Science.gov

Sample records for airborne radar captures

  1. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  2. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  3. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  4. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  5. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  6. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  8. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  10. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  11. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  12. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  14. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  15. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  17. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  18. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  20. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  1. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  2. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  3. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  4. Comparison of TRMM Precipitation Radar and Airborne Radar Data.

    NASA Astrophysics Data System (ADS)

    Durden, S. L.; Im, E.; Haddad, Z. S.; Li, L.

    2003-06-01

    The first spaceborne weather radar is the precipitation radar (PR) on the Tropical Rainfall Measuring Mission (TRMM), which was launched in 1997. As part of the TRMM calibration and validation effort, an airborne rain-mapping radar (ARMAR) was used to make underflights of TRMM during the B portion of the Texas and Florida Underflights (TEFLUN-B) and the third Convection and Moisture Experiment (CAMEX-3) in 1998 and the Kwajalein Experiment (KWAJEX) in 1999. The TRMM PR and ARMAR both operate at 14 GHz, and both instruments use a downward-looking, cross-track scanning geometry, which allows direct comparison of data. Nearly simultaneous PR and ARMAR data were acquired in seven separate cases. These data are compared to examine the effects of larger resolution volume and lower sensitivity in the PR data relative to ARMAR. The PR and ARMAR data show similar structures, although the PR data tend to have lower maximum reflectivities and path attenuations because of nonuniform beam-filling effects. Nonuniform beam filling can also cause a bias in the observed path attenuation relative to that corresponding to the beam-averaged rain rate. The PR rain-type classification is usually consistent with the ARMAR data.

  5. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  6. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  7. Identification of human motion signature using airborne radar data

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Damini, Anthony

    2013-09-01

    Data containing the radar signature of amoving person on the groundwere collected at ranges of up to 30 kmfroma moving airborne platform using the DRDC Ottawa X-bandWideband Experimental Airborne Radar (XWEAR). The human target radar echo returns were found to possess a characteristic amplitude modulated (AM) and frequency modulated (FM) signature which could be usefully characterized in terms of conventional AM and FM modulation parameters. Human detection performance after space time adaptive processing is frequently limited by false alarms arising from incomplete cancellation of large radar cross-section discretes during the whitening step. However, the clutter discretes possess different modulation characteristics from the human targets discussed above. The ability of pattern classification techniques to use this parameter measurement space to distinguish between human targets and clutter discretes is explored and preliminary results presented.

  8. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  9. The NASA Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim, Yunjin; van Zyl, Jakob

    1996-01-01

    None given. (From introduction): ...we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the [rogress of the data processing effort, especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  10. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  11. Crop classification using airborne radar and LANDSAT data. [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Li, R. Y.; Shanmugam, K. S.

    1981-01-01

    Airborne radar data acquired with a 13.3 GHz scatterometer over a test-site near Colby, Kansas were used to investigate the statistical properties of the scattering coefficient of three types of vegetation cover and of bare soil. A statistical model for radar data was developed that incorporates signal-fading and natural within-field variabilities. Estimates of the within-field and between-field coefficients of variation were obtained for each cover-type and compared with similar quantities derived from LANDSAT images of the same fields. The classification accuracy provided by LANDSAT alone, radar alone, and both sensors combined was investigated. The results indicate that the addition of radar to LANDSAT improves the classification accuracy by about 10; percentage-points when the classification is performed on a pixel basis and by about 15 points when performed on a field-average basis.

  12. Characterizing Englacial and Subglacial Temperature Structure Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Seroussi, H. L.

    2015-12-01

    The temperature structure of ice sheet and glaciers is a fundamental control on ice flow, rheology, and stability. However, it is difficult to observationally constrain temperature structures at the catchment to ice-sheet scale. The englacial attenuation of radar sounding data is strongly dependent on the temperature structure of the ice sheets. Therefore, echo strength profiles from airborne radar sounding observation do contain temperature information. However, direct interpretation of englacial attenuation rates from radar sounding profiles is often difficult or impossible due to the ambiguous contribution the geometric and material properties of the bed to echo strength variations. To overcome this challenge, we presents techniques that treat radar sounding echo strength and ice thickness profiles as continuous signals, taking advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of englacial attenuation and basal reflectivity. We then apply these techniques to an airborne radar sounding survey in order to characterize the englacial and subglacial temperature structure of the Thwaites Glacier catchment in West Antarctic. We then interpreted this structure in context of local ice sheet velocity, advection, force balance, and bed conditions using the ISSM ice sheet model.

  13. Annual Greenland accumulation rates (2009-2012) from airborne Snow Radar

    NASA Astrophysics Data System (ADS)

    Koenig, L. S.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Fettweis, X.; Panzer, B.; Paden, J. D.; Forster, R. R.; Das, I.; McConnell, J.; Tedesco, M.; Leuschen, C.; Gogineni, P.

    2015-12-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS) through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB) in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR) shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  14. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  15. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  16. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  17. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  18. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  19. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  20. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  1. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  2. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  3. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  4. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    NASA Astrophysics Data System (ADS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  5. Observations of Florida Convective Storms using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL-FACE convective case on 16 July 2002 that produced extensive anvil. During CRYSTAL-FACE, up to 5 aircraft flying from low- to high-altitudes, were coordinated for the study of thunderstorm-generated cirrus. The NASA high-altitude (20 km) ER-2 aircraft with remote sensing objectives flew above the convection, and other aircraft such as the WB-57 performing in situ measurements flew below the ER-2. The ER-2 remote sensing instruments included two nadir viewing airborne radars. The CRS 94 GHz radar and the EDOP 9.6 GHz radar were flown together for the first time during CRYSTAL-FACE and they provided a unique opportunity to examine the structure of 16 July case from a dual-wavelength perspective. EDOP and CRS are complementary for studying convection and cirrus since CRS is more sensitive than EDOP for cirrus, and EDOP is considerably less attenuating in convective regions. In addition to the aircraft, coordinated ground-based radar measurements were taken with the NPOL S-Band (3 GHz) multiparameter radar. One of the initial goals was to determine whether dual-wavelength airborne measurements could identify supercooled water regions.

  6. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  7. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  8. Algorithms for airborne Doppler radar wind shear detection

    NASA Technical Reports Server (NTRS)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  9. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  10. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  11. Probing Shallow Aquifers in Northern Kuwait Using Airborne Sounding Radars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Fadlelmawla, A.; Farr, T. G.; Al-Rashed, M.

    2011-12-01

    Most of the global warming observations, scientific interest and data analyses have concentrated on the earth Polar Regions and forested areas, as they provide direct measurable impacts of large scale environmental changes. Unfortunately, the arid environments, which represent ~20% of the earth surface, have remained poorly studied. Yet water rarity and freshness, drastic changes in rainfall, flash floods, high rates of aquifer discharge and an accelerated large-scale desertification process are all alarming signs that suggest a substantial large-scale climatic variation in those areas that can be correlated to the global change that is affecting the volatile dynamic in arid zones. Unfortunately the correlations, forcings and feedbacks between the relevant processes (precipitation, surface fresh water, aquifer discharge, sea water rise and desertification) in these zones remain poorly observed, modeled, let alone understood. Currently, local studies are often oriented toward understanding small-scale or regional water resources and neither benefit from nor feedback to the global monitoring of water vapor, precipitation and soil moisture in arid and semi-arid areas. Furthermore techniques to explore deep subsurface water on a large scale in desertic environments remain poorly developed making current understanding of earth paleo-environment, water assessment and exploration efforts poorly productive and out-phased with current and future needs to quantitatively understand the evolution of earth water balance. To address those deficiencies we performed a comprehensive test mapping of shallow subsurface hydro-geological structures in the western Arabic peninsula in Kuwait, using airborne low frequency sounding radars with the main objectives to characterize shallow fossil aquifers in term of depth, sizes and water freshness. In May 2011, an experimental airborne radar sounder operating at 50 MHz was deployed in Kuwait and demonstrated an ability to penetrate down to

  12. Characterizing Subglacial Interfaces With Airborne Radar Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.

    2004-12-01

    Ice sheets are sensitive indicators of global change including sea-level rise. An ice sheet's subglacial interface is an important factor controlling its dynamic behavior. In particular, the grounding zones of ice streams and subglacial lakes are complex systems involving the interaction of the moving ice mass with underlying materials such as liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. Imaging and characterizing the subglacial environment of ice sheets is fundamental to understanding these complex systems. Airborne radar sounding is a powerful and well-known technique for studying ice sheets and glaciers and their contiguous underlying environments. We present results from data acquired in 2001 over the ice stream C grounding zone in West Antarctica, as well as over a hypothesized subglacial lake near the South Pole. These data were acquired using a uniquely configured coherent airborne radar system. Our focus has been to characterize the subglacial interface through radar echo analysis based on reflection and scattering theory. The radar system uses a programmable signal source linked to a 10 kW transmitter and a dual-channel coherent down-conversion receiver. The radar operates in chirped pulse mode at 60 MHz with 15 MHz bandwidth. High and low-gain channels allow for recording a wide dynamic range of echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and synthetic aperture radar (SAR) processing were components of data analysis. Subglacial echoes are influenced by the physical properties of the interface such as the composition and roughness of the materials at the interface. Other important factors include dielectric losses and volumetric scattering losses from propagation through the ice as well as transmission and refraction at the air-ice interface. Unfocussed SAR narrows the along

  13. Recent Airborne Radar Depth Sounding of Recovery Glacier

    NASA Astrophysics Data System (ADS)

    Li, Jilu; Gogineni, Sivaprasad; Yan, Stephen; Mahmood, Ali; Awasthi, Abhishek; Rodriguez-Morales, Fernando

    2015-04-01

    Recovery Glacier in East Antarctica drains a large volume of ice into Filchner Ice Shelf towards Weddell Sea. The existence of several subglacial lakes beneath the channel has been speculated based on satellite observations of elevation changes on the ice surface. Because of its important role in East Antarctic ice mass balance and its unique function in the ice-flow dynamics of Recovery Ice Stream, two NASA Operation IceBridge (OIB) missions have been flown over Recovery Glacier, the first in October 2012 and the second in October 2014. The airborne radar depth sounder (RDS) data collected during these two missions by the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-channel Coherent Radar Depth Sounder/Imager (MCoRDS/I) have revealed both the presence of a very deep channel and its complex shape, data that contribute to the study of the ice-flow dynamics of the glacier and estimations of its mass balance. In this paper, we will report the results of measurements collected during the 2014 Antarctica DC-8 mission for OIB. Data were collected using an improved version of the CReSIS MCoRDS/I. We increased transmit power to each element of the transmit-array from about 200 W to 1000 W and increased the chirp bandwidth to 50 MHz, compared to 9.5 MHz used in earlier OIB missions. These improvements have led to a more complete mapping of the deepest part of the channel, which is more than 3.7 km deep, and fine-resolution mapping of internal layers. Our preliminary analysis of radar echoes does not indicate the presence of water or a wet surface in subglacier lakes. This paper presents an overview of the radar system, results from our recent measurements, and analysis of these results.

  14. Millimeter-wave radar sensing of airborne chemicals.

    SciTech Connect

    Gopalsami, N.; Raptis, A. C.; Energy Technology

    2001-04-01

    This paper discusses the development of a millimeter-wave radar chemical sensor for applications in environmental monitoring and arms-control treaty verification. The purpose of this paper is to investigate the use of fingerprint-type molecular rotational signatures in the millimeter-wave spectrum to sense airborne chemicals. The millimeter-wave sensor, operating in the frequency range of 225-315 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the millimeter-wave sensor is a monostatic swept-frequency radar that consists of a millimeter-wave sweeper, a hot-electron bolometer or Schottky barrier detector, and a corner-cube reflector. The chemical plume to be detected is situated between the transmitter/detector and reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this paper by designing a fast sweeping source over a broad frequency range. The heart of the system is a backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the BWO tube, we built a millimeter-wave radar system and field-tested it at the Department of Energy Nevada Test Site, Frenchman Flat, near Mercury, NV, at a standoff distance of 60 m, The millimeter-wave system detected chemical plumes very well; detection sensitivity for polar molecules such as methylchloride was down to 12 ppm for a 4-m two-way pathlength.

  15. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  16. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  17. Studies of ice clouds using 95 GHz airborne radar

    NASA Astrophysics Data System (ADS)

    Wolde, Mengistu Yirdaw

    2000-12-01

    This study presents results from analyses of 95 GHz airborne polarimetric radar measurements and other in situ data in a variety of ice clouds. Measurements were made in winter clouds over Wyoming and Colorado. Radar parameters analyzed were the differential reflectivity factor (ZDR) and the linear depolarization ratio (LDR). Examination of the specific signatures for different crystal forms, and the dependence of the signatures on beam angle, led to a diagnostic matrix in terms ZDR and LDR values. Planar crystals, columnar crystals, and melting particles can be differentiated based on combined ZDR and LDR measurements at various radar elevation angles. Unique LDR signatures were also observed in Cu con. clouds containing large graupel particles and high concentrations of small particles. It is also shown that among planar crystals P1a and P1d types can be differentiated from P1e types. Overall, the frequencies of occurrence of significant polarimetric signatures were only few percent in the cloud volumes examined, but can approach near 100% in certain clouds. Polarimetric signatures were found to be most frequent in the temperature interval -10 to -18°C due to plate-like crystals growing there. The presence of significant polarimetric signatures is associated with the absence of riming and provides a means of identifying cloud regions where diffusional crystal growth dominates. In the second part of the dissertation, cloud structure and crystal growth in Ns clouds sampled in Wyoming and Oregon are presented. In spite of differences in location and time, the two Ns data sets have shown similar features. In both cases, generating cells were present near cloud top and the melting layer was well defined in the radar images. Thin dry layers just above the melting layer were also observed in both cases. In accordance with earlier studies, particle spectra in these clouds are adequately described by exponential relationships. The slope and intercept parameters of the

  18. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  19. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  20. Ice island detection and characterization with airborne synthetic aperture radar

    SciTech Connect

    Jeffries, M.O.; Sackinger, W.M. )

    1990-04-15

    A 1:300,000 scale airborne synthetic aperture radar (SAR) image of an area of the Arctic Ocean adjacent to the Queen Elizabeth Islands, Canadian High Arctic, is examined to determine the number and characteristics of ice islands in the image and to assess the capability of airborne and satellite SAR to detect ice islands. Twelve ice islands have been identified, and their dimensions range from as large as 5.7 km by 8.7 km to as small as 0.15 km by 0.25 km. A significant SAR characteristic of the shelf ice portions of ice islands is a return with a ribbed texture of alternating lighter and darker grey tones resulting from the indulating shelf ice surfaces of the ice islands. The appearance of the ribbed texture varies according to the ice islands' orientation relative to the illumination direction and consequently the incidence angle. Some ice islands also include extensive areas of textureless dark tone attached to the shelf ice. The weak returns correspond to (1) multiyear landfast sea ice that was attached to the front of the Ward Hunt Ice Shelf at the time of calving and which has remained attached since then and (2) multiyear pack ice that has become attached and consolidated since the calving, indicating that ice islands can increase their area and mass significantly as they drift. Ice islands are easily discernible in SAR images and for the future SAR represents a promising technique to obtain a census of ice islands in the Arctic Ocean. However, any SAR-based census probably will be conservative because ice islands smaller than 300-400 m across are likely to remain undetected, particularly in areas of heavy ice ridging which produces strong SAR clutter.

  1. Flight test evaluation of a video tracker for enhanced offshore airborne radar approach capability

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Cooper, P. G.

    1982-01-01

    As a part of NASA's Rotorcraft All-Weather Operations Research Program, advanced airborne radar approach (ARA) concepts are being investigated. Since data from previous NASA/FAA flight tests showed significant ARA limitations, a research program was initiated at NASA Ames Research Center to determine the benefit that could be derived by automating certain radar functions and superimposing course display data on the radar display. To evaluate these concepts, a newly developed video tracking system which interfaces with weather radar was acquired. After the pilot designates a destination target, the system tracks the target video as it moves on the radar indicator. Using a small, efficient microprocessor, the autotracker presents valuable approach data on the radar screen and automatically adjusts the radar gain and tilt. Results of a limited flight test evaluation of the autotracker show that the course display concept, combined with automated gain and tilt functions, is effective for improving ARA's and reducing radar operator workload.

  2. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  3. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  4. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  5. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  6. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  7. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  8. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  9. Mapping diverse forest cover with multipolarization airborne radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Sharitz, R. R.

    1985-01-01

    Imaging radar backscatter in continuously forested areas contains information about the forest canopy; it also contains data about topography, landforms, and terrain texture. For purposes of radar image interpretation and geologic mapping researchers were interested in identifying and separating forest canopy effects from geologic or geomorphic effects on radar images. The objectives of this investigation was to evaluate forest canopy variables in multipolarization radar images under conditions where geologic and topographic variables are at a minimum. A subsidiary objective was to compare the discriminatory capabilities of the radar images with corresponding optical images of similar spatial resolution. It appears that the multipolarization images discriminate variation in tree density, but no evidence was found for discrimination between evergreen and deciduous forest types.

  10. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  11. Multiparametric airborne radar observations of the melting layer during the Wakasa Bay experiment

    NASA Technical Reports Server (NTRS)

    Tanelli, S.; Meagher, J.; Durden, S. L.; Im, E.

    2003-01-01

    The NASA/JPL airborne precipitation radar APR-2 (cross-track scanning, dual-frequency - 14 and 35 GHz, Doppler and dual polarization, see Sadowy et al. (2003) for detailed description of the instrument) was operated on the NASA P-3 aircraft during the Wakasa Bay experiment.

  12. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  13. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  14. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  15. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  16. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  17. Flight investigation of helicopter IFR approaches to oil rigs using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Phillips, J. D.; Sturgeon, W. R.; Hunting, A. W.; Pate, D. P.

    1979-01-01

    Airborne weather and mapping radar is a near-term, economical method of providing 'self-contained' navigation information for approaches to offshore oil rigs and its use has been rapidly expanding in recent years. A joint NASA/FAA flight test investigation of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico was initiated in June 1978 and conducted under contract to Air Logistics. Approximately 120 approaches were flown in a Bell 212 helicopter by 15 operational pilots during the months of August and September 1978. The purpose of the tests was to collect data to (1) support development of advanced radar flight director concepts by NASA and (2) aid the establishment of Terminal Instrument Procedures (TERPS) criteria by the FAA. The flight test objectives were to develop airborne radar approach procedures, measure tracking errors, determine accpetable weather minimums, and determine pilot acceptability. Data obtained will contribute significantly to improved helicopter airborne radar approach capability and to the support of exploration, development, and utilization of the Nation's offshore oil supplies.

  18. Range profiling of the rain rate by an airborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  19. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  20. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  1. Examination of water spray airborne coal dust capture with three wetting agents

    PubMed Central

    Organiscak, J.A.

    2015-01-01

    Water spray applications are one of the principal means of controlling airborne respirable dust in coal mines. Since many coals are hydrophobic and not easily wetted by water, wetting agents can be added to the spray water in an effort to improve coal wetting and assist with dust capture. In order to study wetting agent effects on coal dust capture, laboratory experiments were conducted with three wetting agents used by the coal industry on -325 mesh sized Pocahontas No. 3 coal dust. Significant differences in coal dust sink times were observed among the three wetting agents at water mixture concentrations of 0.05%, 0.1% and 0.2%. The best wetting agent as identified by the coal dust sink test was only tested at the lowest 0.05% water mixture concentration and was found to have a negligible effect on spray airborne dust capture. Water spray airborne dust capture results for all three wetting agents tested at a 0.2% water mixture concentration showed that all three wetting agents exhibit similar but small improvements in dust capture efficiency as compared with water. These results indicate that the coal dust sink test may not be a good predictor for the capture of airborne dust. Additional research is needed to examine if the coal dust sink test is a better predictor of wetting agent dust suppression effects during cutting, loading, conveying and dumping of coal products by comparison to airborne dust capture from sprays. PMID:26251565

  2. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  3. Comparative study of tracking performance in an airborne tracking radar simulator using global positioning system versus monopulse radar techniques

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Holley, William D.; Gagnon, Garry

    1993-10-01

    This paper attempts to address the tracking accuracy between the two systems under test. A monopulse radar model was developed to theoretically calculate the would-be measured angle and angle variances. Essentially, measurements of the target's angle, angle variances, range and range rate from the monopulse radar receiver of an aircraft are assessed against the tracking performance of an airborne simulator which uses the time, space, position information (TSPI) delivered from a global positioning system (GPS) system. The accuracy of measurements from a monopulse radar primarily depends on the signal-to-noise ratio (SNR), distance from target in this case, but information received from the GPS Space Vehicle would be virtually jamfree, and independent of distance. Tracking using GPS data however requires good data link between airborne participants. The simulation fidelity becomes an issue when the target is in close range track. The monopulse random slope error and target glint become significant, while the resolution from GPS data links remains the same.

  4. Demonstration of radar reflector detection and ground clutter suppression using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Bull, J. S.; Chisholm, J. P.

    1982-01-01

    A navigation system which utilizes minimum ground-based equipment is especially advantageous to helicopters, which can make off-airport landings. Research has been conducted in the use of weather and mapping radar to detect large radar reflectors overland for navigation purposes. As initial studies have not been successful, investigations were conducted regarding a new concept for the detection of ground-based radar reflectors and eliminating ground clutter, using a device called an echo processor (EP). A description is presented of the problems associated with detecting radar reflectors overland, taking into account the EP concept and the results of ground- and flight-test investigations. The echo processor concept was successfully demonstrated in detecting radar reflectors overland in a high-clutter environment. A radar reflector target size of 55 dBsm was found to be adequate for detection in an urban environment.

  5. Towards a Semantic Interpretation of Urban Areas with Airborne Synthetic Aperture Radar Tomography

    NASA Astrophysics Data System (ADS)

    D'Hondt, O.; Guillaso, S.; Hellwich, O.

    2016-06-01

    In this paper, we introduce a method to detect and reconstruct building parts from tomographic Synthetic Aperture Radar (SAR) airborne data. Our approach extends recent works in two ways: first, the radiometric information is used to guide the extraction of geometric primitives. Second, building facades and roofs are extracted thanks to geometric classification rules. We demonstrate our method on a 3 image L-Band airborne dataset over the city of Dresden, Germany. Experiments show how our technique allows to use the complementarity between the radiometric image and the tomographic point cloud to extract buildings parts in challenging situations.

  6. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Mohan; Blask, Steven; Higgins, Thomas; Clifton, William; Davidsohn, Daniel; Carson, Ryan; Reynolds, Van; Pfannenstiel, Joanne; Cannata, Richard; Marino, Richard; Drover, John; Hatch, Robert; Schue, David; Freehart, Robert; Rowe, Greg; Mooney, James; Hart, Carl; Stanley, Byron; McLaughlin, Joseph; Lee, Eui-In; Berenholtz, Jack; Aull, Brian; Zayhowski, John; Vasile, Alex; Ramaswami, Prem; Ingersoll, Kevin; Amoruso, Thomas; Khan, Imran; Davis, William; Heinrichs, Richard

    2007-04-01

    Jigsaw three-dimensional (3D) imaging laser radar is a compact, light-weight system for imaging highly obscured targets through dense foliage semi-autonomously from an unmanned aircraft. The Jigsaw system uses a gimbaled sensor operating in a spot light mode to laser illuminate a cued target, and autonomously capture and produce the 3D image of hidden targets under trees at high 3D voxel resolution. With our MIT Lincoln Laboratory team members, the sensor system has been integrated into a geo-referenced 12-inch gimbal, and used in airborne data collections from a UH-1 manned helicopter, which served as a surrogate platform for the purpose of data collection and system validation. In this paper, we discuss the results from the ground integration and testing of the system, and the results from UH-1 flight data collections. We also discuss the performance results of the system obtained using ladar calibration targets.

  7. Airborne Doppler radar velocity measurements of precipitation seen in ocean surface reflection

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Matejka, T. J.

    1985-01-01

    The use of airborne or spaceborne radars to observe precipitation simultaneously directly and in reflection could provide significant new opportunities for measuring the properties of the precipitation, wind field, and ocean surface. Atlas and Meneghini (1983) have proposed that the difference between direct and reflected precipitation echo intensities observed with a nadir-directed beam is a measure of two-way attenuation and thus of path average rain rate, taking into account an employment of direct and reflected echoes from very near the ocean surface to normalize for ocean surface scatter. In the present paper, some key meteorological and oceanographic research applications are illustrated, giving particular attention to airborne Doppler radar velocity measurements of the precipitation.

  8. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed... Doppler radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C65a, Airborne Doppler radar ground speed...

  9. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  10. Clutter filter design considerations for Airborne Doppler radar detection of windshear

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1990-01-01

    The problem of clutter rejection when processing down-looking Doppler radar returns from a low altitude airborne platform is a paramount problem. With radar as a remote sensor for detecting and predicting windshear in the vicinity of an urban airport, dynamic range requirements can exceed 50 dB because of high clutter to signal ratios. This presentation describes signal processing considerations in the presence of distributed and/or discrete clutter interference. Previous analyses have considered conventional range cell processing of radar returns from a rigidly mounted radar platform using either the Fourier or the pulse-pair method to estimate average windspeed and windspeed variation within a cell. Clutter rejection has been based largely upon analyzing a particular environment in the vicinity of the radar and employing a variety of techniques to reduce interference effects including notch filtering, Fourier domain line editing, and use of clutter maps. For the airborne environment the clutter characteristics may be somewhat different. Conventional clutter rejection methods may have to be changed and new methods will probably be required to provide useful signal to noise ratios. Various considerations are described. A major thrust has been to evaluate the effect of clutter rejection filtering upon the ability to derive useful information from the post-filter radar data. This analysis software is briefly described. Finally, some ideas for future analysis are considered including the use of adaptive filtering for clutter rejection and the estimation of windspeed spatial gradient directly from radar returns as a means of reducing the effects of clutter on the determination of a windshear hazard.

  11. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  12. Airborne Radar Sounding and Ice Thickness Measurements over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.; Holt, J. W.; Kempf, S. D.; Richter, T. G.; Falola, B.; Oliason, S.

    2002-05-01

    Lake Vostok was discovered using airborne ice-sounding radar in East Antarctica during the mid 1970's, but interest in this largest known subglacial lake has increased in recent years. Frozen microbial discoveries from ice cores taken just above Lake Vostok suggest its potential for being an isolated biological ecosystem. Also, the lake's unique combination of glaciologic, hydrologic and geological processes make it a possible terrestrial analogue for sub-ice water on other planetary bodies. Satellite radar has mapped the spatial extent of the lake from surface topography, and Russian ground traverses have gathered radar and seismic data along select profiles, but the full subglacial environment has remained uncharted. In response to a proposal by R.E. Bell and M. Studinger at Lamont Doherty Earth Observatory, the University of Texas Institute for Geophysics (UTIG) conducted an airborne geophysical survey over Lake Vostok and its surroundings during the 2000/01 field season. The survey included 21,000 line-km of geophysical observations with a line spacing of 7.5 km and a tie-line spacing of 11.25 or 22.5 km. The instrument suite included incoherent ice-sounding radar, laser altimetry, and precise GPS positioning and navigation, as well as airborne gravity and magnetics measurements. The radar system consisted of a 60 MHz, 8000 watt peak power transmitter operating in pulsed continuous-wave mode at 12.5 kHz (with 250 ns pulse width), a log-detection incoherent receiver (with 80 dB dynamic range), and a signal digitizer with a unique capability to average signals rapidly. Incoherent radar observations constructed from 2048 averaged transmissions occurred roughly every 12 m along-track. Ice thicknesses in excess of 4000 m were routinely sounded over Lake Vostok using this system. In addition to the incoherent radar, a new acquisition system was developed on an experimental basis to coherently integrate radar signals utilizing synthetic aperture radar techniques

  13. Microphysical Retrievals Over Stratiform Rain Using Measurements from an Airborne Dual-Wavelength Radar-Radiometer

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kumagai, Hiroshi; Wang, James R.; Iguchi, Toshio; Kozu, Toshiaki

    1997-01-01

    The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar

  14. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  15. Airborne profiling of ice thickness using a short pulse radar

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.; Heighway, J. E.; Gedney, R.

    1973-01-01

    The acquisition and interpretation of ice thickness data from a mobile platform has for some time been a goal of the remote sensing community. Such data, once obtainable, is of value in monitoring the changes in ice thickness over large areas, and in mapping the potential hazards to traffic in shipping lanes. Measurements made from a helicopter-borne ice thickness profiler of ice in Lake Superior, Lake St. Clair and the St. Clair river as part of NASA's program to develop an ice information system are described. The profiler described is a high resolution, non-imaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm. and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.

  16. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    USGS Publications Warehouse

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  17. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  18. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  19. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in July and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 July 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  20. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  1. Simulation of airborne radar observations of precipitating systems at various frequency bands

    NASA Astrophysics Data System (ADS)

    Louf, Valentin; Pujol, Olivier; Riedi, Jérôme

    2013-05-01

    The choice of the microwave frequency is of considerable importance for precipitating system observations by airborne radar. Currently, these radars operate at X-band (f = 10 GHz), although other frequency bands, may be used jointly or not. Since the measured reflectivity Zm is f-depending, different physical information about precipitating systems could be obtained. Herein, a comparison of reflectivity fields at different frequency bands is presented. A realistic and flexible model of precipitating systems is presented and simulations of airborne radar observations are performed. Simulated reflectivity fields are degraded as/increases because of Mie effects and microwave attenuation. At S, C and X-bands, attenuation is weak and Mie effects slightly increase the backscattered signal such that they can compensate attenuation at X and Ku bands. The Ka and W-bands suffer from a strong attenuation and significant Mie effects which seriously alter Zm-fields. For a squall line, the closer convective tower hides the farther ones, which is problematic for a pilot to estimate hazard at long distance. In addition, because hail is the main meteorological hazard for civil aviation, hail-rain discrimination is discussed and clarified for convective systems. It appears that S, C, and X-bands are the best ones, but the significant size of antenna used is prohibitive. Higher frequencies are more difficult to use on civil aviation due to high ambiguities and a too strongly attenuated microwave signal.

  2. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  3. The application of airborne imaging radars (L and X-band) to earth resources problems

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.

    1974-01-01

    A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.

  4. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  5. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  6. Hawaiian Islands Captured by Shuttle Radar Topographic Mission (SRTM)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Launched February 11, 2000, the STS-99 Shuttle Radar Topographic Mission (SRTM) was the most ambitious Earth mapping mission to date. A 200-ft long (60 meter) mast supporting the SRTM jutted into space from the Space Shuttle Endeavour. Orbiting some 145 miles (233 kilometers) above Earth, the giant structure was deployed on February 12, 2000 and the C-band and X-band anternae mounted on it quickly went to work mapping parts of the Earth. The SRTM radar was able to penetrate clouds as well as provide its own illumination, independent of daylight, and obtained 3-dimentional topographic images of the world's surface up to the Arctic and Antarctic Circles. The mission completed 222 hours of around the clock radar mapping, gathering enough information to fill more than 20,000 CDs. This image is an example of the data required by the SRTM. This is a view of the three Hawaiian Islands; Molokai (lower left), Lanai (right), and the northwest tip of Maui (upper left). The image brightness corresponds to the strength of radar signal reflected from the ground, while colors show the elevation as measured by SRTM, ranging from blue at the lowest elevations to white at the highest elevations. This image contains 5900 feet (1800 meters) of total relief. SRTM will help local officials to better understand and prepare for volcanic, tidal wave, and earthquake activities.

  7. A videoSAR mode for the x-band wideband experimental airborne radar

    NASA Astrophysics Data System (ADS)

    Damini, A.; Balaji, B.; Parry, C.; Mantle, V.

    2010-04-01

    DRDC has been involved in the development of airborne SAR systems since the 1980s. The current system, designated XWEAR (X-band Wideband Experimental Airborne Radar), is an instrument for the collection of SAR, GMTI and maritime surveillance data at long ranges. VideoSAR is a land imaging mode in which the radar is operated in the spotlight mode for an extended period of time. Radar data is collected persistently on a target of interest while the aircraft is either flying by or circling it. The time span for a single circular data collection can be on the order of 30 minutes. The spotlight data is processed using synthetic apertures of up to 60 seconds in duration, where consecutive apertures can be contiguous or overlapped. The imagery is formed using a back-projection algorithm to a common Cartesian grid. The DRDC VideoSAR mode noncoherently sums the images, either cumulatively, or via a sliding window of, for example, 5 images, to generate an imagery stream presenting the target reflectivity as a function of viewing angle. The image summation results in significant speckle reduction which provides for increased image contrast. The contrast increases rapidly over the first few summed images and continues to increase, but at a lesser rate, as more images are summed. In the case of cumulative summation of the imagery, the shadows quickly become filled in. In the case of a sliding window, the summation introduces a form of persistence into the VideoSAR output analogous to the persistence of analog displays from early radars.

  8. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  9. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  10. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  11. GEOLOGIC APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR DATA IN THE CENTRAL APPALACHIAN MOUNTAINS.

    USGS Publications Warehouse

    Pohn, Howard A.; Southworth, C. Scott

    1984-01-01

    Side-looking airborne radar has provided a sufficiently detailed synoptic view of the central Appalachian Mountains that the images give an unparalleled representation of the size and nature of the folds within the Valley and Ridge province. The radar data show that fold wavelengths decrease abruptly south of the region of the Pennsylvania, Maryland, and West Virginia State lines. Concomittantly, this decrease in fold wavelength is accompanied by an increase in both frequency and length of disturbed zones. The model predicted by the combination of the radar images and field observations suggests a broad lateral ramp, perpendicular to the strike of the fold-belt, connecting a deeper decollement level north of the Pennsylvania, Maryland and West Virginia State lines with a shallower decollement to the south. Recently, the first author has located a field example of a lateral ramp approximately one kilometer north of Mathias, West Virginia. This lateral ramp shows an up-to-the-north configuration and the extensions both northwestward and southeastward can be seen on the radar images as a series of cross-strike lineaments.

  12. Surface Clutter Removal in Airborne Radar Sounding Data from the Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Morse, D. L.; Peters, M. E.; Kempf, S. D.

    2005-01-01

    We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.

  13. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  14. Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delnore, Victor E.; Goodrich, Michael S.; Vonhagel, Chris

    1992-01-01

    Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program.

  15. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  16. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  17. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  18. Recent ice sheet snow accumulation and firn storage of meltwater inferred by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miege, Clement

    Recent surface mass balance changes in space and time over the polar ice sheets need to be better constrained in order to estimate the ice-sheet contribution to sea-level rise. The mass balance of any ice body is obtained by subtracting mass losses from mass gains. In response to climate changes of the recent decades, ice-sheet mass losses have increased, making ice-sheet mass balance negative and raising sea level. In this work, I better quantify the mass gained by snowfall across the polar ice sheets; I target specific regions over both Greenland and West Antarctica where snow accumulation changes are occurring due to rising air temperature. Southeast Greenland receives 30% of the total snow accumulation of the Greenland ice sheet. In this work, I combine internal layers observed in ice-penetrating radar data with firn cores to derive the last 30 years of accumulation and to measure the spatial pattern of accumulation toward the southeast coastline. Below 1800 m elevation, in the percolation zone, significant surface melt is observed in the summer, which challenges both firn-core dating and internal-layer tracing. While firn-core drilling at 1500 m elevation, liquid water was found at ˜20-m depth in a firn aquifer that persisted over the winter. The presence of this water filling deeper pore space in the firn was unexpected, and has a significant impact on the ice sheet thermal state and the estimate of mass balance made using satellite altimeters. Using a 400-MHz ice-penetrating radar, the extent of this widespread aquifer was mapped on the ground, and also more extensively from the air with a 750-MHz airborne radar as part of the NASA Operation IceBridge mission. Over three IceBridge flight campaigns (2011-2013), based on radar data, the firn aquifer is estimated to cover ˜30,000 km2 area within the wet-snow zone of the ice sheet. I use repeated flightlines to understand the temporal variability of the water trapped in the firn aquifer and to simulate its

  19. Volume of water equivalent estimates in Central Chilean glaciers, derived from airborne radar surveys

    NASA Astrophysics Data System (ADS)

    Oberreuter, J.; Gacitúa, G.; Uribe, J.; Rivera, A.; Zamora, R.; Loriaux, T.

    2013-12-01

    Central Chilean glaciers (33-35°S) are an important melt water resource for human consumption, agriculture, mining and industrial activities in this, the most populated region of the country. These glaciers have been retreating and shrinking during recent decades, in response to ongoing climatic changes. As a result, there is increasing concern about future water availability especially during dry summers, when glaciers are thought to have the maximum contribution to runoff. In spite of their importance, very little is known about the total volume of water equivalent storage in these glaciers. In order to improve our knowledge about this issue, we have utilized a new airborne radar system, which was developed at CECs, specially designed to penetrate temperate and cold ice, which is working at central frequencies between 20 and 60 MHz, depending on the penetration range capacity at each glacier. This system has been installed on helicopters, where the metal structure antenna (receptor and transmitter) is carried as a hanging load while flying along pre designated tracks, enabling to survey steep and remote glacier areas, many of them without any ice thickness data up to date. The helicopter is geo-located using dual frequency GPS receivers and an inertial navigation unit installed onboard, and each measurement is geo referenced using a pointing laser located at the radar antenna. The antenna must be flown at 40 m above the glacier surface at an air speed of 40 knots. This system has been successfully used on 24 glaciers representing 16% of the total glacier area of the Aconcagua, Maipo and Rapel basins. A mean ice thickness of 168 m and a maximum of 342 m were detected among the surveyed glaciers. Crossing points between overlapping surveyed tracks resulted in mean differences of near 20 m (less than 10% of the total ice thickness). Subsequent ice volumes were calculated by interpolating radar data collected along tracks. These volumetric estimations correlated

  20. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a

  1. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  2. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  3. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  4. Estimation of sea-surface winds using backscatter cross-section measurements from airborne research weather radar

    SciTech Connect

    Hildebrand, P.H. . Remote Sensing Facility)

    1994-01-01

    A technique is presented for estimation of sea-surface winds using backscatter cross-section measurements from an airborne research weather radar. The technique is based on an empirical relation developed for use with satellite-borne microwave scatterometers which derives sea-surface winds from radar backscatter cross-section measurements. Unlike a scatterometer, the airborne research weather radar is a Doppler radar designed to measure atmospheric storm structure and kinematics. Designed to scan the atmosphere, the radar also scans the ocean surface over a wide range of azimuths, with the incidence angle and polarization angle changing continuously during each scan. The new sea-surface wind estimation technique accounts for these variations in incidence angle and polarization and derives the atmospheric surface winds. The technique works well over the range of wind conditions over which the wind speed-backscatter cross-section relation holds, about 2--20 m/s. The problems likely to be encountered with this new technique are evaluated and it is concluded that most problems are those which are endemic to any microwave scatterometer wind estimation technique. The new technique will enable using the research weather radar to provide measurements which would otherwise require use of a dedicated scatterometer.

  5. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  6. Airborne Ground Penetrating Radar (GPR) for peat analyses in the Canadian Northern wetlands study

    NASA Technical Reports Server (NTRS)

    Pelletier-Travis, Ramona E.

    1991-01-01

    The study was conducted as part of the NASA Biospherics Research on Emissions from Wetlands (BREW) program. An important aspect of the program is to investigate the terrestrial production and atmospheric distribution of methane and other gases contributing to global warming. Multi-kilometer transects of airborne (helicopter) Ground Penetrating Radar (GPR) data were collected periodically along the 100 km distance from the coast inland so as to obtain a regional trend in peat depth and related parameters. Global Positioning System (GPS) data were simultaneously collected from the helicopter to properly georeference the GPR data. Additional 50 m ground-based transects of GPR data were also collected as a source of ground truthing, as a calibration aid for the airborne data sets, and as a source of higher resolution data for characterizing the strata within the peat. In situ peat depth probing and soil characterizations from excavated soil pits were used to verify GPR findings. Results from the ground-based data are presented.

  7. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  8. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  9. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  10. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  11. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  12. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1994-01-01

    This paper briefly reviews several single-frequency rain profiling methods for an airborne or spaceborne radar. The authors describe the different methods from a unified point of view starting from the basic differential equation. This facilitates the comparisons between the methods and also provides a better understanding of the physical and mathematical basis of the methods. The application of several methods to airborne radar data taken during the Convective and Precipitation/Electrification Experiment is shown. Finally, the authors consider a hybrid method that provides a smooth transition between the Hitschfeld-Bordan method, which performs well at low attenuations, and the surface reference method, for which the relative error decreases with increasing path attenuation.

  13. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  14. 77 FR 53962 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... of TSO-C65a as published in 77 FR 37470, June 21, 2012, produced no comments. Conclusion TSO-C65a is... TRANSPORTATION Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground... Doppler Radar Ground Speed and/or Drift Angle Measuring Equipment (For Air Carrier Aircraft)....

  15. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  16. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  17. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  18. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  19. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  20. Multi-frequency fine resolution imaging radar instrumentation and data acquisition. [side-looking radar for airborne imagery

    NASA Technical Reports Server (NTRS)

    Rendleman, R. A.; Champagne, E. B.; Ferris, J. E.; Liskow, C. L.; Marks, J. M.; Salmer, R. J.

    1974-01-01

    Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording.

  1. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  2. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  3. Topographic analyses of K*lauea Volcano, Hawai'i, from interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; MacKay, Mary E.; Garbeil, Harold; Mouginis-Mark, Peter J.

    We analyze digital topographic data collected in September 1993 over a 500-km2 portion of K*lauea Volcano, Hawai'i, by the C-band (5.6-cm wavelength) topographic synthetic aperture radar (TOPSAR) airborne interferometric radar. Field surveys covering an 1-km2 area of the summit caldera and the distal end of an 8-m-thick 'a'* flow indicate that the 10-m spatial resolution TOPSAR data have a vertical accuracy of 1-2m over a variety of volcanic surfaces. After conversion to a common datum, TOPSAR data agree favorably with a digital elevation model (DEM) produced by the U.S. Geological Survey (USGS), with the important exception of the region of the ongoing eruption (which postdates the USGS DEM). This DEM comparison gives us confidence that subtracting the USGS data from TOPSAR data will produce a reasonable estimate of the erupted volume as of September 1993. This subtraction produces dense rock equivalent (DRE) volumes of 392, 439, and 90×106m3 for the Pu'u '*'*, K*pa'ianah*, and episode 50-53 stages of the eruption, respectively. These are 124, 89, and 94% of the volumes calculated by staff of the Hawaiian Volcano Observatory (HVO) but do not include lava of K*pa'ianah* and episodes 50-53 that flowed into the ocean and are thus invisible to TOPSAR. Accounting for this lava increases the TOPSAR volumes to 124, 159, and 129% of the HVO volumes. Including the +/-2-m uncertainty derived from the field surveys produces TOPSAR-derived volumes for the eruption as a whole that range between 81 and 125% of the USGS-derived values. The vesicularity- and ocean-corrected TOPSAR volumes yield volumetric eruption rates of 4.5, 4.5, and 2.7m3/s for the three stages of the eruption, which compare with HVO-derived values of 3.6, 2.8, and 2.1m3/s, respectively. Our analysis shows that care must be taken when vertically registering the TOPSAR and USGS DEMs to a common datum because C-band TOPSAR penetrates only partially into thick forest and therefore produces a DEM within the tree

  4. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  5. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  6. Terminal Fall Velocity From Airborne Doppler Radar : Application To The Frontal Cyclones of Fastex

    NASA Astrophysics Data System (ADS)

    Protat, A.; Lemaitre, Y.; Bouniol, D.

    Knowledge of water drop and ice crystal terminal velocities is particularly important for an adequate representation of particle sedimentation in cloud-resolving, opera- tional forecast and climate models. A new method is proposed in the present study to retrieve terminal fall velocity from airborne Doppler radar observations. To extract the terminal fall velocity from the Doppler information, statistical considerations are introduced, stating that for a long sampling time span (a whole aircraft mission, for in- stance) and for moderate the mean vertical air motions vanish with respect to the mean terminal fall velocity. This underlying hypothesis of the method is validated with in- situ data, in-situ microphysical VT-Z relationships in rain, and averages of convective- scale retrievals of the vertical wind component. A detailed analysis of the statistical relationships obtained in liquid and ice phases for 6 frontal cyclones sampled during FASTEX at different stages of development shows that an SuniversalT VT-Z rain rela- & cedil;tionship can be proposed for the North-Atlantic frontal cyclones at mature stage. In ice phase, such an SuniversalT relationship is not found. It is nevertheless suggested that & cedil;a general relationship can be derived if the frontal cyclones are split into categories depending on their stage of development. These VT-Z SuniversalT relationships can & cedil;be introduced in model parameterisation schemes in order to better describe sedimen- tation of ice and water and dynamical-microphysical interactions occurring within the North-Atlantic frontal cyclones.

  7. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  8. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  9. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  10. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  11. High-Rate Data-Capture for an Airborne Lidar System

    NASA Technical Reports Server (NTRS)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is

  12. Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Pfennigbauer, Martin; Riegl, Ursula; Haring, Alexander; Wieser, Martin; Glira, Philipp; Winiwarter, Lukas

    2015-10-01

    In this paper we report on a flight experiment employing airborne laser bathymetry (ALB) and unmanned aerial vehicle (UAV) based laser scanning (ULS) for capturing very high resolution topography of shallow water areas and the surrounding littoral zone at the pre-alpine Pielach River in Austria. The aim of the research is to assess how information gained from non-bathymetric, ultra-high resolution ULS can support the ALB data. We focus first on the characterization of the water surface of a lowland river and provide validation results using the data of a topographic airborne laser scanning (ALS) sensor and a low flying ULS system. By repeat ULS survey of a the meandering river reach we are able to quantify short-term water level changes due to surface waves in high resolution. Based on a hydrodynamic-numerical (HN) model we assess the accuracy of the water surface derived from a water penetrating ALB sensor. In the second part of the paper we investigate the ability of ALB, ALS, and ULS to describe the complex topography and vegetation structure of the alluvial area. This is carried out by comparing the Digital Terrain Models (DTM) derived from different sensor configurations. Finally we demonstrate the potential of ULS for estimating single tree positions and stem diameters for detailed floodplain roughness characterization in HN simulations. The key findings are: (i) NIR scan data from ALS or ULS provide more precise water level height estimates (no bias, 1σ: 2 cm) compared to ALB (bias: 3 cm, 1σ: 4 cm), (ii) within the studied reach short-term water level dynamics irrelevant for ALB data acquisition considering a 60 cm footprint diameter, and (iii) stem diameters can be estimated based on ULS point clouds but not from ALS and ALB.

  13. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  14. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  15. Echo Source Discrimination in Airborne Radar Sounding Data From the Dry Valleys, Antarctica, for Mars Analog Studies

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Williams, B. J.

    2003-12-01

    The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars. We have collected roughly 1,000 line-km of airborne radar sounding data in the Dry Valleys for Mars analog studies. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of surrounding topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. Using a Twin Otter airborne platform, data were collected in three separate flights during the austral summers of 1999-2000 and 2001-2002 using multiple systems, including a chirped 52.5 - 67.5 MHz coherent radar operating at 750 W and 8 kW peak power (with multiple receivers) and 1 - 2 microsecond pulse width, and a 60 MHz pulsed, incoherent radar operating at 8 kW peak power with 60 ns and 250 ns pulse width. The chirped, coherent data are suitable for the implementation of advanced pulse compression algorithms and SAR focusing. Flight elevation was nominally 500 m above the surface. Targets included permafrost, subsurface ice bodies, rock/ice glaciers, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valleys. A laser altimeter (fixed relative to the aircraft frame) was also used during both

  16. An analysis of the economic impact of the AN/APS-134 FLAR (Forward Looking Airborne Radar) retrofit on Coast Guard HC-130 aircraft

    NASA Astrophysics Data System (ADS)

    Dunn, R. E.

    1984-12-01

    Concern over the growing drug smuggling problem and improved national defense capability are manifest in the need for a new forward looking airborne radar (FLAR) for Coast Guard HC-130 aircraft, with a capability of detecting a target of 1 square meter radar cross section. This thesis reexamines the analysis that selected the AN/APS-134 FLAR over other contenders based on mission need, radar performance and life cycle cost criteria. This thesis presents a better understanding of the resulting HC-130 force structure based on the impact of FLAR technology.

  17. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  18. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  19. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  20. Challenges to Airborne and Orbital Radar Sounding in the Presence of Surface Clutter: Lessons Learned (so far) from the Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Blankenship, D. D.

    2005-12-01

    The search for life and in-situ resources for exploration on Mars targets both liquid and solid water, whether distributed or in reservoirs. Massive surface ice may cover potential habitats or other features of great interest. Ice-rich layering in the high latitudes holds clues to the climatic history of the planet. Multiple geophysical methods will clearly be necessary to fully characterize these various states of water (and other forms of ice), but radar sounding will be a critical component of the effort. Orbital radar sounders are already being employed and plans for surface-based and suborbital, above-surface radar sounders are being discussed. The difficulties in interpreting data from each type of platform are quite different. Given the lack of existing orbital radar sounding data from any planetary body, the analysis of airborne radar sounding data is quite useful for assessing the advantages and disadvantages of above-surface radar sounding on Mars. In addition to over 300,000 line-km of data collected over the Antarctic ice sheet by airborne radar sounding, we have recently analyzed data from the Dry Valleys of Antarctica where conditions and features emulate Mars in several respects. These airborne radar sounding data were collected over an ice-free area of Taylor Valley, ice-covered lakes, Taylor Glacier, and Beacon Valley. The pulsed radar (52.5 - 67.5 MHz chirp) was coherently recorded. Pulse compression and unfocused SAR processing were applied. One of the most challenging aspects of above-surface radar sounding is the determination of echo sources. This can, of course, be problematic for surface-based radar sounders given possible subsurface scattering geometries, but it is most severe for above-surface sounders because echoes from cross-track surface topography (surface clutter) can have similar time delays to those from the subsurface. We have developed two techniques to accomplish the identification of this surface clutter in single-pass airborne

  1. Summary of Turbulence Data Obtained During United Air Lines Flight Evaluation of an Experimental C Band (5.5 cm) Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Coe, E. C.; Fetner, M. W.

    1954-01-01

    Data on atmospheric turbulence in the vicinity of thunderstorms obtained during a flight evaluation of an experimental C band (5.5 cm) airborne radar are summarized. The turbulence data were obtained with an NACA VGH recorder installed in a United Air Lines DC-3 airplane.

  2. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  3. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    NASA Astrophysics Data System (ADS)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  4. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  5. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  6. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  7. An optical radar for airborne use over natural waters. [for underwater target detection

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Swarner, W. G.; Prettyman, C.; Reinhardt, G. W.

    1975-01-01

    An optical radar for detecting targets in natural waters was built and tested in the Gulf of Mexico. The transmitter consists of a Q switched neodymium glass laser, with output amplified and doubled in KDP to 0.53 micrometer wavelength. The receiver incorporates a noval optical spatial filter to reduce the dynamic range required of the photodetector to a reasonable value. Detection of targets to a depth of 26 meters (84 feet) was achieved with a considerable sensitivity margin. The sensitivity of the radar is highly dependent on the optical attenuation coefficient. In general, measured returns fell between the values predicted on the basis of monopath and multipath attenuation. By means of simple physical arguments, a radar equation for the system was derived. To validate this theoretical model, measurements of optical attenuation and of water surface behavior were also instrumented, and some of these results are given.

  8. The USGS Side-Looking Airborne Radar (SLAR) program: CD-ROMs expand potential for petroleum exploration

    SciTech Connect

    Kover, A.N.; Schoonmaker, J.W. Jr.; Pohn. H.A. )

    1991-03-01

    The United States Geological Survey (USGS) began the systematic collection of Side-Looking Airborne Radar (SLAR) data in 1980. The SLAR image data, useful for many geologic applications including petroleum exploration, are compiled into mosaics using the USGS 1:250,000-scale topographic map series for format and control. Mosaics have been prepared for over 35% of the United States. Image data collected since 1985 are also available as computer compatible tapes (CCTs) for digital analysis. However, the use of tapes is often cumbersome. To make digital data more readily available for use on a microcomputer, the USGS has started to prepare compact discs-read only memory (CD-ROM). Several experimental discs have been compiled to demonstrate the utility of the medium to make available very large data sets. These discs include necessary nonproprietary software text, radar, and other image data. The SLAR images selected for these discs show significantly different geologic features and include the Long Valley caldera, a section of the San Andreas fault in the Monterey area, the Grand Canyon, and glaciers in southeastern Alaska. At present, several CD-ROMs are available as standard products distributed by the USGS EROS Data Center in Sioux Falls, South Dakota 57198. This is also the source for all USGS SLAR photographic and digital material.

  9. Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.

    1992-01-01

    The paper compares Arecibo Observatory and Magellan radar data for Venus to airborne radar images for potential terrestrial analog surfaces. Volcanic deposits in western Eistla Regio and northern Sedna Planitia are characterized. It is shown that the expected-sense circularly polarized echoes in the 'dark plains' and broad flow aprons of Eistla Regio decrease rapidly with incidence angle. This angular scattering behavior implies surfaces no rougher than terrestrial pahoehoe flows. Polarization ratio comparisons show that the extensive lava flows in Western Eistla Regio and Sedna Planitia are generally consistent with the properties of terrestrial pahoehoe flows, with only limited occurrences of a'a morphology. Three scenarios are suggested. Many of the large flow units in the two study regions were emplaced as complexes of low-effusion rate pahoehoe flows, rather than as higher eruption rate events which might be expected to produce a'a surface textures; the long lava flows were originally emplaced as a'a but have since weathered to a smoother texture; or a combination of atmospheric and magma compositional effects combine to inhibit a'a formation even at high volume eruption rates.

  10. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  11. The US Geological Survey's side-looking airborne radar acquisition program: Image data from the Rocky Mountains to the Pacific

    SciTech Connect

    Kovar, A.N.; Schoonmaker, J.W. Jr. )

    1993-04-01

    The US Geological Survey (USGS) has been systematically collecting side-looking airborne radar (SLAR) image data for the US since 1980. The image strip swaths, ranging in width from 20 to 46 km, are acquired commercially by X-band (3 cm) radar systems. Data are acquired with 60 percent side-lap for better mosaic preparation and stereoscopic capability. The image strips are assembled into 1[degree] x 2[degree] mosaic quadrangles that are based on the USGS 1:250,000-topographic map series for control, format, and nomenclature. These mosaics present the data in a broad synoptic view that facilitates geologic interpretation. SLAR image mosaics have been prepared for more than 35 percent of the US west of the Rocky Mountain front. In addition to quadrangle mosaics, regional composite mosaics have been prepared as value-added products. These include Pacific Northwest (14 quadrangles), southern California Coastal (from San Francisco to San Diego), Reno-Walker (includes parts of Yellowstone and Grand Teton National Parks), Uinta Basin (Salt Lake City, Price and Grand Junction), and Salton Sea Region (San Diego, Santa Ana, El Centro and Salton Sea). Most of the image data are available on computer compatible tapes and photographic products. To make the data more accessible and reasonably priced, the strip images are being processed into CD-ROM (compact disc, read-only memory). One demonstration CD-ROM includes the mosaics of Las Vegas, Mariposa, Ritzville, Walla Walla, and Pendleton quadrangles.

  12. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  13. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  14. Multi-Frequency Airborne Radar Measurements of Outlet Glaciers and Ice Streams

    NASA Astrophysics Data System (ADS)

    Gogineni, P. S.; Braaten, D. A.; Rodriguez-Morales, F.; Li, J.; Leuschen, C.; Paden, J. D.; Hale, R.; Arnold, E.; Panzer, B.; Gomez-Garcia, D.; Crowe, R.; Patel, A. E.; Yan, J.

    2012-12-01

    Outlet glaciers and ice streams in Greenland and Antarctica are important delivery systems of inland ice to the oceans. Satellite observations are showing that parts of the Antarctic and Greenland ice sheets are undergoing rapid changes, including both speed-up of several glaciers in Greenland and erratic behavior of Antarctic glaciers buttressed by ice shelves. While satellite sensors provide data on the surface flow speed and document the rapid changes the ice sheets are undergoing, they do not provide the essential information needed to understand the ice dynamics driving these changes or a detailed assessment of mass balance. In particular, a more complete knowledge of ice thickness, bed topography, and basal conditions are needed to better understand the dynamic processes causing rapid changes, assess outlet glacier discharge, and assess future discharge potential. Simultaneous measurements of snow accumulation from internal layering over the glacier catchment provide an assessment of temporally-varying surface mass balance. We developed a radar instrumentation package that can be operated both on long-range and short-range aircraft. This package includes four radars operating over a frequency range of about 180 MHz to 18 GHz. These are: (1) a wideband radar depth sounder that operates at a center frequency of 195 MHz to sound and image ice; (2) an ultra-wideband radar that operates over a frequency range of 600 to 900 MHz to map near-surface internal layers in polar firn and ice; (3) an ultra-wideband microwave radar that operates over a frequency range of about 2 to 8 GHz to measure the thickness of snow cover over sea ice and map near-surface internal layers in polar firn with fine resolution of about 5 cm; and (4) a radar altimeter that operates over a frequency range of 12 to 18 GHz for high-precision surface elevation measurements. During the last three years, these radars have been flown on several different aircraft over the Greenland and Antarctic ice

  15. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3323-3324] [FR... Engineering Division, Aircraft Certification Service. [FR Doc. 2012-1243 Filed 1-20-12; 8:45 am] BILLING CODE... cancelling TSO-C67. Please note that TSO-C87, Airborne Low Range Radio Altimeter, is currently used for...

  16. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  17. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  18. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  19. Impacts of 4D-VAR Assimilation of Airborne Doppler Radar Observations on Numerical Simulations of the Genesis of Typhoon Nuri (2008)

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Li, Z.

    2014-12-01

    The Weather Research and Forecasting model and its four-dimensional variational data assimilation system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). The ELDORA airborne radar data, collected during the Office of Naval Research-sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as it enhances the development of convective systems and improves the inner core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation lead to developing and nondeveloping disturbances for Nuri's genesis in the numerical simulations. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri's genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea-level pressure.

  20. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability. Second Corrected Copy Issued May 23, 2011

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  1. Some case studies of ocean wave physical processes utilizing the GSFC airborne radar ocean wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1984-01-01

    The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.

  2. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  3. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  4. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  5. Wave observation at sea with the Dutch Side-Looking Airborne Radar (SLAR)

    NASA Astrophysics Data System (ADS)

    Peters, H. C.

    1984-03-01

    Theoretical limits for sea wave observation with SLAR systems were investigated by modeling the interaction between microwave radiation and the sea surface. A description of the SLAR, in which three-dimensional spatial wave extension, two-dimensional antenna variations, pulse modulation, and platform movements are assimilated is given. A two-dimensional collection of equidistant point objects for microwave scattering at the rough sea surface is given. Resolution characteristics and speckle behavior were analyzed. Spatial resolution in range and azimuth is limited by pulse width and azimuth aperture angle of the antenna. As the modulation transfer function amplitude has a low value, small variations are lost in noise and speckle. Image error as a result of the observation of moving wave patterns with a flying radar are discussed. Recommendations to improve the radar characteristics are given.

  6. The structure of a microburst - As observed by ground-based and airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Mueller, C. K.; Hildebrand, P. H.

    1983-01-01

    Attention is given to the microburst observed near Denver, CO, on June 29, 1982, in the course of the Joint Airport Weather Study (JAWS). The JAWS ground radar network was specifically established to furnish high spatial and temporal resolution multiple Doppler data for microburst observations. The data, which were collected from directly above the microburst, permitted direct measurements of vertical velocities to be made. P-3 surveillance aircraft Doppler data was also available for this microburst, whose considerable complexity is noted.

  7. Space-Time Cube Analytics of Evolving Landforms Captured by Airborne and Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Mitasova, H.; Starek, M. J.; Hardin, E. J.; Wegmann, K. W.; Blundell, B. S.

    2012-12-01

    A multidimensional framework for analysis of land surface dynamics from time series of lidar data is presented. The framework integrates the standard line feature extraction and raster-based statistics with novel volume representation of evolving terrain and defines metrics for quantification of observed change. Within the raster-based approach, the stable core and envelope surfaces are derived by applying per-cell statistics to time series of lidar-based digital elevation models (DEMs). The core and envelope are then used to map the contour displacement range and compute the relative volume intensity graphs that characterize the redistribution of mass in the study area. To fully capture the properties of evolving surfaces in both space and time, a discrete and a continuous space-time cube (STC) approach is introduced. Simple to implement, discrete STC stacks series of DEMs into a voxel model which is then used to derive isosurfaces representing a given contour evolution and to extract space-time crossections that represent evolution of elevation along a given profile. Raster maps representing DEM differences can also be stacked into a voxel model and evolution of change of a given magnitude is then extracted as an isosurface. Continuous STC represents the dynamic surface as a trivariate function where time is the third dimension and elevation is the modeled variable. To compute the continuous STC the time series of point cloud data is merged into a single point cloud that is then interpolated into a voxel model at a desired spatial and temporal resolution. Trivariate regularized smoothing spline with octree-based segmentation is used to compute voxel models of elevation evolution and its first and second order derivatives directly from time series of point cloud data. The resulting voxel models are then used to identify the locations and time of the fastest rate of change, possible acceleration or areas and time intervals of stability. The presented concepts and

  8. Multi-temporal airborne synthetic aperture radar data for crop classification

    NASA Technical Reports Server (NTRS)

    Foody, G. M.; Curran, P. J.; Groom, G. B.; Munro, D. C.

    1989-01-01

    This paper presents an approach to the classification of crop type using multitemporal airborne SAR data. Following radiometric correction of the data, the accuracy of a per-field crop classification reached 90 percent for three classes using data acquired on four dates. A comparable accuracy of 88 percent could be obtained for a classification of the same classes using data acquired on only two dates. Increasing the number of classes from three to seven reduced the classification accuracies to 55 percent and 69 percent when using data from two and four dates respectively.

  9. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  10. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.; Zhang, Fuqing

    2014-03-01

    the Pennsylvania State University (PSU) real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) that assimilates airborne Doppler radar observations, the sensitivity and uncertainty of forecasts initialized several days prior to landfall of Hurricane Sandy (2012) are assessed. The performance of the track and intensity forecasts of both the deterministic and ensemble forecasts by the PSU WRF-EnKF system show significant skill and are comparable to or better than forecasts produced by operational dynamical models, even at lead times of 4-5 days prior to landfall. Many of the ensemble members correctly capture the interaction of Sandy with an approaching midlatitude trough, which precedes Sandy's forecasted landfall in the Mid-Atlantic region of the United States. However, the ensemble reveals considerable forecast uncertainties in the prediction of Sandy. For example, in the ensemble forecast initialized at 0000 UTC 26 October 2012, 10 of the 60 members do not predict a United States landfall. Using ensemble composite and sensitivity analyses, the essential dynamics and initial condition uncertainties that lead to forecast divergence among the members in tracks and precipitation are examined. It is observed that uncertainties in the environmental steering flow are the most impactful factor on the divergence of Sandy's track forecasts, and its subsequent interaction with the approaching midlatitude trough. Though the midlatitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land.

  11. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  12. Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry

    SciTech Connect

    Vincent, P

    2001-10-01

    A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreas Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this

  13. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  14. Quantifying monthly to decadal subsidence and assessing collapse potential near the Wink sinkholes, west Texas, using airborne lidar, radar interferometry, and microgravity

    NASA Astrophysics Data System (ADS)

    Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.

    2014-12-01

    We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.

  15. Airborne synthetic aperture radar observations and simulations for waves in ice

    NASA Technical Reports Server (NTRS)

    Vachon, Paris W.; Olsen, Richard B.; Krogstad, Harald E.; Liu, Antony K.

    1993-01-01

    The Canada Centre for Remote Sensing CV-580 aircraft collected C-band SAR data over the marginal ice zone off the east coast of Newfoundland during the Labrador Ice Margin Experiment (LIMEX) in March 1989. One component of the LIMEX '89 program was the study of ocean waves penetrating the marginal ice zone. We consider nearly coincidental observations of waves in ice by airborne SAR and wave-induced ice motion measurements. We explain the wave patterns observed in the SAR imagery, and the corresponding SAR image spectra, in terms of SAR wave imaging models. These include the well-known tilt cross-section modulation, linear, quasi-linear, and nonlinear velocity bunching forward mapping models (FMMs), and the assertion that the concept of coherence time limitation applies differently to the cases of waves in ice and open water. We modify the concept of the scene coherence time to include two parts: first, a decorrelation time deduced from the inherent azimuth cutoff in the nonlinear velocity bunching FMM; and second, the intrinsic scene coherence time which is a measure of the time scale over which an open water Bragg scattering patch retains its phase structure. Either of these coherence time scales could dominate the SAR image formation process, depending upon the environmental conditions (the wave spectrum and the wind speed, for example). Observed SAR image spectra and forward mapped ice motion package spectra are favorably compared.

  16. Capturing atmospheric effects on 3D millimeter wave radar propagation patterns

    NASA Astrophysics Data System (ADS)

    Cook, Richard D.; Fiorino, Steven T.; Keefer, Kevin J.; Stringer, Jeremy

    2016-05-01

    Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the millimeter wave (MMW) regime, atmospheric effects such as attenuation and refraction become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS) in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code have shown great promise simulating atmospheric effects on laser propagation. Indeed, the LEEDR radiative transfer code has been validated in the UV through RF. Our research attempts to apply these models to characterize the far field radar pattern in three dimensions as a signal propagates from an antenna towards a point in space. Furthermore, we do so using realistic three dimensional atmospheric profiles. The results from these simulations are compared to those from traditional radar propagation software packages. In summary, a fast running method has been investigated which can be incorporated into computational models to enhance understanding and prediction of MMW propagation through various atmospheric and weather conditions.

  17. Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods

    NASA Technical Reports Server (NTRS)

    Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.

    2015-01-01

    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.

  18. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and detailed neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, T. B.; Hawley, R. L.; Helm, V.; Morris, E. M.; Chaudhary, R. N.

    2015-12-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and detailed neutron-probe (NP) density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 %) from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995-2004 compared to 1985-1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.

  19. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS. PMID:25811231

  20. Detecting pruning of individual stems using Airborne Laser Scanning data captured from an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Wallace, Luke; Watson, Christopher; Lucieer, Arko

    2014-08-01

    Modern forest management involves implementing optimal pruning regimes. These regimes aim to achieve the highest quality timber in the shortest possible rotation period. Although a valuable addition to forest management activities, tracking the application of these treatments in the field to ensure best practice management is not economically viable. This paper describes the use of Airborne Laser Scanner (ALS) data to track the rate of pruning in a Eucalyptus globulus stand. Data is obtained from an Unmanned Aerial Vehicle (UAV) and we describe automated processing routines that provide a cost-effective alternative to field sampling. We manually prune a 500 m2 plot to 2.5 m above the ground at rates of between 160 and 660 stems/ha. Utilising the high density ALS data, we first derived crown base height (CBH) with an RMSE of 0.60 m at each stage of pruning. Variability in the measurement of CBH resulted in both false positive (mean rate of 11%) and false negative detection (3.5%), however, detected rates of pruning of between 96% and 125% of the actual rate of pruning were achieved. The successful automated detection of pruning within this study highlights the suitability of UAV laser scanning as a cost-effective tool for monitoring forest management activities.

  1. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  2. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles. PMID:24479508

  3. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data

    PubMed Central

    Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-01-01

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569

  4. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH

  5. A comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery - The value of archived multiple data sets

    NASA Technical Reports Server (NTRS)

    Hanson, Bradford C.; Dellwig, Louis F.

    1988-01-01

    In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.

  6. Flight evaluation of a radar cursor technique

    NASA Astrophysics Data System (ADS)

    Perez, J.

    1980-03-01

    Preliminary results are presented of a flight test evaluation of a radar cursor technique to be used as an aid in acquiring and tracking the desired ground track during airborne radar approaches. The test was performed using a Sikorsky CH-53A helicopter. The airborne radar system used was a BENDIX RDR-1400A modified to electronically produce a radar cursor display of course error. Airborne radar approaches were made to an offshore and an airport test environment. The specific purpose of the test was to evaluate the practical utility of the radar cursor as an aid to performing airborne radar approaches. The preliminary conclusion of this test is that the use of the radar cursor improved course acquisition and ground tracking significantly with pilotage errors and total system cross-track errors reduced by one-half or better. The radar cursor technique shows potential in reducing airspace requirements for airborne radar approaches.

  7. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  8. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA - integrating fieldwork, ground-penetrating radar and airborne imagery analysis

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; Grützner, C.; van Gent, H. W.; Urai, J. L.; Reicherter, K.; Mertens, J.

    2015-07-01

    The grabens of Canyonlands National Park are a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the subsurface and a slight regional tilt of the faulted strata. We present results of ground-penetrating radar (GPR) surveys in combination with field observations and analysis of high-resolution airborne imagery. GPR data show intense faulting of the Quaternary sediments at the flat graben floors, implying a more complex fault structure than visible at the surface. Direct measurements of heave and throw at several locations to infer fault dips at depth, combined with observations of primary joint surfaces in the upper 100 m, suggest a highly dilatant fault geometry. Sinkholes observed in the field as well as in airborne imagery give insights in local dilatancy and show where water and sediments are transported underground. Based on correlations of paleosols observed in outcrops and GPR profiles, we argue that either the grabens in Canyonlands National Park are older than previously assumed or that sedimentation rates were much higher in the Pleistocene.

  9. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  10. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  11. The use of airborne radar reflectometry to characterize near-surface snow/firn stratigraphy on Devon Ice Cap, Canadian Arctic: A path to identifying refrozen melt layers

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2015-12-01

    Under present warming conditions, summer surface melt has been observed to intensify and shift towards higher elevations in the accumulation zones of Canadian Arctic ice caps. Consequently, more meltwater percolates into the near surface snow and firn, and refreezes as ice layers. This process can lead to a significant increase in firn densification rates. Knowledge of spatiotemporal variations of the near-surface firn density, especially the distribution of ice layer formation is of great importance when assessing mass change estimates from repeat altimetry measurements. Here, we present an approach for characterizing the near-surface firn stratigraphy and determining the spatial distribution of refrozen melt layers on Devon Ice Cap, using the surface echo from airborne radio-echo sounding (RES) measurements. The RES surface echo is affected by the upper few meters of snow/firn/ice and thus contains information about the near-surface properties. More specifically, the radar surface return is a combination of a coherent (Pc) and a scattering signal component (Pn). Pc is related to the dielectric constant of the probed surface, whereas Pn is related to the near surface roughness. Hence, different near-surface snow/firn properties can be investigated by analyzing the signal components Pc and Pn and their spatial variability. The Radar Statistical Reconnaissance (RSR) methodology [1] allows the extraction of Pc and Pn from the surface radar return, which then can be used to compute near-surface roughness and firn density estimates. We apply the RSR method to RES data collected on Devon Ice Cap and determine Pc and Pn values. We then compare the results to ground based RES measurements and shallow firn cores (~11 m deep) collected along the airborne RES flight lines. This comparison shows that variations in the scattering coefficient Pn correlate to changes in the pattern of near-surface firn stratigraphy revealed by the ground based RES data and firn cores. Based on

  12. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  13. News and Views: Airborne radar reveals fault rupture detail; Rhapsody in blue, not red; Ammunition for dark skies activists

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Satellite synthetic aperture radar is a valuable tool for understanding the deformation of the surface of the Earth at earthquake faults; now NASA scientists have used SAR on planes to get an altogether closer look at quake effects. A campaign in Texas to raise awareness of light pollution has produced resources including a video, highlighting causes, effect and solutions, available online.

  14. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  15. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  16. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  17. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  18. Joint Variability of Airborne Passive Microwave and Ground-based Radar Observations Obtained in the TRMM Kwajalein Experiment

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Kingsmill, D. E.

    2007-12-01

    The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) held July-September 1999 in the west Pacific was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. The majority of the precipitation was from mixed-phase clouds. Coordinated data sets were obtained from aircraft and ground-based sensors including passive microwave measurements by the Advanced Microwave Precipitation Radiometer (AMPR) instrument on the NASA DC-8 aircraft and S-band volumetric radar data by the KPOL radar. The AMPR and KPOL data sets were processed to yield a set of 25,049 matching observations at ~ 2 km x 2 km horizontal spatial resolution and within 6 min. The TRMM satellite Microwave Imager (TMI) has a similar set of channels to AMPR but coarser spatial resolution (19 GHz: 35 km, 85 GHz: 7.7 km). During KWAJEX, the 0 deg C level height was nearly constant at ~ 4800 m. Hence, two potential sources of uncertainty in relating passive microwave brightness temperatures (Tbs) to surface precipitation, inhomogeneous beam filling and variations in depth of the rain layer are much smaller sources of error in the KWAJEX data set than for TMI. TRMM was originally designed to yield monthly rainfall estimates over 5 deg x 5 deg grid boxes. The use of these data to yield instantaneous rainrate products at smaller spatial scales is more sensitive to the detailed characteristics of the joint distributions of passive microwave Tbs versus rain rate. KWAJEX data sets reveal poor correlations, very wide scatter, and weak modes in these distributions. The spread of emission Tb values for a given rain-layer reflectivity (e.g., 75 K at 30 dBZ for 19 GHz) is similar or larger within convective compared to stratiform precipitation regions. This result implies that the enhancement in emission Tbs associated with partially melted ice particles can occur whether the particles are concentrated within a thin layer in stratiform

  19. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  20. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  1. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  2. Airborne laser scan measurements of winter snow accumulation in high alpine catchments - hydrological implications and verification by ground penetrating radar at glacier surface

    NASA Astrophysics Data System (ADS)

    Helfricht, K.; Keuschnig, M.; Heilig, A.; Mayer, C.; Kuhn, M.

    2012-04-01

    The snow cover as storage of winter precipitation is a substantial source for runoff generation in high mountain catchments. Redistribution of solid precipitation, caused by wind and gravity, leads to a characteristic spatial distribution of snow accumulation which differs from simple model assumption of a homogenous snowpack increasing with altitude. Both, the distinct distribution of snow accumulation and the total amount of SWE stored in the snow cover, affect the magnitude and seasonality of melt water runoff. Complex relations exist between the spatial pattern of snow accumulation and the presence of glaciers and vice versa. For proper hydrological modeling in high mountain catchments, knowledge about snow cover distribution is an important requirement. To date, to evaluate modeling results, spatially insufficient point data on snow depths and SWE are usually available. On catchment scale, optical space-borne remote sensing techniques deliver areal extent of snow cover, but no snow depths and hence no volume of snow cover. Multi-temporal airborne laser scanning (ALS) is an active remote sensing method to obtain elevation changes extensively even in inaccessible alpine terrain. Before the start and at the end of accumulation season of winter 2010/2011, two airborne laser scan acquisitions were performed in the Ötztal Alps (Tirol, Austria). Differences of the respective digital elevation models were interpreted as snow depths and converted into SWE using a simple regression method between snow depths and snow density. Preferred snow accumulation areas were determined, e.g. wind sheltered depressions, the base of steep mountain walls and flat glacier surfaces. At catchment scale, solid precipitation is obviously redistributed from wind exposed mountain ridges to lower elevations, inducing characteristic elevations of maximum snow accumulation. Overall, catchment precipitation derived from snow accumulation is a valuable reference for precipitation approaches in

  3. Range ambiguity clutter suppression for bistatic STAP radar

    NASA Astrophysics Data System (ADS)

    Xie, Wenchong; Zhang, Baihua; Wang, Yongliang; Zhu, Yong; Duan, Keqing; Li, Rongfeng

    2013-12-01

    Bistatic pulse-Doppler airborne radar has desirable properties such as the low probability of detection by other radars relative to its monostatic counterpart. However, the clutter characteristics of bistatic airborne radar are more complex than those of monostatic airborne radar. The clutter spectra not only vary severely with range, but also vary with bistatic configuration. In this article, the geometry model of bistatic airborne radar is given, and the approximate estimation expressions for clutter degrees of freedom (DOFs) are presented. Then a novel clutter suppression method for bistatic airborne radar with range ambiguity is presented. The method completes registration-based range ambiguity clutter compensation based on non-uniform sampling and the estimated clutter DOFs. The simulation results illustrate the performance improvement achieved for bistatic airborne radar.

  4. Heavy rains over Chennai and surrounding areas as captured by Doppler weather radar during Northeast Monsoon 2015: a case study

    NASA Astrophysics Data System (ADS)

    Kamaljit, Ray; Kannan, B. A. M.; Stella, S.; Sen, Bikram; Sharma, Pradip; Thampi, S. B.

    2016-05-01

    During the Northeast monsoon season, India receives about 11% of its annual rainfall. Many districts in South Peninsula receive 30-60% of their annual rainfall. Coastal Tamil Nadu receives 60% of its annual rainfall and interior districts about 40-50 %. During the month of November, 2015, three synoptic scale weather systems affected Tamil Nadu and Pondicherry causing extensive rainfall activity over the region. Extremely heavy rains occurred over districts of Chennai, Thiruvallur and Kancheepuram, due to which these 3 districts were fully inundated. 122 people in Tamil Nadu were reported to have died due to the flooding, while over 70,000 people had been rescued. State government reported flood damage of the order of around Rs 8481 Crores. The rainfall received in Chennai district during 1.11.2015 to 5.12.2015 was 1416.8 mm against the normal of 408.4 mm. The extremely heavy rains were found to be associated with strong wind surges at lower tropospheric levels, which brought in lot of moisture flux over Chennai and adjoining area. The subtropical westerly trough at mid-tropospheric levels extended much southwards than its normal latitude, producing favorable environment for sustained rising motions ahead of approaching trough over coastal Tamil Nadu. Generated strong upward velocities in the clouds lifted the cloud tops to very high levels forming deep convective clouds. These clouds provided very heavy rainfall of the order of 150-200 mm/hour. In this paper we have used radar data to examine and substantiate the cloud burst that led to these torrential rains over Chennai and adjoining areas during the Northeast Monsoon period, 2015.

  5. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  6. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  7. Joint UK/US Radar Program progress reports for period December 1--31, 1994

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Rino, C.; Chambers, D.H.; Robey, H.F.; Belyea, J.

    1995-01-23

    Topics discussed in this report are current accomplishments in many functions to include: airborne RAR/SAR, radar data processor, ground based SAR signal processing workstation, static airborne radar, multi-aperture space-time array radar, radar field experiments, data analysis and detection theory, management, radar data analysis, modeling and analysis, current meter array, UCSB wave tank, stratified flow facility, Russian Institute of Applied Physics, and budget status.

  8. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  9. Characterizing targets and backgrounds for 3D laser radars

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Larsson, Hakan; Gustafsson, Frank; Chevalier, Tomas R.; Persson, Asa; Klasen, Lena M.

    2004-12-01

    Exciting development is taking place in 3 D sensing laser radars. Scanning systems are well established for mapping from airborne and ground sensors. 3 D sensing focal plane arrays (FPAs) enable a full range and intensity image can be captured in one laser shot. Gated viewing systems also produces 3 D target information. Many applications for 3 D laser radars are found in robotics, rapid terrain visualization, augmented vision, reconnaissance and target recognition, weapon guidance including aim point selection and others. The net centric warfare will demand high resolution geo-data for a common description of the environment. At FOI we have a measurement program to collect data relevant for 3 D laser radars using airborne and tripod mounted equipment for data collection. Data collection spans from single pixel waveform collection (1 D) over 2 D using range gated imaging to full 3 D imaging using scanning systems. This paper will describe 3 D laser data from different campaigns with emphasis on range distribution and reflections properties for targets and background during different seasonal conditions. Example of the use of the data for system modeling, performance prediction and algorithm development will be given. Different metrics to characterize the data set will also be discussed.

  10. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  11. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    Radar and Lidar instruments are active remote sensing sensors with the potential of measuring forest vertical and horizontal structure and the aboveground biomass (AGB). In this paper, we present the analysis of radar and lidar data acquired over the La Selva Biological Station in Costa Rica. Radar polarimetry at L-band (25 cm wavelength), P-band (70 cm wavelength) and interferometry at C-band (6 cm wavelength) and VV polarization were acquired by the NASA/JPL airborne synthetic aperture radar (AIRSAR) system. Lidar images were provided by a large footprint airborne scanning Lidar known as the Laser Vegetation Imaging Sensor (LVIS). By including field measurements of structure and biomass over a variety of forest types, we examined: 1) sensitivity of radar and lidar measurements to forest structure and biomass, 2) accuracy of individual sensors for AGB estimation, and 3) synergism of radar imaging measurements with lidar imaging and sampling measurements for improving the estimation of 3-dimensional forest structure and AGB. The results showed that P-band radar combined with any interformteric measurement of forest height can capture approximately 85% of the variation of biomass in La Selva at spatial scales larger than 1 hectare. Similar analysis at L-band frequency captured only 70% of the variation. However, combination of lidar and radar measurements improved estimates of forest three-dimensional structure and biomass to above 90% for all forest types. We present a novel data fusion approach based on a Baysian estimation model with the capability of incorporating lidar samples and radar imagery. The model was used to simulate the potential of data fusion in future satellite mission scenarios as in BIOMASS (planned by ESA) at P-band and DESDynl (planned by NASA) at L-band. The estimation model was also able to quantify errors and uncertainties associated with the scale of measurements, spatial variability of forest structure, and differences in radar and lidar

  12. Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Sheffner, E. J.; Linthicum, K. J.; Bailey, C. L.; Logan, T. M.; Kasischke, E. S.; Birney, K.; Njogu, A. R.; Roberts, C. R.

    1992-01-01

    Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat TM data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquite breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization SAR imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination between flooded and nonflooded sites in both sedge and short-grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.

  13. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  14. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ..., Airborne Weather Radar Equipment. The objective is to leverage the installation specific guidance from the... previously addressed as additional functionality added to TSO-C63c, Airborne Weather and Ground...

  15. CloudSat as a Global Radar Calibrator

    SciTech Connect

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  16. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  17. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  18. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  19. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  20. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  1. Tropical Rainfall Measuring Mission (TRMM) project. VII - Techniques for radar data processing

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Fujita, Masaharu; Nakamura, Kenji

    1990-01-01

    The paper describes algorithms for rain-rate profiling with an airborne or space-borne radar. Some problems involved in the radar measurements from an airborne or space-borne platform are discussed. An outline of a dual-frequency algorithm is described and its performance is confirmed by a computer simulation and an airborne experiment. A single-frequency algorithm is developed by introducing a path-integrated rain rate estimated from an attenuation of surface echoes or from microwave brightness temperature. The computer simulation shows good performance for an airborne or space-borne radar.

  2. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  3. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  4. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  5. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  6. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  7. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    Under the European Union Water Framework Directive, Member States are required to assess water quality across both surface water and groundwater bodies. Subsurface pollution plumes, originating from a variety of sources, pose a significant direct risk to water quality. The monitoring and characterisation of groundwater contaminant plumes is generally invasive, time consuming and expensive. In particular, adequately capturing the contaminant plume with monitoring installations, when the extent of the feature is unknown and the presence of contamination is only evident from indirect observations, can be prohibitively expensive. This research aims to identify the extent and nature of subsurface contaminant plumes using airborne geophysical survey data. This data was collected across parts of the island of Ireland within the scope of the original Tellus and subsequent Tellus Border projects. The rapid assessment of the airborne electro-magnetic (AEM) data allowed the identification of several sites containing possible contaminant plumes. These AEM anomalies were assessed through the analysis of existing site data and field site inspections, with areas of interest being examined for metallic structures that could affect the AEM data. Electrical resistivity tomography (ERT), ground penetrating radar (GPR) and ground-based electro-magnetic (EM) surveys were performed to ground-truth existing airborne data and to confirm the extent and nature of the affected area identified using the airborne data. Groundwater and surface water quality were assessed using existing field site information. Initial results collected from a landfill site underlain by basalt have indicated that the AEM data, coupled with ERT and GPR, can successfully be used to locate possible plumes and help delineate their extent. The analysis of a range of case study sites exhibiting different geological and environmental settings will allow for the development of a consistent methodology for examining the

  8. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  9. Insights Into Precipitation Processes As Revealed By Profiling Radar, Disdrometer and Aircraft Observations During The MC3E Campaign.

    NASA Astrophysics Data System (ADS)

    Giangrande, S. E.; Toto, T.; Mishra, S.; Ryzhkov, A.; Bansemer, A.; Kumjian, M.

    2014-12-01

    The Midlatitude Continental Convective Clouds Experiment (MC3E) was a collaborative campaign led by the National Aeronautic and Space Administration's (NASA's) Global Precipitation Measurement (GPM) mission and the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program. This campaign was held at the DOE ARM Southern Great Plains (SGP) Central Facility (CF) in north-central Oklahoma, with the programs joining forces to deploy an extensive array of airborne, radiosonde and ground-based instrumentation towards an unprecedented set of deep convective environment and cloud property observations. An overarching motivation was to capitalize on the wealth of aircraft observations and new multi-frequency dual-polarization radars to provide insights for improving the treatments of cloud processes in convective models. This study considers a coupled aircraft, radar and surface disdrometer approach for identifying key cloud processes and linking those to possible radar-based microphysical fingerprints and/or cloud properties. Our emphasis is on the MC3E observations collected during aircraft spirals over the column of the ARM CF. We focus on those spirals associated with radar 'bright band' signatures and Doppler spectral anomalies observed within trailing stratifrom precipitation. Two cases are highlighted, one following a weaker convective event, and one following a stronger squall line. For each event, we investigate the usefulness of radar to inform on processes including aggregation and riming as viewed by the vertically-pointing ARM wind profiler (915 MHz) and cloud radar Doppler spectral observations (35 GHz). Matching dual-polarization radar signatures from nearby cm-wavelength radar are also consulted for complementary insights. For one event, the successive Citation II aircraft spirals through the melting layer and associated ground observations indicate a fortunate capture of the transition from a region of riming to one favoring aggregation

  10. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  11. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  12. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  13. Progress reports for period November 1--30, 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-12-19

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis;modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Budget status is also given.

  14. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  15. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  16. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  17. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  18. Rainfall observations by an airbourne dual-fequency precipitation radar during CAMEX-4

    NASA Technical Reports Server (NTRS)

    Im, E.; Durden, S. L.; Sadowy, G.; Li, L.

    2002-01-01

    The 2d Generation Precipitation Radar is a new design for a dual-frequency (13.4 and 35.6 GHz) spaceborne precipitation radar. An airborne PR-2 simulator has been developed to demonstrate key technologies. This airborne system was flown on the NASA DC-8 aircraft during the 4th Convection and Moisture Experiment in 2001. Data were acquired in Tropical Storms Chantal and Gabrielle, Hurricane Humberto, and in several more localized convective systems. The authors discuss the design of thePR-2 airborne radar and show observations from CAMEX-4. Overall, the observations validated the design of PR-2 and provide an extensive data set for scientific analysis.

  19. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  20. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  1. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  2. Radar backscatter modelling

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Kozak, R. C.; Gurule, R. L.

    1984-01-01

    The terrain analysis software package was restructured and documentation was added. A program was written to test Johnson Space Center's four band scatterometer data for spurious signals data. A catalog of terrain roughness statistics and calibrated four frequency multipolarization scatterometer data is being published to support the maintenance of Death Valley as a radar backscatter calibration test site for all future airborne and spacecraft missions. Test pits were dug through sand covered terrains in the Eastern Sahara to define the depth and character of subsurface interfaces responsible for either backscatter or specular response in SIR-A imagery. Blocky sandstone bedrock surfaces at about 1 m depth were responsible for the brightest SIR-A returns. Irregular very dense CaCO3 cemented sand interfaces were responsible for intermediate grey tones. Ancient river valleys had the weakest response. Reexamination of SEASAT l-band imagery of U.S. deserts continues.

  3. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  4. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  5. 1991 IEEE National Radar Conference, Los Angeles, CA, Mar. 12, 13, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on the impact of microelectronics on radar systems are presented. Individual topics addressed include: a Ka-band instrumentation radar with one foot range resolution, location accuracy in X-band multifunction radar, ambiguity function analysis of wideband radars, microelectronics applications for GBR-X testability, multiple phase center DPCA for airborne radars, microwave time delay beamforming using optics, Flaps: conformal phased reflecting surfaces, T/R modules for phased array antennas, generalized polar processing algorithm for large area SAR images. Also discussed are: neural networks for sequential discrimination of radar targets, programmable radar signal processor architecture, high-temperature superconductors for radar applications, radar loss of target track (LOTT) expert system, application of the Fast Fourier Number Theoretic Transform to radar, FMCW linearizer bandwidth requirements, RCS probability distribution function modeling of a fluctuating target.

  6. Comparison of millimeter-wave cloud radar measurements for the Fall 1997 Cloud IOP

    SciTech Connect

    Sekelsky, S.M.; Li, L.; Galloway, J.; McIntosh, R.E.; Miller, M.A.; Clothiaux, E.E.; Haimov, S.; Mace, G.; Sassen, K.

    1998-05-01

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (350Hz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SOP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air, the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar. In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  7. Location of the Rhine plume front by airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Ruddick, K. G.; Lahousse, L.; Donnay, E.

    1994-04-01

    The aim of this study was to determine the feasibility of using airborne remote sensing to locate the Rhine plume front. Interest in fronts arises from the desire to predict the fate of pollutants and biological nutrients discharged from rivers into the open sea. Observations were made during flights over the Dutch coastal waters using a vertically-mounted video camera and a side-looking airborne radar (SLAR) designed for oil slick detection. Comparison of radar images with visual observations of the sea colour discontinuity and foam line establish that fronts can indeed be detected by SLAR because of high radar backscatter along the convergence line, where the fresh water jet impinges on saltier water. This provides a sound basis for future investigations using Synthetic Aperture Radar as mounted on ERS-1. An estimation of errors is given, identifying priorities for improvement of the technique. The accuracy achieved is considered sufficient for the validation of hydrodynamic models.

  8. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  9. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  10. Radar simulation program upgrade and algorithm development

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1991-01-01

    The NASA Radar Simulation Program is a comprehensive calculation of the expected output of an airborne coherent pulse Doppler radar system viewing a low level microburst along or near the approach path. Inputs to the program include the radar system parameters and data files that contain the characteristics of the microbursts to be simulated, the ground clutter map, and the discrete target data base which provides a simulation of the moving ground clutter. For each range bin, the simulation calculates the received signal amplitude level by integrating the product of the antenna gain pattern and the scattering source amplitude and phase of a spherical shell volume segment defined by the pulse width, radar range, and ground plane intersection. A series of in-phase and quadrature pulses are generated and stored for further processing if desired. In addition, various signal processing techniques are used to derive the simulated velocity and hazard measurements, and store them for use in plotting and display programs.

  11. Use of radar in urban studies

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1976-01-01

    The use of side-looking airborne radar for urban studies is reviewed with attention given to the work of Moore (1969) and Lewis (1968) which may be summarized as follows: (1) linear elements of the transportation net were easily defined, (2) gross patterns of industry, residential and open space land were identified, but it was not possible to map the land use boundaries in great detail, (3) commercial land areas were often difficult to identify, and (4) multiple polarized imagery was helpful in correctly interpreting the total scene. It is found that the sensitivity of radar to surface roughness and the availability of multiple wavelength data allow the discrimination of variations in the surface roughness of intra-urban areas. An L-band imaging radar (25 cm; 1215-1225 GHz) of 25 m resolution will be operating from satellite altitudes in 1978 and will increase the availability of radar data.

  12. Microwave Dielectric Properties of Soil and Vegetation and Their Estimation From Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; McDonald, Kyle C.

    1996-01-01

    This paper is largely tutorial in nature and provides an overview of the microwave dielectric properties of certain natural terrestrial media (soils and vegetation) and recent results in estimating these properties remotely from airborne and orbital synthetic aperture radar (SAR).

  13. Thermal structure and radar backscatter

    NASA Astrophysics Data System (ADS)

    Topliss, B. J.; Stepanczak, M.; Guymer, Trevor H.; Cotton, David P.

    1994-12-01

    Infrared (IR) remote sensing from satellites is a well-proven technique for measuring sea surface temperature (SST) and for detecting and monitoring oceanographic features which have strong thermal contrast. Unfortunately, cloud cover often limits the continuity of the datasets and therefore their usefulness. There is some evidence that radar backscatter can be modified by sea surface temperature structure which raises the possibility that sensors such as synthetic aperture radar, scatterometers and altimeters could provide an all-weather complement to those operating in the IR. As a background, the results of a project which used coincident airborne radar and IR measurements of an eddy system in the Tyrrhenian Sea during October 1989 are briefly described. During a 5-day period, variations in radar backscatter of several dB occurred in a region where SST varied by 2 - 3 degree(s)C. The correlation between normalized radar cross section, sigma naught ((sigma) 0 or sigma-0) and SST appeared to depend on the ambient wind. Unfortunately, no satellite radar data were available during the experiment, since Geosat had just failed and ERS-1 was not due for launch until 1991. Building on this work, a study has commenced in which preliminary analyses of ERS-1 altimeter data, from tracks which repeat every 3 days, have been conducted for a section of the Gulf Stream after it has separated from the US coast. The along track variation of sigma naught has been compared with contemporaneous NOAA AVHRR-2 imagery and the relationship between SST structure and sigma naught for individual passes is discussed in terms of environmental parameters such as the local wind field and ocean currents. The possibility of the interaction of environmental parameters such as waves and currents are explored and some evidence for both wave enhancement and attenuation at the north wall of the Gulf Stream is illustrated. Tentative explanations for relationships observed by the various analysis

  14. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  15. Radar monitoring of oil pollution

    NASA Technical Reports Server (NTRS)

    Guinard, N. W.

    1970-01-01

    Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.

  16. Windshear detection and avoidance - Airborne systems survey

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.

    1990-01-01

    Functional requirements for airborne windshear detection and warning systems are discussed in terms of the threat posed to civil aircraft operations. A preliminary set of performance criteria for predictive windshear detection and warning systems is defined. Candidate airborne remote sensor technologies based on microwave Doppler radar, Doppler laser radar (lidar), and infrared radiometric techniques are discussed in the context of overall system requirements, and the performance of each sensor is assessed for representative microburst environments and ground clutter conditions. Preliminary simulation results demonstrate that all three sensors show potential for detecting windshear, and provide adequate warning time to allow flight crews to avoid the affected area or escape from the encounter. Radar simulation and analysis show that by using bin-to-bin automatic gain control, clutter filtering, limited detection range, and suitable antenna tilt management, windshear from wet microbursts can be accurately detected. Although a performance improvement can be obtained at higher radar frequency, the baseline X-band system also detected the presence of windshear hazard for a dry microburst. Simulation results of end-to-end performance for competing coherent lidar systems are presented.

  17. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  18. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  19. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  20. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  1. Soviet oceanographic synthetic aperture radar (SAR) research

    SciTech Connect

    Held, D.N.; Gasparovic, R.F.; Mansfield, A.W.; Melville, W.K.; Mollo-Christensen, E.L.; Zebker, H.A.

    1991-01-01

    Radar non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the radar, were visible in synthetic aperture radar (SAR) images of the ocean. In addition, the Seasat radar produced images of ship wakes where the observed angle between the wake arms was much smaller than expected from classical Kelvin wake theory. These observations cast doubt on the radar oceanography community's ability to adequately explain these phenomena, and by extension on the ability of existing hydrodynamic and radar scattering models to accurately predict the observability of submarine-induced signatures. If one is of the opinion that radar NAASW is indeed a potentially significant tool in detecting submerged operational submarines, then the Soviet capability, as evidenced throughout this report, will be somewhat daunting. It will be shown that the Soviets have extremely fine capabilities in both theoretical and experimental hydrodynamics, that Soviet researchers have been conducting at-sea radar remote sensing experiments on a scale comparable to those of the United States for several years longer than we have, and that they have both an airborne and spaceborne SAR capability. The only discipline that the Soviet Union appears to be lacking is in the area of digital radar signal processing. If one is of the opinion that radar NAASW can have at most a minimal impact on the detection of submerged submarines, then the Soviet effort is of little consequence and poses not threat. 280 refs., 31 figs., 12 tabs.

  2. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  3. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  4. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  5. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    NASA Technical Reports Server (NTRS)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar

  6. NASA's DC-8 With Rain Mapping Radar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In a joint venture between NASA and Japan's NASDA, scientists have been using satellites, airplanes, and boats to measure rain physics in and under thunderstorms over open water. This Quick Time movie shows NASA's DC-8 jet with the instruments like the airborne rain mapping radar, i.e., the Advanced Microwave Precipitation Radiometer (AMPR) and a lightening imaging sensor. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  7. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  8. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  9. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  10. Use of Dual-wavelength Radar for Snow Parameter Estimates

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    2005-01-01

    Use of dual-wavelength radar, with properly chosen wavelengths, will significantly lessen the ambiguities in the retrieval of microphysical properties of hydrometeors. In this paper, a dual-wavelength algorithm is described to estimate the characteristic parameters of the snow size distributions. An analysis of the computational results, made at X and Ka bands (T-39 airborne radar) and at S and X bands (CP-2 ground-based radar), indicates that valid estimates of the median volume diameter of snow particles, D(sub 0), should be possible if one of the two wavelengths of the radar operates in the non-Rayleigh scattering region. However, the accuracy may be affected to some extent if the shape factors of the Gamma function used for describing the particle distribution are chosen far from the true values or if cloud water attenuation is significant. To examine the validity and accuracy of the dual-wavelength radar algorithms, the algorithms are applied to the data taken from the Convective and Precipitation-Electrification Experiment (CaPE) in 1991, in which the dual-wavelength airborne radar was coordinated with in situ aircraft particle observations and ground-based radar measurements. Having carefully co-registered the data obtained from the different platforms, the airborne radar-derived size distributions are then compared with the in-situ measurements and ground-based radar. Good agreement is found for these comparisons despite the uncertainties resulting from mismatches of the sample volumes among the different sensors as well as spatial and temporal offsets.

  11. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  12. Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.

    1996-01-01

    We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.

  13. Comparison of various enhanced radar imaging techniques

    NASA Astrophysics Data System (ADS)

    Gupta, Inder J.; Gandhe, Avinash

    1998-09-01

    Recently, many techniques have been proposed to enhance the quality of radar images obtained using SAR and/or ISAR. These techniques include spatially variant apodization (SVA), adaptive sidelobe reduction (ASR), the Capon method, amplitude and phase estimation of sinusoids (APES) and data extrapolation. SVA is a special case of ASR; whereas the APES algorithm is similar to the Capon method except that it provides a better amplitude estimate. In this paper, the ASR technique, the APES algorithm and data extrapolation are used to generate radar images of two experimental targets and an airborne target. It is shown that although for ideal situations (point targets) the APES algorithm provides the best radar images (reduced sidelobe level and sharp main lobe), its performance degrades quickly for real world targets. The ASR algorithm gives radar images with low sidelobes but at the cost of some loss of information about the target. Also, there is not much improvement in radar image resolution. Data extrapolation, on the other hand, improves image resolution. In this case one can reduce the sidelobes by using non-uniform weights. Any loss in the radar image resolution due to non-uniform weights can be compensated by further extrapolating the scattered field data.

  14. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  15. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  16. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  17. Approaches to detection of airborne biological agents

    NASA Astrophysics Data System (ADS)

    Chang, An-Cheng; Tabacco, Mary Beth

    2009-05-01

    Three approaches to detection of biological agents based on biological processes will be presented. The first example demonstrates the use of dendrimers to deliver a membrane-impermeable fluorescent dye into live bacteria, similar to viral infection and delivery of DNA/RNA into a bacterial cell. The second example mimics collection and capture of airborne biological particles by the respiratory mucosa through the use of a hygroscopic sensing membrane. The third example is based on the use of multiple fluorescent probes with diverse functionalities to detect airborne biological agents in a manner similar to the olfactory receptors in the nasal tract.

  18. Synthetic Aperture Radar Image Formation in Reconfigurable Logic

    SciTech Connect

    DUDLEY,PETER A.

    2001-06-01

    This paper studies the implementation of polar format, synthetic aperture radar image formation in modern Field Programmable Gate Arrays (FPGA's). The polar format algorithm is described in rough terms and each of the processing steps is mapped to FPGA logic. This FPGA logic is analyzed with respect to throughput and circuit size for compatibility with airborne image formation.

  19. Multispectral microwave imaging radar for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Rawson, R.; Ausherman, D.; Bryan, L.; Porcello, L.

    1974-01-01

    A multispectral airborne microwave radar imaging system, capable of obtaining four images simultaneously is described. The system has been successfully demonstrated in several experiments and one example of results obtained, fresh water ice, is given. Consideration of the digitization of the imagery is given and an image digitizing system described briefly. Preliminary results of digitization experiments are included.

  20. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  1. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  2. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  3. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  4. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  5. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  6. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  7. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  8. Image simulation of geometric targets for synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Nasr, J. M.

    1989-10-01

    A new technique for image simulation which comes from a synthetic aperture radar is presented. The method is based on the embedding of an artificially simulated target in a real radar image captured by an operational antenna window on a satellite (SEASAT or SIR-B). A L and C band was used for the capture. The target dimensions studied were large enough for use with long waves provided the calculation techniques used with high frequencies were for an equivalent area radar (SER). The calculation of SER allows the capture of a raw signal received from the antennas. So that the possibility of simulation is low, some restrictions are made. The results are sufficiently interesting enough to let the study of the behavior of a particular target become of use to civilians or the military, in the functional bounds of radar waves.

  9. Radar system development for the next two decades, as seen by an European

    NASA Astrophysics Data System (ADS)

    Carpentier, M. H.

    1983-10-01

    Current trends in radar developmet are projected over a 20-yr period in a general review. Topics examined include complex antenna patterns, electronic scanning (for both ground-based and airborne radars), flexibility in transmission modes (varying pulse length, repetition frequency, and phase or frequency modulation), signal processing (sidelobe cancellation, clutter protection, target recognition, and rapid A/D conversion and computation), programmed radar management, and the use of mm or micron wavelengths. Consideration is given to the organization of air-defense radars, where the need for more closely linked and coordinated networks is stressed.

  10. Planetary Geology with Imaging Radar: Insights from Earth-based Lunar Studies, 2001–2015

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.

    2016-06-01

    Radar exploration of the Solar System changed dramatically during and beyond the period of the Magellan mission to Venus. These changes included an expansion of the community familiar with microwave data, and the forging of a strong connection with polarimetric scattering models developed through terrestrial field measurements and airborne radar studies. During the period, advances in computing power and imaging techniques also allowed Earth-based radar experiments to acquire data at the highest spatial resolutions permitted by their transmitter systems. This paper traces these developments through a case study of lunar observations over the past 15 years, and their implications for ongoing and future Solar System radar studies.

  11. Imaging Radar Applications in the Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1996-01-01

    Death Valley has had a long history as a testbed for remote sensing techniques (Gillespie, this conference). Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the valley since the 1970's, yielding new insights into the geologic applications of that technology. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in Death Valley because it has a variety of surface types in a small area without the confounding effects of vegetation. In one of the classic references of these early radar studies, in a semi-quantitative way the response of an imaging radar to surface roughness near the radar wavelength, which typically ranges from about 1 cm to 1 m was explained. This laid the groundwork for applications of airborne and spaceborne radars to geologic problems in and regions. Radar's main advantages over other sensors stems from its active nature- supplying its own illumination makes it independent of solar illumination and it can also control the imaging geometry more accurately. Finally, its long wavelength allows it to peer through clouds, eliminating some of the problems of optical sensors, especially in perennially cloudy and polar areas.

  12. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  13. Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Rothermel, Jeffrey; Tratt, David M.; Cutten, Dean; Darby, Lisa S.; Hardesty, R. Michael

    1999-10-01

    The Multicenter Airborne Coherent Atmospheric Wind Sensor instrument is an airborne coherent Doppler laser radar (Lidar) capable of measuring atmospheric wind fields and aerosol structure. Since the first demonstration flights onboard the NASA DC-8 research aircraft in September 1995, two additional science flights have been completed. Several system upgrades have also bee implemented. In this paper we discuss the system upgrades and present several case studies which demonstrate the various capabilities of the system.

  14. UAV-based Radar Sounding of Antarctic Ice

    NASA Astrophysics Data System (ADS)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of

  15. The US open skies synthetic aperture radar (SAROS)

    SciTech Connect

    Fortner, K.R.; Hezeltine, P.L.

    1996-11-01

    This paper discusses the Synthetic Aperture Radar for Open Skies (SAROS), an airborne side-looking synthetic aperture radar (SAR) system installed on the U.S. OC-135B Open Skies Observation Aircraft. The paper discusses in detail how the SAROS is designed to meet the performance requirements and limits of the Treaty on Open Skies. The SAROS is based on the U.S. AN/APD-12 analog radar system which has been modified to digitally record radar, motion, and annotation data on magnetic tape and has been designated as the AN/APD-14. The theoretical performance of the AN/APD-12 SAR exceeds the three meter range and azimuth resolution allowed by the Treaty. The SAROS design will limit the performance of the SAR to no better than three meter`s through reduction in transmitted frequency bandwidth, reduction in azimuth bandwidth, and decimation of azimuth sampling prior to recording of the phase history data. 5 figs.

  16. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  17. Modeling Airborne Gravimetry with High-Degree Harmonic Expansions

    NASA Astrophysics Data System (ADS)

    Holmes, Simon; Wang, Yan Ming; Roman, Daniel

    2010-05-01

    Since its official unveiling at the 2008 General Assembly of the European Geosciences Union, EGM2008 has demonstrated that high-degree harmonic expansions constitute a useful and effective final representation for high-resolution global gravitational models. However, such expansions also provide a versatile means of capturing (modeling), inter-comparing, and optimally combining local and regional high-resolution terrestrial data sets of different types. Here we present a general recipe for using high-degree expansions to capture, downward-continue and assimilate airborne survey data. This approach relies on the production of two ‘competing' high-degree expansions. A first, ‘terrestrial-only' expansion incorporates EGM2008 globally, and high-resolution terrestrial gravimetry regionally. This expansion can be used to upward-continue the regional terrestrial data to the flight level of the airborne survey, such that the terrestrial gravimetry outside the survey area can be merged with the airborne data inside the survey area, all at flight level. Harmonic analysis of this merged data set, also at flight level, yields a second ‘airborne-augmented' expansion, which closely matches the ‘terrestrial-only' expansion outside the survey area, but which also closely reproduces the airborne survey data inside the survey area. Capturing the airborne and terrestrial data in this way means that downward-continuation of the airborne data, as well as spectral/spatial comparison (and ultimate combination) of the airborne data with the terrestrial (and satellite) data, can all be achieved through spherical- and ellipsoidal-harmonic synthesis of these two competing expansions, and their spectral combination. This general approach is illustrated with a worked example.

  18. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  19. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  20. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  1. Intra-eruption Geologic Map from an X-band Radar Image During the May 18, 1980 Eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. B.

    1985-01-01

    The use of side-looking airborne radar images for geologic interpretations has increased with the Vesuvian exploration projects. Interpretation of images without ground truth relies on examples in terrestrial environments for which geologic data are available.

  2. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  3. Surface Contour Radar (SCR) contributions to FASINEX

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1988-01-01

    The SCR was asked to participate in the Frontal Air-Sea Interaction Experiment (FASINEX) to provide directional wave spectra. The NASA P-3 carrying the SCR, the Radar Ocean Wave Spectrometer, and the Airborne Oceanographic Lidar was one of five aircrafts and two ocean research ships participating in this coordinated study of the air sea interaction in the vicinity of a sea surface temperature front near 28 deg N, 70 deg W. Analysis of data from the February 1986 experiment is still ongoing, but results already submitted for publication strengthen the hypothesis that off-nadir radar backscatter is closely correlated to wind stress. The SCR provided valuable information on the directional wave spectrum and its spatial variation.

  4. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  5. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  6. Generic evaluation tracker database for OTH radar

    NASA Astrophysics Data System (ADS)

    Flanders, Lorraine E.; Hartnett, Michael P.; Vannicola, Vincent C.

    1999-10-01

    This paper provides a real world target and clutter model for evaluation of radar signal processing algorithms. The procedure is given for target and clutter data collection which is then followed by the equalization and superposition method. We show how the model allows one to vary the target signal to clutter noise ratio so that system performance may be assessed over a wide range of target amplitudes, i.e. detection probability versus target signal to noise ratio. Three candidate pre-track algorithms are evaluated and compared using this model as input in conjunction with an advanced tracker algorithm as a post processor. Data used for the model represents airborne traffic operating over the body of water bounded by North, Central, and South America. The processors relate to the deployment of Over the Horizon Radar for drug interdiction. All the components of this work, model as well as the processors, are in software.

  7. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  8. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  9. Capturing Movement

    ERIC Educational Resources Information Center

    Lord, Lynda

    2007-01-01

    The idea for the art lesson presented in this article grew out of watching the lively actions of fourth grade students. Since drawing is the author's first love, she is always looking for new ways to teach it. This time, instead of setting up a still life, she decided to teach students how to capture their actions on paper. (Contains 5 online…

  10. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  11. Reducing Spaceborne-Doppler-Radar Rainfall-Velocity Error

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood; Durden, Stephen L.

    2008-01-01

    A combined frequency-time (CFT) spectral moment estimation technique has been devised for calculating rainfall velocity from measurement data acquired by a nadir-looking spaceborne Doppler weather radar system. Prior spectral moment estimation techniques used for this purpose are based partly on the assumption that the radar resolution volume is uniformly filled with rainfall. The assumption is unrealistic in general but introduces negligible error in application to airborne radar systems. However, for spaceborne systems, the combination of this assumption and inhomogeneities in rainfall [denoted non-uniform beam filling (NUBF)] can result in velocity measurement errors of several meters per second. The present CFT spectral moment estimation technique includes coherent processing of a series of Doppler spectra generated in a standard manner from data over measurement volumes that are partially overlapping in the along-track direction. Performance simulation of this technique using high-resolution data from an airborne rain-mapping radar shows that a spaceborne Ku-band Doppler radar operating at signal-to-noise ratios greater than 10 dB can achieve root-mean-square accuracy between 0.5 and 0.6 m/s in vertical-velocity estimates.

  12. Electromagnetic bias of 10-GHz radar altimeter measurements of MSL

    NASA Technical Reports Server (NTRS)

    Choy, L. W.; Hammond, D. L.; Uliana, E. A.

    1984-01-01

    Electromagnetic bias, the small difference that exists between the radar measured mean sea level and the geometric mean sea level is an important issue in high precision satellite altimetry. Present day satellite altimetry has achieved, with SEASAT-1, a precision of 5 cm rms in the range measurement. Future altimeter designs are expected to improve the range measurement precision to cm rms. In order to exploit the capability of these precise radar altimeters are marine geodesy and oceanography, it is necessary to understand and account for all of the known biases in the range measurement. The electromagnetic bias or the EM bias, which has been attributed to the observed fact that ocean wave troughs tend to be better reflectors of nadir viewing microwave radar energy than ocean wave crests, can be observed with high resolution airborne radar. This report presents the results of the EM bias measurements made by NRL using an airborne radar altimeter operating at 10 GHz with a 1 ns range resolution. Data were taken for various sea states and wind conditions. The experimental results are compared with current theories.

  13. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  14. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  15. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  16. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  17. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  18. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  19. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  20. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  1. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  2. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  3. Spaceborne radar for geoscientific applications in North China

    NASA Astrophysics Data System (ADS)

    Guo, Hua-Dong; Wu, Guo-Xiang; Wang, Zhen-Song

    1993-05-01

    The Shuttle Imaging Radar-A and -B (SIR-A and SIR-B) carried on the Space Shuttle Columbia in Nov. 1981 and the Challenger in Oct. 1984 acquired images of test sites of North China. The Russian ALMAZ SAR also acquired imagery of part of this test site in Sep. 1992. In Nov. 1990, the airborne SAR developed by the Chinese Academy of Sciences (CAS/SAR) covered this area for the purpose of Chinese spaceborne radar development. By studying and analyzing these SAR data, positive results in geoscientific applications were achieved.

  4. Spaceborne radar for geoscientific applications in North China

    NASA Technical Reports Server (NTRS)

    Guo, Hua-Dong; Wu, Guo-Xiang; Wang, Zhen-Song

    1993-01-01

    The Shuttle Imaging Radar-A and -B (SIR-A and SIR-B) carried on the Space Shuttle Columbia in Nov. 1981 and the Challenger in Oct. 1984 acquired images of test sites of North China. The Russian ALMAZ SAR also acquired imagery of part of this test site in Sep. 1992. In Nov. 1990, the airborne SAR developed by the Chinese Academy of Sciences (CAS/SAR) covered this area for the purpose of Chinese spaceborne radar development. By studying and analyzing these SAR data, positive results in geoscientific applications were achieved.

  5. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  6. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  7. Collation of earth resources data collected by ERIM airborne sensors

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1975-01-01

    Earth resources imagery from nine years of data collection with developmental airborne sensors is cataloged for reference. The imaging sensors include single and multiband line scanners and side-looking radars. The operating wavelengths of the sensors include ultraviolet, visible and infrared band scanners, and X- and L-band radar. Imagery from all bands (radar and scanner) were collected at some sites and many sites had repeated coverage. The multiband scanner data was radiometrically calibrated. Illustrations show how the data can be used in earth resource investigations. References are made to published reports which have made use of the data in completed investigations. Data collection sponsors are identified and a procedure described for gaining access to the data.

  8. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  9. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    NASA Technical Reports Server (NTRS)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  10. Peat analyses in the Hudson Bay Lowlands using ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Davis, J. L.; Rossiter, J. R.

    1991-01-01

    The use of ground penetrating radar (GPR) as a means to determine peak thickness and estimate peat volume in the Hudson Bay Lowlands of Canada is examined. Ground-based and airborne GPR data were acquired so as to extrapolate measurements to larger scales. While the ground-based measurements did an excellent job in determining peat depth, the airborne techniques did a fair job a low altitudes and demonstrated great promise with additional system engineering changes.

  11. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  12. Radar Rainfall Estimation with an X-Band Polarimetric Radar on Wheels: Early Results

    NASA Astrophysics Data System (ADS)

    Anagnostou, E. N.; Krajewski, W. F.; Anagnostou, M. N.; Kruger, A.; Miriovsky, B.

    2002-05-01

    The main goal of the X-Band Polarimetric Radar on Wheels (XPOW) study is aimed at exploring the advantages of dual-polarized X-band radar systems in radar rainfall estimation. Secondary goals include characterizing the reflectivity variability captured by National Weather Service WSR-88Ds and comparing different types of disdrometers. This investigation was facilitated through field experiments during which high-resolution polarimetric radar data from the National Observatory of Athens (NOA) mobile dual-polarization X-band radar were collected over well-instrumented sites. The XPOW field experiment was conducted in Iowa City, Iowa during October and November 2001. For this experiment, five disdrometers, a vertically pointing Doppler radar, and several dual-gauge tipping bucket rain gauge platforms were deployed in an area about 1.0 km by 1.5 km. These instruments were used to both augment and validate the data collected by the polarimetric radar, which was located approximately 8 km away. In the same area we collected data from some 14 rain gauges located within a high density cluster at the Iowa City Municipal Airport. The five disdrometers included two-dimensional video disdrometer, two optical disdrometers, an impact disdrometer, and a bistatic radar based disdrometer. The area in which these instruments were deployed corresponds to the size of one pixel from the Davenport, IA WSR-88D, located 80 km east of Iowa City, allowing exploration of the variability of reflectivity at scales smaller than a typical radar pixel. We will be presenting quantitative comparisons of rain rates and precipitation microphysical variables retrieved from XPOW and measured by the high-density network of gages and disdrometers. Furthermore, XPOW attenuation correction results will be compared to the un-attenuated WSR-88D reflectivity measurements providing a framework for assessing the deployed algorithm's microphysical retrievals.

  13. A global search and rescue concept using synthetic aperture radar and passive user targets

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A terrestrial search and rescue concept is defined embodying the use of passive radio-frequency reflectors in conjunction with an orbiting synthetic aperture radar to detect, identify, and locate users. An airborne radar test was conducted to evaluate the basic concept. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system.

  14. Surface contour radar observations of the directional wave spectrum during Fasinex

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Swift, R. N.; Scott, J. F.

    1988-01-01

    The surface control radar (SCR), a 36-GHz computer-controlled airborne radar which generates a false-color coded elevation map of the sea surface below the aircraft in real time, is described. The SCR turned out to be ideal for documenting the wave spectra during Fasinex (the Frontal Air-Sea Interaction Experiment) due to its high spatial resolution and rapid mapping capability over extensive areas. Synoptic weather maps for February 15-18, 1986 are presented.

  15. Expanding the spectrum from space. [earth resources exploration via SLAR and satellite-borne imaging radars

    NASA Technical Reports Server (NTRS)

    Dellwig, L. F.

    1980-01-01

    Various space data gathering systems are described which aid in exploration for mineral and petroleum resources in Central America and elsewhere throughout the world. The Side Looking Airborne Radar (SLAR), the Seasat, configured for ocean studies, and the SIR-A, the first spacecraft radar to be configured for geologic studies, are discussed. The low cost and importance of spacecraft in data gathering are emphasized.

  16. Radar Observations of Fissure-fed Basaltic Lava Flows, Craters of the Moon, Idaho

    NASA Technical Reports Server (NTRS)

    Martel, L.; Greeley, R.

    1985-01-01

    Changes in surface roughness of lava flows, estimated from dual polarization, synthetic aperture, X and L band side-looking airborne radar images, were tested as a means of locating fissure vent areas. If lava textures proess from smooth, near-vent shelly pahoehoe to hummocky pahoehoe to aa with distance from fissure vents, then radr images of the lava flows would show a progression from dark to brighter tones due to the flows' increasing radar back-scatter.

  17. Radar observations of fissure-fed basaltic lava flows, Craters of the Moon, Idaho

    NASA Astrophysics Data System (ADS)

    Martel, L.; Greeley, R.

    1985-04-01

    Changes in surface roughness of lava flows, estimated from dual polarization, synthetic aperture, X and L band side-looking airborne radar images, were tested as a means of locating fissure vent areas. If lava textures proess from smooth, near-vent shelly pahoehoe to hummocky pahoehoe to aa with distance from fissure vents, then radr images of the lava flows would show a progression from dark to brighter tones due to the flows' increasing radar back-scatter.

  18. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  19. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  20. Transmitter design with alterable view field for airborne laser radar

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Hu, Yun'an

    2009-10-01

    The variable focus telescope is utilized now in the laser transmitter system design. It changes the telescope's magnifying power in order to adjust the exit beam through moving the inner focus lens. This system has complicated structure and high machining expense. This paper investigates the focusing character of Gaussian beam through misadjust telescope and presents a new method for lidar transmission system design. The laser beam divergence angle and the radius of exit beam are changed through moving the distance between the back focus of object lens and the front focus of ocular. This design can provide a convenient method for calculating the focusing parameters. The restriction of assembly dimension and the effect of fitting and adjusting error which should be considered in engineering application are studied, and then bring a method to choose the right parameters of focusing optic system by the focusing requirement.

  1. Observations of Florida Convective Storms Using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL- FACE convective case on 16 July 2002 that produced extensive anvil.

  2. UAVSAR: Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Tim

    2011-01-01

    The Costa Rican National Center for Advanced Technology (CeNAT) is sponsoring NASA's G-III(C-20) UAVSAR science deployment to San Jose, Costa Rica April 25-28, 2011. NASA is very thankful for their support and has offered to provide a Top-Level presentation on the G-III UAVSAR program with specific emphasis on the science conducted in Costa Rica. The presentation will overview the G-III capabilities and the various science applications of UAVSAR. Only technical and scientific data that is already in the open literature will be presented.

  3. Problems of radome design for modern airborne radar. II

    NASA Astrophysics Data System (ADS)

    Rulf, B.

    1985-05-01

    Solution techniques devised for designing aircraft radomes, particularly AWACS and nose mounts, are presented. Consideration is given to the range of the angles of incidence and the ratio between polarization over the radome area. Methods are defined for selecting optimal ratios for the radome emitting/receiving segments, thus simultaneously controlling reflection and transmission effects. Nose radomes are primarily aerodynamic structures and thereby possess incidence angles of up to 80 deg. Reflected power is calculated with geometric optics. Both types of radome are constructed of carbon composite sandwich structures, which minimize reflection sufficiently to justify doubled costs.

  4. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  5. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  6. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  7. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  8. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  9. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  10. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide

    NASA Astrophysics Data System (ADS)

    Delbridge, Brent G.; Bürgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William H.

    2016-05-01

    In order to provide surface geodetic measurements with "landslide-wide" spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ˜2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.

  11. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica with airborne observations of snow accumulation (Invited)

    NASA Astrophysics Data System (ADS)

    Medley, B.; Joughin, I. R.; Smith, B. E.; Das, S. B.; Steig, E. J.; Conway, H.; Gogineni, P. S.; Criscitiello, A. S.; McConnell, J. R.; van den Broeke, M. R.; Lenaerts, J.; Bromwich, D. H.; Nicolas, J. P.

    2013-12-01

    One of the largest sources of uncertainty in quantifying ice-sheet mass balance originates from our lack of understanding of spatiotemporal snow accumulation rates. Traditional in situ measurements of the accumulation rate (i.e., firn cores, snow pits, and stake farms) do not adequately capture the complex spatial variations in regional accumulation and are not suitable for regional mass balance studies. Accumulation measurements using ground-based radar systems capture the spatial variability in accumulation over discrete (i.e., annual to multi-decadal) and consistent time intervals along hundreds of kilometers of survey paths but cannot access certain areas of the ice sheet (e.g., highly crevassed regions). On the other hand, spatiotemporally complete global and regional atmospheric models of the accumulation rate are increasingly being used in place of measurements, but few regional measurements exist to rigorously test the temporal skill of these models. Here, we use data from two airborne radar systems, developed by the Center for Remote Sensing of Ice Sheets, to calculate recent accumulation rates over the Pine Island and Thwaites drainage systems along the Amundsen Coast of West Antarctica. These measurements are then used to: (1) assess the skill of global and regional atmospheric models and (2) precisely determine basin-wide accumulation rates for mass balance estimates. The spatial coverage limitation that makes field measurements disadvantageous for regional mass balance studies is overcome by aerial survey designed for maximum spatial coverage of these drainage basins. We measure the snow accumulation rate using the ultra-wideband airborne radar data to track near-surface internal horizons. The horizon thickness is converted to a water-equivalent thickness using a regionally representative density profile. Accumulation rates are calculated by dividing the water-equivalent thickness by the horizon age, which is determined either by annual count or using

  12. Doppler radar sensing of fish physiological motion

    NASA Astrophysics Data System (ADS)

    Hafner, Noah

    The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.

  13. 1999 IEEE radar conference

    SciTech Connect

    1999-07-01

    This conference addresses the stringent radar technology demands facing the next century: target detection, tracking and identification; changing target environment; increased clutter mitigation techniques; air traffic control; transportation; drug smuggling; remote sensing, and other consumer oriented applications. A timely discussion covers how to minimize costs for these emerging areas. Advanced radar technology theory and applications are also presented. Topics covered include: signal processing; space time adaptive processing/antennas; surveillance technology; radar systems; dual use; and phenomenology.

  14. Triangulation using synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.

    1991-01-01

    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.

  15. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1983-03-01

    The present investigation is concerned with planetary radar research reported during the time from 1979 to 1982. A brief synopsis of radar definitions and technical terminology is also provided. In connection with the proximity of the moon to earth, lunar radar studies have been performed over a wider range of wavelengths than radar investigations of other planetary targets. The most recent study of lunar quasispecular scattering is due to Simpson and Tyler (1982). The latest efforts to interpret the lunar radar maps focus on maria-highlands regolith differences and models of crater ejecta evolution. The highly successful Pioneer Venus Radar Mapper experiment has provided a first look at Venus' global distributions of topography, lambda 17-cm radar reflectivity, and rms surface slopes. Attention is given to recent comparisons of Viking Orbiter images of Mars to groundbased radar altimetry of the planet, the icy Galilean satellites, radar observations of asteroids and comets, and lambda 4-cm and lambda 13-cm observations of Saturn's rings.

  16. Current radar responsive tag development activities at Sandia National Laboratories.

    SciTech Connect

    Plummer, Kenneth W.; Ormesher, Richard C.

    2003-09-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  17. COMPARISON OF MILLIMETER-WAVE CLOUD RADAR MEASUREMENTS FOR THE FALL 1997 CLOUD IOP

    SciTech Connect

    SEKELSKY,S.M.; LI,L.; GALLOWAY,J.; MCINTOSH,R.E.; MILLER,M.A.; CLOTHIAUX,E.E.; HAIMOV,S.; MACE,G.; SASSEN,K.

    1998-03-23

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (35GHz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), (Moran, 1997), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), (Sekelsky, 1996), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air (Galloway, 1996), the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar (Clothiaux, 1995). In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  18. Multiband radar characterization of forest biomes

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Ulaby, Fawwaz T.

    1990-01-01

    The utility of airborne and orbital SAR in classification, assessment, and monitoring of forest biomes is investigated through analysis of orbital synthetic aperature radar (SAR) and multifrequency and multipolarized airborne SAR imagery relying on image tone and texture. Preliminary airborne SAR experiments and truck-mounted scatterometer observations demonstrated that the three dimensional structural complexity of a forest, and the various scales of temporal dynamics in the microwave dielectric properties of both trees and the underlying substrate would severely limit empirical or semi-empirical approaches. As a consequence, it became necessary to develop a more profound understanding of the electromagnetic properties of a forest scene and their temporal dynamics through controlled experimentation coupled with theoretical development and verification. The concatenation of various models into a physically-based composite model treating the entire forest scene became the major objective of the study as this is the key to development of a series of robust retrieval algorithms for forest biophysical properties. In order to verify the performance of the component elements of the composite model, a series of controlled laboratory and field experiments were undertaken to: (1) develop techniques to measure the microwave dielectric properties of vegetation; (2) relate the microwave dielectric properties of vegetation to more readily measured characteristics such as density and moisture content; (3) calculate the radar cross-section of leaves, and cylinders; (4) improve backscatter models for rough surfaces; and (5) relate attenuation and phase delays during propagation through canopies to canopy properties. These modeling efforts, as validated by the measurements, were incorporated within a larger model known as the Michigan Microwave Canopy Scattering (MIMICS) Model.

  19. Airborne precursor missions in support of SIR-C/X-SAR

    NASA Technical Reports Server (NTRS)

    Evans, D.; Oettl, H.; Pampaloni, P.

    1991-01-01

    The NASA DC-8 and DLR E-SAR airborne imaging radars have been deployed over several sites in Europe and the U.S. in support of SIR-C/X-SAR (Shuttle Imaging Radar-C/X-Synthetic Aperture Radar) science team investigations. To date, data have been acquired in support of studies of alpine glaciers, forests, geology, oceanography, and calibration. An experimental campaign with airborne sensors will take place in Europe in June to July 1991 which will allow multitemporal surveys of several Europeans sites. Current plans are for calibration and ecology experiments to be undertaken in Germany, the Netherlands, Italy, France, and the United Kingdom. Coordinated multitemporal aircraft and ground campaigns are planned in support of hydrology experiments in Italy, the United Kingdom, and Austria. Data will also be acquired in support of oceanogrqhy in the Gulf of Genova, North Atlantic, Straits of Messina and the North Sea. Geology sites will include Campi Flegrei and Vesuvio, Italy.

  20. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  1. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  2. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  3. Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    NASA Technical Reports Server (NTRS)

    Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.

    1978-01-01

    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.

  4. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  5. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  6. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  7. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  8. Radar reflectivity of bare and vegetation-covered soil

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Bradley, G. A.

    1981-01-01

    Radar sensitivity to soil moisture content has been investigated experimentally for bare and vegetation-covered soil using detailed spectral measurements obtained by a truck-mounted radar spectrometer in the 1-8 GHz band and by airborne scatterometer observations at 1.6, 4.75, and 13.3 GHz. It is shown that radar can provide quantitative information on the soil moisture content of both bare and vegetation-covered soil. The observed soil moisture is in the form of the soil matric potential or a related quantity such as the percent of field capacity. The depth of the monitored layer varies from 1 cm for very wet soil to about 15 cm for very dry soil.

  9. Issues related to waveform computations for radar altimeter applications

    NASA Astrophysics Data System (ADS)

    Newkirk, Michael H.; Brown, Gary S.

    1992-12-01

    An algorithm has been developed to model the average return power waveforms available from general radar altimeter systems, such as the Multimode Airborne Radar Altimeter (MARA) system operated at NASA Goddard Space Flight Center - Wallops Flight Facility. The algorithm is based on a convolutional model comprised of three functions: the average flat surface impulse response (FSIR), the radar system point target response (PTR), and the height pdf of the specular points on the sea surface. The FSIR is modified to account for the asymmetric antenna beam used by the MARA system, and then certain properties of this modified SIR are exploited to obtain closed-form expressions that can be rapidly evaluated. An FFT convolution routine is used to further speed up the computations. The result is an algorithm that can be used to study the effects of pointing errors in surface measurements.

  10. Identification of corn fields using multidate radar data

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Ulaby, F. T.; Narayanan, V.; Dobson, C.

    1983-01-01

    Airborne C- and L-band radar data acquired over a test site in western kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85 percent for single channel, single-date data to 100 percent for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented.

  11. The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy.

    NASA Astrophysics Data System (ADS)

    Tinel, Claire; Testud, Jacques; Pelon, Jacques; Hogan, Robin J.; Protat, Alain; Delanoë, Julien; Bouniol, Dominique

    2005-06-01

    Clouds are an important component of the earth's climate system. A better description of their microphysical properties is needed to improve radiative transfer calculations. In the framework of the Earth, Clouds, Aerosols, and Radiation Explorer (EarthCARE) mission preparation, the radar-lidar (RALI) airborne system, developed at L'Institut Pierre Simon Laplace (France), can be used as an airborne demonstrator. This paper presents an original method that combines cloud radar (94-95 GHz) and lidar data to derive the radiative and microphysical properties of clouds. It combines the apparent backscatter reflectivity from the radar and the apparent backscatter coefficient from the lidar. The principle of this algorithm relies on the use of a relationship between the extinction coefficient and the radar specific attenuation, derived from airborne microphysical data and Mie scattering calculations. To solve radar and lidar equations in the cloud region where signals can be obtained from both instruments, the extinction coefficients at some reference range z0 must be known. Because the algorithms are stable for inversion performed from range z0 toward the emitter, z0 is chosen at the farther cloud boundary as observed by the lidar. Then, making an assumption of a relationship between extinction coefficient and backscattering coefficient, the whole extinction coefficient, the apparent reflectivity, cloud physical parameters, the effective radius, and ice water content profiles are derived. This algorithm is applied to a blind test for downward-looking instruments where the original profiles are derived from in situ measurements. It is also applied to real lidar and radar data, obtained during the 1998 Cloud Lidar and Radar Experiment (CLARE'98) field project when a prototype airborne RALI system was flown pointing at nadir. The results from the synergetic algorithm agree reasonably well with the in situ measurements.

  12. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  13. Integrating Radar Image Data with Google Maps

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  14. Use of radar to assess aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Blumberg, D.; Debrovolskis, A.; Saunders, R. S.; Wall, S.; Iversen, J. D.; White, B.; Rasmussen, K. R.

    1991-01-01

    The interaction between wind and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationship between radar backscatter and aerodynamic roughness. Here, researchers report results from measurements of atmospheric boundary layer profiles, assessment of radar backscatter at P, L, and C wavelengths, and surface roughness in Death Valley, the Mojave Desert, and Lunar Lake, NV, and discuss the implications for aeolian process. The sites include playas, gravel and sand regs, alluvial fans, and lava flows. Boundary layer wind profiles were measured using anemometers at heights of 0.75, 1.25, 2.07, 3.44, 5.72, and 9.5 m; temperature sensors at heights of 1.3 and 9.6 m; and wind vanes at 9.7 and 1.5 m. Microtopographic measurements were made using a template and a laser-photo device to obtain RMS height. This study demonstrates that radar backscatter coefficients obtained from airborne and perhaps orbiting instruments could permit the derivation of aerodynamic roughness values for large areas. Such values, when combined with wind frequency data, could enable assessment of aeolian processes on a regional scale.

  15. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  16. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  17. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  18. Decoders for MST radars

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

  19. Radar illusion via metamaterials.

    PubMed

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results. PMID:21405918

  20. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar

    PubMed Central

    Pathirana, Pubudu N.; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  1. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  2. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  3. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  4. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  5. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  6. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  7. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  8. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  9. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  10. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  11. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  12. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  13. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  14. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. MITAS: multisensor imaging technology for airborne surveillance

    NASA Astrophysics Data System (ADS)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  16. Radar sensitivity to human heartbeats and respiration

    NASA Astrophysics Data System (ADS)

    Aardal, Øyvind; Brovoll, Sverre; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2015-05-01

    Human heartbeats and respiration can be detected from a distance using radar. This can be used for medical applications and human being detection. It is useful to have a system independent measure of how detectable the vital signs are. In radar applications, the Radar Cross Section (RCS) is normally used to characterize the detectability of an object. Since the human vital signs are seen by the radar as movements of the torso, the modulations in the person RCS can be used as a system independent measure of the vital signs detectability. In this paper, measurements of persons seated in an anechoic chamber are presented. The measurements were calibrated using empty room and a metallic calibration sphere. A narrowband radar operating at frequencies from 500 MHz to 18 GHz in discrete steps was used. A turntable provided measurements at precise aspect angles all around the person under test. In an I & Q receiver, the heartbeat and respiration modulation is a combination of amplitude and phase mod- modulations. The measurements were filtered, leaving the modulations from the vital signs in the radar recordings. The procedure for RCS computation was applied to these filtered data, capturing the complex signatures. It was found that both the heartbeat and respiration detectability increase with increasing frequency. The heartbeat signatures are almost equal from the front and the back, while being almost undetectable from the sides of the person. The respiration signatures are slightly higher from the front than from the back, and smaller from the sides. The signature measurements presented in this paper provide an objective system independent measure of the detectability of human vital signs as a function of frequency and aspect angle. These measures are useful for example in system design and in assessing real measurement scenarios.

  17. Temperate Ice Depth-Sounding Radar

    NASA Astrophysics Data System (ADS)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    . It also digitizes the output signal from the receiver and stores the data in binary format using a portable computer. The RF-section consists of a high- power transmitter and a low-noise receiver with digitally controlled variable gain. The antenna is time-shared between the transmitter and receiver by means of a transmit/receive (T/R) switch. In regards to the antenna, we have made a survey study of various electrically small antennas (ESA) to choose the most suitable radiating structure for this application. Among the different alternatives that provide a good trade-off between electrical performance and small size, we have adopted an ESA dipole configuration for airborne platforms and a half-wavelength radiator for the surface-based version. The airborne antenna solution is given after studying the geometry of the aerial vehicle and its fuselage contribution to the antenna radiation pattern. Dipoles are made of 11.6 mm diameter cables (AWG 0000) or printed patches embedded into the aircraft fuselage, wings, or both. The system is currently being integrated and tested. TIDSoR is expected to be deployed during the spring 2008 either in Alaska or Greenland for surface based observations. In this paper, we will discuss our design considerations and current progress towards the development of this radar system. [1] Center for Remote Sensing of Ice Sheets (Cresis), Sept 2008, [Online]. Available: http://www.cresis.ku.edu

  18. Assessment of radar-derived snow depth over Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Newman, Thomas; Farrell, Sinead L.; Richter-Menge, Jacqueline; Connor, Laurence N.; Kurtz, Nathan T.; Elder, Bruce C.; McAdoo, David

    2014-12-01

    Knowledge of contemporaneous snow depth on Arctic sea ice is important both to constrain the regional climatology and to improve the accuracy of satellite altimeter estimates of sea ice thickness. We assess new data available from the NASA Operation IceBridge snow radar instrument and derive snow depth estimates across the western Arctic ice pack using a novel methodology based on wavelet techniques that define the primary reflecting surfaces within the snow pack. We assign uncertainty to the snow depth estimates based upon both the radar system parameters and sea ice topographic variability. The accuracy of the airborne snow depth estimates are examined via comparison with coincident measurements gathered in situ across a range of ice types in the Beaufort Sea. We discuss the effect of surface morphology on the derivation, and consequently the accuracy, of airborne snow depth estimates. We find that snow depths derived from the airborne snow radar using the wavelet-based technique are accurate to 1 cm over level ice. Over rougher surfaces including multiyear and ridged ice, the radar system is impacted by ice surface morphology. Across basin scales, we find the snow-radar-derived snow depth on first-year ice is at least ˜60% of the value reported in the snow climatology for the Beaufort Sea, Canada Basin, and parts of the central Arctic, since these regions were previously dominated by multiyear ice during the measurement period of the climatology. Snow on multiyear ice is more consistent with the climatology.

  19. Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1993-01-01

    Radar is a powerful technique that has furnished otherwise unavailable information about solar system bodies for three decades. The advantages of radar in planetary astronomy result from: (1) the observer's control of all the attributes of the coherent signal used to illuminate the target, especially the wave form's time/frequency modulation and polarization; (2) the ability of radar to resolve objects spatially via measurements of the distribution of echo power in time delay and Doppler frequency; (3) the pronounced degree to which delay-Doppler measurements constrain orbits and spin vectors; and (4) centimeter-to-meter wavelengths, which easily penetrate optically opaque planetary clouds and cometary comae, permit investigation of near-surface macrostructure and bulk density, and are sensitive to high concentrations of metal or, in certain situations, ice. Planetary radar astronomy has primarily involved observations with Earth-based radar telescopes, but also includes some experiments with a spaceborne transmitter or receiver. In addition to providing a wealth of information about the geological and dynamical properties of asteroids, comets, the inner planets, and natural satellites, radar experiments have established the scale of the solar system, have contributed significantly to the accuracy of planetary ephemerides, and have helped to constrain theories of gravitation. This review outlines radar astronomical techniques and describes principal observational results.

  20. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  1. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Werner, Marian U.

    1993-05-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  2. Ground-penetrating radar methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

  3. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  4. Radar Stratigraphy of Ice on Earth and Mars: What are we Missing? An Evaluation of Multiple Radars and Processing Techniques.

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Corr, H. F.; Plaut, J. J.; Safaeinili, A.

    2007-12-01

    Radar sounding has been used for decades on Earth to map sub-ice topography, yet we are only beginning to fully make use of the information contained within the radar-detected, ice-internal layering. This internal layering serves as a guide to estimate accumulation rates and flow reorganization, to detect geothermal anomalies and to extrapolate ice core results over large regions. Radar layering in snow and ice on Earth is generally caused by variations in acidity due to deposits from volcanic eruptions, changes in ice crystal fabric, or variations in density (near the surface). Radar studies in Antarctica have been undertaken by a variety of means, most commonly airborne systems operating at 60 or 150 MHz, typically with 10 - 15 MHz bandwidths, but also sled-mounted systems generally operating in the 1 - 10 MHz range. The stratigraphy of icy deposits on Mars is also thought to hold important information about past climatic variations there and radar sounding has started to reveal new stratigraphic information to complement optical and spectral studies. Two orbital radar sounders are currently operating at Mars. MARSIS on Mars Express operates at 2 - 5 MHz, while SHARAD on Mars Reconnaissance Orbiter operates in the 15 - 25 MHz band. This is a tremendous advance over our ability to probe the subsurface of Mars just a few years ago; however, we don't know how much information we may be missing due to limited over-ice data at these frequencies on Earth. We therefore examine the impact of different wavelengths, bandwidths, and pulse types on the reconstruction of ice stratigraphy on both Earth and Mars by comparing data obtained from different radar systems over the same locations. Simulated results are also compared, as are the effects of data reduction schemes such as unfocused and focused synthetic aperture radar (SAR) processing.

  5. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  6. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  7. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    NASA Astrophysics Data System (ADS)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    the normalized radar cross sections of the surface,σ0, at each frequency and incidence angle to generate the radar return power from the surface. The simulated σ0 data are modeled as realizations from jointly Gaussian random variables with means, variances and correlations obtained from measurements of σ0 from the JPL APR2 (2nd generation Airborne Precipitation Radar) data, which operates at approximately the same frequencies as the DPR. We will discuss the general capabilities of the radar simulator, present some sample results and show how they can be used to assess the performance of the radar retrieval algorithms proposed for the Dual-Frequency GPM radar. In addition, we will report on updates to the simulator using inputs from cloud models with spectral bin microphysics.

  8. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  9. EISCAT Svalbard radar

    NASA Astrophysics Data System (ADS)

    Lehtinen, Markku; Kangas, Jorma

    1992-02-01

    The main fields of interest of the Finnish scientists in EISCAT research are listed. Finnish interests in the Polar Cap Radar (PMR) and areas where the Finnish contribution could be important are addressed: radar techniques; sporadic E layers in the polar cap; atmospheric models; auroral studies in the polar cap; nonthermal plasmas in the F region; coordinated measurements with the Cluster satellites; studies of the ionospheric traveling; convection vortices; polar cap absorption; studies of lower atmosphere; educational program. A report on the design specification of an ionospheric and atmospheric radar facility based on the archipelago of Svalbard (Norway) is summarized.

  10. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  11. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  12. Joint UK/US Radar Program progress reports for period January 1--31, 1995

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Robey, H.F.; Mantrom, D.D.; Rino, C.; Chambers, D.H.; Belyea, J.

    1995-02-15

    Our current objectives are to modify the Hughes x-band radar for airborne implementation, to upgrade it to polarimetry, high-power, and add SLAR mode, and then to deploy in UK/US field experiments as needed. We are on schedule and within budget on bringing the airborne (Hughes A-3) system for future SAR and eventually, SLAR imaging at low grazing angles. Hughes and LLNL continued work on system integration, radar hardware, and associated control hardware and software. The belly radome design modification previously completed is now being procured. The overall radar and testbed remains on schedule for engineering checkout in April 1995, pending the arrival of FY95 funds as expected.

  13. Correction of Sampling Errors in Ocean Surface Cross-Sectional Estimates from Nadir-Looking Weather Radar

    NASA Technical Reports Server (NTRS)

    Caylor, I. Jeff; Meneghini, R.; Miller, L. S.; Heymsfield, G. M.

    1997-01-01

    The return from the ocean surface has a number of uses for airborne meteorological radar. The normalized surface cross section has been used for radar system calibration, estimation of surface winds, and in algorithms for estimating the path-integrated attenuation in rain. However, meteorological radars are normally optimized for observation of distributed targets that fill the resolution volume, and so a point target such as the surface can be poorly sampled, particularly at near-nadir look angles. Sampling the nadir surface return at an insufficient rate results in a negative bias of the estimated cross section. This error is found to be as large as 4 dB using observations from a high-altitude airborne radar. An algorithm for mitigating the error is developed that is based upon the shape of the surface echo and uses the returned signal at the three range gates nearest the peak surface echo.

  14. Capturing Callisto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter's outermost large moon, Callisto, as the spacecraft flew past Jupiter in late February. New Horizons' closest approach distance to Jupiter was 2.3 million kilometers (1.4 million miles), not far outside Callisto's orbit, which has a radius of 1.9 million kilometers (1.2 million miles). However, Callisto happened to be on the opposite side of Jupiter during the spacecraft's pass through the Jupiter system, so these images, taken from 4.7 million kilometers (3.0 million miles) and 4.2 million kilometers (2.6 million miles) away, are the closest of Callisto that New Horizons obtained.

    Callisto's ancient, crater-scarred surface makes it very different from its three more active sibling satellites, Io, Europa and Ganymede. Callisto, 4,800 kilometers (3000 miles) in diameter, displays no large-scale geological features other than impact craters, and every bright spot in these images is a crater. The largest impact feature on Callisto, the huge basin Valhalla, is visible as a bright patch at the 10 o'clock position. The craters are bright because they have excavated material relatively rich in water ice from beneath the dark, dusty material that coats most of the surface.

    The two images show essentially the same side of Callisto -- the side that faces Jupiter -- under different illumination conditions. The images accompanied scans of Callisto's infrared spectrum with New Horizons' Linear Etalon Imaging Spectral Array (LEISA). The New Horizons science team designed these scans to study how the infrared spectrum of Callisto's water ice changes as lighting and viewing conditions change, and as the ice cools through Callisto's late afternoon. The infrared spectrum of water ice depends slightly on its temperature, and a goal of New Horizons when it reaches the Pluto system (in 2015) is to use the water ice features in the spectrum of Pluto's moon Charon, and

  15. An airborne system for detection of volcanic surface deformations

    NASA Technical Reports Server (NTRS)

    Lunine, J.

    1980-01-01

    A technique is proposed for measuring volcanic deformation on the order of centimeters per day to centimeters per year. An airborne multifrequency pulsed radar, tracking passive ground reflectors spaced at 1 kilometer intervals over a 50 square kilometer area is employed. Identification of targets is accomplished by Doppler and range resolution techniques, with final relative position measurements accomplished by phase comparison of multifrequency signals. Atmospheric path length errors are corrected by an airborne refractometer, meteorological instruments, or other refractive index measuring devices. Anticipated system accuracy is 1-2 cm, with measuring times on the order of minutes. Potential problems exist in the high intrinsic data assimilation rate required of the system to overcome ground backscatter noise.

  16. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  17. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  18. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Fort Irwin in California's Mojave Desert compares interferometric radar signatures topography -- data that were obtained by multiple imaging of the same region to produce three-dimensional elevation maps -- as it was obtained on October 7-8, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. Data were acquired using the L-band (24 centimeter wavelength) and C-band (6 centimeter wavelength). The image covers an area about 25 kilometers by 70 kilometers (15.5 miles by 43 miles). North is to the lower right of the image. The color contours shown are proportional to the topographic elevation. With a wavelength one-fourth that of the L-band, the results from the C-band cycle through the color contours four times faster for a given elevation change. Detailed comparisons of these multiple frequency data over different terrain types will provide insights in the future into wavelength-dependent effects of penetration and scattering on the topography measurement accuracy. Fort Irwin is an ideal site for such detailed digital elevation model comparisons because a number of high precision digital models of the area already exist from conventional measurements as well as from airborne interferometric SAR data. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human

  19. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  20. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  1. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  2. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  3. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  4. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  5. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  6. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  7. Unusual radar echoes from the Greenland ice sheet

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.

    1993-01-01

    In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.

  8. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  9. Accident investigation: Analysis of aircraft motions from ATC radar recordings

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1976-01-01

    A technique was developed for deriving time histories of an aircraft's motion from air traffic control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data (from an onboard Mode-C transponder), to derive an expanded set of data which includes airspeed, lift, thrust-drag, attitude angles (pitch, roll, and heading), etc. This method of analyzing aircraft motions was evaluated through flight experiments which used the CV-990 research aircraft and recordings from both the enroute and terminal ATC radar systems. The results indicate that the values derived from the ATC radar records are for the most part in good agreement with the corresponding values obtained from airborne measurements. In an actual accident, this analysis of ATC radar records can complement the flight-data recorders, now onboard airliners, and provide a source of recorded information for other types of aircraft that are equipped with Mode-C transponders but not with onboard recorders.

  10. Airborne multispectral detecting system for marine mammals survey

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Sofianos, James; Schoonmaker, Jon; Medeiros, Dustin; Boucher, Cynthia; Oakley, Daniel; Saggese, Steve

    2010-04-01

    This work presents an electro-optical multispectral capability that detects and monitors marine mammals. It is a continuance of Whale Search Radar SBIR program funded by PMA-264 through NAVAIR. A lightweight, multispectral, turreted imaging system is designed for airborne and ship based platforms to detect and monitor marine mammals. The system tests were conducted over the Humpback whale breeding and calving area in Maui, Hawaii. The results of the tests and the system description are presented. The development of an automatic whale detection algorithm is discussed as well as methodology used to turn raw survey data into quantifiable data products.

  11. Airborne in situ computation of the wind shear hazard index

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.; Robinson, Paul A.

    1992-01-01

    An algorithm for airborne in situ computation of the wind shear hazard index (F-factor) was developed and evaluated in simulation and verified in flight. The algorithm was implemented on NASA's B-737-100 airplane, and tested under severe maneuvering, nonhazardous wind conditions, and normal takeoffs and landings. The airplane was flown through actual microburst conditions in Orlando, FL, where the algorithm produced wind shear measurements which were confirmed by an independent, ground-based radar measurement. Flight test results indicated that the in situ F-factor algorithm correctly measured the effect of the wind environment on the airplane's performance, and produced no nuisance alerts.

  12. Distributed array radar

    NASA Astrophysics Data System (ADS)

    Heimiller, R. C.; Belyea, J. E.; Tomlinson, P. G.

    1983-11-01

    Distributed array radar (DAR) is a concept for efficiently accomplishing surveillance and tracking using coherently internetted mini-radars. They form a long baseline, very thinned array and are capable of very accurate location of targets. This paper describes the DAR concept. Factors involving two-way effective gain patterns for deterministic and random DAR arrays are analyzed and discussed. An analysis of factors affecting signal-to-noise ratio is presented and key technical and performance issues are briefly summarized.

  13. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  14. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  15. On wave radar measurement

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Feld, Graham; Jonathan, Philip

    2014-09-01

    The SAAB REX WaveRadar sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave radars may not be as good as expected. We review the functionality of a WaveRadar using numerical simulations to better understand how WaveRadar estimates compare with known surface elevations. In addition, we review recent field measurements made with a WaveRadar set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB radars and buoy measurements for locations in the North Sea.

  16. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  17. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith A.; Quaid, Thomas

    1991-01-01

    The Rendezvous Radar Set (RRS) was designed at Motorola's Strategic Electronics Division in Chandler, Arizona, to be a key subsystem aboard NASA's Orbital Maneuvering Vehicle (OMV). The unmanned OMV, which was under development at TRW's Federal Systems Division in Redondo Beach, California, was designed to supplement the Shuttle's satellite delivery, retrieval, and maneuvering activities. The RRS was to be used to locate and then provide the OMV with vectoring information to the target satellite (or Shuttle or Space Station) to aid the OMV in making a minimum fuel consumption approach and rendezvous. The OMV development program was halted by NASA in 1990 just as parts were being ordered for the RRS engineering model. The paper presented describes the RRS design and then discusses new technologies, either under development or planned for development at Motorola, that can be applied to radar or alternative sensor solutions for the Automated Rendezvous and Capture problem.

  18. 94 GHz doppler wind radar satellite mission concept

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Schüttemeyer, Dirk

    2015-10-01

    Extreme weather such as storms, hurricanes and typhoons, also called `high impact weather', is a high priority area of research for the atmospheric dynamics and meteorological science communities. 94 GHz Doppler wind radar satellite mission concepts have been elaborated, which use cloud and precipitation droplets/particles as tracers to measure 3-D wind fields. The so-called polarisation-diversity pulse-pair (PDPP) technique enables to derive line-of-sight wind speed with good accuracy (< 2-3 m/s) and large unambiguous dynamic range (e.g. 75 m/s). Two distinct system concepts have been elaborated: (1) a conically scanning radar concept with large coverage (> 800 km) and ˜50 km along-track sampling, and; (2) a stereo viewing concept with high sampling resolution (< 4 km) within an inclined cut through the atmosphere. The former concept is adequate for studying large-scale severe/extreme weather systems, whereas the latter would be more suitable for understanding of small-scale convective phenomena. For demonstrating the potential of the FDPP technique for deriving accurate Doppler observations, ground-based and airborne Doppler radar campaigns are in preparation. The Galileo 94 GHz radar, upgraded recently to include a FDPP capability, at Chilbolton in the UK, will be used for an extended ground-based campaign (6 months). For the airborne campaign, the dual-frequency (9.4 + 94 GHz) NAWX radar on board a Convair-580 aircraft of the National Science Council of Canada will be upgraded and flown. This paper describes the observation requirements, preliminary satellite mission concepts, associated wind retrieval aspects and the planned demonstration campaigns.

  19. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  20. Radar Ionospheric Impact Mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G.; Decker, D.; Baker, C.

    2006-12-01

    New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade

  1. Estimation of forest fuel load from radar remote sensing

    USGS Publications Warehouse

    Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L.

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.

  2. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  3. Impact of Non-Uniform Beam Filling on Spaceborne Cloud and Precipitation Radar Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Sacco, Gian Franco; Durden, Stephen L.; Haddad, Ziad S.

    2012-01-01

    In this presentation we will discuss the performance of classification and retrieval algorithms for spaceborne cloud and precipitation radars such as the Global Precipitation Measurement mission Dual-frequency Precipitation Radar (GPM/DPR), and notional radar for the Aerosol/Clouds/Ecosystem (ACE) mission and related concepts. Spaceborne radar measurements are simulated either from Airborne Precipitation Radar 2nd Generation observations, or from atmospheric model outputs via instrument simulators contained in the NASA Earth Observing Systems Simulators Suite (NEOS(sup 3)). Both methods account for the three dimensional nature of the scattering field at resolutions smaller than that of the spaceborne radar under consideration. We will focus on the impact of non-homogeneities of the field of hydrometeors within the beam. We will discuss also the performance of methods to identify and mitigate such conditions, and the resulting improvements in retrieval accuracy. The classification and retrieval algorithms analyzed in this study are those derived from APR-2's Suite of Processing and Retrieval Algorithms (ASPRA); here generalized to operate on an arbitrary set of radar configuration parameters to study the expected performance of spaceborne cloud and precipitation radars. The presentation will highlight which findings extend to other algorithm families and which ones do not.

  4. Backscatter model for the unusual radar properties of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1995-01-01

    A number of planetary objects exhibit large radar reflectivity and polarization ratios, and more recently, a similar behavior has been observed over a vast portion of the Earth's surface: the percolation facies of the Greenland Ice Sheet. Surface-based ranging radar data and snow stratigraphy studies demonstrated that the radar properties of that portion of Greenland are caused by enhanced scattering from massive, large, solid-ice bodies buried in the top few meters of the dry, cold, clean snowy surface of the ice sheet and created by seasonal melting and refreezing events. Here, we model the icy inclusions as randomly oriented, discrete, noninteracting, dielectric cylinders embedded in a transparent snow medium. An exact analytical solution is used to compute the scattered field from the cylinders. Using this model, we correctly predict the polarimetric radar observations gathered by an airborne imaging system at three wavelengths (5.6, 24, and 68 cm), between 19 deg and 65 deg incidence angle. The diameter and number density of the cylinders that are inferred from the radar data using the model are consistent with in situ observations of the icy inclusions. The large radar reflectivity and polarization ratios are interpreted as arising internal reflections of the radar signals in the icy inclusions that first-order external reflection models fail to predict. The results compare favorably with predictions from the coherent backscatter or weak localization theory and may provide a complementary framework for interpreting exotic radar echoes from other planetary objects.

  5. New observations of Bolivian wind streaks by JPL Airborne SAR: Preliminary results

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    In 1993 NASA's Jet Propulsion Laboratory Airborne Synthetic Aperture Radar system (AIRSAR) was deployed to South America to collect multi-parameter radar data over pre-selected targets. Among the sites targeted was a series of wind streaks located in the Altiplano of Bolivia. The objective of this investigation is to study the effect of wavelength, polarization, and incidence angle on the visibility of wind streaks in radar data. Because this is a preliminary evaluation of the recently acquired data we will focus on one scene and, thus, only on the effects of wavelength and polarization. Wind streaks provide information on the near-surface prevailing winds and on the abundance of winderodible material, such as sand. The potential for a free-flyer radar system that could provide global radar images in multiple wavelengths, polarizations, and incidence angles requires definition of system parameters for mission planning. Furthermore, thousands of wind streaks were mapped from Magellan radar images of Venus; their interpretation requires an understanding of the interaction of radar with wind streaks and the surrounding terrain. Our experiment was conducted on wind streaks in the Altiplano of Bolivia to address these issues.

  6. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  7. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  8. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  9. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  10. Synthetic aperture radar processing with tiered subapertures

    SciTech Connect

    Doerry, A.W.

    1994-06-01

    Synthetic Aperture Radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the Discrete Fourier Transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged, and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are Polar Format processing, and Overlapped Subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized Tiered Subaperture (TSA) techniques that are a superset of both Polar Format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

  11. Radar detection of surface oil accumulations

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Oneill, P.; Wilson, M.

    1980-01-01

    The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.

  12. Pathfinder radar development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  13. Imaging radar polarimetry from wave synthesis

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Van Zyl, Jakob J.; Held, Daniel N.

    1987-01-01

    A new approach is reported to the measurement of the complete polarization signature of each resolution element in an image implemented with an airborne synthetic aperture radar system. Signals recorded on one data pass from orthogonal linearly polarized antennas are utilized. The signals are combined in a data processor to synthesize any desired combination of transmit and receive polarizations. The technique permits measurement of the complex, multichannel reflectivity of a scene on a single aircraft pass and to late reprocess the data to provide multiple image maps, with each representing the backscattered energy from the scene measured with a different combination of observational transmit and recieve polarizations. The resulting polarization signature measurements indicate optimum polarizations for observations of certain classes of objects and give insight into the identification of dominant scattering mechanisms for each kind of object. The mathematical model for polarization synthesis is summarized, and some theoretical polarization measurements are illustrated for several types of targets. The overall radar system implementation is described in detail. Some analyses of data acquired on three aircraft flights are presented. The technique has been applied to mapping and differentiation of lava flows and to differentiation of forested and clear-cut areas.

  14. On a nascent mathematical-physical latency-information theory, part I: the revelation of powerful and fast knowledge-unaided power-centroid radar

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2009-05-01

    In this first part of the latest latency-information theory (LIT) and applications paper series powerful and fast 'knowledge-unaided' power-centroid (F-KUPC) radar is revealed. More specifically, it is found that for real-world airborne moving target indicator radar subjected to severely taxing environmental conditions F-KUPC radar approximates the signal to interference plus noise ratio (SINR) radar performance derived with more complex knowledge-aided power-centroid (KAPC) radar. KAPC radar was discovered earlier as part of DARPA's 2001-2005 knowledge-aided sensor signal processing expert reasoning (KASSPER) Program and outperforms standard priorknowledge radar schemes by several orders of magnitude in both the compression of sourced intelligence-space of priorknowledge, in the form of SAR imagery, and the compression of processing intelligence-time of the associated clutter covariance processor, while also yielding an average SINR radar performance that is approximately 1dB away from the optimum. In this paper, it is shown that the average SINR performance of significantly simpler F-KUPC radar emulates that of KAPC radar and, like KAPC radar, outperforms a conventional knowledge-unaided sample covariance matrix inverse radar algorithm by several dBs. The matlab simulation programs that were used to derive these results will become available in the author's Web site.

  15. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  16. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  17. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  18. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  19. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  20. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  1. Characteristics of Sunset radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1983-01-01

    Located in a narrow canyon 15 km west of Boulder, Colorado, the Sunset pulsed Doppler radar was the first radar designed and constructed specifically as a VHF ST radar. The antenna system is a phased array of coaxial-colinear dopoles with computer-controlled phase shifters for each line of dipoles. It operates at a frequency of 40.475 MHz and a wavelength of 7.41M. Peak transmitter power is 100 kW. Aperture efficiency is 0.58 and resistive loss is 0.30 for its 3600 sq m area. The practical steering rate is 1 record/minute/position to any arbitrary antenna beam position. The first clear-air turbulence echoes and wind velocity measurements were obtained in 1974. Significant accomplishments are listed.

  2. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  3. Summary of flight tests of an airborne lighting locator system and comparison with ground-based measurements of precipitation and turbulence

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Crabill, N. L.

    1981-01-01

    Data from an airborne lightning locator system and data relating to storm intensity obtained by ground-based Doppler radars and the S-band research radar are presented. When comparing lightning locations from the airborne lightning locator system with ground-based Doppler radar measurements of reflectivity and spectrum width, the lightning locations tended to be further from the aircraft position than the Doppler radar contours, but at the same relative bearing from the aircraft as the Doppler contours. The results also show that convective storms generate little or no lightning for a significant part of their life cycle, but can produce at least moderate turbulence. Therefore, it is concluded that a lack of lightning activity cannot be accepted as an inference of a corresponding lack of other hazards to the flight of aircraft through convective storms.

  4. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  5. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  6. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  7. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  8. Microwave radar oceanographic investigations

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1988-01-01

    The Radar Ocean Wave Spectrometer (ROWS) technique was developed and demonstrated for measuring ocean wave directional spectra from air and space platforms. The measurement technique was well demonstrated with data collected in a number of flight experiments involving wave spectral comparisons with wave buoys and the Surface Contour Radar (SCR). Recent missions include the SIR-B underflight experiment (1984), FASINEX (1986), and LEWEX (1987). ROWS related activity is presently concentrating on using the aircraft instrument for wave-processes investigations and obtaining the necessary support (consensus) for a satellite instrument development program. Prospective platforms include EOS and the Canadian RADARSAT.

  9. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  10. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  11. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  12. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  13. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  14. Sensor fusion for airborne landmine detection

    NASA Astrophysics Data System (ADS)

    Schatten, Miranda A.; Gader, Paul D.; Bolton, Jeremy; Zare, Alina; Mendez-Vasquez, Andres

    2006-05-01

    Sensor fusion has become a vital research area for mine detection because of the countermine community's conclusion that no single sensor is capable of detecting mines at the necessary detection and false alarm rates over a wide variety of operating conditions. The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) evaluates sensors and algorithms for use in a multi-sensor multi-platform airborne detection modality. A large dataset of hyperspectral and radar imagery exists from the four major data collections performed at U. S. Army temperate and arid testing facilities in Autumn 2002, Spring 2003, Summer 2004, and Summer 2005. There are a number of algorithm developers working on single-sensor algorithms in order to optimize feature and classifier selection for that sensor type. However, a given sensor/algorithm system has an absolute limitation based on the physical phenomena that system is capable of sensing. Therefore, we perform decision-level fusion of the outputs from single-channel algorithms and we choose to combine systems whose information is complementary across operating conditions. That way, the final fused system will be robust to a variety of conditions, which is a critical property of a countermine detection system. In this paper, we present the analysis of fusion algorithms on data from a sensor suite consisting of high frequency radar imagery combined with hyperspectral long-wave infrared sensor imagery. The main type of fusion being considered is Choquet integral fusion. We evaluate performance achieved using the Choquet integral method for sensor fusion versus Boolean and soft "and," "or," mean, or majority voting.

  15. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  16. Effects of vegetation canopy on the radar backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Mo, T.; Blanchard, B. J.; Schmugge, T. J.

    1983-01-01

    Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.

  17. Waveguide-excited slot arrays for synthetic array radar applications

    NASA Technical Reports Server (NTRS)

    Bostrom, D. E.; Lewis, D. J.; Rupp, F. C.

    1978-01-01

    The basic design considerations for waveguide slottery arrays are reviewed, with emphasis on those design requirements that are most significant to both airborne and spaceborne synthetic array radar (SAR) systems. As an illustration of both design procedures and performance capability of slotted waveguide planar arrays, an L-band planar array was designed, fabricated, and tested. This array has an aperture approximately one meter wide by two meters high and was designed to be a typical submodule of a larger antenna. Measurements of radiation patterns, gain, and VSWR were recorded and are presented, together with the performance characteristics predicted on the basis of theoretical analysis.

  18. Beyond Radar Backscatter: Estimating Forest Structure and Biomass with Radar Interferometry and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Ahmed, R.

    2014-12-01

    Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the

  19. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  20. Airborne gravity measurement over sea-ice: The western Weddel Sea

    SciTech Connect

    Brozena, J.; Peters, M. ); LaBrecque, J.; Bell, R.; Raymond, C. )

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative of the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.