NTRS)

    Tanelli, S.; Meagher, J.; Durden, S. L.; Im, E.

    2003-01-01

    The NASA/JPL airborne precipitation radar APR-2 (cross-track scanning, dual-frequency - 14 and 35 GHz, Doppler and dual polarization, see Sadowy et al. (2003) for detailed description of the instrument) was operated on the NASA P-3 aircraft during the Wakasa Bay experiment.

  1. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  2. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  3. An estimate of Greenland surface elevation changes derived from Envisat radar altimetry using combined repeat-track and cross-over results

    NASA Astrophysics Data System (ADS)

    Meister, R.; Sandberg, L.; Levinsen, J. F.; Khvorostovsky, K.; Forsberg, R.

    2013-12-01

    With the accelerating melt of the Greenland Ice Sheet (GIS), which is the world's second-largest ice sheet and contains enough ice to raise global sea level by 7m, an improvement in our understanding of such changes is required. Envisat radar altimetry data can be used to provide information on the surface elevation changes the GIS is experiencing. This study is the first of its kind to explore the use of repeat track radar altimetry data to derive Greenland surface height changes. Because of the large footprint of the Envisat RA-2 altimeter (on the order of 5km), it has previously been assumed that towards the edges of the ice sheet, where steep slopes exist, radar altimetry data cannot be used to resolve changes with sufficient accuracy. However, here we present that a newly developed combination of repeat-track and cross-over data provide realistic estimates of ice-sheet-wide surface height changes. The repeat-track method makes use of all available observations and hence increases the number of measurements compared to the cross-over method, which only estimates changes at the location where ascending and a descending paths cross. Each method has its advantages; whilst the repeat-track method provides estimates at a higher spatial resolution, the cross-over method benefits from comparatively low errors. After derivation of dH/dt rates for the entire ice sheet from both methods, data were combined based on an analysis of their respective errors. As a generalisation, it can be said that near the ice sheet margins repeat-track data were used, whereas in the interior, the cross-over method provided more reliable results. Initial results show that for the outlet glacier Jakobshavn Isbræ, both the repeat-track and the cross-over methods measure similar thinning patterns, thus increasing confidence in the ability of radar altimetry to measure changes on the margins of the GIS. We compare our resulting map of surface height changes to dH/dt patterns derived from the

  4. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Lyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos

    2011-01-01

    The Congo Basin is the world's third largest in size (approximately 3.7 million km^2), and second only to the Amazon River in discharge (approximately 40,200 cms annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3 degree x 3 degree regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km^3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research also highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.

  5. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Hyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos

    2011-01-01

    The Congo Basin is the world's third largest in size (approx.3.7 million sq km), and second only to the Amazon River in discharge (approx.40,200 cu m/s annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3deg 3deg regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 cu km, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.

  6. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  7. Geothermal activity in the subglacial Katla caldera, Iceland, 1999-2005, studied with radar altimetry

    NASA Astrophysics Data System (ADS)

    Guđmundsson, Magnús T.; Höganadóttir, Pórdís; Kristinsson, Arnór Bergur; Guđbjörnsson, Snaebjörn

    The Katla caldera is located under the Mýrdalsjökull ice cap and is one of the most hazardous volcanoes in Iceland due to major jökulhlaups that accompany eruptions. Subglacial geothermal activity is manifested in several 10-50 m deep depressions (ice cauldrons) within and at the caldera rim and the total geothermal heat output is of the order of a few hundred megawatts. A shortlived but powerful pulse in geothermal heat output took place in 1999, probably including a minor subglacial eruption, when new ice cauldrons formed in three places and an unexpected jökulhlaup occurred. Following these events, a comprehensive monitoring program was set up for Katla, including ice surface elevation profiling from aircraft, to monitor variations in geothermal heat and detect signs of subglacial water accumulation. A radar altimeter coupled with a kinematic GPS is used, achieving an absolute elevation accuracy of 3 m and internal consistency of 1-2 m. Profiles across the caldera are flown twice a year. An annual accumulation-ablation cycle in surface elevation with amplitude of 5-10 m is observed. By removing this cycle from the data, changes due to subglacial geothermal activity are obtained. After the events in 1999, a decline in geothermal activity was observed. In 2001-03 some ice cauldrons expanded and deepened by 10-15 m, indicating renewed increase in geothermal activity. This trend is also apparent for 2003-05. The increase in geothermal poweramounts to a few tens of megawatts. It is likely that the increased thermal output is related to increased seismicity and caused by magma inflow.

  8. Near Real Time Monitoring of African Surface Water using Envisat Satellite Radar Altimetry

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Berry, P.; Garlick, J.; Mathers, L.; Freeman, J.; Defrenne-Goncalves, D.

    2005-12-01

    Data gathered by a series of satellite radar altimeters have been used extensively to construct historical records of lake and river levels. However, there is a clear requirement for accessing these data in a short timescale (NRT), in order to inform water management decisions. The availability of data from the Envisat RA-2 offers the exciting possibility of retrieving data from a large number of water bodies, including both lakes and rivers across the continents. The reason for this greatly enhanced dataset is that the Envisat RA-2 was specifically designed to remain `in lock' even over rough terrain, enabling the capture of echoes from targets in mountainous terrain. Whilst large lake targets situated in low relief terrain return clear and unambiguous signatures, determination of water levels from the complex echoes returned from water located within rough topography is difficult, since the echo shape is a convolution of the response from the water surface with components from the surrounding terrain. Accordingly, a sophisticated processing scheme has been developed. To verify that the processing of these NRT files is correct, and to assess the actual accuracy that can be achieved, several cycles of IGDR and Level 1B data were used. These data were processed through the NRT system to generate `NRT' data products over multiple targets in Africa. The results were then compared with the off-line processing of the corresponding cycles of SGDR data. The NRT results agree with those from the SGDR processing. In order to perform a full validation for river targets data were also generated over the Amazon basin, where they were compared both with the corresponding SGDR data, and with ground truth. The development of this sophisticated processing and retracking scheme for inland water has allowed, for the first time, production of NRT heights for a large number of targets, including river targets.

  9. Remote measurement and monitoring of inland water heights using multi-mission satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome

    The effective management of the Earth's inland water is a major challenge facing scientists and governments worldwide. However, whilst demand for this often scarce resource continues to grow, the number and distribution of in-situ hydrological gauge stations is steadily falling and many catchments basins in the developing world are now entirely ungauged. Over the past few years research has been undertaken into a spacebased technique which can remotely measure river and lake heights using data from the series of satellite radar altimeters, originally designed to measure the height of the Earth's oceans. Results over inland water were initially confined to a handful of very large lakes, where the water surface resembled the ocean sufficiently well to allow existing processing techniques to retrieve meaningful measurements. This capability has now been transformed by the development of echo processing techniques which allow that part of the returned signal originating from inland water to be separated from the return from the surrounding terrain. This has extended the scope of this technique to monitoring thousands of river and lake heights worldwide, with the access to more than a decade of historical data now permitting analysis of trends and identification of climate signatures. This paper presents analyses of 15 years of altimeter data using results from hundreds of time series from ERS-2, EnviSat, TOPEX and Jason-1 to demonstrate the effectiveness of this technique in monitoring river and lake heights on a continental scale. The extension of this technique to near real time monitoring using data from the Envisat RA-2 is also presented. The results illustrate the current capability and future potential of this approach to derive a global picture of the Earth's inland water resources and to identify both climate signatures and regions where human usage is depleting the resource beyond its capacity to recharge.

  10. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  11. ESA's Ice Sheets CCI: validation and inter-comparison of surface elevation changes derived from laser and radar altimetry over Jakobshavn Isbræ, Greenland - Round Robin results

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Khvorostovsky, K.; Ticconi, F.; Shepherd, A.; Forsberg, R.; Sørensen, L. S.; Muir, A.; Pie, N.; Felikson, D.; Flament, T.; Hurkmans, R.; Moholdt, G.; Gunter, B.; Lindenbergh, R. C.; Kleinherenbrink, M.

    2013-11-01

    In order to increase the understanding of the changing climate, the European Space Agency has launched the Climate Change Initiative (ESA CCI), a program which joins scientists and space agencies into 13 projects either affecting or affected by the concurrent changes. This work is part of the Ice Sheets CCI and four parameters are to be determined for the Greenland Ice Sheet (GrIS), each resulting in a dataset made available to the public: Surface Elevation Changes (SEC), surface velocities, grounding line locations, and calving front locations. All CCI projects have completed a so-called Round Robin exercise in which the scientific community was asked to provide their best estimate of the sought parameters as well as a feedback sheet describing their work. By inter-comparing and validating the results, obtained from research institutions world-wide, it is possible to develop the most optimal method for determining each parameter. This work describes the SEC Round Robin and the subsequent conclusions leading to the creation of a method for determining GrIS SEC values. The participants used either Envisat radar or ICESat laser altimetry over Jakobshavn Isbræ drainage basin, and the submissions led to inter-comparisons of radar vs. altimetry as well as cross-over vs. repeat-track analyses. Due to the high accuracy of the former and the high spatial resolution of the latter, a method, which combines the two techniques will provide the most accurate SEC estimates. The data supporting the final GrIS analysis stem from the radar altimeters on-board Envisat, ERS-1 and ERS-2. The accuracy of laser data exceeds that of radar altimetry; the Round Robin analysis has, however, proven the latter equally capable of dealing with surface topography thereby making such data applicable in SEC analyses extending all the way from the interior ice sheet to margin regions. This shows good potential for a~future inclusion of ESA CryoSat-2 and Sentinel-3 radar data in the analysis, and

  12. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  13. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  14. Flight investigation of helicopter IFR approaches to oil rigs using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Phillips, J. D.; Sturgeon, W. R.; Hunting, A. W.; Pate, D. P.

    1979-01-01

    Airborne weather and mapping radar is a near-term, economical method of providing 'self-contained' navigation information for approaches to offshore oil rigs and its use has been rapidly expanding in recent years. A joint NASA/FAA flight test investigation of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico was initiated in June 1978 and conducted under contract to Air Logistics. Approximately 120 approaches were flown in a Bell 212 helicopter by 15 operational pilots during the months of August and September 1978. The purpose of the tests was to collect data to (1) support development of advanced radar flight director concepts by NASA and (2) aid the establishment of Terminal Instrument Procedures (TERPS) criteria by the FAA. The flight test objectives were to develop airborne radar approach procedures, measure tracking errors, determine accpetable weather minimums, and determine pilot acceptability. Data obtained will contribute significantly to improved helicopter airborne radar approach capability and to the support of exploration, development, and utilization of the Nation's offshore oil supplies.

  15. Range profiling of the rain rate by an airborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  16. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  17. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  18. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  19. Comparative study of tracking performance in an airborne tracking radar simulator using global positioning system versus monopulse radar techniques

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Holley, William D.; Gagnon, Garry

    1993-10-01

    This paper attempts to address the tracking accuracy between the two systems under test. A monopulse radar model was developed to theoretically calculate the would-be measured angle and angle variances. Essentially, measurements of the target's angle, angle variances, range and range rate from the monopulse radar receiver of an aircraft are assessed against the tracking performance of an airborne simulator which uses the time, space, position information (TSPI) delivered from a global positioning system (GPS) system. The accuracy of measurements from a monopulse radar primarily depends on the signal-to-noise ratio (SNR), distance from target in this case, but information received from the GPS Space Vehicle would be virtually jamfree, and independent of distance. Tracking using GPS data however requires good data link between airborne participants. The simulation fidelity becomes an issue when the target is in close range track. The monopulse random slope error and target glint become significant, while the resolution from GPS data links remains the same.

  20. Demonstration of radar reflector detection and ground clutter suppression using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Bull, J. S.; Chisholm, J. P.

    1982-01-01

    A navigation system which utilizes minimum ground-based equipment is especially advantageous to helicopters, which can make off-airport landings. Research has been conducted in the use of weather and mapping radar to detect large radar reflectors overland for navigation purposes. As initial studies have not been successful, investigations were conducted regarding a new concept for the detection of ground-based radar reflectors and eliminating ground clutter, using a device called an echo processor (EP). A description is presented of the problems associated with detecting radar reflectors overland, taking into account the EP concept and the results of ground- and flight-test investigations. The echo processor concept was successfully demonstrated in detecting radar reflectors overland in a high-clutter environment. A radar reflector target size of 55 dBsm was found to be adequate for detection in an urban environment.

  1. Towards a Semantic Interpretation of Urban Areas with Airborne Synthetic Aperture Radar Tomography

    NASA Astrophysics Data System (ADS)

    D'Hondt, O.; Guillaso, S.; Hellwich, O.

    2016-06-01

    In this paper, we introduce a method to detect and reconstruct building parts from tomographic Synthetic Aperture Radar (SAR) airborne data. Our approach extends recent works in two ways: first, the radiometric information is used to guide the extraction of geometric primitives. Second, building facades and roofs are extracted thanks to geometric classification rules. We demonstrate our method on a 3 image L-Band airborne dataset over the city of Dresden, Germany. Experiments show how our technique allows to use the complementarity between the radiometric image and the tomographic point cloud to extract buildings parts in challenging situations.

  2. Annual Greenland accumulation rates (2009-2012) from airborne Snow Radar

    NASA Astrophysics Data System (ADS)

    Koenig, L. S.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Fettweis, X.; Panzer, B.; Paden, J. D.; Forster, R. R.; Das, I.; McConnell, J.; Tedesco, M.; Leuschen, C.; Gogineni, P.

    2015-12-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS) through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB) in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR) shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  3. Airborne Doppler radar velocity measurements of precipitation seen in ocean surface reflection

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Matejka, T. J.

    1985-01-01

    The use of airborne or spaceborne radars to observe precipitation simultaneously directly and in reflection could provide significant new opportunities for measuring the properties of the precipitation, wind field, and ocean surface. Atlas and Meneghini (1983) have proposed that the difference between direct and reflected precipitation echo intensities observed with a nadir-directed beam is a measure of two-way attenuation and thus of path average rain rate, taking into account an employment of direct and reflected echoes from very near the ocean surface to normalize for ocean surface scatter. In the present paper, some key meteorological and oceanographic research applications are illustrated, giving particular attention to airborne Doppler radar velocity measurements of the precipitation.

  4. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed... Doppler radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C65a, Airborne Doppler radar ground speed...

  5. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  6. Clutter filter design considerations for Airborne Doppler radar detection of windshear

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1990-01-01

    The problem of clutter rejection when processing down-looking Doppler radar returns from a low altitude airborne platform is a paramount problem. With radar as a remote sensor for detecting and predicting windshear in the vicinity of an urban airport, dynamic range requirements can exceed 50 dB because of high clutter to signal ratios. This presentation describes signal processing considerations in the presence of distributed and/or discrete clutter interference. Previous analyses have considered conventional range cell processing of radar returns from a rigidly mounted radar platform using either the Fourier or the pulse-pair method to estimate average windspeed and windspeed variation within a cell. Clutter rejection has been based largely upon analyzing a particular environment in the vicinity of the radar and employing a variety of techniques to reduce interference effects including notch filtering, Fourier domain line editing, and use of clutter maps. For the airborne environment the clutter characteristics may be somewhat different. Conventional clutter rejection methods may have to be changed and new methods will probably be required to provide useful signal to noise ratios. Various considerations are described. A major thrust has been to evaluate the effect of clutter rejection filtering upon the ability to derive useful information from the post-filter radar data. This analysis software is briefly described. Finally, some ideas for future analysis are considered including the use of adaptive filtering for clutter rejection and the estimation of windspeed spatial gradient directly from radar returns as a means of reducing the effects of clutter on the determination of a windshear hazard.

  7. Multi-Year Elevation Changes Near the West Margin of the Greenland Ice Sheet from Satellite Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Brenner, Anita C.; Zwally, H. Jay; DiMarzio, John P.

    1991-01-01

    Mean changes in the surface elevation near the west margin of the Greenland ice sheet are measured using Seasat altimetry and altimetry from the Geosat Exact Repeat Mission (ERM). The Seasat data extend from early July through early October 1978. The ERM data extend from winter 1986-87 through fall 1988. Both seasonal and multi-year changes are measured using altimetry referenced to GEM T2 orbits. The possible effects of orbit error are minimized by adjusting the orbits into a common ocean surface. Seasonal mean changes in the surface height are recognizable during the Geosat ERM. The multi-year measurements indicate the surface was lower by 0.4 +/- 0.4 m on average in late summer 1987 than in late summer 1978. The surface was lower by 0.2 +/- 0.5 m on average in late summer 1988 than in late summer 1978. As a control case, the computations art also carried out using altimetry referenced to orbits not adjusted into a common ocean surface.

  8. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    NASA Astrophysics Data System (ADS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  9. Phase I for the Use of TOPEX-Poseidon and Jason-1 Radar Altimetry to Monitor Coastal Wetland Inundation and Sea Level Rise in Coastal Louisiana

    NASA Technical Reports Server (NTRS)

    Brozen, Madeline; Batina, Matthew; Parker, Stephen; Brooks, Christopher

    2010-01-01

    The objective of the first phase of this project was to determine the feasibility of applying satellite altimetry data to monitor sea level rise and inundation within coastal Louisiana. Global sea level is rising, and coastal Louisiana is subsiding. Therefore, there is a need to monitor these trends over time for coastal restoration and hazard mitigation efforts. TOPEX/POSEIDON and Jason-data are used for global sea level estimates and have also been demonstrated successfully in water level studies of lakes, river basins, and floodplains throughout the world. To employ TOPEX/POSEIDON and Jason-1 data in coastal regions, the numerous steps involved in processing the data over non-open ocean areas must be assessed. This project outlined the appropriate methodology for processing non-open ocean data, including retracking and atmospheric corrections. It also inventoried the many factors in coastal land loss including subsidence, sea level rise, coastal geomorphology, and salinity levels, among others, through a review of remote sensing and field methods. In addition, the project analyzed the socioeconomic factors within the Coastal Zone as compared to the rest of Louisiana. While sensor data uncertainty must be addressed, it was determined that it is feasible to apply radar altimetry data from TOPEX/POSEIDON and Jason 1 to see trends in change within Coastal Louisiana since

  10. Microphysical Retrievals Over Stratiform Rain Using Measurements from an Airborne Dual-Wavelength Radar-Radiometer

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kumagai, Hiroshi; Wang, James R.; Iguchi, Toshio; Kozu, Toshiaki

    1997-01-01

    The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar

  11. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  12. Airborne profiling of ice thickness using a short pulse radar

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.; Heighway, J. E.; Gedney, R.

    1973-01-01

    The acquisition and interpretation of ice thickness data from a mobile platform has for some time been a goal of the remote sensing community. Such data, once obtainable, is of value in monitoring the changes in ice thickness over large areas, and in mapping the potential hazards to traffic in shipping lanes. Measurements made from a helicopter-borne ice thickness profiler of ice in Lake Superior, Lake St. Clair and the St. Clair river as part of NASA's program to develop an ice information system are described. The profiler described is a high resolution, non-imaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm. and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.

  13. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    USGS Publications Warehouse

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  14. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  15. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  16. GPS Altimetry

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1999-01-01

    The advent of satellite altimetry has greatly improved our ability to observe global ocean circulation. However, the swath of a single, nadir-viewing satellite altimeter is only a few km and the track spacing is several hundred km to resolve the two-dimensional structure of ocean eddies. Our goal is to increase spatial and temporal coverage by monitoring Global Positioning System (GPS) signals reflected from the ocean. A constellation of spacecraft would each carry a GPS receiver capable of recording 8 reflections simultaneously. The reflections are well distributed in azimuth and elevation and can be tracked continuously while the satellite is in view, and another is then acquired, as illustrated below. The diagram depicts a new approach at altimetry measurements where ocean surface reflected GPS signals are simultaneously tracked and processed in a GPS flight receiver in space. The reflected GPS signals from the ocean must be compared precisely with the direct GPS signals in order to infer the characteristics of the ocean from the combined data set. Understanding the features and accuracy of GPS altimetry measurement is crucial to establishing its suitability for oceanography. Preliminary work has enabled us to theoretically model the signal output of the correlator for a variety of system parameters such as wind speed (sea roughness), receiver height, incidence angle, receiver range and Doppler filter bandwidth and antenna gain. Expected signal-to-noise ratio has been estimated from which we have inferred, to a first approximation, the basic receiver gain requirements for a space-based altimeter and the expected range raw error. In 1998, work on a different task led to the extraction of the first reflected GPS signal observed from a spaceborne receiver during the 1995 Space Transportation System-68 (STS-68) Shuttle Radar Laboratory-2 (SRL-2) high resolution synthetic aperture radar mission. Good comparisons with our signal models have been obtained. Having

  17. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  18. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in July and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 July 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  19. Simulation of airborne radar observations of precipitating systems at various frequency bands

    NASA Astrophysics Data System (ADS)

    Louf, Valentin; Pujol, Olivier; Riedi, Jérôme

    2013-05-01

    The choice of the microwave frequency is of considerable importance for precipitating system observations by airborne radar. Currently, these radars operate at X-band (f = 10 GHz), although other frequency bands, may be used jointly or not. Since the measured reflectivity Zm is f-depending, different physical information about precipitating systems could be obtained. Herein, a comparison of reflectivity fields at different frequency bands is presented. A realistic and flexible model of precipitating systems is presented and simulations of airborne radar observations are performed. Simulated reflectivity fields are degraded as/increases because of Mie effects and microwave attenuation. At S, C and X-bands, attenuation is weak and Mie effects slightly increase the backscattered signal such that they can compensate attenuation at X and Ku bands. The Ka and W-bands suffer from a strong attenuation and significant Mie effects which seriously alter Zm-fields. For a squall line, the closer convective tower hides the farther ones, which is problematic for a pilot to estimate hazard at long distance. In addition, because hail is the main meteorological hazard for civil aviation, hail-rain discrimination is discussed and clarified for convective systems. It appears that S, C, and X-bands are the best ones, but the significant size of antenna used is prohibitive. Higher frequencies are more difficult to use on civil aviation due to high ambiguities and a too strongly attenuated microwave signal.

  20. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  1. The application of airborne imaging radars (L and X-band) to earth resources problems

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.

    1974-01-01

    A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.

  2. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  3. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  4. Topography over South America from ERS altimetry

    NASA Technical Reports Server (NTRS)

    Brenner, Anita; Frey, Herb; DiMarzio, John; Tsaoussi, Lucia

    1997-01-01

    The results of the surface topography mapping of South America during the ERS-1 geodetic mission are presented. The altimeter waveforms, the range measurement, and the internal and Doppler range corrections were obtained. The atmospheric corrections and solid tides were calculated. Comparisons between Shuttle laser altimetry and ERS-1 altimetry grid showed good agreement. Satellite radar altimetry data can be used to improve the topographic knowledge of regions for which only poor elevation data currently exist.

  5. A videoSAR mode for the x-band wideband experimental airborne radar

    NASA Astrophysics Data System (ADS)

    Damini, A.; Balaji, B.; Parry, C.; Mantle, V.

    2010-04-01

    DRDC has been involved in the development of airborne SAR systems since the 1980s. The current system, designated XWEAR (X-band Wideband Experimental Airborne Radar), is an instrument for the collection of SAR, GMTI and maritime surveillance data at long ranges. VideoSAR is a land imaging mode in which the radar is operated in the spotlight mode for an extended period of time. Radar data is collected persistently on a target of interest while the aircraft is either flying by or circling it. The time span for a single circular data collection can be on the order of 30 minutes. The spotlight data is processed using synthetic apertures of up to 60 seconds in duration, where consecutive apertures can be contiguous or overlapped. The imagery is formed using a back-projection algorithm to a common Cartesian grid. The DRDC VideoSAR mode noncoherently sums the images, either cumulatively, or via a sliding window of, for example, 5 images, to generate an imagery stream presenting the target reflectivity as a function of viewing angle. The image summation results in significant speckle reduction which provides for increased image contrast. The contrast increases rapidly over the first few summed images and continues to increase, but at a lesser rate, as more images are summed. In the case of cumulative summation of the imagery, the shadows quickly become filled in. In the case of a sliding window, the summation introduces a form of persistence into the VideoSAR output analogous to the persistence of analog displays from early radars.

  6. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  7. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  8. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  9. GEOLOGIC APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR DATA IN THE CENTRAL APPALACHIAN MOUNTAINS.

    USGS Publications Warehouse

    Pohn, Howard A.; Southworth, C. Scott

    1984-01-01

    Side-looking airborne radar has provided a sufficiently detailed synoptic view of the central Appalachian Mountains that the images give an unparalleled representation of the size and nature of the folds within the Valley and Ridge province. The radar data show that fold wavelengths decrease abruptly south of the region of the Pennsylvania, Maryland, and West Virginia State lines. Concomittantly, this decrease in fold wavelength is accompanied by an increase in both frequency and length of disturbed zones. The model predicted by the combination of the radar images and field observations suggests a broad lateral ramp, perpendicular to the strike of the fold-belt, connecting a deeper decollement level north of the Pennsylvania, Maryland and West Virginia State lines with a shallower decollement to the south. Recently, the first author has located a field example of a lateral ramp approximately one kilometer north of Mathias, West Virginia. This lateral ramp shows an up-to-the-north configuration and the extensions both northwestward and southeastward can be seen on the radar images as a series of cross-strike lineaments.

  10. Surface Clutter Removal in Airborne Radar Sounding Data from the Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Morse, D. L.; Peters, M. E.; Kempf, S. D.

    2005-01-01

    We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.

  11. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  12. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  13. An automatic approach to derive vegetation height using airborne photon-counting laser altimetry data, simulating NASA's future ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Abdalati, W.; Scambos, T. A.

    2011-12-01

    As the ICESat-2 mission is expected to enable large-scale assessment of terrestrial biomass, there is some concern as to whether the current instrument design will meet its ecosystem science objectives. This concern originates from the use of a low energy laser and photon-counting detector in the proposed instrument configuration that over densely vegetated areas, receives a low return (very few photons) from the ground surface. Canopy height retrievals (canopy elevation minus ground elevation) may be challenging in such areas. Here, we investigate a means of deriving canopy height using low-return-level photon-counting laser altimetry data, simulating the expected return from the planned ICESat-2 ATLAS sensor. To this end, an automatic methodology is developed, based on increasing the signal-to-noise ratio using the statistics of frames of multiple shots in the along-track direction that are comparable to the ICESat-2 footprints. We present the preliminary results of the proposed algorithm that are validated against the full-rate airborne photon counting lidar data and Digital Surface Models of the study areas. With canopy height residuals ranging from 1.34 - 1.86 m, initial results indicate promising performance over forested ecosystems of canopy closure up to 75%. These results will aid in developing data processing and analysis methods for future ICESat-2 measurements in order to maximize its application to this important science objective.

  14. Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delnore, Victor E.; Goodrich, Michael S.; Vonhagel, Chris

    1992-01-01

    Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program.

  15. Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Paiva, R. C.; Collischonn, W.; Bonnet, M.; Goncalves, L.; Getirana, A.; Calmant, S.

    2012-12-01

    Large-scale hydrological models and forecast systems may be important tools to reduce the vulnerability of local population in places such as the Amazon River basin, where extreme hydrological events have occurred in the past few years. Due to the size of the basin and the slow speed of movement of its floods, uncertainty on model initial conditions (ICs) may play an important role for discharge forecasts using large scale hydrological models, even for relatively large lead times (~ 1 to 3 months). Data assimilation (DA) methods may provide an interesting way of merging both in situ and newly remotely sensed observations with models to estimate optimal ICs. We present the development and evaluation of a data assimilation framework for both gauged and radar altimetry based discharge and water levels into a large scale hydrological-hydrodynamic model of the Amazon River basin. We also explore the usefulness of such system to provide streamflow forecasts when forced by past climate and based mostly on model initial conditions. This work is in the context of recent developments of techniques for integrating information from models and remotely sensed data, and also of regional/global hydrological forecast systems including poorly gauged basins. We use the conceptual and physically based MGB-IPH model. The model uses the Penman Monteith for evapotranspiration and the Moore and Clarke model for soil water storage. River dynamics is simulated using full Saint-Venant equations and a simple floodplain storage model. The model was forced using satellite-derived daily rainfall (TRMM 3B42). We implemented a DA scheme based on the Ensemble Kalman Filter (EnKF) capable of assimilating three types of data: (1) discharge observations; (2) water levels provided by the ENVISAT radar altimeter; and (3) discharge estimated from radar altimetry. All state variables of the hydrological model were updated at each analyses time step. Model state variables errors were generated by

  16. The use of airborne radar reflectometry to characterize near-surface snow/firn stratigraphy on Devon Ice Cap, Canadian Arctic: A path to identifying refrozen melt layers

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2015-12-01

    Under present warming conditions, summer surface melt has been observed to intensify and shift towards higher elevations in the accumulation zones of Canadian Arctic ice caps. Consequently, more meltwater percolates into the near surface snow and firn, and refreezes as ice layers. This process can lead to a significant increase in firn densification rates. Knowledge of spatiotemporal variations of the near-surface firn density, especially the distribution of ice layer formation is of great importance when assessing mass change estimates from repeat altimetry measurements. Here, we present an approach for characterizing the near-surface firn stratigraphy and determining the spatial distribution of refrozen melt layers on Devon Ice Cap, using the surface echo from airborne radio-echo sounding (RES) measurements. The RES surface echo is affected by the upper few meters of snow/firn/ice and thus contains information about the near-surface properties. More specifically, the radar surface return is a combination of a coherent (Pc) and a scattering signal component (Pn). Pc is related to the dielectric constant of the probed surface, whereas Pn is related to the near surface roughness. Hence, different near-surface snow/firn properties can be investigated by analyzing the signal components Pc and Pn and their spatial variability. The Radar Statistical Reconnaissance (RSR) methodology [1] allows the extraction of Pc and Pn from the surface radar return, which then can be used to compute near-surface roughness and firn density estimates. We apply the RSR method to RES data collected on Devon Ice Cap and determine Pc and Pn values. We then compare the results to ground based RES measurements and shallow firn cores (~11 m deep) collected along the airborne RES flight lines. This comparison shows that variations in the scattering coefficient Pn correlate to changes in the pattern of near-surface firn stratigraphy revealed by the ground based RES data and firn cores. Based on

  17. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  18. Comparison of Surface Elevation Changes of the Greenland and Antarctic Ice Sheets from Radar and Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2012-01-01

    A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.

  19. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  20. Recent ice sheet snow accumulation and firn storage of meltwater inferred by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miege, Clement

    Recent surface mass balance changes in space and time over the polar ice sheets need to be better constrained in order to estimate the ice-sheet contribution to sea-level rise. The mass balance of any ice body is obtained by subtracting mass losses from mass gains. In response to climate changes of the recent decades, ice-sheet mass losses have increased, making ice-sheet mass balance negative and raising sea level. In this work, I better quantify the mass gained by snowfall across the polar ice sheets; I target specific regions over both Greenland and West Antarctica where snow accumulation changes are occurring due to rising air temperature. Southeast Greenland receives 30% of the total snow accumulation of the Greenland ice sheet. In this work, I combine internal layers observed in ice-penetrating radar data with firn cores to derive the last 30 years of accumulation and to measure the spatial pattern of accumulation toward the southeast coastline. Below 1800 m elevation, in the percolation zone, significant surface melt is observed in the summer, which challenges both firn-core dating and internal-layer tracing. While firn-core drilling at 1500 m elevation, liquid water was found at ˜20-m depth in a firn aquifer that persisted over the winter. The presence of this water filling deeper pore space in the firn was unexpected, and has a significant impact on the ice sheet thermal state and the estimate of mass balance made using satellite altimeters. Using a 400-MHz ice-penetrating radar, the extent of this widespread aquifer was mapped on the ground, and also more extensively from the air with a 750-MHz airborne radar as part of the NASA Operation IceBridge mission. Over three IceBridge flight campaigns (2011-2013), based on radar data, the firn aquifer is estimated to cover ˜30,000 km2 area within the wet-snow zone of the ice sheet. I use repeated flightlines to understand the temporal variability of the water trapped in the firn aquifer and to simulate its

  1. Volume of water equivalent estimates in Central Chilean glaciers, derived from airborne radar surveys

    NASA Astrophysics Data System (ADS)

    Oberreuter, J.; Gacitúa, G.; Uribe, J.; Rivera, A.; Zamora, R.; Loriaux, T.

    2013-12-01

    Central Chilean glaciers (33-35°S) are an important melt water resource for human consumption, agriculture, mining and industrial activities in this, the most populated region of the country. These glaciers have been retreating and shrinking during recent decades, in response to ongoing climatic changes. As a result, there is increasing concern about future water availability especially during dry summers, when glaciers are thought to have the maximum contribution to runoff. In spite of their importance, very little is known about the total volume of water equivalent storage in these glaciers. In order to improve our knowledge about this issue, we have utilized a new airborne radar system, which was developed at CECs, specially designed to penetrate temperate and cold ice, which is working at central frequencies between 20 and 60 MHz, depending on the penetration range capacity at each glacier. This system has been installed on helicopters, where the metal structure antenna (receptor and transmitter) is carried as a hanging load while flying along pre designated tracks, enabling to survey steep and remote glacier areas, many of them without any ice thickness data up to date. The helicopter is geo-located using dual frequency GPS receivers and an inertial navigation unit installed onboard, and each measurement is geo referenced using a pointing laser located at the radar antenna. The antenna must be flown at 40 m above the glacier surface at an air speed of 40 knots. This system has been successfully used on 24 glaciers representing 16% of the total glacier area of the Aconcagua, Maipo and Rapel basins. A mean ice thickness of 168 m and a maximum of 342 m were detected among the surveyed glaciers. Crossing points between overlapping surveyed tracks resulted in mean differences of near 20 m (less than 10% of the total ice thickness). Subsequent ice volumes were calculated by interpolating radar data collected along tracks. These volumetric estimations correlated

  2. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  3. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a

  4. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  5. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  6. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  7. Estimation of sea-surface winds using backscatter cross-section measurements from airborne research weather radar

    SciTech Connect

    Hildebrand, P.H. . Remote Sensing Facility)

    1994-01-01

    A technique is presented for estimation of sea-surface winds using backscatter cross-section measurements from an airborne research weather radar. The technique is based on an empirical relation developed for use with satellite-borne microwave scatterometers which derives sea-surface winds from radar backscatter cross-section measurements. Unlike a scatterometer, the airborne research weather radar is a Doppler radar designed to measure atmospheric storm structure and kinematics. Designed to scan the atmosphere, the radar also scans the ocean surface over a wide range of azimuths, with the incidence angle and polarization angle changing continuously during each scan. The new sea-surface wind estimation technique accounts for these variations in incidence angle and polarization and derives the atmospheric surface winds. The technique works well over the range of wind conditions over which the wind speed-backscatter cross-section relation holds, about 2--20 m/s. The problems likely to be encountered with this new technique are evaluated and it is concluded that most problems are those which are endemic to any microwave scatterometer wind estimation technique. The new technique will enable using the research weather radar to provide measurements which would otherwise require use of a dedicated scatterometer.

  8. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  9. Airborne Ground Penetrating Radar (GPR) for peat analyses in the Canadian Northern wetlands study

    NASA Technical Reports Server (NTRS)

    Pelletier-Travis, Ramona E.

    1991-01-01

    The study was conducted as part of the NASA Biospherics Research on Emissions from Wetlands (BREW) program. An important aspect of the program is to investigate the terrestrial production and atmospheric distribution of methane and other gases contributing to global warming. Multi-kilometer transects of airborne (helicopter) Ground Penetrating Radar (GPR) data were collected periodically along the 100 km distance from the coast inland so as to obtain a regional trend in peat depth and related parameters. Global Positioning System (GPS) data were simultaneously collected from the helicopter to properly georeference the GPR data. Additional 50 m ground-based transects of GPR data were also collected as a source of ground truthing, as a calibration aid for the airborne data sets, and as a source of higher resolution data for characterizing the strata within the peat. In situ peat depth probing and soil characterizations from excavated soil pits were used to verify GPR findings. Results from the ground-based data are presented.

  10. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  11. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  12. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  13. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  14. Satellite altimetry

    NASA Technical Reports Server (NTRS)

    Cheney, Robert E.

    1992-01-01

    Since altimetry data are not really old enough to use the term data archaeology, Mr. Cheney referred to the stewardship of these data. He noted that it is very important to document the basis for an altimetry data set as the algorithms and corrections used to arrive at the Geophysical Data Record (GDR) have been improving and are continuing to improve the precision of sea level data derived from altimetry. He noted that the GEOSAT Exact Repeat Mission (ERM) data set has recently been reprocessed by his organization in the National Ocean Service of NOAA and made available to the scientific community on CD/ROM disks by the National Oceanographic Data Center of the U.S. (NODC). The new data set contains a satellite orbit more precise by an order of magnitude together with an improved water vapor correction. A new, comprehensive GDR Handbook has also been prepared.

  15. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data

    NASA Astrophysics Data System (ADS)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-08-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics (r2 and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices (r2 ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the simulated

  16. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  17. Regional Sea level change in the Arctic Ocean from a combination of radar and laser altimetry, tide gauges and ocean models

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Bondo, T.; Cheng, Y.

    2010-12-01

    Lack of adequate spatial and temporal sea level observations in the Arctic Ocean is one of the most challenging problems in the study of changes in sea level and ocean circulation in the Arctic Ocean today. Especially as sea level variation in the Arctic Ocean plays an important role in the global climate system. Only a few tide gauges with long time series exists (1933-> present). Preliminarily investigations show that several of these are not indicative of sea level changes but rather of changes in river flows due to their position so a careful editing is required. The use of satellite altimetry (1992->present) is hampered due to a suite of problems. The error on sea level recovery increases, standard retracking removes most data in areas of sea ice and furthermore most of the Arctic is not covered due to the inclination of the satellites. Only the radar altimeters on board ERS and ENVISAT and the laser altimeter on board ICESAT have so far provided sparse information about Arctic sea level change. However, the combined relatively long operation period of the three satellites has now made it possible to investigate annual and decadal sea level variations. Together with similar results from ocean models like GECCO, MICOM and University of Washington Ocean model we aim to improve the recovery of sea level changes in the Arctic Ocean on annual to inter-decadal scale and the first result for this work will be presented. The presentation is a contribution to the EU supported projects MONARCH and MyOcean.

  18. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  19. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation

  20. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1994-01-01

    This paper briefly reviews several single-frequency rain profiling methods for an airborne or spaceborne radar. The authors describe the different methods from a unified point of view starting from the basic differential equation. This facilitates the comparisons between the methods and also provides a better understanding of the physical and mathematical basis of the methods. The application of several methods to airborne radar data taken during the Convective and Precipitation/Electrification Experiment is shown. Finally, the authors consider a hybrid method that provides a smooth transition between the Hitschfeld-Bordan method, which performs well at low attenuations, and the surface reference method, for which the relative error decreases with increasing path attenuation.

  1. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  2. Sentinel-3 SAR Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  3. 77 FR 53962 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... of TSO-C65a as published in 77 FR 37470, June 21, 2012, produced no comments. Conclusion TSO-C65a is... TRANSPORTATION Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground... Doppler Radar Ground Speed and/or Drift Angle Measuring Equipment (For Air Carrier Aircraft)....

  4. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  5. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  6. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  7. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  8. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  9. Multi-frequency fine resolution imaging radar instrumentation and data acquisition. [side-looking radar for airborne imagery

    NASA Technical Reports Server (NTRS)

    Rendleman, R. A.; Champagne, E. B.; Ferris, J. E.; Liskow, C. L.; Marks, J. M.; Salmer, R. J.

    1974-01-01

    Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording.

  10. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  11. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  12. Topographic analyses of K*lauea Volcano, Hawai'i, from interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; MacKay, Mary E.; Garbeil, Harold; Mouginis-Mark, Peter J.

    We analyze digital topographic data collected in September 1993 over a 500-km2 portion of K*lauea Volcano, Hawai'i, by the C-band (5.6-cm wavelength) topographic synthetic aperture radar (TOPSAR) airborne interferometric radar. Field surveys covering an 1-km2 area of the summit caldera and the distal end of an 8-m-thick 'a'* flow indicate that the 10-m spatial resolution TOPSAR data have a vertical accuracy of 1-2m over a variety of volcanic surfaces. After conversion to a common datum, TOPSAR data agree favorably with a digital elevation model (DEM) produced by the U.S. Geological Survey (USGS), with the important exception of the region of the ongoing eruption (which postdates the USGS DEM). This DEM comparison gives us confidence that subtracting the USGS data from TOPSAR data will produce a reasonable estimate of the erupted volume as of September 1993. This subtraction produces dense rock equivalent (DRE) volumes of 392, 439, and 90×106m3 for the Pu'u '*'*, K*pa'ianah*, and episode 50-53 stages of the eruption, respectively. These are 124, 89, and 94% of the volumes calculated by staff of the Hawaiian Volcano Observatory (HVO) but do not include lava of K*pa'ianah* and episodes 50-53 that flowed into the ocean and are thus invisible to TOPSAR. Accounting for this lava increases the TOPSAR volumes to 124, 159, and 129% of the HVO volumes. Including the +/-2-m uncertainty derived from the field surveys produces TOPSAR-derived volumes for the eruption as a whole that range between 81 and 125% of the USGS-derived values. The vesicularity- and ocean-corrected TOPSAR volumes yield volumetric eruption rates of 4.5, 4.5, and 2.7m3/s for the three stages of the eruption, which compare with HVO-derived values of 3.6, 2.8, and 2.1m3/s, respectively. Our analysis shows that care must be taken when vertically registering the TOPSAR and USGS DEMs to a common datum because C-band TOPSAR penetrates only partially into thick forest and therefore produces a DEM within the tree

  13. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  14. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  15. Terminal Fall Velocity From Airborne Doppler Radar : Application To The Frontal Cyclones of Fastex

    NASA Astrophysics Data System (ADS)

    Protat, A.; Lemaitre, Y.; Bouniol, D.

    Knowledge of water drop and ice crystal terminal velocities is particularly important for an adequate representation of particle sedimentation in cloud-resolving, opera- tional forecast and climate models. A new method is proposed in the present study to retrieve terminal fall velocity from airborne Doppler radar observations. To extract the terminal fall velocity from the Doppler information, statistical considerations are introduced, stating that for a long sampling time span (a whole aircraft mission, for in- stance) and for moderate the mean vertical air motions vanish with respect to the mean terminal fall velocity. This underlying hypothesis of the method is validated with in- situ data, in-situ microphysical VT-Z relationships in rain, and averages of convective- scale retrievals of the vertical wind component. A detailed analysis of the statistical relationships obtained in liquid and ice phases for 6 frontal cyclones sampled during FASTEX at different stages of development shows that an SuniversalT VT-Z rain rela- & cedil;tionship can be proposed for the North-Atlantic frontal cyclones at mature stage. In ice phase, such an SuniversalT relationship is not found. It is nevertheless suggested that & cedil;a general relationship can be derived if the frontal cyclones are split into categories depending on their stage of development. These VT-Z SuniversalT relationships can & cedil;be introduced in model parameterisation schemes in order to better describe sedimen- tation of ice and water and dynamical-microphysical interactions occurring within the North-Atlantic frontal cyclones.

  16. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  17. Electromagnetic bias of 10-GHz radar altimeter measurements of MSL

    NASA Technical Reports Server (NTRS)

    Choy, L. W.; Hammond, D. L.; Uliana, E. A.

    1984-01-01

    Electromagnetic bias, the small difference that exists between the radar measured mean sea level and the geometric mean sea level is an important issue in high precision satellite altimetry. Present day satellite altimetry has achieved, with SEASAT-1, a precision of 5 cm rms in the range measurement. Future altimeter designs are expected to improve the range measurement precision to cm rms. In order to exploit the capability of these precise radar altimeters are marine geodesy and oceanography, it is necessary to understand and account for all of the known biases in the range measurement. The electromagnetic bias or the EM bias, which has been attributed to the observed fact that ocean wave troughs tend to be better reflectors of nadir viewing microwave radar energy than ocean wave crests, can be observed with high resolution airborne radar. This report presents the results of the EM bias measurements made by NRL using an airborne radar altimeter operating at 10 GHz with a 1 ns range resolution. Data were taken for various sea states and wind conditions. The experimental results are compared with current theories.

  18. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  19. Recent Elevation Changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, Alaska, from ICESat Altimetry, Star-3i Airborne, and SRTM Spaceborne DEMs

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Sauber, J. M.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.; Echelmeyer, K. A.

    2005-12-01

    Three- to 5-year surface elevation changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, in the eastern Chugach and St. Elias Mtns of south-central Alaska, are estimated using ICESat-derived data and digital elevation models (DEMs) derived from interferometric synthetic aperture radar (InSAR) data. The surface elevations of these glaciers are influenced by climatic warming superimposed on surge dynamics (in the case of Bagley Ice Valley) and tidewater glacier dynamics (in the cases of Guyot and Yahtse Glaciers) in this coastal high-precipitation regime. Bagley Ice Valley / Bering Glacier last surged in 1993-95. Guyot and Yahtse Glaciers, as well as the nearby Tyndell Glacier, have experienced massive tidewater retreat during the past century, as well as during recent decades. The ICESat-derived elevation data we employ were acquired in early autumn in both 2003 and 2004. The NASA/NIMA Shuttle Radar Topography Mission (SRTM) DEM that we employ was derived from X-band InSAR data acquired during this 11-22 Feb. 2000 mission and processed by the German Aerospace Center. This DEM was corrected for estimated systematic error, and a mass balance model was employed to account for seasonal snow accumulation. The Star-3i airborne, X-band, InSAR-derived DEM that we employ was acquired 4-13 Sept. 2000 by Intermap Technologies, Inc., and was also processed by them. The ICESat-derived profiles crossing Bagley Ice Valley, differenced with Star-3i DEM elevations, indicate preliminary mean along-profile elevation increases of 5.6 ± 3.4 m at 1315 m altitude, 7.4 ± 2.7 m at 1448 m altitude, 4.7 ± 1.9 m at 1557 m altitude, 1.3 ± 1.4 m at 1774 m altitude, and 2.5 ± 1.5 m at 1781 m altitude. This is qualitatively consistent with the rising surface on Bagley Ice Valley observed by Muskett et al. [2003]. The ICESat-derived profiles crossing Yahtse Glacier, differenced with the SRTM DEM elevations, indicate preliminary mean elevation changes (negative implies decrease) of -0.9 ± 3

  20. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  1. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  2. Echo Source Discrimination in Airborne Radar Sounding Data From the Dry Valleys, Antarctica, for Mars Analog Studies

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Williams, B. J.

    2003-12-01

    The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars. We have collected roughly 1,000 line-km of airborne radar sounding data in the Dry Valleys for Mars analog studies. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of surrounding topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. Using a Twin Otter airborne platform, data were collected in three separate flights during the austral summers of 1999-2000 and 2001-2002 using multiple systems, including a chirped 52.5 - 67.5 MHz coherent radar operating at 750 W and 8 kW peak power (with multiple receivers) and 1 - 2 microsecond pulse width, and a 60 MHz pulsed, incoherent radar operating at 8 kW peak power with 60 ns and 250 ns pulse width. The chirped, coherent data are suitable for the implementation of advanced pulse compression algorithms and SAR focusing. Flight elevation was nominally 500 m above the surface. Targets included permafrost, subsurface ice bodies, rock/ice glaciers, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valleys. A laser altimeter (fixed relative to the aircraft frame) was also used during both

  3. An analysis of the economic impact of the AN/APS-134 FLAR (Forward Looking Airborne Radar) retrofit on Coast Guard HC-130 aircraft

    NASA Astrophysics Data System (ADS)

    Dunn, R. E.

    1984-12-01

    Concern over the growing drug smuggling problem and improved national defense capability are manifest in the need for a new forward looking airborne radar (FLAR) for Coast Guard HC-130 aircraft, with a capability of detecting a target of 1 square meter radar cross section. This thesis reexamines the analysis that selected the AN/APS-134 FLAR over other contenders based on mission need, radar performance and life cycle cost criteria. This thesis presents a better understanding of the resulting HC-130 force structure based on the impact of FLAR technology.

  4. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  5. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  6. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  7. Challenges to Airborne and Orbital Radar Sounding in the Presence of Surface Clutter: Lessons Learned (so far) from the Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Blankenship, D. D.

    2005-12-01

    The search for life and in-situ resources for exploration on Mars targets both liquid and solid water, whether distributed or in reservoirs. Massive surface ice may cover potential habitats or other features of great interest. Ice-rich layering in the high latitudes holds clues to the climatic history of the planet. Multiple geophysical methods will clearly be necessary to fully characterize these various states of water (and other forms of ice), but radar sounding will be a critical component of the effort. Orbital radar sounders are already being employed and plans for surface-based and suborbital, above-surface radar sounders are being discussed. The difficulties in interpreting data from each type of platform are quite different. Given the lack of existing orbital radar sounding data from any planetary body, the analysis of airborne radar sounding data is quite useful for assessing the advantages and disadvantages of above-surface radar sounding on Mars. In addition to over 300,000 line-km of data collected over the Antarctic ice sheet by airborne radar sounding, we have recently analyzed data from the Dry Valleys of Antarctica where conditions and features emulate Mars in several respects. These airborne radar sounding data were collected over an ice-free area of Taylor Valley, ice-covered lakes, Taylor Glacier, and Beacon Valley. The pulsed radar (52.5 - 67.5 MHz chirp) was coherently recorded. Pulse compression and unfocused SAR processing were applied. One of the most challenging aspects of above-surface radar sounding is the determination of echo sources. This can, of course, be problematic for surface-based radar sounders given possible subsurface scattering geometries, but it is most severe for above-surface sounders because echoes from cross-track surface topography (surface clutter) can have similar time delays to those from the subsurface. We have developed two techniques to accomplish the identification of this surface clutter in single-pass airborne

  8. Summary of Turbulence Data Obtained During United Air Lines Flight Evaluation of an Experimental C Band (5.5 cm) Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Coe, E. C.; Fetner, M. W.

    1954-01-01

    Data on atmospheric turbulence in the vicinity of thunderstorms obtained during a flight evaluation of an experimental C band (5.5 cm) airborne radar are summarized. The turbulence data were obtained with an NACA VGH recorder installed in a United Air Lines DC-3 airplane.

  9. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  10. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  11. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Mohan; Blask, Steven; Higgins, Thomas; Clifton, William; Davidsohn, Daniel; Carson, Ryan; Reynolds, Van; Pfannenstiel, Joanne; Cannata, Richard; Marino, Richard; Drover, John; Hatch, Robert; Schue, David; Freehart, Robert; Rowe, Greg; Mooney, James; Hart, Carl; Stanley, Byron; McLaughlin, Joseph; Lee, Eui-In; Berenholtz, Jack; Aull, Brian; Zayhowski, John; Vasile, Alex; Ramaswami, Prem; Ingersoll, Kevin; Amoruso, Thomas; Khan, Imran; Davis, William; Heinrichs, Richard

    2007-04-01

    Jigsaw three-dimensional (3D) imaging laser radar is a compact, light-weight system for imaging highly obscured targets through dense foliage semi-autonomously from an unmanned aircraft. The Jigsaw system uses a gimbaled sensor operating in a spot light mode to laser illuminate a cued target, and autonomously capture and produce the 3D image of hidden targets under trees at high 3D voxel resolution. With our MIT Lincoln Laboratory team members, the sensor system has been integrated into a geo-referenced 12-inch gimbal, and used in airborne data collections from a UH-1 manned helicopter, which served as a surrogate platform for the purpose of data collection and system validation. In this paper, we discuss the results from the ground integration and testing of the system, and the results from UH-1 flight data collections. We also discuss the performance results of the system obtained using ladar calibration targets.

  12. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  13. An optical radar for airborne use over natural waters. [for underwater target detection

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Swarner, W. G.; Prettyman, C.; Reinhardt, G. W.

    1975-01-01

    An optical radar for detecting targets in natural waters was built and tested in the Gulf of Mexico. The transmitter consists of a Q switched neodymium glass laser, with output amplified and doubled in KDP to 0.53 micrometer wavelength. The receiver incorporates a noval optical spatial filter to reduce the dynamic range required of the photodetector to a reasonable value. Detection of targets to a depth of 26 meters (84 feet) was achieved with a considerable sensitivity margin. The sensitivity of the radar is highly dependent on the optical attenuation coefficient. In general, measured returns fell between the values predicted on the basis of monopath and multipath attenuation. By means of simple physical arguments, a radar equation for the system was derived. To validate this theoretical model, measurements of optical attenuation and of water surface behavior were also instrumented, and some of these results are given.

  14. The USGS Side-Looking Airborne Radar (SLAR) program: CD-ROMs expand potential for petroleum exploration

    SciTech Connect

    Kover, A.N.; Schoonmaker, J.W. Jr.; Pohn. H.A. )

    1991-03-01

    The United States Geological Survey (USGS) began the systematic collection of Side-Looking Airborne Radar (SLAR) data in 1980. The SLAR image data, useful for many geologic applications including petroleum exploration, are compiled into mosaics using the USGS 1:250,000-scale topographic map series for format and control. Mosaics have been prepared for over 35% of the United States. Image data collected since 1985 are also available as computer compatible tapes (CCTs) for digital analysis. However, the use of tapes is often cumbersome. To make digital data more readily available for use on a microcomputer, the USGS has started to prepare compact discs-read only memory (CD-ROM). Several experimental discs have been compiled to demonstrate the utility of the medium to make available very large data sets. These discs include necessary nonproprietary software text, radar, and other image data. The SLAR images selected for these discs show significantly different geologic features and include the Long Valley caldera, a section of the San Andreas fault in the Monterey area, the Grand Canyon, and glaciers in southeastern Alaska. At present, several CD-ROMs are available as standard products distributed by the USGS EROS Data Center in Sioux Falls, South Dakota 57198. This is also the source for all USGS SLAR photographic and digital material.

  15. Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.

    1992-01-01

    The paper compares Arecibo Observatory and Magellan radar data for Venus to airborne radar images for potential terrestrial analog surfaces. Volcanic deposits in western Eistla Regio and northern Sedna Planitia are characterized. It is shown that the expected-sense circularly polarized echoes in the 'dark plains' and broad flow aprons of Eistla Regio decrease rapidly with incidence angle. This angular scattering behavior implies surfaces no rougher than terrestrial pahoehoe flows. Polarization ratio comparisons show that the extensive lava flows in Western Eistla Regio and Sedna Planitia are generally consistent with the properties of terrestrial pahoehoe flows, with only limited occurrences of a'a morphology. Three scenarios are suggested. Many of the large flow units in the two study regions were emplaced as complexes of low-effusion rate pahoehoe flows, rather than as higher eruption rate events which might be expected to produce a'a surface textures; the long lava flows were originally emplaced as a'a but have since weathered to a smoother texture; or a combination of atmospheric and magma compositional effects combine to inhibit a'a formation even at high volume eruption rates.

  16. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  17. The US Geological Survey's side-looking airborne radar acquisition program: Image data from the Rocky Mountains to the Pacific

    SciTech Connect

    Kovar, A.N.; Schoonmaker, J.W. Jr. )

    1993-04-01

    The US Geological Survey (USGS) has been systematically collecting side-looking airborne radar (SLAR) image data for the US since 1980. The image strip swaths, ranging in width from 20 to 46 km, are acquired commercially by X-band (3 cm) radar systems. Data are acquired with 60 percent side-lap for better mosaic preparation and stereoscopic capability. The image strips are assembled into 1[degree] x 2[degree] mosaic quadrangles that are based on the USGS 1:250,000-topographic map series for control, format, and nomenclature. These mosaics present the data in a broad synoptic view that facilitates geologic interpretation. SLAR image mosaics have been prepared for more than 35 percent of the US west of the Rocky Mountain front. In addition to quadrangle mosaics, regional composite mosaics have been prepared as value-added products. These include Pacific Northwest (14 quadrangles), southern California Coastal (from San Francisco to San Diego), Reno-Walker (includes parts of Yellowstone and Grand Teton National Parks), Uinta Basin (Salt Lake City, Price and Grand Junction), and Salton Sea Region (San Diego, Santa Ana, El Centro and Salton Sea). Most of the image data are available on computer compatible tapes and photographic products. To make the data more accessible and reasonably priced, the strip images are being processed into CD-ROM (compact disc, read-only memory). One demonstration CD-ROM includes the mosaics of Las Vegas, Mariposa, Ritzville, Walla Walla, and Pendleton quadrangles.

  18. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  19. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  20. Multi-Frequency Airborne Radar Measurements of Outlet Glaciers and Ice Streams

    NASA Astrophysics Data System (ADS)

    Gogineni, P. S.; Braaten, D. A.; Rodriguez-Morales, F.; Li, J.; Leuschen, C.; Paden, J. D.; Hale, R.; Arnold, E.; Panzer, B.; Gomez-Garcia, D.; Crowe, R.; Patel, A. E.; Yan, J.

    2012-12-01

    Outlet glaciers and ice streams in Greenland and Antarctica are important delivery systems of inland ice to the oceans. Satellite observations are showing that parts of the Antarctic and Greenland ice sheets are undergoing rapid changes, including both speed-up of several glaciers in Greenland and erratic behavior of Antarctic glaciers buttressed by ice shelves. While satellite sensors provide data on the surface flow speed and document the rapid changes the ice sheets are undergoing, they do not provide the essential information needed to understand the ice dynamics driving these changes or a detailed assessment of mass balance. In particular, a more complete knowledge of ice thickness, bed topography, and basal conditions are needed to better understand the dynamic processes causing rapid changes, assess outlet glacier discharge, and assess future discharge potential. Simultaneous measurements of snow accumulation from internal layering over the glacier catchment provide an assessment of temporally-varying surface mass balance. We developed a radar instrumentation package that can be operated both on long-range and short-range aircraft. This package includes four radars operating over a frequency range of about 180 MHz to 18 GHz. These are: (1) a wideband radar depth sounder that operates at a center frequency of 195 MHz to sound and image ice; (2) an ultra-wideband radar that operates over a frequency range of 600 to 900 MHz to map near-surface internal layers in polar firn and ice; (3) an ultra-wideband microwave radar that operates over a frequency range of about 2 to 8 GHz to measure the thickness of snow cover over sea ice and map near-surface internal layers in polar firn with fine resolution of about 5 cm; and (4) a radar altimeter that operates over a frequency range of 12 to 18 GHz for high-precision surface elevation measurements. During the last three years, these radars have been flown on several different aircraft over the Greenland and Antarctic ice

  1. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3323-3324] [FR... Engineering Division, Aircraft Certification Service. [FR Doc. 2012-1243 Filed 1-20-12; 8:45 am] BILLING CODE... cancelling TSO-C67. Please note that TSO-C87, Airborne Low Range Radio Altimeter, is currently used for...

  2. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  3. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  4. Impacts of 4D-VAR Assimilation of Airborne Doppler Radar Observations on Numerical Simulations of the Genesis of Typhoon Nuri (2008)

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Li, Z.

    2014-12-01

    The Weather Research and Forecasting model and its four-dimensional variational data assimilation system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). The ELDORA airborne radar data, collected during the Office of Naval Research-sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as it enhances the development of convective systems and improves the inner core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation lead to developing and nondeveloping disturbances for Nuri's genesis in the numerical simulations. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri's genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea-level pressure.

  5. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability. Second Corrected Copy Issued May 23, 2011

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  6. Some case studies of ocean wave physical processes utilizing the GSFC airborne radar ocean wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1984-01-01

    The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.

  7. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  8. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  9. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  10. Wave observation at sea with the Dutch Side-Looking Airborne Radar (SLAR)

    NASA Astrophysics Data System (ADS)

    Peters, H. C.

    1984-03-01

    Theoretical limits for sea wave observation with SLAR systems were investigated by modeling the interaction between microwave radiation and the sea surface. A description of the SLAR, in which three-dimensional spatial wave extension, two-dimensional antenna variations, pulse modulation, and platform movements are assimilated is given. A two-dimensional collection of equidistant point objects for microwave scattering at the rough sea surface is given. Resolution characteristics and speckle behavior were analyzed. Spatial resolution in range and azimuth is limited by pulse width and azimuth aperture angle of the antenna. As the modulation transfer function amplitude has a low value, small variations are lost in noise and speckle. Image error as a result of the observation of moving wave patterns with a flying radar are discussed. Recommendations to improve the radar characteristics are given.

  11. The structure of a microburst - As observed by ground-based and airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Mueller, C. K.; Hildebrand, P. H.

    1983-01-01

    Attention is given to the microburst observed near Denver, CO, on June 29, 1982, in the course of the Joint Airport Weather Study (JAWS). The JAWS ground radar network was specifically established to furnish high spatial and temporal resolution multiple Doppler data for microburst observations. The data, which were collected from directly above the microburst, permitted direct measurements of vertical velocities to be made. P-3 surveillance aircraft Doppler data was also available for this microburst, whose considerable complexity is noted.

  12. Multi-temporal airborne synthetic aperture radar data for crop classification

    NASA Technical Reports Server (NTRS)

    Foody, G. M.; Curran, P. J.; Groom, G. B.; Munro, D. C.

    1989-01-01

    This paper presents an approach to the classification of crop type using multitemporal airborne SAR data. Following radiometric correction of the data, the accuracy of a per-field crop classification reached 90 percent for three classes using data acquired on four dates. A comparable accuracy of 88 percent could be obtained for a classification of the same classes using data acquired on only two dates. Increasing the number of classes from three to seven reduced the classification accuracies to 55 percent and 69 percent when using data from two and four dates respectively.

  13. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  14. Evaluation of the differences between the SRTM and satellite radar altimetry height measurements and the approach taken for the ACE2 GDEM in areas of large disagreement.

    PubMed

    Smith, Richard Gavin; Berry, Philippa A M

    2011-06-01

    The new ACE2 (Altimeter Corrected Elevations 2) Global Digital Elevation Model (GDEM) which has recently been released aims to provide the most accurate GDEM to date. ACE2 was created by synergistically merging the SRTM and altimetry datasets. The comprehensive comparison carried out between the two datasets yielded a myriad of information, with the areas of disagreement providing as much valuable information as the areas of agreement. Analysis of the comparison dataset revealed that certain topographic features displayed consistent differences between the two datasets. The largest differences globally are present over the rainforests, particularly the two largest, around the Amazon and the Congo. The differences range between 10 m and 40 m; these differences can be attributed to the height of the rainforest canopy, as the SRTM returned height values from somewhere within the uppermost reaches of the vegetation whereas the altimeter was able to penetrate through and return true ground heights. The second major class of terrain feature to demonstrate coherent differences are desert regions; here, different deserts present different characteristics. The final area of interest is that of Wetlands; these are areas of special significance because even a slight misrepresentation of the heights can have wide ranging effects in modelling wetland areas. These examples illustrate the valuable additional information content gleaned from the synergistic global combination of the two datasets. PMID:21509388

  15. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  16. Soil Moisture from Altimetry - SMALT

    NASA Astrophysics Data System (ADS)

    Berry, Philippa; Smith, Richard; Salloway, Mark; Lucas, Bruno Manuel; Dinardo, Salvatore; Benveniste, Jérôme

    2013-04-01

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth's land surface, resulting from changes in surface roughness and composition. These models are created by cross-calibrating and reconciling multi-mission altimeter sigma0 measurements from ERS-1, ERS-2, EnviSat and Jason-2. This approach is made possible because altimeters are nadir-pointing, and most of the available radar altimeter datasets are from instruments operating in Ku band. These DREAMS are complicated to build and require multiple stages of processing and manual intervention. However, this approach obviates the requirement for detailed ground truth to populate theoretical models, facilitating derivation of surface soil moisture estimates over arid regions, where detailed survey data are generally not available. This paper presents results using the DREAMS over desert surfaces, and showcases the model outcomes over the Arabian and Tenere deserts. A global assessment is presented of areas where DREAMS are currently being generated, and an outline of the required processing to obtain soil surface moisture estimates is given. Results for altimeter derived soil moisture validation with ground truth are presented together with comparisons with other remotely sensed soil estimates. Soil moisture product from ERS-2 radar altimetry in arid regions is presented, and the temporal and spatial resolutions of these data are reported. The results generated by this ESA encouraged initiative will be made freely available to the global scientific community. First products are planned for release

  17. Constraining ice sheet mass balance trends using Cryosat-2 and laser altimetry

    NASA Astrophysics Data System (ADS)

    Griggs, J.; Bamber, J. L.

    2012-12-01

    The mass balance of the Antarctic and Greenland is required to assess their contribution to sea level rise as well as evaluate their sensitivities to variable future forcings. There is general agreement that the ice sheets are losing mass and that loss may be increasing. However, the range of estimates and the uncertainty in those estimates is in many cases, larger than the signal measured, particularly in a regional sense. Cryosat-2 will improve on the legacy satellite measurements from ERS-1 and -2 by using its interferometric model to determine elevation on steep slopes and through it's greater across - track resolution. The new technique will overcome many of the limitations of previous radar altimeters but elevations will still suffer from variable penetration in the firn and errors due to short-wavelength roughness. Building on previous work comparing and combining laser and radar altimeter data, we will assess the uncertainty in elevation due to these limitations. We use NASA Operation Ice Bridge airborne laser altimetry to assess biases in absolute elevation and elevation rates from Cryosat-2 data. We focus on the first 6 months of released data from the mission so that variability in penetration observed can be attributed to seasonal temperature, melt and accumulation variations can be assessed. Unfortunately, coincident airborne data is not currently available so we will assess the impact of the time difference between the datasets as well as presenting comparisons to older, longer time period, NASA ICESat satellite altimetry. The project aims to fully quantify biases and develop algorithms to correct for them and here we present our first comparisons. This will allow us to determine the likely improvement in mass balance estimates from Cryosat-2 as compared to legacy datasets.

  18. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  19. Quantifying monthly to decadal subsidence and assessing collapse potential near the Wink sinkholes, west Texas, using airborne lidar, radar interferometry, and microgravity

    NASA Astrophysics Data System (ADS)

    Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.

    2014-12-01

    We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.

  20. Airborne synthetic aperture radar observations and simulations for waves in ice

    NASA Technical Reports Server (NTRS)

    Vachon, Paris W.; Olsen, Richard B.; Krogstad, Harald E.; Liu, Antony K.

    1993-01-01

    The Canada Centre for Remote Sensing CV-580 aircraft collected C-band SAR data over the marginal ice zone off the east coast of Newfoundland during the Labrador Ice Margin Experiment (LIMEX) in March 1989. One component of the LIMEX '89 program was the study of ocean waves penetrating the marginal ice zone. We consider nearly coincidental observations of waves in ice by airborne SAR and wave-induced ice motion measurements. We explain the wave patterns observed in the SAR imagery, and the corresponding SAR image spectra, in terms of SAR wave imaging models. These include the well-known tilt cross-section modulation, linear, quasi-linear, and nonlinear velocity bunching forward mapping models (FMMs), and the assertion that the concept of coherence time limitation applies differently to the cases of waves in ice and open water. We modify the concept of the scene coherence time to include two parts: first, a decorrelation time deduced from the inherent azimuth cutoff in the nonlinear velocity bunching FMM; and second, the intrinsic scene coherence time which is a measure of the time scale over which an open water Bragg scattering patch retains its phase structure. Either of these coherence time scales could dominate the SAR image formation process, depending upon the environmental conditions (the wave spectrum and the wind speed, for example). Observed SAR image spectra and forward mapped ice motion package spectra are favorably compared.

  1. Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods

    NASA Technical Reports Server (NTRS)

    Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.

    2015-01-01

    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.

  2. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and detailed neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, T. B.; Hawley, R. L.; Helm, V.; Morris, E. M.; Chaudhary, R. N.

    2015-12-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and detailed neutron-probe (NP) density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 %) from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995-2004 compared to 1985-1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.

  3. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  4. The role of satellite altimetry in climate studies

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1980-01-01

    The results of three generations of satellite-borne radar altimetry experiments are summarized. The diverse measurements possible from this instrument are shown to be directly applicable to studies of the importance of the oceans in climate. The radar altimeter has unique value for investigations seeking knowledge of the interconnections between ocean dynamics, heat and momentum transfer across the air-sea interface, sea ice extent, and polar ice sheet thickness.

  5. Airborne Demonstration of Microwave and Wide-Band Millimeter-Wave Radiometers to Provide High-Resolution Wet-Tropospheric Path Delay Corrections for Coastal and Inland Water Altimetry

    NASA Astrophysics Data System (ADS)

    Reising, Steven; Kangaslahti, Pekka; Tanner, Alan; Padmanabhan, Sharmila; Montes, Oliver; Parashare, Chaitali; Bosch-Lluis, Xavier; Hadel, Victoria; Johnson, Thaddeus; Brown, Shannon; Khayatian, Behrouz; Dawson, Douglas; Gaier, Todd; Razavi, Behzad

    2014-05-01

    Current satellite ocean altimeters include nadir-viewing, co-located 18-34 GHz microwave radiometers to measure wet-tropospheric path delay. Due to the size of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals is substantially degraded near coastlines, and retrievals are not provided over land. Retrievals are flagged as not useful within approximately 40 km of the world's coastlines. A viable approach to improve their capability is to add wide-band high-frequency millimeter-wave window channels in the 90-180 GHz band, thereby achieving finer spatial resolution for a limited antenna size. In this context, the upcoming NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) mission is in formulation and planned for launch in late 2020. The primary objectives of SWOT are to characterize ocean mesoscale and sub-mesoscale processes on 10-km and larger scales in the global oceans and provide measurements of the global water storage in inland surface water bodies and the flow rate of rivers. Therefore, an important new science objective of SWOT is to transition satellite altimetry from the open ocean into the coastal zone and over inland water. The addition of 90-180 GHz millimeter-wave window-channel radiometers to current Jason-class 18-34 GHz radiometers is expected to improve retrievals of wet-tropospheric delay in coastal areas and to enhance the potential for over-land retrievals. In 2012 the Ocean Surface Topography Science Team Meeting recommended to add high-frequency millimeter-wave radiometers to the Jason Continuity of Service (CS) mission. To reduce the risks of wet-tropospheric path delay measurement over coastal areas and inland water bodies, we have designed, developed and fabricated a new airborne radiometer, combining three high-frequency millimeter-wave window channels at 90, 130 and 168 GHz, along with Jason-series microwave channels at 18.7, 23.8 and 34.0 GHz, and validation channels sounding

  6. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  7. Planetary landing-zone reconnaissance using ice-penetrating radar data: Concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.

    2014-11-01

    The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.

  8. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH

  9. A comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery - The value of archived multiple data sets

    NASA Technical Reports Server (NTRS)

    Hanson, Bradford C.; Dellwig, Louis F.

    1988-01-01

    In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.

  10. Flight evaluation of a radar cursor technique

    NASA Astrophysics Data System (ADS)

    Perez, J.

    1980-03-01

    Preliminary results are presented of a flight test evaluation of a radar cursor technique to be used as an aid in acquiring and tracking the desired ground track during airborne radar approaches. The test was performed using a Sikorsky CH-53A helicopter. The airborne radar system used was a BENDIX RDR-1400A modified to electronically produce a radar cursor display of course error. Airborne radar approaches were made to an offshore and an airport test environment. The specific purpose of the test was to evaluate the practical utility of the radar cursor as an aid to performing airborne radar approaches. The preliminary conclusion of this test is that the use of the radar cursor improved course acquisition and ground tracking significantly with pilotage errors and total system cross-track errors reduced by one-half or better. The radar cursor technique shows potential in reducing airspace requirements for airborne radar approaches.

  11. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  12. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA - integrating fieldwork, ground-penetrating radar and airborne imagery analysis

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; Grützner, C.; van Gent, H. W.; Urai, J. L.; Reicherter, K.; Mertens, J.

    2015-07-01

    The grabens of Canyonlands National Park are a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the subsurface and a slight regional tilt of the faulted strata. We present results of ground-penetrating radar (GPR) surveys in combination with field observations and analysis of high-resolution airborne imagery. GPR data show intense faulting of the Quaternary sediments at the flat graben floors, implying a more complex fault structure than visible at the surface. Direct measurements of heave and throw at several locations to infer fault dips at depth, combined with observations of primary joint surfaces in the upper 100 m, suggest a highly dilatant fault geometry. Sinkholes observed in the field as well as in airborne imagery give insights in local dilatancy and show where water and sediments are transported underground. Based on correlations of paleosols observed in outcrops and GPR profiles, we argue that either the grabens in Canyonlands National Park are older than previously assumed or that sedimentation rates were much higher in the Pleistocene.

  13. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  14. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  15. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  16. News and Views: Airborne radar reveals fault rupture detail; Rhapsody in blue, not red; Ammunition for dark skies activists

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Satellite synthetic aperture radar is a valuable tool for understanding the deformation of the surface of the Earth at earthquake faults; now NASA scientists have used SAR on planes to get an altogether closer look at quake effects. A campaign in Texas to raise awareness of light pollution has produced resources including a video, highlighting causes, effect and solutions, available online.

  17. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  18. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  19. Remote sensing of surface ocean circulation with satellite altimetry.

    PubMed

    Mather, R S; Rizos, C; Coleman, R

    1979-07-01

    The Geodynamics Experimental Ocean Satellite (GEOS-3) radar altimeter has provided some information on the dynamic sea-surface topography of the global oceans. Regional studies of the densely surveyed Sargasso Sea indicate that the average nontidal variability of the oceans is +/- 28 centimeters. Sea-surface highs and lows determined from GEOS-3 altimetry correlate favorably with eddy structures inferred from Nimbus-6 infrared imagery. PMID:17778877

  20. Planetary surface roughness derived from ice penetrating radar data: Method and concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.

    2013-12-01

    Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.

  1. Reconstruction of Greenland Ice Sheet Changes from Laser Altimetry Measurements

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; van der Veen, C. J.; Krabill, W. B.

    2009-12-01

    The ability to predict rates of global climatic change, melting ice, and rising seas through the next century relies on an accurate understanding and modeling of glacier and ice-sheet behavior. To quantify ice sheet mass balance, investigate dynamic behavior and to improve predictive ice-sheet models, accurate seasonal, annual and inter-annual elevation changes are of paramount importance. Starting in 1978 an ever-increasing fleet of satellites are monitoring the polar ice sheets. These measurements as well as elevations from NASA’s Airborne Topographic Mapper (ATM) laser altimeter campaigns provide estimates of ice sheet volume changes and mass balance. However, comparison of mass balance estimates derived from these data reveal some glaring differences. The bias between different estimates can be attributed to various factors, for example uncertainties in firn-compaction rates, preferential sampling of local high points by radar altimetry or errors introduced by the interpolation of sparse laser altimetry observations. Moreover change detection methods have significant difficulty to estimate changes over rugged, steep slopes, especially when repeat measurements not perfectly overlap. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which determines surface changes by a simultaneous reconstruction of surface topography. The method is based on fitting analytical functions to laser points within repeat tracks or cross-over areas for estimating the ice sheet surface topography. The mathematical model of the change detection algorithm is based on the assumption that for a small surface area, e.g. 1 km by 1 km, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs of a small surface patch contribute to the shape parameters, and the laser points of each time period determine the absolute elevation of the surface patch at that

  2. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  3. Airborne gravity measurement over sea-ice: The western Weddel Sea

    SciTech Connect

    Brozena, J.; Peters, M. ); LaBrecque, J.; Bell, R.; Raymond, C. )

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative of the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.

  4. Satellite Altimetry for Rivers : Review and Perspectives

    NASA Astrophysics Data System (ADS)

    Calmant, S.

    2013-05-01

    Pioneer works using satellite altimetry over rivers started two decades ago. Next decade, we should have SWOT, the first mission to monitor all the water bodies on Earth larger than (250 m x 250 m). Over these three decades, radar altimetry for hydrology will have evolved significantly. In the past decade, ESA's ENVISAT has turned to be the most useful altimetry mission for hydrology. The major improvement brought by ENVISAT has been to propose various estimates of the radar "range" (the distance between the sensor and reflecting surface) in the raw data distributed. Owing to this choice in ranges, typical rms error for series computed with the ice-1 algorithm for the ENVISAT or Jason-2 data is in the range of 20-40 cm, which is a factor 2 to 4 better than it was previously with the standard -ocean- tracking algorithm, with the T/P mission for instance. Before ENVISAT, it has long been considered that altimetry could work only over wide rivers or large lakes. When the contrast in backscatter between the river surface and the surrounding ground was favorable, valuable time series have been recovered over reaches as narrow as a few tens of meters. All the past missions, including ENVISAT, were working in the Ku band in Low Resolution mode (LR), in opposite to the delay Doppler (DD), SAR, mode, which should be the most common technology in the near-future missions. SAR mode is currently tested with Cryosat-2, launched in2010. With AltiKa, to be launched in February this year, a new band will be tested, the Ka band. In 2014, ESA should launch Sentinel-3A, the first of a series of four SAR satellites. Thus, in the middle of the decade, we should have the most favorable situation ever encountered, with 2 to 3 SAR altimeters (Sentinel-3A from 2014, Sentinel-3B from 2016, Jason-CS from 2017), and in LR mode (Jason 2 & 3 and AltiKa). Next decade, SWOT will embark a Ka band wide swath (120 km) interferometric altimeter. It will cover the Earth continents twice every 22 days

  5. Ocean circulation using altimetry

    NASA Technical Reports Server (NTRS)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  6. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  7. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  8. Joint Variability of Airborne Passive Microwave and Ground-based Radar Observations Obtained in the TRMM Kwajalein Experiment

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Kingsmill, D. E.

    2007-12-01

    The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) held July-September 1999 in the west Pacific was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. The majority of the precipitation was from mixed-phase clouds. Coordinated data sets were obtained from aircraft and ground-based sensors including passive microwave measurements by the Advanced Microwave Precipitation Radiometer (AMPR) instrument on the NASA DC-8 aircraft and S-band volumetric radar data by the KPOL radar. The AMPR and KPOL data sets were processed to yield a set of 25,049 matching observations at ~ 2 km x 2 km horizontal spatial resolution and within 6 min. The TRMM satellite Microwave Imager (TMI) has a similar set of channels to AMPR but coarser spatial resolution (19 GHz: 35 km, 85 GHz: 7.7 km). During KWAJEX, the 0 deg C level height was nearly constant at ~ 4800 m. Hence, two potential sources of uncertainty in relating passive microwave brightness temperatures (Tbs) to surface precipitation, inhomogeneous beam filling and variations in depth of the rain layer are much smaller sources of error in the KWAJEX data set than for TMI. TRMM was originally designed to yield monthly rainfall estimates over 5 deg x 5 deg grid boxes. The use of these data to yield instantaneous rainrate products at smaller spatial scales is more sensitive to the detailed characteristics of the joint distributions of passive microwave Tbs versus rain rate. KWAJEX data sets reveal poor correlations, very wide scatter, and weak modes in these distributions. The spread of emission Tb values for a given rain-layer reflectivity (e.g., 75 K at 30 dBZ for 19 GHz) is similar or larger within convective compared to stratiform precipitation regions. This result implies that the enhancement in emission Tbs associated with partially melted ice particles can occur whether the particles are concentrated within a thin layer in stratiform

  9. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  10. Progress in Coastal Altimetry: the experience of the COASTALT Project

    NASA Astrophysics Data System (ADS)

    Cipollini, P.; Gommenginger, C.; Coelho, H.; Fernandes, J.; Gomez-Enri, J.; Martin-Puig, C.; Vignudelli, S.; Woodworth, P.; Dinardo, S.; Benveniste, J.

    2009-04-01

    Satellite altimetry over the open ocean is a mature discipline, and data are routinely assimilated for operational applications. In contrast, global altimetry data collected over the coastal ocean remain largely unexploited in the data archives, simply because intrinsic difficulties in the corrections (especially the wet tropospheric component, the high-frequency atmospheric signal and the tides) and issues of land contamination in the footprint have so far resulted in systematic flagging and rejection of these data. In the last couple of years, significant research has been carried out into overcoming these problems and extending the capabilities of current and future altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. At the same time the major Space Agencies have recognized the importance of the topic and are sustaining coastal altimetry research through projects such as COASTALT (ESA), PISTACH (CNES) and some OSTST (NASA/CNES) initiatives. A number of crucial improvements to the processing of the altimetric waveforms in the coastal zone and to the correction of the measurements for path delay and geophysical effects (tides and atmospheric) are being implemented and tested. The first custom-processed coastal altimetry data are now available, and many more data from Jason-1, Jason-2 and Envisat will become available during 2009. This new "coastal altimetry" community, inherently interdisciplinary, has already had two well-attended international workshops (see http://www.coastalt.eu/pisaworkshop08/). In this paper we will report on the progress of the COASTALT Project, funded by the European Space Agency, which aims at defining, developing and testing a prototype software processor to generate new Envisat radar altimeter products in the coastal zone. Ultimately, the plans are for ESA to routinely generate and distribute these new

  11. Pioneer Venus radar mapper experiment

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Brown, W.E.; Kaula, W.M.; Keller, C.H.; Masursky, H.; McGill, G.E.

    1979-01-01

    Altimetry and radar scattering data for Venus, obtained from 10 of the first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently rolling plain. Planetary oblateness appears unlikely to exceed 112500 and may be substantially smaller. Copyright ?? 1979 AAAS.

  12. Pioneer venus radar mapper experiment.

    PubMed

    Pettengill, G H; Ford, P G; Brown, W E; Kaula, W M; Keller, C H; Masursky, H; McGill, G E

    1979-02-23

    Altimetry and radar scattering data for Venus, obtained from 10 of the first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently rolling plain. Planetary oblateness appears unlikely to exceed 1/2500 and may be substantially smaller. PMID:17833006

  13. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  14. Characterization of SAR Mode Altimetry over Inland Water

    NASA Astrophysics Data System (ADS)

    Fabry, Pierre; Bercher, Nicolas

    2015-12-01

    Radar altimetry over the inland water domain is a difficult topic that still requires a lot of human expertise as well as manual editing and verifications. This is mainly due to the fact that inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than in oceanography. The remark is particularly true for LRM altimetry and remains valid in many cases in SAR mode (SARM). In preparation for the operational Sentinel-3 mission and to better benefit from the improved SARM along-track resolution it is required to: 1. better characterize the SARM Individual Echoes, Multi-Look Stacks, 20Hz waveforms as well as the Range Integrated Power (RIP) over the inland water domain, 2. step toward processing schemes that account for the actual content of the illuminated scene. In this work, we introduce an automated technique to assess the water fraction within the Beam-limited Doppler footprint through its intersection area of with a water mask. This framework opens up new ways toward the automated characterization and processing of altimetry data based on regularly updated water masks.

  15. Spaceborne Laser Altimetry On Icesat

    NASA Astrophysics Data System (ADS)

    Schutz, B.

    The Geoscience Laser Altimeter System (GLAS) is planned for launch on ICESat in 2002, into a 600 km altitude, near polar orbit from Vandenberg, California. The sys- tem is designed to operate up to five years in orbit. GLAS is under development by NASA Goddard and it will be delivered to the spacecraft contractor, Ball Aerospace, for mating and testing with the spacecraft bus. The GLAS instrument will transmit both near infrared (1064 nm) and green (532 nm) pulses using a diode-pumped, Q- switched Nd:YAG laser. The 1064 wavelength will be used for surface altimetry, in- cluding dense clouds, and the 532 wavelength will be used for atmospheric backscat- ter measurements. The altitude measurement will produce elevation time series of the Greenland and Antarctic ice sheets, which will enable determination of present-day elevation change and mass balance. Other applications of the altimetry channel in- clude precise measurements of land topography and vegetation canopy heights, sea ice roughness and thickness, and ocean surface elevations. The atmospheric channel will provide information on the vertical distribution of clouds and aerosols. The laser pulse energy at 1064 nm is about 75 mJ with a width of about 5 ns and the pulse has a divergence of about 0.11 mrad, which illuminates a spot on the surface with a 66 m diameter. Three lasers are available (two are required for lifetime requirements and the third provides redundancy). The pulse echo is captured with a 1 m telescope mounted on the rigid GLAS optical bench. A Si analog detector receives the return pulse and an A/D converter digitizes the pulse with a 1 GHz sampling rate. Two detectors and two digitizers are available for redundancy. Unlike wide pulse radar altimeters, accurate knowledge of the laser beam direction is required for the laser altimeter. The pointing will be determined with the assistance of an innovative system of CCD cameras that will measure the direction of each laser pulse with respect to

  16. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  17. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  18. Twelve years of Amundsen and Bellingshausen Coast Thinning Observed with Altimetry and Photogrammetry.

    NASA Astrophysics Data System (ADS)

    Smith, B. E.; Shean, D. E.; Huth, A.; Morin, P. J.; Joughin, I. R.

    2014-12-01

    From the start of the airborne laser surveys in late 2002 until the present, the elevation record for the Amundsen Coast of Antarctica from small-footprint elevation measurements now spans more than a dozen years: Laser-altimetry measurements on tracks spaced tens of km apart are available from ATM, LVIS, and ICESat; Worldview stereophotogrammetry (SP) gives high-resolution snapshots of surface topography for selected parts of the coast, and CRYOSAT gives high-temporal-resolution, spatially dense radar measurements, at modestly lower precision than the other sensors. We present synoptic estimates of elevation change based on judicious combinations of these data. Two sets of techniques yield complementary results: Combining laser-derived elevations with SP DEMs gives an elevation-change map covering most outlets with near-annual resolution between 2003 and the present, while combining Cryosat data with SP DEMs gives a database of radar elevations with improved ambiguity resolution that we process to estimate surface elevation changes between mid 2010 and the present. Firn and accumulation models help reduce the effects of accumulation variability on the derived elevation rates, allowing estimates of steady-atmosphere ("dynamic") mass-change rates. These data reveal variable but increasing mass loss from Thwaites and Haynes glaciers, continuing mass loss from the glaciers draining into the Dotson and Crosson ice shelves, and significant losses on Alison ice stream and Ferrigno glacier on the Bellingshausen coast. There is also evidence for a recent hiatus in strong elevation change in parts of the grounding zone of Pine Island glacier, after nearly a decade of accelerating losses there. We discuss these findings in the context of measured surface speed changes and model estimates of ocean temperature variations.

  19. Laser Altimetry Sampling Strategies over Sea Ice

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Markus, Thorsten; Kwok, Ron; Connor, Laurence

    2011-01-01

    With the conclusion of the science phase of the Ice, Cloud and land Elevation Satellite (ICESat) mission in late 2009, and the planned launch of ICESat-2 in late 2015, NASA has recently established the IceBridge program to provide continuity between missions. A major goal of IceBridge is to obtain a sea-ice thickness time series via airborne surveys over the Arctic and Southern Oceans. Typically two laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS), are utilized during IceBridge flights. Using laser altimetry simulations of conventional analogue systems such as ICESat, LVIS and ATM, with the multi-beam system proposed for ICESat-2, we investigate differences in measurements gathered at varying spatial resolutions and the impact on sea-ice freeboard. We assess the ability of each system to reproduce the elevation distributions of two seaice models and discuss potential biases in lead detection and sea-surface elevation, arising from variable footprint size and spacing. The conventional systems accurately reproduce mean freeboard over 25km length scales, while ICESat-2 offers considerable improvements over its predecessor ICESat. In particular, its dense along-track sampling of the surface will allow flexibility in the algorithmic approaches taken to optimize the signal-to-noise ratio for accurate and precise freeboard retrieval.

  20. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1983-03-01

    The present investigation is concerned with planetary radar research reported during the time from 1979 to 1982. A brief synopsis of radar definitions and technical terminology is also provided. In connection with the proximity of the moon to earth, lunar radar studies have been performed over a wider range of wavelengths than radar investigations of other planetary targets. The most recent study of lunar quasispecular scattering is due to Simpson and Tyler (1982). The latest efforts to interpret the lunar radar maps focus on maria-highlands regolith differences and models of crater ejecta evolution. The highly successful Pioneer Venus Radar Mapper experiment has provided a first look at Venus' global distributions of topography, lambda 17-cm radar reflectivity, and rms surface slopes. Attention is given to recent comparisons of Viking Orbiter images of Mars to groundbased radar altimetry of the planet, the icy Galilean satellites, radar observations of asteroids and comets, and lambda 4-cm and lambda 13-cm observations of Saturn's rings.

  1. Airborne laser scan measurements of winter snow accumulation in high alpine catchments - hydrological implications and verification by ground penetrating radar at glacier surface

    NASA Astrophysics Data System (ADS)

    Helfricht, K.; Keuschnig, M.; Heilig, A.; Mayer, C.; Kuhn, M.

    2012-04-01

    The snow cover as storage of winter precipitation is a substantial source for runoff generation in high mountain catchments. Redistribution of solid precipitation, caused by wind and gravity, leads to a characteristic spatial distribution of snow accumulation which differs from simple model assumption of a homogenous snowpack increasing with altitude. Both, the distinct distribution of snow accumulation and the total amount of SWE stored in the snow cover, affect the magnitude and seasonality of melt water runoff. Complex relations exist between the spatial pattern of snow accumulation and the presence of glaciers and vice versa. For proper hydrological modeling in high mountain catchments, knowledge about snow cover distribution is an important requirement. To date, to evaluate modeling results, spatially insufficient point data on snow depths and SWE are usually available. On catchment scale, optical space-borne remote sensing techniques deliver areal extent of snow cover, but no snow depths and hence no volume of snow cover. Multi-temporal airborne laser scanning (ALS) is an active remote sensing method to obtain elevation changes extensively even in inaccessible alpine terrain. Before the start and at the end of accumulation season of winter 2010/2011, two airborne laser scan acquisitions were performed in the Ötztal Alps (Tirol, Austria). Differences of the respective digital elevation models were interpreted as snow depths and converted into SWE using a simple regression method between snow depths and snow density. Preferred snow accumulation areas were determined, e.g. wind sheltered depressions, the base of steep mountain walls and flat glacier surfaces. At catchment scale, solid precipitation is obviously redistributed from wind exposed mountain ridges to lower elevations, inducing characteristic elevations of maximum snow accumulation. Overall, catchment precipitation derived from snow accumulation is a valuable reference for precipitation approaches in

  2. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  3. SMALT - Soil Moisture from Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Salloway, Mark; Berry, Philippa; Hahn, Sebastian; Wagner, Wolfgang; Egido, Alejandro; Dinardo, Salvatore; Lucas, Bruno Manuel; Benveniste, Jerome

    2014-05-01

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth's land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter's high frequency content alongtrack and a multi-looked 6" gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed with

  4. Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica

    NASA Astrophysics Data System (ADS)

    Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a

  5. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.; Zhang, Fuqing

    2014-03-01

    the Pennsylvania State University (PSU) real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) that assimilates airborne Doppler radar observations, the sensitivity and uncertainty of forecasts initialized several days prior to landfall of Hurricane Sandy (2012) are assessed. The performance of the track and intensity forecasts of both the deterministic and ensemble forecasts by the PSU WRF-EnKF system show significant skill and are comparable to or better than forecasts produced by operational dynamical models, even at lead times of 4-5 days prior to landfall. Many of the ensemble members correctly capture the interaction of Sandy with an approaching midlatitude trough, which precedes Sandy's forecasted landfall in the Mid-Atlantic region of the United States. However, the ensemble reveals considerable forecast uncertainties in the prediction of Sandy. For example, in the ensemble forecast initialized at 0000 UTC 26 October 2012, 10 of the 60 members do not predict a United States landfall. Using ensemble composite and sensitivity analyses, the essential dynamics and initial condition uncertainties that lead to forecast divergence among the members in tracks and precipitation are examined. It is observed that uncertainties in the environmental steering flow are the most impactful factor on the divergence of Sandy's track forecasts, and its subsequent interaction with the approaching midlatitude trough. Though the midlatitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land.

  6. SAR Altimetry in Coastal Zone: Performances, Limits, Perspectives

    NASA Astrophysics Data System (ADS)

    Dinardo, S.; Benveniste, J.

    2011-12-01

    Up to now, any effort to retrieve the coastal zone phenomena from the space has been hindered by the intrinsic incapacity of conventional radar altimeters to sample all but largest scales involved in the coastal processes due to its insufficient along- track resolution. However, nowadays, a new technology in Space-borne Altimetry has become reality: the Synthetic Aperture Radar (SAR) Altimeter. The acquisition of altimetric data in SAR mode ensures a higher resolving measurement power that shall enable scientists for the first time to aspire to measure even short-scale weak coastal phenomena, thanks to the 20- fold smaller along track radar resolution and 10 dB higher Signal to Noise ratio. The secondary, but significant in coastal zone, effect of the radar footprint shrinking is the expected reduced impact of land contamination on the radar waveforms in the proximity of the shore. As a consequence of this effect, the advent of SAR focusing promises to bring the satellite altimetry remote sensing closer to the shore up to around 500 meters. Anyway, this lower bound of 500 meter on coastal proximity is not always reachable, as the footprint shrinking occurs only in along track direction while the across track resolution shall remain basically unaltered. Hence, the orientation of the satellite ground-track with respect the coastline plays a role crucial for an effective filtering out of the off-nadir land-originated signals. In the present work, utilizing the current CryoSat-2 Altimeter Dataset (SAR L1b) acquired over coastal sea water, and by retracking the SAR L1b waveforms, a performances study of SAR altimetry in coastal zone will be addressed and the benefits and limits of this new technology highlighted. As particular study area, the Tyrrhenian Sea has been selected: statistics and metrics for sea surface height and significant wave height, as calculated from a cycle of passes, will be assessed, shown and interpreted. Finally, employing the Cryo

  7. Bankfull Discharge Using Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Leão, J. O.; Silva, J. S.; Research Team Of Rhasa

    2013-05-01

    Satellite altimetry is now a mature tool to collect water levels over large and medium-size rivers. The present study is dedicated to the determination of bankfull discharge using satellite altimetry and imagery to determine hydrological parameters such as the phase of the bankfull discharge at the crossing of the river bed with the ground track of the altimetry missions or the surface slope of the river. We applied the methodology to the two major tributaries of the Amazon river, namely the Rio Madeira and the Rio Negro. The results are a significzant difference in the values of bankfull discharge in the two basins, together with significant difference in along-course slopes, reflecting the difference in geomorphological context between the two watersheds.

  8. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  9. Mass balance of Icelandic ice caps from CryoSat swath mode altimetry

    NASA Astrophysics Data System (ADS)

    Foresta, L.; Gourmelen, N.; Pálsson, F.; Willis, I. C.; Nienow, P. W.; Shepherd, A.

    2015-12-01

    Satellite altimetry has been traditionally used in the past to infer elevation of land ice, quantify changes in ice topography and infer mass balance over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capability for observing the ice surface. However, monitoring of ice caps has proven more challenging. The large footprint of a conventional radar altimeter and relatively coarse ground track coverage are less suited to monitoring comparatively small regions with complex topography, so that mass balance estimates from RA rely on extrapolation methods to regionalize elevation change.Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the ESA radar altimetry CryoSat mission has collected ice elevation measurements over ice caps. Ground track interspacing (~4km at 60°) is one order of magnitude smaller than ERS/ENVISAT missions and half of ICESAT's, providing dense spatial coverage. Additionally the Synthetic Aperture Radar Interferometric (SARIn) mode of CryoSat provides a reduced footprint and the ability to locate accurately the position of the surface reflection. Conventional altimetry provides the elevation of the Point Of Closest Approach (POCA) within each waveform, every 250 m along the flight path. Time evolution of POCA elevation is then used to investigate ice elevation change.Here, we present an assessment of the geodetic mass balance of Icelandic ice caps using a novel processing approach, swath altimetry, applied to CryoSat SARIn mode data. In swath mode altimetry, elevation beyond the POCA is extracted from the waveform when coherent echoes are present providing between one and two orders of magnitude more elevations when compared to POCA. We generate maps of ice elevation change that are then used to compute geodetic mass balance for the period 2010 to 2015. We compare our results to estimates generated using

  10. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  11. Geophysical applications of satellite altimetry

    SciTech Connect

    Sandwell, D.T. )

    1991-01-01

    Publications related to geophysical applications of Seasat and Geosat altimetry are reviewed for the period 1987-1990. Problems discussed include geoid and gravity errors, regional geoid heights and gravity anomalies, local gravity field/flexure, plate tectonics, and gridded geoid heights/gravity anomalies. 99 refs.

  12. Range ambiguity clutter suppression for bistatic STAP radar

    NASA Astrophysics Data System (ADS)

    Xie, Wenchong; Zhang, Baihua; Wang, Yongliang; Zhu, Yong; Duan, Keqing; Li, Rongfeng

    2013-12-01

    Bistatic pulse-Doppler airborne radar has desirable properties such as the low probability of detection by other radars relative to its monostatic counterpart. However, the clutter characteristics of bistatic airborne radar are more complex than those of monostatic airborne radar. The clutter spectra not only vary severely with range, but also vary with bistatic configuration. In this article, the geometry model of bistatic airborne radar is given, and the approximate estimation expressions for clutter degrees of freedom (DOFs) are presented. Then a novel clutter suppression method for bistatic airborne radar with range ambiguity is presented. The method completes registration-based range ambiguity clutter compensation based on non-uniform sampling and the estimated clutter DOFs. The simulation results illustrate the performance improvement achieved for bistatic airborne radar.

  13. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission’s data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d’Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as

  14. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  15. Towards a Multi-Surface and Multi-Sensor Altimetry Calibration Site in Churchill, Manitoba, Hudson Bay

    NASA Astrophysics Data System (ADS)

    Braun, A.; Renganathan, V.; Fotopoulos, G.; Shum, C.

    2006-12-01

    Satellite altimetry is a space-based geodetic sensor primarily designed and employed to monitor ocean and ice sheets, however, new missions such as ICESat (laser) and upcoming/planned missions such as CryoSat-2 and WATer (interferometric radar altimeters) will also target more complex surface types including sea ice, wetlands, rivers, and land. Presently, most altimetry calibrations sites are located in low-latitude oceans, e.g. Corsica, Gavdos (Crete), Harvest Oil platform (California), and thus cannot deliver calibration information on sea ice, ice, snow or land surface. We propose the first calibration site of its kind at Churchill, Manitoba (58N,94W), located on the western shores of Hudson's Bay. This is a unique location as it provides long-term co-located GPS (13 yrs), tide gauge (66 yrs), and absolute gravimetry data (19 yrs). The surrounding area is comprised of wetlands, rivers, sea ice, snow, and seasonal ice/land surface with vegetation. These surface types exhibit distant height change signals including annual and inter-annual variability, which can be used for altimetry calibration that goes beyond the traditional tide gauge-altimetry comparison. Data from the geodetic sensors as well as data collected in leveling surveys in 2006 along the altimeter ground tracks will be used to compare a number of radar and laser altimetry missions over different surface types. Over coastal ocean, the interaction of ocean tides and sea ice freeboard height measured by laser or radar altimetry data will be investigated. Over land and wetlands, the heights are compared with in situ measurements which include ellipsoidal heights measured by permanent GPS and leveling, vegetation height and terrain slope. The site is assessed as a potential calibration site for dedicated ice, land and hydrology altimetry missions.

  16. Investigating short wavelength correlated errors on low resolution mode altimetry

    NASA Astrophysics Data System (ADS)

    Poisson, Jean-Christophe; Thibaut, Pierre; Dibarboure, Gérald; Labroue, Sylvie; Lasne, Yannick; Boy, François; Picot, Nicolas

    2013-04-01

    Although conventional radar altimetry products (Jason1, Jason2, LRM CRYOSAT2, etc) have a spatial resolution as high as 300 m, the observation of ocean scales smaller than 100 km is limited by the existence of a "spectral hump", i.e. a geographically coherent error. In the frame of the future altimetry missions (SAR for Cryosat -2 and Sentinel-3 missions and interferometry for the SWOT mission) it becomes crucial to investigate again and to better understand the signals obtained at small scales by conventional altimeter missions. Through an analysis of simulations, we show that heterogeneous backscattering scenes can result in the corruption of the altimeter waveforms and retracked parameters. The retrackers used in current ground processors cannot well fit the Brown model during backscattering events because this model has been designed for a homogeneous scene. The error is also propagated along-track because of the size and shape of the low resolution mode (LRM) disc-shaped footprint. The hump phenomenon is shown to be almost ubiquitous in the ocean, yet more intense at low latitudes and in the Indian Ocean and Western Pacific Ocean, where backscattering events are more frequent. Its overall signature could be a Gaussian-like random signal smooth for wavelengths smaller than 15 km, i.e. white noise on 1 Hz products. The analysis of current data from 5 altimetry missions highlights the influence of the instrument design and altitude, and the influence of the retracker used. The spectral hump is a systematic response to random events and it is possible to mitigate it with new processing. Simulations and geographically limited datasets from the synthetic aperture radar mode (SARM) of Cryosat-2 show that the thin stripe-shaped synthetic footprint of SARM might be less sensitive to the artifact.

  17. Europa Tide Inversion from REASON Altimetry

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Schroeder, D. M.; Steinbrügge, G.; Bills, B. G.

    2015-12-01

    Determining the amplitude of Europa's tides is central to understanding its ice shell and subsurface ocean. We assess the accuracy of retrieving the tidal amplitude solely using altimetry profiles produced by the REASON instrument (Radar for Europa Assessment and Sounding: Ocean to Near-surface), selected for the Europa Clipper mission. We investigate retrieval of the first Love number, h2, by inverting the entire set of altimetric ground tracks over the life of the mission. The inversion simultaneously estimates h2, long-wavelength topography, and spacecraft orbit parameters. In its simplest form, the inversion is quite robust: the time and location of the ground track uniquely fixes the phase of the sampled tide, where surface roughness acts as noise to be averaged out. In addition, we make an initial evaluation of altimetric biases that arise from known and hypothesized Europa topography using surface point target simulations. Overall, we find that the altimeter alone is capable of retrieving the first tidal Love number with accuracy sufficient to observationally constrain ice-shell thickness.

  18. Spatiotemporal Interpolation of Elevation Changes Derived from Satellite Altimetry for Jakobshavn Isbrae, Greenland

    NASA Technical Reports Server (NTRS)

    Hurkmans, R.T.W.L.; Bamber, J.L.; Sorensen, L. S.; Joughin, I. R.; Davis, C. H.; Krabill, W. B.

    2012-01-01

    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED).

  19. Satellite Altimetry and Hydrologic Modeling of Poorly-Gauged Upper Mahakam Sub-Watershed in Indonesia

    NASA Astrophysics Data System (ADS)

    Sulistioadi, Y. B.; Shum, C. K.; Jasinski, M. F.; Hidayat, H.

    2014-12-01

    This study presents results of hydrologic monitoring of a poorly gauged Upper Mahakam Sub Watershed in Kalimantan, Indonesia, using satellite radar altimetry data and a rainfall-runoff model. The study area is part of Mahakam Watershed that drains rugged and rolling terrain of 20,000 km2 dominated by rain forest with patchy farmland with precipitation of about 2,000 mm/year. The Hydrologic Engineering Corps - Hydrologic Modeling System (HEC-HMS) is used to simulate discharges using parameters determined from various geospatial data, including soil type, land cover and digital elevation model. Due to the limited in situ meteorological, water level and discharge data, a modified Thiessen polygon method is used to spatially model the Tropical Rainfall Measuring Mission (TRMM) data to match the location of field meteorological stations. The challenge for employing ESA's Environmental Satellite (Envisat) altimeter includes the limited spatial and temporal resolutions, e.g. the narrower river width compared to the satellite's ground footprint and the 35 days repeat period for the altimeter ground track . To mitigate the spatial limitation, or tracker biases causing the radar altimeter return waveforms to deviate from the expected waveform model, we selected Envisat altimetry water level data based on standard over-water waveform shapes for each of the 18 Hz averaged return signals. Results indicate that the use of Envisat altimetry is a viable approach for estimating water level of medium-sized river (200-800 m width). In addition, contrary to results from previous studies, the Ice-1 waveform retracker is not necessarily the best among the four standard radar waveform retrackers for Envisat altimetry for this study region. Further, although there is good comparison between HEC-HMS simulated and observed discharges, results indicate that satellite altimetry provided better estimates of water level than those inferred from HEC-HMS simulated discharges and rating curves.

  20. The geoid spectrum from altimetry

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1978-01-01

    Satellite altimetry information from the world's major oceans was analyzed to arrive at a geoid power spectrum. Using the equivalent of about 7 revolutions of data (mostly from GEOS-3) the power spectrum of the sea surface generally follows the expected values from Kaula's rule applied to the geoid. Analysis of overlapping altimetry arcs (and oceanographic data) shows that the surface spectrum is dominated by the geoid to about 500 cycles (40 km half wavelength) but that sea state departures are significant starting at about 250 cycles (80 km). Estimates of geopotential variances from a derived (smooth) geoid spectrum show significantly less power than Kaula's rule to about 60 cycles, but somewhat more from there to about 400 cycles. At less than 40 km half wavelength, the total power in the marine geoid may be negligible.

  1. Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Papa, Fabrice; Bala, Sujit K.; Pandey, Rajesh K.; Durand, Fabien; Gopalakrishna, V. V.; Rahman, Atiqur; Rossow, William B.

    2012-11-01

    This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than ˜4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from ˜2180 m3/s (6.5%) over the Brahmaputra to ˜1458 m3/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of ˜16% for 2009-2011 and ˜17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of ˜12500 m3/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.

  2. The Geoscience Laser Altimetry/Ranging System

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Degnan, John J., III; Bufton, Jack L.; Garvin, James B.; Abshire, James B.

    1987-01-01

    The Geoscience Laser Altimetry/Ranging System (GLARS), a combined laser ranging and altimetry system capable of subcentimeter position determinations of retroflector targets and subdecimeter profiling of topography, is described. The system uses advanced but currently available state-of-the-art components. Laboratory, field, and numerical experiments have indicated the suitability of GLARS as an instrument for Eos and other space platforms.

  3. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i

  4. Global ocean circulation by altimetry

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Haidvogel, D.

    1991-01-01

    The overall objectives of this project are to determine the general circulation of the oceans and many of its climate and biochemical consequences through the optimum use of altimetry data from TOPEX/POSEIDON and related missions. Emphasis is on the global-scale circulation, as opposed to the regional scale, but some more local studies will be carried out. Because of funding limitations, the primary initial focus will be on the time-dependent global-scale circulation rather than the mean; eventually, the mean circulation must be dealt with as well.

  5. Outreaching a space technique through its climate applications: altimetry and COP21 meeting example

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; De Staerke, Danielle

    2015-04-01

    Climate, and Climate change, are among the main general public interests. Altimetry is one of the most important tools for monitoring ocean dynamics, and as such is a source of vital data for including in forecasting models of ocean-atmosphere coupled events such as El Niño, monsoons, the North Atlantic Oscillation or decadal oscillations. Seasonal climate forecasting is also showing interesting results. The oceans are in turn affected by climate variations, as the sea level rises and falls in response to their fluctuations. Two radar altimetry satellites will be launched in 2015, with a strong French contribution (Jason-3 is a CNES/EUMETSAT/NASA/NOAA mission, Sentinel-3 is an ESA mission, with support from French expertise for the altimeter and altimetry processing). On another plan, the United Nations Climate Change Conference 21st yearly session of the Conference of the Parties (COP 21) meeting will take place in Paris end of 2015 (30 November to 11 December 2015). Outreaching radar altimetry through its climate-related applications using both the conference and the launches is thus an evidence. However, how, what and when? We will detail the points we consider as focus for this outreach (e.g. sea level rise measurement, but also El Niño, monsoons, etc.), how to broach them in order to reach the general public interest, via web, journalists, teachers etc. In particular, the Argonautica educational project (http://www.cnes.fr/web/CNES-fr/7161-argonautica.php) will focus in 2015 on climate issue, in relation also with formal school curricula, other satellite data and animal tracking. Past experience will be detailed, from the Aviso altimetry data distribution center, but also from partners, and future plans.

  6. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  7. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    NASA Astrophysics Data System (ADS)

    Baup, F.; Frappart, F.; Maubant, J.

    2013-12-01

    This study presents an approach to determine the volume of water in small lakes (<100 ha) by combining satellite altimetry data and high-resolution (HR) images. The lake being studied is located in the south-west of France and is only used for agricultural irrigation purposes. The altimetry satellite data are provided by RA-2 sensor on board Envisat, and the high-resolution images (<10 m) are obtained from optical (Formosat-2) and synthetic aperture radar (SAR) sensors (Terrasar-X and Radarsat-2) satellites. The altimetry data (data are obtained every 35 days) and the HR images (45) have been available since 2003 and 2010, respectively. In situ data (for the water levels and volumes) going back to 2003 have been provided by the manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2altimetry = 0.97, RMSEaltimetry = 5.2%, R2imagery = 0.90, and RMSEimagery = 7.4%). The third method combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2 = 0.99) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.

  8. Validation and inter-comparison of surface elevation changes derived from altimetry over the Jakobshavn Isbræ drainage basin, Greenland - Round Robin results from ESA's Ice_Sheets_CCI

    NASA Astrophysics Data System (ADS)

    Fredenslund Levinsen, Joanna; Khvorostovsky, Kirill; Ticconi, Francesca

    2013-04-01

    Satellite observations have been used to monitor changes occurring on Earth's surface for more than a decade. The high temporal and spatial resolution of such measurements provides us with unique possibilities for monitoring the effects of the climate changes over glaciers and ice sheets. In order to ensure long-term climate records, ESA has launched the Climate Change Initiative (ESA CCI), which puts focus on 13 different Essential Climate Variables, one of them being Ice Sheets. In this program, four selected key parameters will be determined: Surface elevation changes (SEC), surface velocities, calving front locations, and grounding line locations. This work focuses on the first mentioned parameter, and the goal is to develop the best routine for estimating SEC on the Greenland Ice Sheet using radar altimeter data. In order to find the most optimal approach we have completed a Round Robin experiment in which researchers from various European and US institutions have provided SEC estimates derived from either ENVISAT or ICESat data, for the test area by Jakobshavn Isbræ drainage basin. This has allowed us to compare the results from radar vs. laser altimetry, cross-over vs. along-track analyses, and the use of time series vs. a direct estimation of SEC. The results were validated against airborne lidar data from NASA's IceBridge and ESA's CryoVex campaigns. It was found that both radar and laser altimetry resolve the surface elevation changes quite well, and that the erroneous results found mainly in the coastal region can be improved by combining the methods of repeat-tracks and cross-overs. The former has a higher spatial resolution however is limited by rarely overlapping ground tracks, and hence interpolation methods need to be introduced. Furthermore, errors are introduced particularly along the ice margin due to slope effects while, for both methods, penetration of the signal into the firn pack needs to be accounted for. Cross-overs have a lower spatial

  9. Cassini RADAR's First Look at Titan

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Wall, S. D.; Allison, M. D.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.

    2005-01-01

    The Cassini Titan RADAR Mapper [1] is a Ku-band (13.78 GHz,lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. Radar observations on Titan passes Ta and T3 included rastered scatterometry, SAR, altimetry and rastered radiometry images of a full hemisphere in orthogonal linear polarizations. At this writing only the Ta data have been acquired, but data from both passes will be discussed in the presentation.

  10. Extraction of tidal channel networks from airborne scanning laser altimetry

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.

  11. Ocean Eddies From Satellite Altimetry: Progress and Outlook

    NASA Astrophysics Data System (ADS)

    Fu, L.

    2011-12-01

    Most of the kinetic energy of ocean circulation is contained in the ubiquitous mesoscale eddies. Their prominent signatures in sea surface height have rendered satellite altimetry highly effective in observing global ocean eddies. Our knowledge of ocean eddy dynamics has grown by leaps and bounds since the advent of satellite altimetry in the early 1980s. A brief review of recent progress will be presented. Notwithstanding the tremendous progress made from the existing observations, the limited resolution has prevented us from studying variability at wavelengths shorter than 50-100 km, where important eddy processes take place, ranging from energy dissipation to mixing and transport of water properties that are critical to understanding the roles of ocean in climate. The technology of radar interferometry promises to make wide-swath measurement of sea surface height at a resolution that is able to resolve eddy structures down to 10-25 km. This approach holds the potential to meet the challenge of extending the observations to the submesoscale and set a standard for future altimetric measurement of the ocean.

  12. A decade of sea ice thickness mapping by airborne lidar between Greenland and the North Pole

    NASA Astrophysics Data System (ADS)

    Hvidegaard, S. M.; Forsberg, R.; Skourup, H.; Stenseng, L.; Hanson, S.

    2007-12-01

    Airborne laser altimetry provides a direct measurement of sea ice freeboard, when combined with a precise geoid model and a lowest-level filtering algorithm to take into account residual errors in GPS-positioning, ocean dynamic topography, tides etc. Using swath laser scanning, the method additionally gives detailed information on the geometry of leads, ridges and the distribution of thin ice and open water. The conversion of sea ice freeboard heights to thickness is based on the assumption of equilibrium, with major errors sources relating to snow depth and density of sea ice. In the paper we describe results of measurements with airborne laser north of Greenland, Ellesmere Island and in the Fram Strait region, carried out on a yearly basis since 1998, in the first years using a single beam laser, and since 2001 using swath laser scanning giving a resolution of approximately 1 m in the ice features. The campaigns have mostly been done in the spring period, typically in connection with airborne gravity surveys or CryoSat calibration and validation activities. Observed secular changes in the sea ice freeboard heights are masked by limited spatial and temporal extent of campaigns, as well as interannual variability in the sea ice regime of the region. To address the error sources in the lidar thickness determination, a number of in-situ and helicopter EM comparisons have been carried out, e.g latest in April 2007 around the Tara drifting station beyond the North Pole, as part of the Damocles project. In cooperation with ESA and APL, coincident Ku-band radar and laser systems have also been flown, giving a unique opportunity for airborne measurement of snow depth as well.

  13. Elevation information in tail (EIT) technique for lidar altimetry.

    PubMed

    Hu, Yongxiang; Powell, Kathy; Vaughan, Mark; Tepte, Charles; Weimer, Carl; Beherenfeld, Mike; Young, Stuart; Winker, David; Hostetler, Chris; Hunt, William; Kuehn, Ralph; Flittner, David; Cisewski, Mike; Gibson, Gary; Lin, Bing; Macdonnell, David

    2007-10-29

    A technique we refer to as Elevation Information in Tail (EIT) has been developed to provide improved lidar altimetry from CALIPSO lidar data. The EIT technique is demonstrated using CALIPSO data and is applicable to other similar lidar systems with low-pass filters. The technique relies on an observed relation between the shape of the surface return signals (peak shape) and the detector photo-multiplier tube transient response (transient response tail). Application of the EIT to CALIPSO data resulted in an order of magnitude or better improvement in the CALIPSO land surface 30-meter elevation measurements. The results of EIT compared very well with the National Elevation Database (NED) high resolution elevation maps, and with the elevation measurements from the Shuttle Radar Topography Mission (SRTM). PMID:19550729

  14. Measuring water storage fluctuations in lake Dongting, China, by Topex/Poseidon satellite altimetry.

    PubMed

    Zhang, Jiqun; Xu, Kaiqin; Yang, Yonghui; Qi, Lianhui; Hayashi, Seiji; Watanabe, Masataka

    2006-04-01

    Although satellite radar altimetry was developed and optimized for open oceans, it has been used to monitor variations in the level of inland water-bodies such as lakes and rivers. Here, for the first time, we have further used the altimetry-derived variation of water level for estimating the fluctuation of water storage as an addition to the present in situ water storage estimation systems to be used in remote areas and in emergency situation such as in the events flooding monitoring and for studying the effect of climate change. Lake Dongting, the second largest lake in China, influenced frequently by flooding, was, therefore, chosen to demonstrate the potential of the technique. By using the concept of an "assumed reference point", we converted Topex/Poseidon satellite altimetry data on water level variations in Lake Dongting to "water level" data. The "water level" time-series data and in situ water storage were used to establish a rating curve. From the rating curve, we converted data on "water level" derived from seven years (1993-1999) of Topex/Poseidon data to actual water storage in Lake Dongting. The result reveals that the seasonal and annual fluctuations of water storage occurred during the 1990s with a more frequent flooding at the late 1990s' especially the flooding in whole catchment level in 1998 and 1999. The study supports the usefulness of satellite altimetry for dense and continuous monitoring of the temporal variations in water dynamic in moderate to large lakes. PMID:16502025

  15. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  16. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  17. A Super-Resolution Laser Altimetry Concept

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Trepte, Charles; Liu, Zhaoyan

    2014-01-01

    A super-resolution laser altimetry technique has been proposed to provide improved lidar altimetry from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar data, and it is applicable to other similar atmospheric profiling lidar with low-pass filters. To achieve high altimetry resolution, the new technique relies on an empirical relationship between the peak signal ratio and the distance between land surface and the peak signal range bin center, which is directly derived from the CALIPSO lidar measurements and does not require the CALIPSO's transient response. The CALIPSO surface elevation results in Northern America retrieved by the new technique agree with the National Elevation Database high resolution elevation maps, and the comparisons suggest that the precision of the technique is much better than 1.4 m. The preliminary data product of land surface elevation retrieved by the new technique from CALIPSO lidar measurements is available to the altimetry community for evaluation.

  18. Improved Oceanographic Measurements with CryoSat SAR Altimetry

    NASA Astrophysics Data System (ADS)

    Cotton, David; Benveniste, Jérôme; Cipollini, Paolo; Andersen, Ole; Cancet, Mathilde; Ambrózio, Américo; Restano, Marco; Nilo Garcia, Pablo; Martin, Francisco

    2016-07-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar "SAR" (or delay-Doppler) and interferometric SAR (SARin) modes. Studies on CryoSat data have analysed and confirmed the improved ocean measuring capability offered by SAR mode altimetry, through increased resolution and precision in sea surface height and wave height measurements, and have also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. We present work in four themes, building on work initiated in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry, which often leaves an un-measured "white strip" right at the coastline. Firstly, a thorough analysis was made of the performance of "SAR" altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over "conventional" pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin mode data to enable the retrieval of valid oceanographic measurements in coastal areas with complex topography. Thanks to further development of the algorithms, a new approach was achieved that can also be applied to SAR and conventional altimetry data (e.g., Sentinel-3, Jason series, Envisat). The third part of the project developed and evaluated improvements to the SAMOSA altimeter re-tracker that is implemented in the Sentinel-3 processing chain. The modifications to the

  19. Joint UK/US Radar Program progress reports for period December 1--31, 1994

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Rino, C.; Chambers, D.H.; Robey, H.F.; Belyea, J.

    1995-01-23

    Topics discussed in this report are current accomplishments in many functions to include: airborne RAR/SAR, radar data processor, ground based SAR signal processing workstation, static airborne radar, multi-aperture space-time array radar, radar field experiments, data analysis and detection theory, management, radar data analysis, modeling and analysis, current meter array, UCSB wave tank, stratified flow facility, Russian Institute of Applied Physics, and budget status.

  20. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  1. The integration and application of multi-satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Urban, Timothy James

    Satellite altimeter data spanning twenty-five years from GEOS-3, SEASAT, GEOSAT, ERS-1, TOPEX, and ERS-2 have been gathered, improved, validated, and integrated. Satellite data were updated with TOPEX-level corrections where possible. Wet troposphere and ionosphere altimeter corrections were evaluated globally, along-track, and zonally. Global mean sea level (GMSL) trend adjustments were made to ERS-1 and ERS-2 to correct for radiometer drifts with respect to TOPEX, improving their GMSL comparisons. IRI-95 model ionosphere corrections were evaluated against TOPEX dual-frequency measurements. New orbits were computed with improved accuracy for GEOS-3 (20 to 30 cm), SEASAT (10 to 15 cm), and GEOSAT (7 to 9 cm). An adaptive sequential filter was utilized to remove residual one-cycle-per-revolution radial orbit error. Optimal state noise compensation parameters for the filter were determined using a genetic algorithm. The application of the filter reduced single-satellite internal crossover differences. Relative altimeter biases between TOPEX and the other missions were determined using tide gauges. Relative biases were estimated for GEOS-3 (173 cm), SEASAT (37 and 26 cm, for 17-day and 3-day repeats), GEOSAT (7.9 and 8.9 cm, for GM and ERM), ERS-1 (-44.7 and -48.0 cm, for Phases A-F and Phase G), and ERS-2 (-9.0 cm). These biases are consistent with several other recent bias determinations and calibration campaigns. GMSL trends estimated for GEOSAT (1985--1988), ERS-1 (1991--1996), TOPEX (1993--1999), and ERS-2 (1995--1997), are -3.4 +/- 2.4, 2.3 +/- 1.1, 3.2 +/- 0.6, and 6.0 +/- 2.2 mm/year, respectively. GEOS-3 MSL exhibits a large slope (˜40 cm/year) and does not provide truly global coverage, and therefore cannot be used for global analyses. The short duration of the two SEASAT missions (July to October 1978) prevent GMSL trend analysis. GMSL from ERS-1, TOPEX, and ERS-2 were integrated into a single time series having an estimated mean sea level trend of 3.3 +/- 1.3 mm/year. Including GEOSAT, the estimated fifteen-year GMSL trend is 1.8 +/- 2.3 mm/year. Global and ocean basin MSL compare well to tide gauges. Climatological indices and sea surface temperatures show some positive correlations to satellite sea levels, indicating that GMSL is related to pressure changes and steric sea level rise in recent history.

  2. Study of radar pulse compression for high resolution satellite altimetry

    NASA Technical Reports Server (NTRS)

    Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.

    1974-01-01

    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.

  3. Future Concepts for River Discharge Measurements with Microwave Radar

    NASA Astrophysics Data System (ADS)

    Farquharson, G.; Plant, W. J.; Chickadel, C.; Jessup, A. T.

    2010-12-01

    River discharge has traditionally been estimated by combining in situ measurements of stage with in situ measurements of velocity and channel cross-section to derive stage-discharge rating curves. These measurements are time consuming and resource intensive, and only represent the state of the river at a single location. Thus, various researchers have studied non-contact stream gauging techniques using remote sensing instrumentation to estimate discharge. For example, airborne or space-borne radar has been used to measure surface velocity, and altimetry has been used to measure surface elevation. Other approaches have included coupling remote sensing measurements of water surface elevation and river channel width with a hydrodynamic model to estimate discharge. However, in all of these studies, prior knowledge of either the topology of the river bed or the channel roughness was assumed. This paper examines the potential of microwave radar to measure river discharge. Ultimately, our goal is to relate surface features to subsurface topology, thereby allowing non water-penetrating remote sensing measurements to estimate discharge. Our approach is to use interferometric Doppler radar to measure water elevation and surface velocity over a stretch of the river. If the channel topology is known, then discharge estimates can be computed from these measurements. To monitor changes in the channel, we draw on results from laboratory measurements and numerical simulations that demonstrate that variations in the mean water elevation along the river are related to the subsurface topography of the river bed. If the channel topology is not known, we propose to use a simple hydrodynamic model to estimate the depth. To do this, we compute the slope of the river using the water elevation measurements, and then estimate the pressure gradient in the river from the slope. In the case of steady, unstratified, open channel flow, the pressure gradient is balanced by the bottom stress

  4. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  5. Resolving Seamounts in Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H.

    2006-12-01

    We have examined three factors influencing the use of satellite altimeter data to map seamounts and guyots in the deep ocean: (1) the resolution of seamount and guyot gravity anomalies by altimetry; (2) the non-linearity of the relationship between gravity and bathymetry; and (3) the homogeneity of the mass density within the seamount or guyot. When altimeter data are used to model the marine gravity anomaly field the result may have limited resolution due to noise levels in the altimeter data, track spacing of the satellite profiles, inclination angles of the orbits, and filters used to combine and interpolate the data (Sandwell and Smith, JGR, 1997). We compared the peak-to-trough amplitude of gravity anomalies in Sandwell and Smith`'s version 15.1 field to peak-to-trough amplitudes measured by gravimeters on board ships. The satellite gravity field amplitudes match ship measurements well over seamounts and guyots having volumes exceeding ~2000 km3. Over smaller volume seamounts, where the anomalies have most of their power at quite short wavelengths, the satellite field under-estimates the anomaly amplitude. If less filtering could be done, or a new mission with a lower noise level were flown, more of the anomalies associated with small seamounts might be resolved. Smith and Sandwell (Science, 1997) predicted seafloor topography from altimetric gravity assuming that the density of seafloor topography is nearly constant over ~100 km distances, and that the relationship between gravity and topography may be approximated by a liner filter over those distances. In fact, the true theoretical relationship is non-linear (Parker, Geophys. J. R. astr. Soc, 1972); it can be expressed as an N-th order expansion, with the N=1 term representing a linear filter and the N>1 terms accounting for higher-order corrections. We find that N=2 is a sufficient approximation at both seamounts and guyots. Constant density models of large volume guyots do not fit the observed gravity

  6. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    NASA Astrophysics Data System (ADS)

    Baup, F.; Frappart, F.; Maubant, J.

    2014-05-01

    This study presents an approach to determining the volume of water in small lakes (<100 ha) by combining satellite altimetry data and high-resolution (HR) images. In spite of the strong interest in monitoring surface water resources on a small scale using radar altimetry and satellite imagery, no information is available about the limits of the remote-sensing technologies for small lakes mainly used for irrigation purposes. The lake being studied is located in the south-west of France and is only used for agricultural irrigation purposes. The altimetry satellite data are provided by an RA-2 sensor onboard Envisat, and the high-resolution images (<10 m) are obtained from optical (Formosat-2) and synthetic aperture radar (SAR) antenna (Terrasar-X and Radarsat-2) satellites. The altimetry data (data are obtained every 35 days) and the HR images (77) have been available since 2003 and 2010, respectively. In situ data (for the water levels and volumes) going back to 2003 have been provided by the manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to

  7. SMALT - Soil Moisture from Altimetry project

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel; Berry, Philippa; Wagner, Wolfgang; Hahn, Sebastian; Egido, Alejandro

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth’s land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter’s high frequency content alongtrack and a multi-looked 6” gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed

  8. Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Sheffner, E. J.; Linthicum, K. J.; Bailey, C. L.; Logan, T. M.; Kasischke, E. S.; Birney, K.; Njogu, A. R.; Roberts, C. R.

    1992-01-01

    Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat TM data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquite breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization SAR imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination between flooded and nonflooded sites in both sedge and short-grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.

  9. Implementation of Altimetry Data in the GIPSY POD Software Package

    NASA Technical Reports Server (NTRS)

    Stauch, Jason R.; Gold, Kenn; Born, George H.

    2001-01-01

    Altimetry data has been used extensively to acquire data about characteristics of the Earth, the Moon, and Mars. More recently, the idea of using altimetry for orbit determination has also been explored. This report discusses modifications to JPL's GIPSY/OASIS II software to include altimetry data as an observation type for precise orbit determination. The mathematical foundation of using altimetry for the purpose of orbit determination is presented, along with results.

  10. Coastal Altimetry, From Data Processing To Industrial Applications: Some Illustrations

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Jeansou, E.; Lamouroux, J.; Crespon, F.; Birol, F.; Lyard, F.; Morrow, R.; Bronner, E.; Benveniste, J.

    2013-12-01

    During the last ten years, many efforts were made to develop corrections and processing strategies dedicated to the coastal altimetry observations. Ever since, the coastal altimetry data has proved to be of high value in many scientific and industrial applications. This paper gives an overview of some of NOVELTIS recent projects related to coastal altimetry, from the products improvement and assessment to the promotion of coastal altimetry through the development of new added-value products.

  11. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  12. Spatial processing techniques for satellite altimetry applications in continental hydrology

    NASA Astrophysics Data System (ADS)

    Maillard, Philippe; Calmant, Stéphane

    2013-10-01

    Radar-based satellite altimetry is a well recognized measuring technique with good precision for oceanographic applications. For continental hydrology, its use is complicated by a number of factors such as river width, satellite crossing angle and noise from the river banks or islands. These factors make precision vary significantly. The satellite crossing points can be made into virtual gauging stations that can complement the existing network of in situ stations. This article describes a series of spatially explicit processing to correct or exclude altimetry measurements not related to the water level. While some processing take advantage of a priori information such as the centerline of the river, other processing are based on pattern recognition to characterize the shape described by the sequence of points. These problems are dealt with by fitting a second degree polynomial curve to the sequence of points and characterizing its shape. The correction is applied by determining a weight for each point in the crossing sequence of measurements. These processing approaches have been combined into a single tool called VHSTOOL. The method is tested on a 1000 km stretch of the S˜ao Francisco River in Brazil. Data from Envisat cover the 2003-2010 period while the recently launched Altika sensor provided data for a few months in 2013. Results show that the average accuracy of 60 cm obtained (45 cm by removing outliers) is comparable to that of completely manual methods. Altika measurements could not be validated since no recent in situ data was available but initial evaluation suggests increased details should bring some improvements over Envisat data.

  13. Airborne Interferometry using GNSS Reflections for Surface Level Estimation

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Beyerle, Georg; Schön, Steffen; Stosius, Ralf; Gerber, Thomas; Beckheinrich, Jamila; Markgraf, Markus; Ge, Maorong; Wickert, Jens

    2013-04-01

    The interferometric use of GNSS reflections for ocean altimetry can fill the gap in coverage of ocean observations. Today radar altimeters are used for large scale ocean observations to monitor e.g. global sea level change or circulation processes like El Niño. Spacial and temporal resolution of a single radar altimeter, however, is insufficient to observe mesoscale ocean phenomena like large oceanic eddies that are important indicators of climate change. The high coverage expected for a spaceborne altimeter based on GNSS reflections stimulated investigations on according interferometric methods. Several airborne experiments have been conducted using code observations. Carrier observations have a better precision but are severely affected by noise and have mostly been used in ground-based experiments. A new interferometric approach is presented using carrier observations for airborne application. Implementing a spectral retrieval noise reduction is achieved. A flight experiment was conducted with a Zeppelin airship on 2010/10/12 over Lake Constance at the border between Austria, Germany and Switzerland. The lake surface with an area of 536km2 is suitable for altimetric study as its decimeter range Geoid undulations are well-known. Three GNSS receiver were installed on the airship. A Javad Delta receiver recording direct signals for navigation. The DLR G-REX receiver recording reflected signals for scatterometry and the GORS (GNSS Occultation Reflectometry Scatterometry) receiver recording direct and reflected signals for interferometry. The airship's trajectory is determined from navigation data with a precision better than 10cm using regional augmentation. This presentation focuses on the interferometric analysis of GORS observations. Ray tracing calculations are used to model the difference of direct and reflected signals' path. Spectral retrieval is applied to determine Doppler residuals of modelled path difference and interferometric observations. Lake level

  14. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ..., Airborne Weather Radar Equipment. The objective is to leverage the installation specific guidance from the... previously addressed as additional functionality added to TSO-C63c, Airborne Weather and Ground...

  15. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  16. Altimetry data over trenches and island-arcs and convection in the mantle

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Transfer function techniques were developed to calculate the isostatic component of the geoid signal over trench/island arc/back arc systems. Removal of this isostatic component from geoid profiles determined by GEOS 3 radar altimetry leaves a residual geoid that can be attributed to the effect of mass inhomogeneities below the depth of compensation. Efforts are underway to extend the analysis to all the major trench/island arc systems of the world in order to provide more detailed understanding of the dynamic processes occurring beneath island arcs.

  17. AVISO+, the new reference web portal for altimetry

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; Guinle, Thierry; Maheu, Caroline; Morrow, Rosemary; Nino, Fernando; Birol, Florence

    2014-05-01

    AVISO is the showcase of CNES activities in altimetry. Indeed, the altimetric products processed by the SALP service from CNES (Service d'Altimetrie et de Localisation Precise) are disseminated via AVISO portal since 1995. In recent years, AVISO became a reference in the international oceanographic and altimetry communities, with more than 5,000 registered users in 2013. In 2014 AVISO is enlarging its applications outside the purely ocean-oriented ones, thus becoming AVISO + (www.aviso.altimetry.fr). The portal opens to new applications such as hydrology / coastal / ice. Moreover, it merges with the CTOH (French Observation Service dedicated to satellite altimetry studies) website to provide users with operational as well as demonstration products and expertise in a unique website. We present here all the novelties - new look, new functionnalities, new products, new data access service… hoping to see you soon on our brand-new altimetry portal, www.aviso.altimetry.fr!

  18. CloudSat as a Global Radar Calibrator

    SciTech Connect

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  19. Development of a multi-sensor elevation time series pole-ward of 86°S in support of altimetry validation and ice sheet mass balance studies

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Brunt, K. M.; Casey, K.; Medley, B.; Neumann, T.; Manizade, S.; Linkswiler, M. A.

    2015-12-01

    In order to produce a cross-calibrated long-term record of ice-surface elevation change for input into ice sheet models and mass balance studies it is necessary to "link the measurements made by airborne laser altimeters, satellite measurements of ICESat, ICESat-2, and CryoSat-2" [IceBridge Level 1 Science Requirements, 2012] and determine the biases and the spatial variations between radar altimeters and laser altimeters using different wavelengths. The convergence zones of all ICESat tracks (86°S) and all ICESat-2 and CryoSat-2 tracks (88°S) are in regions of relatively low accumulation, making them ideal for satellite altimetry calibration. In preparation for ICESat-2 validation, the IceBridge and ICESat-2 science teams have designed IceBridge data acquisitions around 86°S and 88°S. Several aspects need to be considered when comparing and combining elevation measurements from different radar and laser altimeters, including: a) foot print size and spatial sampling pattern; b) accuracy and precision of each data sets; c) varying signal penetration into the snow; and d) changes in geodetic reference frames over time, such as the International Terrestrial Reference Frame (ITRF). The presentation will focus on the analysis of several IceBridge flights around 86 and 88°S with the LVIS and ATM airborne laser altimeters and will evaluate the accuracy and precision of these data sets. To properly interpret the observed elevation change (dh/dt) as mass change, however, the various processes that control surface elevation fluctuations must be quantified and therefore future work will quantify the spatial variability in snow accumulation rates pole-ward of 86°S and in particular around 88°S. Our goal is to develop a cross-validated multi-sensor time series of surface elevation change pole-ward of 86°S that, in combination with measured accumulation rates, will support ICESat-2 calibration and validation and ice sheet mass balance studies.

  20. Capabilities of lightsat constellation for operational altimetry

    NASA Astrophysics Data System (ADS)

    Aguttes, J. P.; Bellaiche, G.

    1992-08-01

    An overview is given of mission tradeoffs involved in lightsat constellations for operational altimetry. Typical mission requirements for a light satellite system and system constraints are discussed. A typical operational performance of a light satellite system is briefly described, and the lightsat as a tool for international cooperation is addressed.

  1. Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter

    2016-04-01

    Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of

  2. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  3. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    USGS Publications Warehouse

    Lu, Zhiming; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  4. Prospects for altimetry and scatterometry in the 90's. [satellite oceanography

    NASA Technical Reports Server (NTRS)

    Townsend, W. F.

    1985-01-01

    Current NASA plans for altimetry and scatterometry of the oceans using spaceborne instrumentation are outlined. The data of interest covers geostrophic and wind-driven circulation, heat content, the horizontal heat flux of the ocean, and the interactions between atmosphere and ocean and ocean and climate. A proposed TOPEX satellite is to be launched in 1991, carrying a radar altimeter to measure the ocean surface topography. Employing dual-wavelength operation would furnish ionospheric correction data. Multibeam instruments could also be flown on the multiple-instrument polar orbiting platforms comprising the Earth Observation System. A microwave radar scatterometer, which functions on the basis of Bragg scattering of microwave energy off of wavelets, would operate at various view angles and furnish wind speeds accurate to 1.5 m/sec and directions accurate to 20 deg.

  5. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  6. Measurement of river level variations with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Koblinsky, C. J.; Clarke, R. T.; Brenner, A. C.; Frey, H.

    1993-06-01

    Quantitative assessment of water levels and river discharge is often made difficult by large distances, limited access, and low population densities in remote areas. Satellite altimetry provides a repetitive remote sensing approach to determining river levels at a number of locations within a river system, providing the orbital repeat cycle is short enough in time, the ground track maintains a stable repeat over previous locations, and the return power of the altimeter signal can be readily identified and located. The U.S. Navy's Geosat radar altimeter mission between 1985 and 1989 provided the first altimeter measurements with sufficient precision and extended duration to examine the utility of such measurements for long-term monitoring of inland waters. These measurements have been examined over the Amazon basin. Satellite observations are retrieved at four locations that overlap with river gauge measurements. A technique is developed to isolate radar return signals from the river. Two years of satellite measurements are compared with the river gauge retrievals. The overall level of comparison is 0.7 m rms when the technique is applied manually, and 1.2 m rms when an automated version of the method is applied. At one location the average difference is 0.2 m rms. This level of accuracy may not be useful for routine hydrological measurements. However, there are a variety of difficulties that are specific to the Geosat altimeter measurement over rough terrain. Present altimeter satellites, ERS 1 (launched June 1991) and TOPEX/Poseidon (launched August 1992), correct many of these problems. This study suggests that the prospect for obtaining useful measurements of river level from space is promising.

  7. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    PubMed

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown. PMID:17752757

  8. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  9. Airborne Imaging in the Yukon River Basin to Characterize SWOT Mission Phenomenology

    NASA Astrophysics Data System (ADS)

    Moller, D.; Pavelsky, T.; Arvesen, J. C.

    2015-12-01

    Remote sensing offers intriguing tools to track Arctic hydrology, but current techniques are largely limited to tracking either inundation or water surface elevation only. For the first time, the proposed Surface Water Ocean Topography (SWOT) satellite mission will provide regular, simultaneous observations of inundation extent and water level from space. SWOT is unique and distinct from precursor altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean coverage, 2) in addition to the ocean product, land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the height measurements introducing a new measurement technique. This new approach introduces additional algorithmic, characterization and calibration/validation needs for which the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) was developed. In May 2015, AirSWOT (comprised of KaSPAR and a color infrared (CIR) high resolution aerial camera) was part of an intensive field campaign including observations of inundation extent and water level and in situ hydrologic measurements in two rivers and 20 lakes within the Yukon River Basin, Alaska. One goal is to explore the fundamental phenomenology of the SWOT measurement. This includes assessment of the effects of vegetation layover and attenuation, wind roughening and classification. Further KaSPAR-derived inundation extent will to be validated using a combination of ground surveys and coregistered CIR imagery. Ultimately, by combining measurements of changing inundation extent and water level between two collection dates, it will be possible to validate lake water storage variations against storage changes computed from in situ water levels and inundation area derived from AirSWOT. Our paper summarizes the campaign, the airborne and in situ measurements and presents some initial KaSPAR and CIR imagery from the Yukon flats region.

  10. Evolution of Altimetry Calibration and Future Challenges

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  11. Satellite altimetry over large hydrological basins

    NASA Astrophysics Data System (ADS)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  12. Cassini RADAR Observations of Saturn's Largest Moon, Titan

    NASA Astrophysics Data System (ADS)

    Hayes, A. G., Jr.; Mastrogiuseppe, M.; Lunine, J. I.; Lorenz, R. D.; Wall, S. D.; Stiles, B. W.; Kirk, R. L.; Elachi, C.; Hofgartner, J. D.; Birch, S. P.; Le Gall, A. A.; Poggiali, V.; Zebker, H. A.

    2015-12-01

    The Cassini RADAR is a versatile instrument capable of operating in imaging, altimetry, scatterometry, radiometry, and, most recently, sounding modes. Despite vastly different material properties and environmental conditions, Titan's methane-based hydrologic system drives climatic and geologic processes that result in morphologic features with striking similarity to terrestrial counterparts, including vast equatorial dune fields, well-organized channel networks that route material through erosional and depositional landscapes defining source-to-sink sediment transport systems, and, perhaps most astonishingly, lakes and seas filled with liquid hydrocarbons. Using its various operating modes, the Cassini RADAR has provided a wealth of information regarding Titan's active surface-atmosphere system. In Synthetic Aperture Radar (SAR) mode, the RADAR has unveiled Titan's surface by producing backscatter maps with pixel scales of ~300 m. In altimetry mode, the RADAR has shown the elevation profile of surface features, including the liquid elevation of Titan's lakes and seas, revealed the roughness characteristics of the surface, and constrained the global shape. Most recently, the altimetry mode has doubled as a radar sounder that has successfully probed the depth and absorptivity of the lakes and seas. Data from the scatterometry and radiometry modes have been used to constrain material properties, including dielectric constants and volume scattering fractions, surface texture, and derive seasonal and diurnal temperature variations. Collectively, these datasets have revealed Titan's strange yet familiar nature, and demonstrated that it is one of the most compelling targets in our solar system. During our presentation, we will summarize these capabilities and review some of the most specular discoveries made by the Cassini RADAR.

  13. Monitoring drying up of Urmia lake with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Roohi, Shirzad; Sneeuw, Nico

    2013-04-01

    Urmia lake is a UNESCO protected area with more than a hundred small rocky islands. It is home to several species of birds and animals. Located in northwestern Iran, it is the largest lake in the Middle East and the third largest salty water lake on earth. It has a surface area of approximately 5200 km², and an average depth of 16 m. Unfortunately during the recently years Urmia lake has been shrinking. If the drought process continues at the current rate it would be disappear in the near future. The main factors that speeds up the drought rate of the lake, are dam construction on the main rivers which feeds the lake, evaporation and lack of precipitation during recent years as well as irrigation. The construction of a causeway in the middle of the lake also affects the natural ecosystem of the lake. The case of Urmia lake and similar cases in other parts of the word emphasize the role of new technology such as satellite altimetry in better management of water resource and monitoring such critical situations. In this research we show the current situation and recent past of the lake from processing 10 years of Envisat satellite radar altimetry data. For internal validation of the result, water level time series were built from ascending and descending tracks separately and for external validation in-situ gauge measurements were used. Internal and external comparisons indicates the result are consistent, i.e there is no bias and systematic error in Envisat data. The RMSE between ascending and descending tracks is several centimeters and between satellite and gauge data is 1m. Water level time series analysis shows that there is a declining rate of 0.3 m/year in the water level but after 2005 it seems to have accelerated. This rate increases the salinity of lake and expands receding shoreline rapidly so the lake bed will reveal fast because the lake is shallow especially in the south part. Following this research we are investigating to find the best re-tracker in

  14. Satellite Altimetry for a Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    2000-01-01

    Space-age technologies have made satellite remote sensing a powerful new tool to study the Earth on a global scale. However, the opacity of the ocean to electromagnetic sensing has limited spaceborne measurements to the properties of the surface layer of the ocean (such as sea surface temperature and color). The radar altimetric measurement of the height of the sea surface relative to the geoid, the dynamic topography of the ocean, is a very useful quantity for studying the circulation of the ocean. The ability of measuring dynamic topography from space makes satellite altimetry a uniquely useful remote sensing technique because dynamic topography reflects oceanic processes not only at the surface but at depths as well. A simple analysis shows that a one centimeter tilt in the dynamic topography is associated with a mass transport of 1-7 Sv (1Sv= 1 million tons per second) in the open ocean depending on the vertical distribution of current velocity. Such a magnitude is an appreciable fraction of the transport of the Florida Current (circa 30 Sv), for instance. TOPEX/POSEIDON has demonstrated the capability of measuring the time variation of sea level with accuracy approaching to 2 cm when the data are averaged over boxes with several hundred kilometers on each side. The data set has been used for studying ocean circulation phenomena with a wide range of scales, ranging from fast-changing barotropic variability to seasonal and interannual variability such as El Nino and La Nina. The long record of precise measurement of global sea level has also showed great promise for monitoring the variation of mean sea level, an effective indicator of global climate change. Continuation of satellite altimetry missions with capability matching or better than that of TOPEX/POSEIDON should be included as a key component of a Global Ocean Observing System. NASA and CNES have committed to continuing the measurement of TOPEX/POSEIDON with a series of follow-on missions called Jason

  15. The Ionosphere and Ocean Altimetry

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.

    1999-01-01

    The accuracy of satellite-based single-frequency radar ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from the global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. We have created a daily automated process called Daily Global Ionospheric Map (Daily-GIM) whose primary purpose is to use global GPS data to provide ionospheric calibration data for the Geosat Follow-On (GFO) ocean altimeter. This process also produces an hourly time-series of global maps of the electron content of the ionosphere. This system is designed to deliver "quick-look" ionospheric calibrations within 24 hours with 90+% reliability and with a root-mean-square accuracy of 2 cm at 13.6 GHz. In addition we produce a second product within 72 hours which takes advantage of additional GPS data which were not available in time for the first process. The diagram shows an example of a comparison between TEC data from the Topographic Experiment (TOPEX) ocean altimeter and Daily-GIM. TEC are displayed in TEC units, TECU, where 5 TECU is 1 cm at 13.6 GHz. Data from a single TOPEX track is shown. Also shown is the Bent climatological model TEC for the track. Although the GFO satellite is not yet in its operational mode, we have been running Daily-GIM reliably (much better than 90%) with better than 2-cm accuracy (based on comparisons against TOPEX) for several months. When timely ephemeris files for the European Remote Sensing Satellite 2 (ERS-2) are available, daily ERS-2 altimeter ionospheric calibration files are produced. When GFO ephemeris files are made available to us, we produce GFO ionosphere calibration files. Users of these GFO ionosphere calibration files find they are a great improvement over the alternative International Reference Ionosphere 1995 (IRI-95) climatological model. In addition, the TOPEX orbit

  16. Tropical Rainfall Measuring Mission (TRMM) project. VII - Techniques for radar data processing

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Fujita, Masaharu; Nakamura, Kenji

    1990-01-01

    The paper describes algorithms for rain-rate profiling with an airborne or space-borne radar. Some problems involved in the radar measurements from an airborne or space-borne platform are discussed. An outline of a dual-frequency algorithm is described and its performance is confirmed by a computer simulation and an airborne experiment. A single-frequency algorithm is developed by introducing a path-integrated rain rate estimated from an attenuation of surface echoes or from microwave brightness temperature. The computer simulation shows good performance for an airborne or space-borne radar.

  17. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  18. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  19. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  20. Ocean circulation modeling by use of radar altimeter data

    NASA Technical Reports Server (NTRS)

    Olbers, Dirk; Alpers, W.; Hasselmann, K.; Maier-Reimer, E.; Kase, R.; Krauss, W.; Siedler, G.; Willebrand, J.; Zahel, W.

    1991-01-01

    The project will investigate the use of radar altimetry (RA) data in the determination of the ocean circulation models. RA data will be used to verify prognostic experiments of the steady state and seasonal cycle of large-scale circulation models and the statistical steady state of eddy-resolving models. The data will serve as initial and update conditions in data assimilation experiments and as constraints in inverse calculations. The aim of the project is a better understanding of ocean physics, the determination and mapping of ocean currents, and a contribution to the establishment of ocean circulation models for climate studies. The goal of the project is to use satellite radar altimetry data for improving our knowledge of ocean circulation both in a descriptive sense and through the physics that govern the circulation state. The basic tool is a series of ocean circulation models. Depending on the model, different techniques will be applied to incorporate the RA data.

  1. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    NASA Astrophysics Data System (ADS)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  2. Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug

    2012-01-01

    Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  3. Coastal SAR Altimetry: An Experiment in the Northern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Dinardo, Salvatore; Lucas, Bruno; Benveniste, Jerome

    2013-04-01

    As it has been already shown by previous works (Dinardo et al., 2011, 5th Coastal Altimetry Workshop proceedings), the CryoSat-2 SAR Echoes behave very well in accordance with the waveform physical models even in the very proximity of the coastline in case of favourable conditions (ground-tracks orthogonal to the coastline) whereas they can be still heavily land-contaminated in case the ground-track runs parallel to the coast line. This anisotropic effect is due to the shrinkage of the spatial resolution in SAR mode that occurs just in along-track direction, leaving unchanged the across-track resolution. As a consequence of this footprint shrinkage, the advent of SAR Mode promises to revolutionize the coastal zone satellite altimetry. Anyway, nowadays, all the current more mature SAR Re-tracking methodologies (SAMOSA and CNES/CLS CPP) are designed to offer the best performances over open ocean surfaces (diffusive surface scattering mechanism). Notwithstanding, they may perform also very well in coastal zones unless: 1) the echoes suffer a really "heavy" contamination from the surrounding land 2) the echoes originate from very shallow and still coastal waters (specular surface scattering mechanism). This second case is not very frequent in coastal zones but it may be observed now more often because in SAR mode we have finally the possibility, in favourable conditions, to really reach the shoreline where a still water scenario can be encountered. Following the initial work presented at 6th Coastal Altimetry Workshop (2012), we will attempt to adapt the original open ocean SAMOSA SAR Echo Model to a coastal still water scenario. Indeed, the SAMOSA SAR Echo Model is a "water" model and can be used to reproduce a SAR Echo originated either from rough water surface (open ocean) either from standing water surface (bays, wetlands, lakes and rivers). The model adaptation to coastal still water scenario will be operated estimating the water surface rms slope (RMSSS) from the

  4. Arctic sea ice freeboard heights from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Renganathan, Vidyavathy

    processes in the model parameterization, as they are not constrained by observations from sea ice covered regions. A sensitivity analysis of the freeboard estimation procedure indicates an uncertainty of ˜0.24 m over a length scale of 100 km. The estimated total ice freeboards were compared with freeboard measurements from other methods (e.g. 'lowest level'), and a good agreement was found between the two methods at regional scales. The sea ice thickness, in the multi-year ice region north of Greenland and Ellesmere Island, was also derived from the total ice freeboard heights by assuming a hydrostatic equilibrium condition. The estimated thicknesses were compared with the thickness measurements from a Helicopter-borne Electromagnetic Induction technique. The difference between the means of the two thickness distributions was ˜0.53 m, which is well below the accuracy of the thickness estimates of ˜0.98 m. The sea ice freeboard estimation procedure, demonstrated in this study, can also be applied to upcoming laser and radar altimetry missions, such as Cryosat-2 and ICESat-2, to continuously monitor the regional, seasonal and inter-annual changes in the Arctic sea ice freeboard (and thickness) distribution.

  5. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  6. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point

  7. Tides on the Patagonian shelf from the Seasat radar altimeter

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1981-01-01

    The purpose of the study described here is to show comparisons between measurements of the sea surface height by the Seasat radar altimeter and tidal elevations based on gauge data along the coast for two passes by the satellite along the shelf. The results provide initial confirmation that tides can be detected in this region by way of satellite altimetry. The study extends a similar presentation by Parke (1980).

  8. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  9. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  10. SWOT: A high-resolution wide-swath altimetry mission for oceanography and hydrology

    NASA Astrophysics Data System (ADS)

    Morrow, Rosemary; Fu, Lee-Lueng; Rodriguez, Ernesto

    2013-04-01

    A new satellite mission called Surface Water and Ocean Topography (SWOT) has been developed jointly by the U.S. National Aeronautics and Space Administration and France's Centre National d'Etudes Spatiales. Based on the success of nadir-looking altimetry missions in the past, SWOT will use the technique of radar interferometry to make wide-swath altimetric measurements of the elevation of surface water on land and the ocean's surface topography. The new measurements will provide information on the changing ocean currents that are key to the prediction of climate change, as well as the shifting fresh water resources resulting from climate change. Conventional satellite altimetry has revolutionized oceanography by providing nearly two decades' worth of global measurements of ocean surface topography. However, the noise level of radar altimeters limits the along-track spatial resolution to 50-100 km over the oceans. The large spacing between the satellite ground tracks limits the resolution of 2D gridded data to 200 km. Yet most of the kinetic energy of ocean circulation takes place at the scales unresolved by conventional altimetry. About 50% of the vertical transfer of heat and chemical properties of the ocean (e.g., dissolved CO2 and nutrients) is also accomplished by processes at these scales. SWOT observations will provide the critical new information at these scales for developing and testing ocean models that are designed for predicting future climate change. SWOT measurements will be in Ka band (~35 GHZ), chosen for the radar to achieve high precision with a much shorter inteferometry baseline of 10 m. Small look angles (~ 4 degrees) are required to minimize elevation errors, which limits the swath width to 120 km. An orbit with inclination of 78 degrees and 22 day repeat period was chosen for gapless coverage and good tidal aliasing properties. With this configuration, SWOT is expected to achieve 1 cm precision at 1 km x 1 km pixels over the ocean and 10 cm

  11. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  12. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers

    NASA Astrophysics Data System (ADS)

    Villadsen, Heidi; Deng, Xiaoli; Andersen, Ole B.; Stenseng, Lars; Nielsen, Karina; Knudsen, Per

    2016-06-01

    Satellite altimetry has proven a valuable resource of information on river and lake levels where in situ data are sparse or non-existent. In this study several new methods for obtaining stable inland water levels from CryoSat-2 Synthetic Aperture Radar (SAR) altimetry are presented and evaluated. In addition, the possible benefits from combining physical and empirical retrackers are investigated. The retracking methods evaluated in this paper include the physical SAR Altimetry MOde Studies and Applications (SAMOSA3) model, a traditional subwaveform threshold retracker, the proposed Multiple Waveform Persistent Peak (MWaPP) retracker, and a method combining the physical and empirical retrackers. Using a physical SAR waveform retracker over inland water has not been attempted before but shows great promise in this study. The evaluation is performed for two medium-sized lakes (Lake Vänern in Sweden and Lake Okeechobee in Florida), and in the Amazon River in Brazil. Comparing with in situ data shows that using the SAMOSA3 retracker generally provides the lowest root-mean-squared-errors (RMSE), closely followed by the MWaPP retracker. For the empirical retrackers, the RMSE values obtained when comparing with in situ data in Lake Vänern and Lake Okeechobee are in the order of 2-5 cm for well-behaved waveforms. Combining the physical and empirical retrackers did not offer significantly improved mean track standard deviations or RMSEs. Based on these studies, it is suggested that future SAR derived water levels are obtained using the SAMOSA3 retracker whenever information about other physical properties apart from range is desired. Otherwise we suggest using the empirical MWaPP retracker described in this paper, which is both easy to implement, computationally efficient, and gives a height estimate for even the most contaminated waveforms.

  13. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  14. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  15. Progress reports for period November 1--30, 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-12-19

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis;modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Budget status is also given.

  16. Laser Altimetry for Earth and Planetary Science

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    2001-01-01

    Laser altimeters are presently operating on spacecraft at Mars (MOLA), at the asteroid 433 Eros (NLR), and an earlier system operated at the Moon (Clementine) several years ago. These systems have all advanced our understanding of the evolution of the primary body and several more laser altimeter systems will be launched in the next several years around Earth and other planets to address a wide range of scientific problems. Laser technology for precision altimetry and atmospheric lidar is still in its infancy but the promise of the technology and its demonstrated results already show that laser altimetry/lidar will play an important role in future space observations. To date, lasers have mapped the Moon, Mars, and an asteroid but in a short while they will help measure the planetary librations of Mercury, the tidal distortions of Europa, and tree heights, upper atmosphere winds and the icecaps of planet Earth. Major areas of interest for the immediate future are the development of long-life lasers that can withstand the rigors of long planetary missions in extreme thermal and radiation environments and continue to operate successfully for many years.

  17. Analysis and interpretation of lunar laser altimetry.

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.; Schubert, G.; Lingenfelter, R. E.; Sjogren, W. L.; Wollenhaupt, W. R.

    1972-01-01

    About 4.5 revolutions of laser altimetry were obtained by Apollo 15. This altimetry indicates a 2-km displacement of the center of mass from the center of figure toward the earthside. The terrae are quite rough, with frequent changes of 1 km or more in successive altitudes at about 33-km intervals. The mean altitude of terrae above maria is about 3 km with respect to the center of mass, indicating a thickness of about 24 km for a high-alumina crust. The maria are extremely level, with elevations varying not more than plus or minus 150 m about the mean over some stretches of 200 to 600 km. However, different maria have considerably different mean elevations. The largest unanticipated feature found is a 1400 km wide depression centered at about 180 deg longitude, and 2 km deep with respect to a 1737-km sphere (about 6 km deep with respect to the surrounding terrae). This basin has the appearance of typical terrae, although there are indications of a ring structure of about 600-km radius in the Orbiter photography. Altitudes across circum-Orientale features suggest that Mare Orientale is also a deep basin. The data appear to corroborate a model of early large-scale differentiation of a crust, followed a considerable time later by short intense episodes of mare filling with low viscosity lavas.

  18. Somali current studied from SEASAT altimetry

    NASA Technical Reports Server (NTRS)

    Perigaud, C.; Minster, J. F.; Zlotnicki, V.; Balmino, G.

    1984-01-01

    Mesoscale variability has been obtained for the world ocean from satellite altimetry by using the repetitive tracks data of SEASAT. No significant results were obtained for the Somali current area for two main reasons: the repetitive tracks are too sparse to cover the expected eddy pattern and these data were obtained in late September and early October when the current is strongly decaying. The non-repetitive period of SEASAT offers the possibility to study a dozen of tracks parallel to the eddy axis or crossing it. These are used here to deduce the dynamic topography of the Somali current. Data error reduction and tide and orbit corrections are addressed. A local geoid was built using a collocation inverse method to combine surface gravity data and altimetry: the repetitive tracks show no variability (which confirms that the current is quasi-inexistent at that time) and can be used as data for the local geoid. This should provide a measure of the absolute dynamic topography of the Somali current.

  19. Aviso: altimetry products and services in 2013

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; Maheu, Caroline; Mertz, Françoise

    2013-04-01

    Since the launch of Topex/Poseidon, more than 20 years ago, satellite altimetry has evolved in parallel with the user community and oceanography. As a result of this evolution, we now have: - A bigger choice of products, more and more easy-to-use, spanning complete GDRs to pre-computed sea level anomalies and gridded datasets and indicators such as MSL index or ENSO index. - a mature approach, combining altimetric data from various satellites and merging data acquired using different observation techniques, including altimetry, to give us a global view of the ocean; - data available in real or near-real time for operational use. Different services are available either to choose between the various datasets, or to download, extract or even visualize the data. An Ipad-Iphone application, AvisOcean has also been opened in September 2012, for information about the data and their updates. 2013 will see major changes in Aviso data distribution, both in data products themselves and in their distribution, including an online extraction tool in preparation (Online Data Extraction Service). An overview of available products & services, how to access them today, will be presented.

  20. Aviso: altimetry products & services in 2013

    NASA Astrophysics Data System (ADS)

    Mertz, F.; Bronner, E.; Rosmorduc, V.; Maheu, C.

    2013-12-01

    Since the launch of Topex/Poseidon, more than 20 years ago, satellite altimetry has evolved in parallel with the user community and oceanography. As a result of this evolution, we now have: - a wide range of products, more and more easy-to-use, spanning complete GDRs to pre-computed sea level anomalies, gridded datasets and indicators such as MSL index or ENSO index. - a wide range of applications in the oceanographic community: ocean observation, biology, climate, ... - a mature approach, combining altimetric data from various satellites and merging data acquired using different observation techniques, including altimetry, to give us a global view of the ocean; - data available in real or near-real time for operational use. Different services are available either to choose between the various datasets, or to download, extract or even visualize the data. An Ipad-Iphone application, AvisOcean has also been opened in September 2012, for information about the data and their updates. 2013 has seen major changes in Aviso data distribution, both in data products themselves and in their distribution, including an online extraction tool in preparation (Online Data Extraction Service). An overview of available products & services, how to access them today, will be presented.

  1. Application of satellite altimetry for fisheries investigation

    NASA Astrophysics Data System (ADS)

    Sirota, A. M.; Lebedev, S. A.; Burykin, S. N.; Timokhin, E. N.; Chernyshkov, P. P.

    Satellite altimetry data provide good possibility to reveal the zones of high dynamic activity e g oceanic currents and fronts mesoscale features etc The four oceanic region were considered Irminger Sea Mid Atlantic Ridge North Atlantic Canary Upwelling Region Eastern Central Atlantic and Southeastern Pacific Both satellite altimetry data TOPEX Poseidon ERS -1 2 and in situ measurements oceanographic surveys demonstrated good correlation between these two different types of data in revealing of dynamic features at the ocean surface The main dynamic features in the regions are Sub-Polar Front and North Atlantic Current Irminger Sea and Mid Atlantic Ridge Canary Current and coastal upwelling Eastern Central Atlantic Sub-Tropical Front and South Pacific Current Southeastern Pacific Analysis of distribution abundance and biological state of various fish species revealed the links between organisms and their dynamic environmental conditions in the considered regions Variability of the distribution and abundance of rock grenadier over Mid Atlantic Ridge is closely connected to variations of Sub-Polar Front location Distribution of fishery grounds in the Irminger Sea coincides with dynamic heterogeneities at the sea surface elevation field Distribution of small pelagic fish in Canary Upwelling Region is influenced by mesoscale features of Canary Current and coastal upwelling Sub-Tropical Front meandering and eddies in Southeast Pacific influence significantly horse mackerel distribution Thus the peculiarities of dynamic features of the ocean

  2. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry - First results

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Krogh, P. E.; Michailovsky, C.; Bauer-Gottwein, P.; Christiansen, L.; Berry, P.; Garlick, J.

    2008-12-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital information in un-gauged regions. A system of GRACE custom designed Mass Concentration blocks (Mascons) have been designed to model time-variable gravity changes for the largest basins in Southern Africa (Zambezi, Okavango, Limpopo and Orange) covering an area of 9 mill km2 with a resolution of 1 by 1.25 degree. Satellite altimetry have been used to derive high resolution point-wise river height in some of the un-gauged rivers in the region by using dedicated retracking to recovers nearly un-interrupted time series over these rivers. First result from the HYDROGRAV project analyzing GRACE derived mass change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.

  3. Analysis of Satellite-to-Satellite Tracking (SST) and altimetry data from GEOS-C

    NASA Technical Reports Server (NTRS)

    Wong, L.; Matthews, E.; Downs, W.

    1978-01-01

    Radar altimetry and satellite-to-satellite (SST) range and range rate tracking measurements were used to infer the exterior gravitational field of the earth and the structure of the geoid from GEOS-C metric data. Under the SST analysis, a direct point-by-point estimate of gravity disturbance by means of a recursive filter with backward smoothing was attempted but had to be forsaken because of poor convergence. The adopted representation consists of a more or less uniform grid of discrete masses at a depth of approximately 400 km from the earth's surface. The layer is superimposed on a spherical harmonics model. The procedure for smoothing the altimetry and inferring the fine-structured gravity field over the Atlantic test area is described. The local disturbances are represented by means of a density layer. The altimeter height biases were first estimated by a least squares adjustment at orbital crossover points. After taking out the bias, long wavelength contributions from GEM-6 as well as a calibration correction were subtracted. The residual heights were then represented by a mass distribution beneath the earth's surface.

  4. Observing the oceanic mesoscale processes with satellite altimetry: the state of the art and outlook

    NASA Astrophysics Data System (ADS)

    Fu, L.-L.

    2012-04-01

    Satellite altimetry has enabled the study of global oceanic mesoscale variability with increasing accuracy and resolution for the past three decades. The combination of the series of precision missions beginning with TOPEX/Poseidon and the series of missions beginning with ERS-1 has created a data record of sea surface height measurement from at least two simultaneously operating altimeters. This 19-year record has fundamentally expanded our knowledge about the dynamics of ocean circulation, in particular at the mesoscale. The progress made to date from the data record will be briefly reviewed, with emphasis on the remaining open questions. Spectral analysis of the existing altimeter data suggests that the spatial resolution is about 150 km in wavelength in space-time gridded data, and about 70-100 km in along-track data. The unresolved short scales, however, have important roles in the energy balance of ocean dynamics as well as the transport and dissipation of many properties of the ocean such as heat and dissolved chemicals. The prospect of the technique of radar interferometry for making high-resolution wide-swath measurement of sea surface height will be discussed with an update on the development of the SWOT (Surface Water and Ocean Topography) Mission, which is being jointly developed by NASA and CNES with contributions from the Canadian Space Agency. SWOT is being designed for applications in both oceanography and land surface hydrology and setting a standard for the next-generation altimetry missions.

  5. Adaptive Management of IceBridge Airborne Mission Data at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Kaminski, M.; Brodzik, M.; Deems, J. S.; Scambos, T. A.

    2011-12-01

    Operation IceBridge is a NASA airborne geophysical survey mission collecting laser altimetry, ice-penetrating radar, gravimetry and other geophysical measurements to monitor and characterize fast-changing areas of the Earth's cryosphere. The IceBridge mission, begun in 2009, will continue through the launch of ICESat-2 and is intended to provide continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland Ice Sheet, Antarctic Peninsula, Pine Island Bay in Antarctica, and sea ice regions of both poles. IceBridge also collects data in East Antarctica in cooperation with NSF's University of Texas ICECAP program; and in Alaska with the University of Alaska Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado Boulder provides data archive and distribution support for the IceBridge mission and its related programs. Two guiding principles are the focus of our work: ensuring preservation of the data, and maximizing data usage. We have adopted a "fast-track" approach that enables us to publish data quickly after collection, satisfying the needs of researchers who require minimal supportive services. Subsequently, data sets are robustly archived with appropriate backup, documentation, and metadata to assure availability for future research purposes, and to enable services and new products that will facilitate advancing cryospheric research. NSIDC is building a data portal to leverage the rich IceBridge data and metadata to provide interactive data search, exploration, and subsetting via a map-based interface. Developed iteratively using researcher-driven priorities, the portal will ultimately provide multi-instrument data previewing capabilities for the wide array of data types and resolutions, including along-track and gridded value-added products. We are designing the data portal to enable data users to easily and quickly find, view, analyze, and obtain data from

  6. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  7. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  8. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  9. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  10. Arctic geodynamics: Arctic science and ERS-1 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.

    1994-01-01

    A detailed gravity field map of the mid Arctic Ocean, spreading ridge system was produced on the basis of ERS-1 satellite altimetry data. Areas of special concern, the Barents and Kara Seas, and areas surrounding the islands of Svalbard, Frans Josef Land and Novoya Zemlya are reviewed. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 degrees. Before ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents Sea, portions of the Arctic Ocean and the Norwegian sea are shown. The largest gravity anomalies occur along the Greenland fracture zone as well as along transform faults near Svalbard.

  11. Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry

    USGS Publications Warehouse

    Lee, H.; Shum, C.K.; Yi, Y.; Ibaraki, M.; Kim, J.-W.; Braun, Andreas; Kuo, C.-Y.; Lu, Zhiming

    2009-01-01

    Previous studies using satellite radar altimetry to observe inland river and wetland water level changes usually spatially average high-rate (10-Hz for TOPEX, 18-Hz for Envisat) measurements. Here we develop a technique to apply retracking of TOPEX waveforms by optimizing the estimated retracked gate positions using the Offset Center of Gravity retracker. This study, for the first time, utilizes stacking of retracked TOPEX data over Louisiana wetland and concludes that the water level observed by each of 10-Hz data with along-track sampling of ~660 m exhibit variations, indicating detection of wetland dynamics. After further validations using nearby river gauges, we conclude that TOPEX is capable of measuring accurate water level changes beneath heavy-vegetation canopy region (swamp forest), and that it revealed wetland dynamic flow characteristics along track with spatial scale of 660 m or longer. ?? Taylor & Francis Group, LLC.

  12. Global navigation satellite sounding of the atmosphere and GNSS altimetry : prospects for geosciences

    NASA Technical Reports Server (NTRS)

    Yunck, Tom P.; Hajj, George A.

    2003-01-01

    The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.

  13. Cassini RADAR at Titan : Results in 2014/2015

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-04-01

    Since the last EGU meeting, two Cassini flybys of Titan will have featured significant RADAR observations, illuminating our understanding of this enigmatic, complex world and its hydrocarbon seas in particular. T104, which executed in August 2014, featured a nadir-pointed altimetry swath over the northern part of Kraken Mare, Titan's largest sea. The echo characteristics showed that the sea surface was generally flat (to within a few mm), although a couple of areas appear to show some evidence of roughness. Intriguingly, altimetry processing which yielded (Mastrogiuseppe et al., GRL, 2014) the detection of a prominent bottom echo 160m beneath the surface of Ligeia Mare on T91 failed to yield a similar echo over most of Kraken on T104, suggesting either that Kraken is very deep (perhaps consistent with rather steep shoreline topography) or that the liquid in Kraken is more radar-absorbing than that in Ligeia, or both. The absorbing-liquid scenario may be consistent with a hydrological model for Titan's seas (Lorenz, GRL, 2014) wherein the most northerly seas receive more 'fresh' methane input, flushing ethane and other lower-volatility (and more radar-absorbing) solutes south into Kraken. T108, the last northern seas radar observation until T126 at the very end of the Cassini tour in 2017, is planned to execute on 11th January 2015, and preliminary results will be presented at the EGU meeting. This flyby features altimetry over part of Punga Mare, which will provide surface roughness information and possible bathymetry, permitting comparison of nadir-pointed data over all of Titan's three seas (Ligeia on T91; Kraken Mare on T104). The flyby also includes SAR observation of the so-called Ligeia 'Magic Island', the best-observed of several areas of varying radar brightness on Titan's seas. This brightness may be due to sediments suspended by currents, or by roughening of the surface either by local wind stress ('catspaw') or non-local stress (wind-driven currents

  14. Making Coastal Altimetry Happen: a Prototype Envisat Processor From the COASTALT Project

    NASA Astrophysics Data System (ADS)

    Cipollini, P.; Gommenginger, C.; Snaith, H. M.; Coelho, H.; Fernandes, J.; Gomez-Enri, J.; Martin-Puig, C.; Vignudelli, S.; Woodworth, P.; Dinardo, S.; Benveniste, J.

    2008-12-01

    The COASTALT Project, funded by the European Space Agency (ESA), aims at defining, developing and testing a prototype software processor to generate new Envisat radar altimeter products in the coastal zone. Ultimately, the plans are for ESA to routinely generate and distribute these new Envisat coastal altimetry products, also in preparation for exploitation of data from the future altimetry missions, CryoSat and Sentinel- 3. These missions will have inherently improved coastal zone capabilities by virtue of the adoption of a Delay- Doppler instrument. Whilst paving the way to this overall objective, the COASTALT partners also aim to: a) carry out an extensive study of the possible improvements in geophysical corrections in the coastal zone, and identify the best correction strategies b) revisit the whole approach to waveform retracking, by assessing the capabilities of geophysically-based retrackers in the coastal ocean, testing novel retracking schemes and strategies, identifying the best candidate strategy for immediate operational application and producing a fully usable prototype of that retracker, while at the same time seeding the research into the next generation or retrackers for Sentinel-3 c) assess the performance of the new retracked products over three coastal regions with different characteristics, where a host of in situ measurements are available for validation d) provide full documentation on the new product in a way that is consistent with - and can be integrated with - the Envisat User Handbook e) contribute to capacity building, outreach and dissemination of coastal altimeter data to a wider user base. In this paper we will illustrate the research and development that has gone into points a) and b), leading to the design of the coastal altimetry processor. First we discuss the different possible approaches to deal with the problem of geophysical corrections in the coastal zone, including the assessment of models of the wet tropospheric

  15. Accuracy assessment of satellite altimetry over central East Antarctica by kinematic GNSS and crossover analysis

    NASA Astrophysics Data System (ADS)

    Schröder, Ludwig; Richter, Andreas; Fedorov, Denis; Knöfel, Christoph; Ewert, Heiko; Dietrich, Reinhard; Matveev, Aleksey Yu.; Scheinert, Mirko; Lukin, Valery

    2014-05-01

    Satellite altimetry is a unique technique to observe the contribution of the Antarctic ice sheet to global sea-level change. To fulfill the high quality requirements for its application, the respective products need to be validated against independent data like ground-based measurements. Kinematic GNSS provides a powerful method to acquire precise height information along the track of a vehicle. Within a collaboration of TU Dresden and Russian partners during the Russian Antarctic Expeditions in the seasons from 2001 to 2013 we recorded several such profiles in the region of the subglacial Lake Vostok, East Antarctica. After 2006 these datasets also include observations along seven continental traverses with a length of about 1600km each between the Antarctic coast and the Russian research station Vostok (78° 28' S, 106° 50' E). After discussing some special issues concerning the processing of the kinematic GNSS profiles under the very special conditions of the interior of the Antarctic ice sheet, we will show their application for the validation of NASA's laser altimeter satellite mission ICESat and of ESA's ice mission CryoSat-2. Analysing the height differences at crossover points, we can get clear insights into the height regime at the subglacial Lake Vostok. Thus, these profiles as well as the remarkably flat lake surface itself can be used to investigate the accuracy and possible error influences of these missions. We will show how the transmit-pulse reference selection correction (Gaussian vs. centroid, G-C) released in January 2013 helped to further improve the release R633 ICESat data and discuss the height offsets and other effects of the CryoSat-2 radar data. In conclusion we show that only a combination of laser and radar altimetry can provide both, a high precision and a good spatial coverage. An independent validation with ground-based observations is crucial for a thorough accuracy assessment.

  16. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  17. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  18. An observational philosophy for GEOS-C satellite altimetry

    NASA Technical Reports Server (NTRS)

    Weiffenbach, G. C.

    1972-01-01

    The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.

  19. Detailed gravity anomalies from GEOS-3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1978-01-01

    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.

  20. Carrier phase delay altimetry from low eleveation GPSR measurements

    NASA Technical Reports Server (NTRS)

    Cardellach, E.; Treuhaft, R.; Franklin, G.; Gorelik, J.; Lowe, S. T.; Young, L. E.

    2003-01-01

    GPS-Reflections (GPSR) observations at very low elevation angles take advantage of the apparent smoothness of the surface to enable phase-delay altimetry, of centimetric nominal precision, higher than the GPSR code-delay estimates.

  1. Improved Oceanographic Measurements with CryoSat SAR Altimetry: Application to the Coastal Zone and Arctic

    NASA Astrophysics Data System (ADS)

    Cotton, David; Nilo Garcia, Pablo; Cancet, Mathilde; Andersen, Ole; Stenseng, Lars; Martin, Francisco; Cipollini, Paolo; Benveniste, Jérôme; Restano, Marco; Ambrósio, Américo

    2016-04-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar "SAR" (or delay-Doppler) and interferometric SAR (SARin) modes. Studies on CryoSat data have analysed and confirmed the improved ocean measuring capability offered by SAR mode altimetry, through increased resolution and precision in sea surface height and wave height measurements, and have also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. We present work in four themes, building on work initiated in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry which often leaves an un-measured "white strip" right at the coastline. Firstly, a thorough analysis was made of the performance of "SAR" altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over "conventional" pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin mode data to enable the retrieval of valid oceanographic measurements in coastal areas with complex topography. Thanks to further development of the algorithms, a new approach was achieved that can also be applied to SAR and conventional altimetry data (e.g., Sentinel-3, Jason series, EnviSat). The third part of the project developed and evaluated improvements to the SAMOSA altimeter re-tracker that is implemented in the Sentinel-3 processing chain. The modifications to the

  2. SEASAT altimetry for surface height of inland seas

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1984-01-01

    The capability of spaceborne altimetry to record the level, or monitor changes in the level, of inland seas was assessed. SEASAT altimetry data from Lake Baikal in Siberia; the Caspian, Black, and Aral Seas in the southern Soviet Union; the Great Salt Lake in the United States; lakes and reservoirs in northwestern and central China; and snow cover in northwestern India and on the Tibetan Plateau were examined.

  3. Digital elevation model of King Edward VII Peninsula, West Antarctica, from SAR interferometry and ICESat laser altimetry

    USGS Publications Warehouse

    Baek, S.; Kwoun, Oh-Ig; Braun, Andreas; Lu, Zhiming; Shum, C.K.

    2005-01-01

    We present a digital elevation model (DEM) of King Edward VII Peninsula, Sulzberger Bay, West Antarctica, developed using 12 European Remote Sensing (ERS) synthetic aperture radar (SAR) scenes and 24 Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles. We employ differential interferograms from the ERS tandem mission SAR scenes acquired in the austral fall of 1996, and four selected ICESat laser altimetry profiles acquired in the austral fall of 2004, as ground control points (GCPs) to construct an improved geocentric 60-m resolution DEM over the grounded ice region. We then extend the DEM to include two ice shelves using ICESat profiles via Kriging. Twenty additional ICESat profiles acquired in 2003-2004 are used to assess the accuracy of the DEM. After accounting for radar penetration depth and predicted surface changes, including effects due to ice mass balance, solid Earth tides, and glacial isostatic adjustment, in part to account for the eight-year data acquisition discrepancy, the resulting difference between the DEM and ICESat profiles is -0.57 ?? 5.88 m. After removing the discrepancy between the DEM and ICESat profiles for a final combined DEM using a bicubic spline, the overall difference is 0.05 ?? 1.35 m. ?? 2005 IEEE.

  4. Improved Oceanographic Measurements from SAR Altimetry: Results and Scientific Roadmap from ESA CryoSat Plus for Oceans Project

    NASA Astrophysics Data System (ADS)

    Cotton, P. David; Andersen, Ole; Boy, Francois; Cancet, Mathilde; Cipollini, Paolo; Dinardo, Salvatore; Gommenginger, Christine; Egido, Alejandro; Fernandes, Joana M.; Garcia, Pablo Nilo; Lucas, Bruno; Moreau, Thomas; Naeije, Marc; Scharroo, Remko; Stenseng, Lars; Benveniste, Jerome

    2015-12-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. It thus provides the first opportunity to test and evaluate, using real data, the significant potential benefits of SAR altimetry for ocean applications. The objective of the CryoSat Plus for Oceans (CP4O) project was to develop and evaluate new ocean products from CryoSat data and so maximize the scientific return of CryoSat over oceans. The main focus of CP4O has been on the additional measurement capabilities that are offered by the SAR mode of the SIRAL altimeter, with further work in developing improved geophysical corrections. CP4O has developed SAR based ocean products for application in four themes: Open Oceans, Coastal Oceans, Polar Oceans and Sea Floor Topography. The team has developed a number of new processing schemes and compared and evaluated the resultant data products. This work has clearly demonstrated the improved ocean measuring capability offered by SAR mode altimetry and has also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications, with particular focus on their relevance for Sentinel-3.

  5. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  6. Rainfall observations by an airbourne dual-fequency precipitation radar during CAMEX-4

    NASA Technical Reports Server (NTRS)

    Im, E.; Durden, S. L.; Sadowy, G.; Li, L.

    2002-01-01

    The 2d Generation Precipitation Radar is a new design for a dual-frequency (13.4 and 35.6 GHz) spaceborne precipitation radar. An airborne PR-2 simulator has been developed to demonstrate key technologies. This airborne system was flown on the NASA DC-8 aircraft during the 4th Convection and Moisture Experiment in 2001. Data were acquired in Tropical Storms Chantal and Gabrielle, Hurricane Humberto, and in several more localized convective systems. The authors discuss the design of thePR-2 airborne radar and show observations from CAMEX-4. Overall, the observations validated the design of PR-2 and provide an extensive data set for scientific analysis.

  7. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  8. Program Analyzes Radar Altimeter Data

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Hancock, David; Tran, Ngan

    2004-01-01

    A computer program has been written to perform several analyses of radar altimeter data. The program was designed to improve on previous methods of analysis of altimeter engineering data by (1) facilitating and accelerating the analysis of large amounts of data in a more direct manner and (2) improving the ability to estimate performance of radar-altimeter instrumentation and provide data corrections. The data in question are openly available to the international scientific community and can be downloaded from anonymous file-transfer- protocol (FTP) locations that are accessible via links from altimetry Web sites. The software estimates noise in range measurements, estimates corrections for electromagnetic bias, and performs statistical analyses on various parameters for comparison of different altimeters. Whereas prior techniques used to perform similar analyses of altimeter range noise require comparison of data from repetitions of satellite ground tracks, the present software uses a high-pass filtering technique to obtain similar results from single satellite passes. Elimination of the requirement for repeat-track analysis facilitates the analysis of large amounts of satellite data to assess subtle variations in range noise.

  9. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  10. Radar backscatter modelling

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Kozak, R. C.; Gurule, R. L.

    1984-01-01

    The terrain analysis software package was restructured and documentation was added. A program was written to test Johnson Space Center's four band scatterometer data for spurious signals data. A catalog of terrain roughness statistics and calibrated four frequency multipolarization scatterometer data is being published to support the maintenance of Death Valley as a radar backscatter calibration test site for all future airborne and spacecraft missions. Test pits were dug through sand covered terrains in the Eastern Sahara to define the depth and character of subsurface interfaces responsible for either backscatter or specular response in SIR-A imagery. Blocky sandstone bedrock surfaces at about 1 m depth were responsible for the brightest SIR-A returns. Irregular very dense CaCO3 cemented sand interfaces were responsible for intermediate grey tones. Ancient river valleys had the weakest response. Reexamination of SEASAT l-band imagery of U.S. deserts continues.

  11. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  12. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  13. 1991 IEEE National Radar Conference, Los Angeles, CA, Mar. 12, 13, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on the impact of microelectronics on radar systems are presented. Individual topics addressed include: a Ka-band instrumentation radar with one foot range resolution, location accuracy in X-band multifunction radar, ambiguity function analysis of wideband radars, microelectronics applications for GBR-X testability, multiple phase center DPCA for airborne radars, microwave time delay beamforming using optics, Flaps: conformal phased reflecting surfaces, T/R modules for phased array antennas, generalized polar processing algorithm for large area SAR images. Also discussed are: neural networks for sequential discrimination of radar targets, programmable radar signal processor architecture, high-temperature superconductors for radar applications, radar loss of target track (LOTT) expert system, application of the Fast Fourier Number Theoretic Transform to radar, FMCW linearizer bandwidth requirements, RCS probability distribution function modeling of a fluctuating target.

  14. Comparison of millimeter-wave cloud radar measurements for the Fall 1997 Cloud IOP

    SciTech Connect

    Sekelsky, S.M.; Li, L.; Galloway, J.; McIntosh, R.E.; Miller, M.A.; Clothiaux, E.E.; Haimov, S.; Mace, G.; Sassen, K.

    1998-05-01

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (350Hz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SOP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air, the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar. In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  15. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  16. Surface Change Detection Using Large Footprint Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Smith, David E. (Technical Monitor)

    2000-01-01

    Laser altimeters provide a precise and accurate method for mapping topography at fine horizontal and vertical scales. A laser altimeter provides range by measuring the roundtrip flight time of a short pulse of laser light from the laser altimeter instrument to the target surface. The range is then combined with laser beam pointing knowledge and absolute position knowledge to provide an absolute measurement of the surface topography. Newer generations of laser altimeters measure the range by recording the shape and time of the outgoing and received laser pulses. The shape of the return pulse can also provide unique information about the vertical structure of material such as vegetation within each laser footprint. Distortion of the return pulse is caused by the time-distributed reflections adding together and representing the vertical distribution of surfaces within the footprint. Larger footprints (10 - 100m in diameter) can support numerous target surfaces and thus provide the potential for producing complex return pulses. Interpreting the return pulse from laser altimeters has evolved from simple timing between thresholds, range-walk corrections, constant-fraction discriminators, and multi-stop time interval units to actual recording of the time varying return pulse intensity - the return waveform. Interpreting the waveform can be as simple as digitally thresholding the return pulse, calculating a centroid, to fitting one or more gaussian pulse-shapes to the signal. What we present here is a new technique for using the raw recorded return pulse as a raw observation to detect centimeter-level vertical topographic change using large footprint airborne and spaceborne laser altimetry. We use the correlation of waveforms from coincident footprints as an indication of the similarity in structure of the waveforms from epoch to epoch, and assume that low correlation is an indicator of vertical structure or elevation change. Thus, using vertically and horizontally

  17. Location of the Rhine plume front by airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Ruddick, K. G.; Lahousse, L.; Donnay, E.

    1994-04-01

    The aim of this study was to determine the feasibility of using airborne remote sensing to locate the Rhine plume front. Interest in fronts arises from the desire to predict the fate of pollutants and biological nutrients discharged from rivers into the open sea. Observations were made during flights over the Dutch coastal waters using a vertically-mounted video camera and a side-looking airborne radar (SLAR) designed for oil slick detection. Comparison of radar images with visual observations of the sea colour discontinuity and foam line establish that fronts can indeed be detected by SLAR because of high radar backscatter along the convergence line, where the fresh water jet impinges on saltier water. This provides a sound basis for future investigations using Synthetic Aperture Radar as mounted on ERS-1. An estimation of errors is given, identifying priorities for improvement of the technique. The accuracy achieved is considered sufficient for the validation of hydrodynamic models.

  18. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  19. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating

  20. Satellite Altimetry, Ocean Circulation, and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1999-01-01

    Ocean circulation is a critical factor in determining the Earth's climate. Satellite altimetry has been proven a powerful technique for measuring the height of the sea surface for the study of global ocean circulation dynamics. A major objective of my research is to investigate the utility of altimeter data for ocean circulation studies. The 6 years' data record of TOPEX/POSEIDON have been analyzed to study the spatial and temporal characteristics of large-scale ocean variability. A major result obtained in 1998 is the discovery of large-scale oscillations in sea level with a period of 25 days in the Argentine Basin of the South Atlantic Ocean (see diagram). They exhibit a dipole pattern with counterclockwise rotational propagation around the Zapiola Rise (centered at 45S and 317E), a small seamount in the abyssal plain of the basin. The peak-to-trough amplitude is about 10 cm over a distance of 500-1000 km. The amplitude of these oscillations has large seasonal-to-interannual variations. The period and rotational characteristics of these oscillations are remarkably similar to the observations made by two current meters deployed near the ocean bottom in the region. What TOPEX/POSEIDON has detected apparently are manifestations of the movement of the entire water column (barotropic motion). The resultant transport variation is estimated to be about 50 x 10(exp 6) cubic M/S, which is about 50% of the total water transport in the region. Preliminary calculations suggest that these oscillations are topographically trapped waves. A numerical model of the South Atlantic is used to investigate the nature of and causes for these waves. A very important property of sea surface height is that it is directly related to the surface geostrophic velocity, which is related to deep ocean circulation through the density field. Therefore altimetry observations are not only useful for determining the surface circulation but also for revealing information about the deep ocean. Another

  1. Radar simulation program upgrade and algorithm development

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1991-01-01

    The NASA Radar Simulation Program is a comprehensive calculation of the expected output of an airborne coherent pulse Doppler radar system viewing a low level microburst along or near the approach path. Inputs to the program include the radar system parameters and data files that contain the characteristics of the microbursts to be simulated, the ground clutter map, and the discrete target data base which provides a simulation of the moving ground clutter. For each range bin, the simulation calculates the received signal amplitude level by integrating the product of the antenna gain pattern and the scattering source amplitude and phase of a spherical shell volume segment defined by the pulse width, radar range, and ground plane intersection. A series of in-phase and quadrature pulses are generated and stored for further processing if desired. In addition, various signal processing techniques are used to derive the simulated velocity and hazard measurements, and store them for use in plotting and display programs.

  2. Use of radar in urban studies

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1976-01-01

    The use of side-looking airborne radar for urban studies is reviewed with attention given to the work of Moore (1969) and Lewis (1968) which may be summarized as follows: (1) linear elements of the transportation net were easily defined, (2) gross patterns of industry, residential and open space land were identified, but it was not possible to map the land use boundaries in great detail, (3) commercial land areas were often difficult to identify, and (4) multiple polarized imagery was helpful in correctly interpreting the total scene. It is found that the sensitivity of radar to surface roughness and the availability of multiple wavelength data allow the discrimination of variations in the surface roughness of intra-urban areas. An L-band imaging radar (25 cm; 1215-1225 GHz) of 25 m resolution will be operating from satellite altitudes in 1978 and will increase the availability of radar data.

  3. Laser altimetry at the centimeter-level

    NASA Astrophysics Data System (ADS)

    Kallenbach, R.; Koch, C.; Christensen, U.; Hilchenbach, M.; Michaelis, H.; Kracht, D.

    2007-08-01

    Laser altimetry is a powerful tool to map planetary surfaces. In addition to the static topography, time-dependent variations such as libration and tidal elevation can be extracted from laser altimeter data in order to investigate the internal structure of the planetary body. In the frame of the BepiColombo Laser Altimeter project, simulations on the extraction of the tidal amplitude on Mercury's surface due to the solar gravitation have been carried out. Based on these results, we evaluate the instrument requirements for a laser altimeter that orbits Jupiter's moon Europa. The tidal bulges of Europa's ice crust should be as high as 30 m, if there is a subsurface ocean, but less than 1 m, if there is solid ice all the way down to the bedrock. The measurement precision achievable with an altimeter applying a miniaturized diode laser-pumped Nd:YAG laser and a single photon counting technique is explored, and the potentials of the integration of the laser altimeter with a high-resolution camera are discussed.

  4. Normalized GNSS Interference Pattern Technique for Altimetry

    PubMed Central

    Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed

    2014-01-01

    It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals. PMID:24922453

  5. Application of Satellite Altimetry for Fisheries Research

    NASA Astrophysics Data System (ADS)

    Sirota, A.; Lebedev, S.; Burykin, S.; Timokhin, E.; Chernyshkov, P.

    2006-07-01

    The three oceanic regions were considered: Mid Atlantic Ridge (North Atlantic), Canary Upwelling Region (Eastern Central Atlantic), and Southeastern Pacific. Both satellite altimetry data (TOPEX/Poseidon, ERS -1, 2) and in situ measurements (oceanographic surveys) demonstrated good correlation between these two different types of data in revealing of dynamic features at the ocean surface. The main dynamic features in the regions are: Sub-Polar Front and North Atlantic Current (Mid Atlantic Ridge), Canary Current and coastal upwelling (Eastern Central Atlantic), Sub- Tropical Front and South Pacific Current (Southeastern Pacific). Analysis of distribution, abundance and biological state of various fish species revealed the links between organisms and their dynamic environmental conditions in the considered regions. Variability of the distribution and abundance of rock grenadier over Mid Atlantic Ridge is closely connected to variations of Sub- Polar Front location. Distribution of small pelagic fish in Canary Upwelling Region is influenced by mesoscale features of Canary Current and coastal upwelling. Sub- Tropical Front meandering and eddies in Southeast Pacific influence significantly horse mackerel distribution.

  6. Normalized GNSS interference pattern technique for altimetry.

    PubMed

    Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed

    2014-01-01

    It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér-Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals. PMID:24922453

  7. Microwave Dielectric Properties of Soil and Vegetation and Their Estimation From Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; McDonald, Kyle C.

    1996-01-01

    This paper is largely tutorial in nature and provides an overview of the microwave dielectric properties of certain natural terrestrial media (soils and vegetation) and recent results in estimating these properties remotely from airborne and orbital synthetic aperture radar (SAR).

  8. Waveform retracking for improving inland water heights from altimetry

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, J