Science.gov

Sample records for airborne radar reflectivity

  1. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  2. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  3. Airborne MIMO GMTI Radar

    DTIC Science & Technology

    2011-03-31

    applications [1], [2], [3], [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. Conventional phased array radars form a single coherent transmit beam and...intentionally left blank. 1. INTRODUCTION Conventional phased - array radars form a single coherent transmit beam and measure the backscattered response... steering vector for a SI MO array with nr"/? receiver phase centers located at positions xm + y„. This is how the MIMO virtual array arises. The waveforms

  4. New Airborne Radar Sounding Approaches for Quantifying Basal Reflection and Scattering, With Application to Ice Stream C (and Whillans Ice Stream), West Antarctica

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2003-12-01

    The grounding zones of ice streams are a sensitive indicator of ice sheet variability and sea-level change. These dynamic systems involve the interaction of the moving ice mass with the underlying materials, including liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. In addition, bottom crevasses result from tidal flexure. Imaging and characterizing the subglacial environment of grounding zones is fundamental to understanding these complex systems. Airborne radar sounding is an increasingly valuable tool for investigations of polar ice sheets and glaciers, especially when studying the basal interface. We present results from airborne radar data acquired over ice stream C, West Antarctica, in 2001 using a uniquely configured airborne radar system. Our focus was on characterizing the basal interface within the grounding zone of this ice stream through radar reflection and scattering analyses. These new results are also used to extend the interpretation of data from regional surveys flown in 1988 over the downstream portions of both ice streams C and Whillans ice stream. The newly integrated radar system uses a programmable signal source with a dual-channel coherent down-conversion receiver linked to a 10 kW transmitter. The radar operates in chirped pulse mode at 60 MHz and 15 MHz bandwidth. High and low-gain channels allow for recording both weak bed echoes and strong surface echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and unfocussed synthetic aperture radar (SAR) processing using additional along-track integration were significant components of data analysis. The radar system used for the 1988 surveys operated in pulsed mode at 50 MHz and recorded both SAR (along-track integrated) and individual signal observations every second, or about every 60 m along-track. Echoes from the basal interface

  5. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  6. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  8. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  11. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  12. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  14. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  15. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  17. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  18. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  19. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  20. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  1. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  2. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  3. Characterizing Englacial and Subglacial Temperature Structure Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Seroussi, H. L.

    2015-12-01

    The temperature structure of ice sheet and glaciers is a fundamental control on ice flow, rheology, and stability. However, it is difficult to observationally constrain temperature structures at the catchment to ice-sheet scale. The englacial attenuation of radar sounding data is strongly dependent on the temperature structure of the ice sheets. Therefore, echo strength profiles from airborne radar sounding observation do contain temperature information. However, direct interpretation of englacial attenuation rates from radar sounding profiles is often difficult or impossible due to the ambiguous contribution the geometric and material properties of the bed to echo strength variations. To overcome this challenge, we presents techniques that treat radar sounding echo strength and ice thickness profiles as continuous signals, taking advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of englacial attenuation and basal reflectivity. We then apply these techniques to an airborne radar sounding survey in order to characterize the englacial and subglacial temperature structure of the Thwaites Glacier catchment in West Antarctic. We then interpreted this structure in context of local ice sheet velocity, advection, force balance, and bed conditions using the ISSM ice sheet model.

  4. Range Corrections for Airborne Radar - A Joint STARS Study

    DTIC Science & Technology

    1984-05-01

    ESD-TR-84-169 MTR-9055 RANGE CORRECTIONS FOR AIRBORNE RADAR - A JOINT STARS STUDY By • _,.G. A. ROBERTSHAW MAY 1984 - Prepared for DEPUTY COMMANDER...NO NO Hanscom AFB, MA 01731 6460 11. TITLE •Include securi,•,cleaficatton) Range Corrections Tor Airborne Radar - A Joint STARS Study 12. PERSONAL...SUPPLEMENTARY NOTATION 17 COSATI CODES 18. SUBJECT TERMS (Continue on reuera if necemary and identify by block number) FIELD GROUP SUB GR. Airborne Radar

  5. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  6. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  7. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  8. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  9. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  10. Radar reflectivity of Titan

    NASA Astrophysics Data System (ADS)

    Muhleman, D. O.; Grossman, A. W.; Butler, B. J.; Slade, M. A.

    1990-05-01

    The low dielectric constant of the liquid hydrocarbon and ethane-methane surface mixture of Titan has as a direct consequence a set of unique microwave-reflection properties which were sought out at 3.5-cm wavelength, using a 70-m transmitting antenna in conjunction with the VLA as a receiving instrument. The statistically significant echoes obtained indicate that Titan is not covered with a deep global ocean of ethane. A global ocean as shallow as about 200 m would have exhibited reflectivities smaller by an order of magnitude, and below the experiment's detection limit.

  11. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  12. Characterizing Subglacial Interfaces With Airborne Radar Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.

    2004-12-01

    Ice sheets are sensitive indicators of global change including sea-level rise. An ice sheet's subglacial interface is an important factor controlling its dynamic behavior. In particular, the grounding zones of ice streams and subglacial lakes are complex systems involving the interaction of the moving ice mass with underlying materials such as liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. Imaging and characterizing the subglacial environment of ice sheets is fundamental to understanding these complex systems. Airborne radar sounding is a powerful and well-known technique for studying ice sheets and glaciers and their contiguous underlying environments. We present results from data acquired in 2001 over the ice stream C grounding zone in West Antarctica, as well as over a hypothesized subglacial lake near the South Pole. These data were acquired using a uniquely configured coherent airborne radar system. Our focus has been to characterize the subglacial interface through radar echo analysis based on reflection and scattering theory. The radar system uses a programmable signal source linked to a 10 kW transmitter and a dual-channel coherent down-conversion receiver. The radar operates in chirped pulse mode at 60 MHz with 15 MHz bandwidth. High and low-gain channels allow for recording a wide dynamic range of echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and synthetic aperture radar (SAR) processing were components of data analysis. Subglacial echoes are influenced by the physical properties of the interface such as the composition and roughness of the materials at the interface. Other important factors include dielectric losses and volumetric scattering losses from propagation through the ice as well as transmission and refraction at the air-ice interface. Unfocussed SAR narrows the along

  13. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  14. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  15. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  16. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  17. Comments on airborne ISR radar utilization

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    A sensor/payload operator for modern multi-sensor multi-mode Intelligence, Surveillance, and Reconnaissance (ISR) platforms is often confronted with a plethora of options in sensors and sensor modes. This often leads an over-worked operator to down-select to favorite sensors and modes; for example a justifiably favorite Full Motion Video (FMV) sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. At best, sensors might be used in a serial monogamous fashion with some cross-cueing. The challenge is then to increase the utilization of the radar modes in a manner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into `super-modes'.

  18. Range profiling of the rain rate by an airborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  19. Crop classification using airborne radar and LANDSAT data. [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Li, R. Y.; Shanmugam, K. S.

    1981-01-01

    Airborne radar data acquired with a 13.3 GHz scatterometer over a test-site near Colby, Kansas were used to investigate the statistical properties of the scattering coefficient of three types of vegetation cover and of bare soil. A statistical model for radar data was developed that incorporates signal-fading and natural within-field variabilities. Estimates of the within-field and between-field coefficients of variation were obtained for each cover-type and compared with similar quantities derived from LANDSAT images of the same fields. The classification accuracy provided by LANDSAT alone, radar alone, and both sensors combined was investigated. The results indicate that the addition of radar to LANDSAT improves the classification accuracy by about 10; percentage-points when the classification is performed on a pixel basis and by about 15 points when performed on a field-average basis.

  20. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  1. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  2. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  3. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Doc No: 2012-1243] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar...: Notice of intent to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For... Radar Altimeter Equipment (For Air Carrier Aircraft). The effect of the cancelled TSO will result in...

  4. Tracking Theory for Airborne Surveillance Radars

    DTIC Science & Technology

    1983-02-01

    01803 _______________ _i- CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Air System Command 13. NUMBER OF PAGES Wshntn DC 2036...Department of the Navy -Trr FRE _[LEASL, Naval Air System Command DSY ;0, Ui;UrALT£D Washington, D.C. 20360 Contract Number N00019-81-C-0182 SFor...snapshot" of detected target positions once per scan. In typical air - borne surveillance radars, each azimuth is revisited once per scan, but in a

  5. Airborne Bistatic Radar Limitations and Sample Calculations

    DTIC Science & Technology

    1985-12-01

    Any parameter which maximizes the viewing area of the receiver platform is a prime candidate for change if the transmitter wishes to deny or decrease...AES-19, NO. 4, 513-520 (July 1983) 4. Lorti , D. "Airborne Bistatic RadaL Operation With Non-Cooperative Transmitters," Aeronautical Systems Divi- ’V...nology Center. Contract DASG60-82-C-0014 with McDonnell Douglas Research Labs. Huntsville AL. July 1982. 7. Moreno, C, and D. Lorti . "Tactical

  6. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  7. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  8. Three-dimensional environment models from airborne laser radar data

    NASA Astrophysics Data System (ADS)

    Soderman, Ulf; Ahlberg, Simon; Elmqvist, Magnus; Persson, Asa

    2004-09-01

    Detailed 3D environment models for visualization and computer based analyses are important in many defence and homeland security applications, e.g. crisis management, mission planning and rehearsal, damage assessment, etc. The high resolution data from airborne laser radar systems for 3D sensing provide an excellent source of data for obtaining the information needed for many of these models. To utilise the 3D data provided by the laser radar systems however, efficient methods for data processing and environment model construction needs to be developed. In this paper we will present some results on the development of laser data processing methods, including methods for data classification, bare earth extraction, 3D-reconstruction of buildings, and identification of single trees and estimation of their position, height, canopy size and species. We will also show how the results can be used for the construction of detailed 3D environment models for military modelling and simulation applications. The methods use data from discrete return airborne laser radar systems and digital cameras.

  9. Localized Optimization and Effectiveness Analysis of Medium PRF Airborne Pulse Doppler Radars in the Turkish Air Force

    DTIC Science & Technology

    2011-09-01

    Institute of Electrical and Electronics Engineers ISAR Inverse Synthetic Aperture Radar ITU International Telecommunications Union LOS Line of...Side-Looking Airborne Radar (SLAR) • Synthetic Aperture Radar (SAR) • Inverse Synthetic Aperture Radar ( ISAR ) • Weapon control radar 18...can be detected and tracked. Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar ( ISAR ) pulse Doppler designs are capable of

  10. Airborne Interferometry using GNSS Reflections for Surface Level Estimation

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Beyerle, Georg; Schön, Steffen; Stosius, Ralf; Gerber, Thomas; Beckheinrich, Jamila; Markgraf, Markus; Ge, Maorong; Wickert, Jens

    2013-04-01

    The interferometric use of GNSS reflections for ocean altimetry can fill the gap in coverage of ocean observations. Today radar altimeters are used for large scale ocean observations to monitor e.g. global sea level change or circulation processes like El Niño. Spacial and temporal resolution of a single radar altimeter, however, is insufficient to observe mesoscale ocean phenomena like large oceanic eddies that are important indicators of climate change. The high coverage expected for a spaceborne altimeter based on GNSS reflections stimulated investigations on according interferometric methods. Several airborne experiments have been conducted using code observations. Carrier observations have a better precision but are severely affected by noise and have mostly been used in ground-based experiments. A new interferometric approach is presented using carrier observations for airborne application. Implementing a spectral retrieval noise reduction is achieved. A flight experiment was conducted with a Zeppelin airship on 2010/10/12 over Lake Constance at the border between Austria, Germany and Switzerland. The lake surface with an area of 536km2 is suitable for altimetric study as its decimeter range Geoid undulations are well-known. Three GNSS receiver were installed on the airship. A Javad Delta receiver recording direct signals for navigation. The DLR G-REX receiver recording reflected signals for scatterometry and the GORS (GNSS Occultation Reflectometry Scatterometry) receiver recording direct and reflected signals for interferometry. The airship's trajectory is determined from navigation data with a precision better than 10cm using regional augmentation. This presentation focuses on the interferometric analysis of GORS observations. Ray tracing calculations are used to model the difference of direct and reflected signals' path. Spectral retrieval is applied to determine Doppler residuals of modelled path difference and interferometric observations. Lake level

  11. Probing Shallow Aquifers in Northern Kuwait Using Airborne Sounding Radars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Fadlelmawla, A.; Farr, T. G.; Al-Rashed, M.

    2011-12-01

    Most of the global warming observations, scientific interest and data analyses have concentrated on the earth Polar Regions and forested areas, as they provide direct measurable impacts of large scale environmental changes. Unfortunately, the arid environments, which represent ~20% of the earth surface, have remained poorly studied. Yet water rarity and freshness, drastic changes in rainfall, flash floods, high rates of aquifer discharge and an accelerated large-scale desertification process are all alarming signs that suggest a substantial large-scale climatic variation in those areas that can be correlated to the global change that is affecting the volatile dynamic in arid zones. Unfortunately the correlations, forcings and feedbacks between the relevant processes (precipitation, surface fresh water, aquifer discharge, sea water rise and desertification) in these zones remain poorly observed, modeled, let alone understood. Currently, local studies are often oriented toward understanding small-scale or regional water resources and neither benefit from nor feedback to the global monitoring of water vapor, precipitation and soil moisture in arid and semi-arid areas. Furthermore techniques to explore deep subsurface water on a large scale in desertic environments remain poorly developed making current understanding of earth paleo-environment, water assessment and exploration efforts poorly productive and out-phased with current and future needs to quantitatively understand the evolution of earth water balance. To address those deficiencies we performed a comprehensive test mapping of shallow subsurface hydro-geological structures in the western Arabic peninsula in Kuwait, using airborne low frequency sounding radars with the main objectives to characterize shallow fossil aquifers in term of depth, sizes and water freshness. In May 2011, an experimental airborne radar sounder operating at 50 MHz was deployed in Kuwait and demonstrated an ability to penetrate down to

  12. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  13. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  14. Conventional and synthetic aperture processing for airborne ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Cameron, Robert M.; Simkins, William L.; Brown, Russell D.

    1994-07-01

    For the past four years Airborne Environmental Surveys, a division of Era Aviation, Inc., has used unique and patented airborne frequency modulated, continuous wave radars and processes for detection and mapping subsurface phenomena. Primary application has focused on the detection of manmade objects in landfills, hazardous waste sites (some of which contain unexploded ordnance), and subsurface plumes of refined free- floating hydrocarbons. Recently, MSB Technologies, Inc. has developed a form of synthetic aperture radar processing, called GPSAR, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars' coherent transmission and produces imagery that is better focused and more accurate in determining an object's range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  15. The use of data turning in airborne radars

    NASA Astrophysics Data System (ADS)

    Lightstone, L.; Faubert, D.

    Data turning is a digital signal processing method that achieves good signal-to-noise ratio and target/interference resolution while reducing the number of pulses processed in the discrete Fourier transform/fast Fourier transform operation. A mathematical description is provided of data turning, along with a mathematical example of the impact of data turning on a bank of discrete Fourier transform filters. Data turning is discussed from the frequency domain and time domain perspectives, and a simulated performance example is taken from an airborne pulse doppler radar system. It is shown that data turning can, with a proper choice of signal processing parameters, approximate the integration improvement of non-coherent integration. Data turning can be significantly faster than either full coherent processing or non-coherent processing.

  16. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  17. On the Use of X-Band CW Nanosecond Airborne Radar for Terrain Profiling.

    DTIC Science & Technology

    2014-09-26

    Report 5599 On the Use of X-Band CW Nanosecond Airborne Radar for Terrain Profiling (D. T. CHEN AND E. A. ULIANA00 00 Space Sensing Branch Space...Radar for Terrain Profiling 2 ERSONAL AUTHOR(S) Chen, D.T. and Uliana, E.A. - 𔄀 SUPPLEMENTARY NOTATION Radar return waveform analysis Hfigh pass...filter. 79 ABSTRACT (Continue on reverse of necessary and identify by block number) - ’ Terrain profile sensed by a 10 GHz X-band airborne nanosecond radar

  18. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Astrophysics Data System (ADS)

    Parsons, C. L.

    1989-07-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  19. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  20. Comparison of Airborne Electromagnetic Induction and Subsurface Radar Sounding of Freshwater Bathymetry

    DTIC Science & Technology

    1993-05-01

    AD-A268 703 Comparison of Airborne * Electromagnetic Induction and Subsurface Radar Sounding of Freshwater Bathymetry Austin Kovacs and J , Scott Holladay...Laboratory Comparison of Airborne Electromagnefic Induction and Subsurface Radar Sounding of Freshwater Bcdhymetry Austin Kovacs and J . Scott Holladay May 1993...Engineer, of the Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory, and J . Scott Holladay

  1. Ice island detection and characterization with airborne synthetic aperture radar

    SciTech Connect

    Jeffries, M.O.; Sackinger, W.M. )

    1990-04-15

    A 1:300,000 scale airborne synthetic aperture radar (SAR) image of an area of the Arctic Ocean adjacent to the Queen Elizabeth Islands, Canadian High Arctic, is examined to determine the number and characteristics of ice islands in the image and to assess the capability of airborne and satellite SAR to detect ice islands. Twelve ice islands have been identified, and their dimensions range from as large as 5.7 km by 8.7 km to as small as 0.15 km by 0.25 km. A significant SAR characteristic of the shelf ice portions of ice islands is a return with a ribbed texture of alternating lighter and darker grey tones resulting from the indulating shelf ice surfaces of the ice islands. The appearance of the ribbed texture varies according to the ice islands' orientation relative to the illumination direction and consequently the incidence angle. Some ice islands also include extensive areas of textureless dark tone attached to the shelf ice. The weak returns correspond to (1) multiyear landfast sea ice that was attached to the front of the Ward Hunt Ice Shelf at the time of calving and which has remained attached since then and (2) multiyear pack ice that has become attached and consolidated since the calving, indicating that ice islands can increase their area and mass significantly as they drift. Ice islands are easily discernible in SAR images and for the future SAR represents a promising technique to obtain a census of ice islands in the Arctic Ocean. However, any SAR-based census probably will be conservative because ice islands smaller than 300-400 m across are likely to remain undetected, particularly in areas of heavy ice ridging which produces strong SAR clutter.

  2. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  3. Temporal and spatial variability of the Greenland firn aquifer revealed by ground and airborne radar data

    NASA Astrophysics Data System (ADS)

    Miège, C.; Forster, R. R.; Koenig, L.; Brucker, L.; Box, J. E.; Burgess, E. W.; Solomon, D. K.

    2014-12-01

    During the last two decades, the Greenland ice sheet has been losing mass, significantly contributing to sea level rise (0.33±0.08 mm yr-1). In the meantime, summer surface melt has been increasing in both duration and extent, and subsequent runoff represents about half of the total mass lost. However, small-scale heterogeneous physical processes and residence times associated with meltwater formation, infiltration in the firn, refreezing and/or runoff remain unconstrained in coarser resolution numerical models, leading to significant error bars while estimating total runoff. In Southeast and South Greenland, widespread aquifers have been observed in relative high accumulation and melt regions, persisting throughout the year, storing a significant mass of water within the firn. The presence of a persistent water table within the firn aquifer is observed using a 400 MHz ground-penetrating radar and the 750 MHz airborne Accumulation Radar over the same location. In both radar echograms, a strong reflection is present, illustrating the important dielectric contrast between dry firn and water-saturated firn. Since 2011, NASA's Operation IceBridge mission allows us to produce an ice-sheet-wide map of the location and depth of the firn aquifer using the Accumulation Radar echograms. Over the last four years, from one spring to the next, repeated flight lines demonstrate a relatively steady short-term behavior of water in the aquifer with constant lateral boundaries (with a few exceptions) and water table surface. An earlier radar survey (1993) implies the aquifer presence by lack of bed return, but the study area was limited to the Helheim Glacier region. Within the aquifer, a relatively slow flow of water is inferred from 2-D hydrological flow modeling, while assuming a constant hydraulic conductivity in the aquifer. On the aquifer low-elevation lateral boundary, connection with crevasses are observed in the airborne radar echograms and documented in this study. More

  4. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  5. 2nd Generation Airborne Precipitation Radar (APR-2)

    NASA Technical Reports Server (NTRS)

    Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.

    2012-01-01

    Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .

  6. Radar Reflectivity in Wingtip-Generated Wake Vortices

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki

    1997-01-01

    This report documents new predictive models of radar reflectivity, with meter-scale resolution, for aircraft wakes in clear air and fog. The models result from a radar design program to locate and quantify wake vortices from commercial aircraft in support of the NASA Aircraft Vortex Spacing System (AVOSS). The radar reflectivity model for clear air assumes: 1) turbulent eddies in the wake produce small discontinuities in radar refractive index; and 2) these turbulent eddies are in the 'inertial subrange' of turbulence. From these assumptions, the maximum radar frequency for detecting a particular aircraft wake, as well as the refractive index structure constant and radar volume reflectivity in the wake can be obtained from the NASA Terminal Area Simulation System (TASS) output. For fog conditions, an empirical relationship is used to calculate radar reflectivity factor from TASS output of bulk liquid water. Currently, two models exist: 1) Atlas-based on observations of liquid water and radar reflectivity factor in clouds; and 2) de Wolf- specifically tailored to a specific measured dataset (1992 Vandenberg Air Force Base).

  7. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  8. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  9. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  10. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  11. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  12. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  13. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  14. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  15. Pulse compression with very low sidelobes in an airborne rain mapping radar

    NASA Astrophysics Data System (ADS)

    Tanner, A.; Durden, S. L.; Denning, R.; Im, E.; Li, F. K.; Ricketts, W.; Wilson, W.

    1994-01-01

    Pulse compression allows a substantial reduction in the peak transmitted power of a radar and is attractive for spaceborne remote sensing applications. In the case of a downward looking rain measuring radar, however, the range sidelobes associated with surface return can mask return from rain and must be kept to a minimum. Here, we describe the pulse compression system for the NASA/JPL Airborne Rain Mapping Radar. This system uses time-domain weighting of the transmitted pulse and is able to achieve a range sidelobe level of -55 dB or better in flight tests. This is significantly lower than other values reported in the open literature.

  16. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  17. Mapping diverse forest cover with multipolarization airborne radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Sharitz, R. R.

    1985-01-01

    Imaging radar backscatter in continuously forested areas contains information about the forest canopy; it also contains data about topography, landforms, and terrain texture. For purposes of radar image interpretation and geologic mapping researchers were interested in identifying and separating forest canopy effects from geologic or geomorphic effects on radar images. The objectives of this investigation was to evaluate forest canopy variables in multipolarization radar images under conditions where geologic and topographic variables are at a minimum. A subsidiary objective was to compare the discriminatory capabilities of the radar images with corresponding optical images of similar spatial resolution. It appears that the multipolarization images discriminate variation in tree density, but no evidence was found for discrimination between evergreen and deciduous forest types.

  18. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  19. Space-time adaptive processing with sum and multiple difference beams for airborne radars

    NASA Astrophysics Data System (ADS)

    Maher, John E.; Zhang, Yuhong; Wang, Hong

    1999-07-01

    This paper describes some new results on a signal processing approach for airborne surveillance radars. This is a space- time adaptive processing technique that simultaneously processes temporal data from sum and difference ((Sigma) (Delta) ) beams to suppress clutter returns. The approach also includes employing spatial adaptive pre- suppression to suppress wideband noise jammers in a two- stage processor.

  20. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  1. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  2. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    NASA Astrophysics Data System (ADS)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  3. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    PubMed Central

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-01-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification. PMID:27762292

  4. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.

    PubMed

    Mirkovic, Djordje; Stepanian, Phillip M; Kelly, Jeffrey F; Chilson, Phillip B

    2016-10-20

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  5. Flight investigation of helicopter IFR approaches to oil rigs using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Phillips, J. D.; Sturgeon, W. R.; Hunting, A. W.; Pate, D. P.

    1979-01-01

    Airborne weather and mapping radar is a near-term, economical method of providing 'self-contained' navigation information for approaches to offshore oil rigs and its use has been rapidly expanding in recent years. A joint NASA/FAA flight test investigation of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico was initiated in June 1978 and conducted under contract to Air Logistics. Approximately 120 approaches were flown in a Bell 212 helicopter by 15 operational pilots during the months of August and September 1978. The purpose of the tests was to collect data to (1) support development of advanced radar flight director concepts by NASA and (2) aid the establishment of Terminal Instrument Procedures (TERPS) criteria by the FAA. The flight test objectives were to develop airborne radar approach procedures, measure tracking errors, determine accpetable weather minimums, and determine pilot acceptability. Data obtained will contribute significantly to improved helicopter airborne radar approach capability and to the support of exploration, development, and utilization of the Nation's offshore oil supplies.

  6. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  7. AquiferEx: Results of the Optical and Radar Airborne Campaign in Tunisia

    NASA Astrophysics Data System (ADS)

    Scheiber, R.; Hajnsek, I.; Horn, R.; Oppelt, N.; Mauser, W.; Baccar, B. B.; Bianchi, R.

    2007-03-01

    In November 2005 an ESA funded airborne campaign was conducted in Southern Tunisia to generate a data base of high resolution optical and radar data in support of science product development with respect to water management applications in semi-arid areas. Both the optical (AVIS of LMU) and radar sensor (E-SAR of DLR) were operated quasi-simultaneously from the same aircraft. In parallel a ground measurement campaign was conducted with the support of the Tunisian organisations CRDA (Commissariat Regional des Development Agricole) and IRA (Institut des Regiones Arides). This paper describes the acquired optical, radar, and ground reference data, the adopted processing methodologies as well as the results obtained in the frame of this project from the radar data.

  8. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  9. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  10. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  11. Demonstration of radar reflector detection and ground clutter suppression using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Bull, J. S.; Chisholm, J. P.

    1982-01-01

    A navigation system which utilizes minimum ground-based equipment is especially advantageous to helicopters, which can make off-airport landings. Research has been conducted in the use of weather and mapping radar to detect large radar reflectors overland for navigation purposes. As initial studies have not been successful, investigations were conducted regarding a new concept for the detection of ground-based radar reflectors and eliminating ground clutter, using a device called an echo processor (EP). A description is presented of the problems associated with detecting radar reflectors overland, taking into account the EP concept and the results of ground- and flight-test investigations. The echo processor concept was successfully demonstrated in detecting radar reflectors overland in a high-clutter environment. A radar reflector target size of 55 dBsm was found to be adequate for detection in an urban environment.

  12. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed... Doppler radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C65a, Airborne Doppler radar ground speed...

  13. Greenland snow accumulation rates estimated by the retracking of percolation facies from airborne radar

    NASA Astrophysics Data System (ADS)

    de la Pena, S.; Howat, I. M.

    2012-12-01

    The margins of the Greenland Ice Sheet are experiencing substantial thinning due to warming in the arctic regions, and there is a growing concern about the effects that mass imbalance of the ice sheet could have on climate and sea level rise. Although volume changes of the ice sheet may be inferred by remote sensing methods, mass gain and accumulation fluctuations are not easily distinguished and are poorly resolved. Recent advances in airborne radar techniques have resulted in systems capable of resolving snow accumulation by retracking internal layers formed by refreezing of surface meltwater that percolates through the snowpack, a phenomenon increasingly common in Greenland. We present accumulation rates for the catchment areas of the Jakobshavn, Helheim, and Rusell glaciers derived from snow depth resolved by snow and Ku-band airborne radar, flown as part of NASA's Operation IceBridge.

  14. Mineral equilibria and the high radar reflectivity of Venus mountaintops

    NASA Technical Reports Server (NTRS)

    Klose, K. B.; Wood, J. A.; Hashimoto, A.

    1992-01-01

    The relationship between altitude and microwave emissivity in 10 highland regions of Venus is investigated on the basis of the Magellan data set. Highlands on Venus are found to display high radar reflectivity. The required change in surface electrical properties occurs abruptly at a 'critical altitude,' whose value varies from one highland area to another. Critical altitudes range from 4.75 km to 2.49 km. Differences in reflectivity are caused by differences in the surface mineral assemblage, which determines the dielectric constant of surface material. The mineral responsible for high radar reflectivity on mountaintops is pyrite, which occurs in weathered mineral assemblages at high altitudes. Conductive pyrite occurs dispersed in insulating materials, forming a loaded dielectric material.

  15. Electromagnetic reflection and transmission at interfaces involving graded dielectrics with applications to planetary radar astronomy

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.

    1976-01-01

    Reflection and transmission of electromagnetic waves at an interface between two homogeneous materials is modified when a transition zone of linearly increasing permittivity is inserted between the half spaces. Mathematical expressions for reflection and transmission coefficients are derived for waves at arbitrary incidence angles and polarized either in or perpendicular to the plane of incidence. Discontinuities in permittivity at the transition-zone boundaries are allowed. There is efficient transmission between the two half-spaces for transition-zone thicknesses of a wavelength or greater. For sharper changes, the matching layer has diminishing effect and the wave-interface interaction is characterized by the difference in properties between the two half-spaces. Examples applicable to lunar radar astronomy and airborne terrestrial remote sensing are used to illustrate the relationship between wavelength and thickness of the transition layer.

  16. ER-2 Airborne Radars Data during Iphex - a New 4-Frequency Look at Precipitation.

    NASA Astrophysics Data System (ADS)

    Heymsfield, G. M.; Tian, L.; McLinden, M.; Li, L.; Cervantes, J.; Venkatesh, V.; Coon, M.

    2014-12-01

    The Integrated Precipitation and Hydrology Experiment (IPHEx) field campaign was conducted in the Southeast U.S. from 15 May to 30 June 2014 in support of Global Precipitation Mission (GPM) ground validation. The NASA ER-2 flew in this campaign as a GPM simulator with radars and radiometers that covered the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) frequencies. The main goal for the ER-2 high spatial and temporal resolution data sets to be used for GPM algorithm validation and improvement. Goddard Space Flight Center provided 3 nadir-pointing radars that covered X- through W-band. The High-altitude Wind and Rain Airborne Profiler (HIWRAP) provided Ku and Ka-band measurements that are similar to GPM's DPR. In addition, the W-band Cloud Radar System (CRS) and ER-2 X-band Radar (EXRAD) were on board. The 4 frequencies provide opportunity for developing consistent retrieval algorithms as well as to expand the dynamic range (i.e., particle size) of the retrievals. There were a total of 15 science flights during IPHEx that measured a variety of land-based and oceanic precipitation, with may convective, stratiform, and cloud targets. This presentation will provide preliminary observations and analyses from the IPHEx ER-2 radars. It will discuss planned retrieval algorithms and data analyses.

  17. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    NASA Astrophysics Data System (ADS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  18. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  19. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  20. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  1. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  2. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  3. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  4. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  5. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  6. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  7. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  8. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  9. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  10. A comparison of in situ and airborne radar observations of ocean wave directionality

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Peng, C. Y.

    1985-01-01

    The directional spectrum of a fully arisen, about 3 m sea as measured by an experimental airborne radar, the NASA K(u)-band radar ocean wave spectrometer (ROWS), is compared to reference pitch-roll buoy data and to the classical SWOP (stereo wave observations project) spectrum for fully developed conditions. The ROWS spectrum, inferred indirectly from backscattered power measurements at 5-km altitude, is shown to be in excellent agreement with the buoy spectrum. Specifically, excellent agreement is found between the two nondirectional height spectra, and mean wave directions and directional spreads as functions of frequency. A comparison of the ROWS and SWOP spectra shows the two spectra to be very similar, in detailed shape as well as in terms of the gross spreading characteristics. Both spectra are seen to exhibit bimodal structures which accord with the Phillips' (1958) resonance mechanism. This observation is thus seen to support Phillips' contention that the SWOP modes were indeed resonance modes, not statistical artifacts.

  11. Surface Clutter Removal in Airborne Radar Sounding Data from the Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Morse, D. L.; Peters, M. E.; Kempf, S. D.

    2005-01-01

    We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.

  12. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  13. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  14. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  15. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower

  16. Ice-sheet elevations from across-track processing of airborne interferometric radar altimetry

    NASA Astrophysics Data System (ADS)

    Hawley, R. L.; Shepherd, A.; Cullen, R.; Helm, V.; Wingham, D. J.

    2009-11-01

    Interferometric Radar Altimeters (IRA's) use dual receive antennas to overcome one of the spatial limitations of pulse-limited altimeters. In a conventional IRA measurement, the range and across-track direction of a scatterer are determined using the phase difference between the antennas. We demonstrate a method of determining multiple elevation points across a swath orthogonal to the instrument ground track in regions of steep terrain, such as ice-sheet margins. We use data from an airborne IRA (a prototype of the CryoSat-2 instrument), and compare the results to simultaneous Airborne Laser Scanner (ALS) observations. This application results in a 75-fold increase in measurement density compared to conventional radar altimetry. Along a ˜2.5 km ground track, the RMS departure between the IRA- and ALS-derived measurements was 1.67 m. Based on our result, although our approach is limited to areas of relatively steep slope, a 25- to 75-fold increase in elevation measurements could be achieved in coastal regions of Antarctica and Greenland with similar processing of CryoSat-2 data.

  17. Venus Express bistatic radar: High-elevation anomalous reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. Leonard; Häusler, Bernd; Mattei, Riccardo; Pätzold, Martin

    2009-06-01

    Magellan (MGN) bistatic radar observations in 1994 confirmed earlier Pioneer Venus reports of unusual Venus surface reflectivity and emissivity at elevations above 6054 km radius. They also revealed that the anomalous values of surface dielectric constant $\\varepsilon$ near Cleopatra Patera included a large imaginary component ($\\varepsilon$ ≈ -i 100) at 13 cm wavelength, consistent with a semiconducting surface material. The MGN observations were conducted using a linearly polarized wave, canted at 45° with respect to the plane of incidence and radiated by the MGN synthetic aperture radar antenna toward the specularly reflecting region of the mean planetary surface. In 2006 similar experiments were conducted using 13 cm circularly polarized transmissions from Venus Express (VEX). The VEX signal-to-noise ratio (SNR) was lower than that of MGN, but elevated ∣$\\varepsilon$∣ has been inferred broadly over Maxwell Montes. A quasi-specular echo was detected near Cleopatra but with insufficient SNR to address the question of conductivity. An early failure of the VEX 13 cm radio system precludes further measurements with VEX.

  18. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  19. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  20. Uncertainty in vertically integrated liquid water content due to radar reflectivity observation error

    NASA Technical Reports Server (NTRS)

    French, Mark N.; Andrieu, Herve; Krajewski, Witold F.

    1995-01-01

    Radar reflectivity is used to estimate meteorological quantities such as rainfall rate, liquid water content, and the related quantity, vertically integrated liquid (VIL) water content. The estimation of any of these quantities depends on several assumptions related to the characteristics of the physical processes controlling the occurrence and character of water in the atmosphere. Additionally, there are many sources of error associated with radar observations, such as those due to brighthand, hail, and drop size distribution approximations. This work addresses one error of interest, the radar reflectivity observation error; other error sources are assumed to be corrected or negligible. The result is a relationship between the uncertainty in VIL water content and radar reflectivity measurement error. An example application illustrates the estimation of VIL uncertainty from typical radar reflectivity observations and indicates that the coefficient of variation in VIL is much larger than the coefficient of variation in radar reflectivity.

  1. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  2. Recent ice sheet snow accumulation and firn storage of meltwater inferred by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miege, Clement

    Recent surface mass balance changes in space and time over the polar ice sheets need to be better constrained in order to estimate the ice-sheet contribution to sea-level rise. The mass balance of any ice body is obtained by subtracting mass losses from mass gains. In response to climate changes of the recent decades, ice-sheet mass losses have increased, making ice-sheet mass balance negative and raising sea level. In this work, I better quantify the mass gained by snowfall across the polar ice sheets; I target specific regions over both Greenland and West Antarctica where snow accumulation changes are occurring due to rising air temperature. Southeast Greenland receives 30% of the total snow accumulation of the Greenland ice sheet. In this work, I combine internal layers observed in ice-penetrating radar data with firn cores to derive the last 30 years of accumulation and to measure the spatial pattern of accumulation toward the southeast coastline. Below 1800 m elevation, in the percolation zone, significant surface melt is observed in the summer, which challenges both firn-core dating and internal-layer tracing. While firn-core drilling at 1500 m elevation, liquid water was found at ˜20-m depth in a firn aquifer that persisted over the winter. The presence of this water filling deeper pore space in the firn was unexpected, and has a significant impact on the ice sheet thermal state and the estimate of mass balance made using satellite altimeters. Using a 400-MHz ice-penetrating radar, the extent of this widespread aquifer was mapped on the ground, and also more extensively from the air with a 750-MHz airborne radar as part of the NASA Operation IceBridge mission. Over three IceBridge flight campaigns (2011-2013), based on radar data, the firn aquifer is estimated to cover ˜30,000 km2 area within the wet-snow zone of the ice sheet. I use repeated flightlines to understand the temporal variability of the water trapped in the firn aquifer and to simulate its

  3. Reflection and Ground Penetrating Radar for Environmental Site Characterization

    SciTech Connect

    Steeples, Don W.

    2000-06-01

    (1) To examine the complementary site-characterization capabilities of modern, three-component shallow seismic reflection (SSR) techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) To demonstrate the usefulness of the two methods when used in concert to characterize, in three dimensions, the cone of depression of a pumping well that will serve as a proxy site for fluid-flow at an actual, polluted site; (3) To use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the University of Kansas. To do this, seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location. Although the site itself is not environmentally sensitive, the area offers attributes that are particularly useful for this research and allow the site to serve as a proxy for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the seismic and GPR surveys have been repeated on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates seasonally at this site, variations in the two types of data over time also can be observed. Such noninvasive, in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the future.

  4. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a

  5. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  6. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  7. Comparisons of Reflectivities from the TRMM Precipitation Radar and Ground-Based Radars

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Wolff, David B.

    2008-01-01

    Given the decade long and highly successful Tropical Rainfall Measuring Mission (TRMM), it is now possible to provide quantitative comparisons between ground-based radars (GRs) with the space-borne TRMM precipitation radar (PR) with greater certainty over longer time scales in various tropical climatological regions. This study develops an automated methodology to match and compare simultaneous TRMM PR and GR reflectivities at four primary TRMM Ground Validation (GV) sites: Houston, Texas (HSTN); Melbourne, Florida (MELB); Kwajalein, Republic of the Marshall Islands (KWAJ); and Darwin, Australia (DARW). Data from each instrument are resampled into a three-dimensional Cartesian coordinate system. The horizontal displacement during the PR data resampling is corrected. Comparisons suggest that the PR suffers significant attenuation at lower levels especially in convective rain. The attenuation correction performs quite well for convective rain but appears to slightly over-correct in stratiform rain. The PR and GR observations at HSTN, MELB and KWAJ agree to about 1 dB on average with a few exceptions, while the GR at DARW requires +1 to -5 dB calibration corrections. One of the important findings of this study is that the GR calibration offset is dependent on the reflectivity magnitude. Hence, we propose that the calibration should be carried out using a regression correction, rather than simply adding an offset value to all GR reflectivities. This methodology is developed towards TRMM GV efforts to improve the accuracy of tropical rain estimates, and can also be applied to the proposed Global Precipitation Measurement and other related activities over the globe.

  8. Evaluation of airborne radar-lidar retrieval of ice water content using in-situ probes

    NASA Astrophysics Data System (ADS)

    Khanal, Sujan

    Cloud water content and how that water is distributed across hydrometeors are fundamental cloud microphysical properties that influence cloud dynamical and radiative properties. This study utilizes in-situ and remote sensing data collected by the University of Wyoming King Air research aircraft during the Colorado Airborne Multi-phase Cloud Study, 2010-2011 (CAMPS) field campaign to study the reliability of different cloud water content measuring instruments. It has been shown in several previous studies and again demonstrated here from the CAMPS dataset that Forward Scattering Spectrometer Probe (FSSP) measurements are subject to contamination by shattering artifacts in ice and mixed phase clouds. Contaminated measurements from CAMPS show a significant overestimation of large (D > 28 microm) particles and derived liquid water content (LWC). A new approach is developed to characterize, quantify and correct the shattering contribution in FSSP measurements using ice particle information measured by an OAP cloud probe (2D-C). Comparisons with cloud droplet probe (CDP) measurements show that this new approach adequately corrects for ice shattering effects. This new approach can also be applied to standard FSSP historical datasets. These studies may have erroneous conclusions that can be re-evaluated based on this new correction. University of Colorado closed-path tunable diode laser hygrometer (CLH) total water measurements are used to develop a mass-length relationship for CAMPS dataset to calculate ice water content (IWC) from 2D-C size distribution. Then, these well characterized in-situ instruments are used to evaluate IWC retrievals from combined radar and lidar measurements. Comparison of near flight level remote sensing IWC retrievals with in-situ measurements indicates statistically reasonable agreements (difference in mean values about 33%) providing confidence on the retrieved vertical IWC profile. The collocated airborne radar-lidar measurements combined

  9. Airborne Ground Penetrating Radar (GPR) for peat analyses in the Canadian Northern wetlands study

    NASA Technical Reports Server (NTRS)

    Pelletier-Travis, Ramona E.

    1991-01-01

    The study was conducted as part of the NASA Biospherics Research on Emissions from Wetlands (BREW) program. An important aspect of the program is to investigate the terrestrial production and atmospheric distribution of methane and other gases contributing to global warming. Multi-kilometer transects of airborne (helicopter) Ground Penetrating Radar (GPR) data were collected periodically along the 100 km distance from the coast inland so as to obtain a regional trend in peat depth and related parameters. Global Positioning System (GPS) data were simultaneously collected from the helicopter to properly georeference the GPR data. Additional 50 m ground-based transects of GPR data were also collected as a source of ground truthing, as a calibration aid for the airborne data sets, and as a source of higher resolution data for characterizing the strata within the peat. In situ peat depth probing and soil characterizations from excavated soil pits were used to verify GPR findings. Results from the ground-based data are presented.

  10. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  11. Disaster phenomena of Wenchuan earthquake in high resolution airborne synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Hong; Wu, Fan; Zhang, Bo; Tang, Yixian; Wu, Hongan; Wen, Xiaoyang; Yan, Dongmei

    2009-05-01

    The devastating Wenchuan Earthquake occurred in Sichuan Province, Southwestern China, with a magnitude of 8.0 on May 12, 2008. Most buildings along the seismic zone were ruined, resulting in infrastructure damage to factories, traffic facilities and power supplies. The earthquake also triggered geological disasters, such as landslides, debris flow, landslide lakes, etc. During the rescue campaign the remote sensing aircrafts of the Chinese Academy of Sciences (CAS), equipped with synthetic aperture radar (SAR) and optical sensors, flew over the disaster area and acquired many high resolution airborne SAR images. We first describe the basic characteristics of SAR imagery. The SAR images of buildings are simulated, and the backscattering mechanism of the buildings is analyzed. Finally, the various disaster phenomena are described and analyzed in the high resolution airborne SAR images. It is shown that certain phenomena of ruins could be identified clearly in high resolution SAR images in proper imaging conditions, while the functional destruction is quite difficult to detect. With calibrated data, the polarmetric SAR interferometry could be used to analyze the scattering mechanism and 3D distribution of the scattering center, which are redound to earthquake damage assessment.

  12. Remote Measurements of Snowfalls in Wakasa Bay, Japan with Airborne Millimeter- wave Imaging Radiometer and Cloud Radar

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Austin, R.; Liu, G. S.; Racette, P. E.

    2004-01-01

    In this paper we explore the application of combined millimeter-wave radar and radiometry to remotely measure snowfall. During January-February of 2003, a field campaign was conducted with the NASA P-3 aircraft in Wakasa Bay, Japan for the validation of the AMSRE microwave radiometer on board the Aqua satellite. Among the suite of instruments-on board the P-3 aircraft were the Millimeter-wave Imaging Radiometer (MIR) from the NASA Goddard Space Flight Center and the 94 GHz Airborne Cloud Radar (ACR) which is co-owned and operated by NASA Jet Propulsion Laboratory/University of Massachusetts. MIR is a total power, across-track scanning radiometer that measures radiation at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/-7, 220, and 340 GHz. The MIR has flown many successful missions since its completion in May 1992. ACR is a newer instrument and flew only a few times prior to the Wakasa Bay deployment. These two instruments which are particularly well suited for the detection of snowfall functioned normally during flights over snowfall and excellent data sets were acquired. On January 14, 28, and 29 flights were conducted over snowfall events. The MIR and ACR detected strong signals during periods of snowfall over ocean and land. Results from the analysis of these concurrent data sets show that (1) the scattering of millimeter-wave radiation as detected by the MIR is strongly correlated with ACR radar reflectivity profiles, and (2) the scattering is highly frequency-dependent, the higher the frequency the stronger the scattering. Additionally, the more transparent channels of the MIR (e.g., 89, 150, and 220 GHz) are found to display ambiguous signatures of snowfall because of their exposure to surface features. Thus, the snowfall detection and retrievals of snowfall parameters, such as the ice water path (IWP) and median mass diameter (D(me)) are best conducted at the more opaque channels near 183.3 GHz and 340 GHz. Retrievals of IWP and D(me) using

  13. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  14. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  15. Airborne-radar and ice-core observations of snow accumulation in West Antarctica

    NASA Astrophysics Data System (ADS)

    Medley, Brooke

    The world's ice sheets store enough water to raise global eustatic sea level by several tens of meters, and therefore, any fluctuations in their size will cause sea level to rise or fall. The net mass exchanged with the ocean - defined as the mass balance - determines the glacial contribution to sea level and is the difference in snow accumulated in the interior and ice discharged into the ocean at the ice sheet periphery. While new techniques in remotely acquired surface velocities lead to improved discharge measurements, snow accumulation remains unmeasured over much of the of the ice sheet. This work aims to improve our understanding of snow accumulation over two of the most rapidly evolving glaciers in Antarctica: Pine Island and Thwaites. Specifically, we use two airborne radar systems to image and track the near-surface internal stratigraphy to measure snow accumulation rates over both glaciers. This method allows for investigation of the spatial and temporal variations in accumulation at the catchment-scale, which is essential for determining glacier mass balance. Examination of the radar-derived accumulation rates over Pine Island and Thwaites glaciers revealed several results including: (1) accumulation exhibited no significant trend between 1980 and 2009, (2) the sea-level contribution from Pine Island and Thwaites tripled from +0.09 mm yr-1 in the mid-1990s to +0.27 mm yr-1 by 2010, (3) a shift towards higher accumulation occurred between 1944-1984 and 1985-2009, observed in both ice core and radar records, and (4) atmospheric models are an adequate replacement for accumulation measurements in areas with few observations. These findings indicate that accumulation is not concurrently compensating the enhanced ice discharge from the region, and as a result, the sea-level contribution from these glaciers is increasing. Furthermore, a recent shift towards higher mean accumulation suggests these glaciers might have been out of balance earlier than originally

  16. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  17. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  18. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  19. An Optimal Relation of Radar Reflectivity to Lightning Rate

    NASA Technical Reports Server (NTRS)

    Heckman, S.

    1999-01-01

    Thunderstorms separate charge. Most places they lift positive charge or lower negative, a few places they lift negative or lower positive. The electrical generator is stronger in some parts of the cloud than in others. Our long term goal is to map this generator. Cloud physicists tell us that uncharged ice and water particles become charged by collision, and that the charge transferred depends on size, temperature and humidity. There is still some disagreement about exactly how the charge transferred depends on size, temperature, and humidity. In principle, if we knew this ice physics, and also knew the distribution of particles everywhere in the storm, and the winds everywhere and the temperature and humidity everywhere, then we could compute everywhere the electrical power of the thunderstorm generator. In practice it is difficult to know all these things, particularly the distribution of particles, so it is difficult to use real thunderstorms to falsify cloud electrification theories. We here take one small step towards computing that map of electrical generator power, by relating radar reflectivity profiles of 2000 storms to lightning flash rates of those storms. This small step by itself doesn't falsify any existing electrification theories; it merely places weak constraints on the relation of electric generator power to cloud ice.

  20. Venus mountain-top mineralogy: Misconceptions about pyrite as the high radar-reflecting phase

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Straub, Darcy W.

    1993-01-01

    Altitude-dependent, high radar-reflectivity surfaces on Venus are observed on most mountainous volcanic terranes above a planetary radius of about 6054 km. However, high radar-reflectivity areas also occur at lower altitudes in some impact craters and plain terranes. Pyrite (FeS2) is commonly believed to be responsible for the high radar reflectivities at high elevations on Venus, on account of large dielectric constants measured for sulfide-bearing rocks that were erroneously attributed to pyrite instead of pyrrhotite. Pentlandite-pyrrhotite assemblages may be responsible for high reflectivities associated with impact craters on the Venusian surface, by analogy with Fe-Ni sulfide deposits occurring in terrestrial astroblemes. Mixed-valence Fe(2+)-Fe(3+) silicates, including oxyhornblende, oxybiotite, and ilvaite, may contribute to high radar reflecting surfaces on mountain-tops of Venus.

  1. 77 FR 53962 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... TRANSPORTATION Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground... Doppler Radar Ground Speed and/or Drift Angle Measuring Equipment (For Air Carrier Aircraft). SUMMARY: This notice announces the FAA's cancellation of TSO-C65a. The effect of the cancelled TSO will...

  2. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  3. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  4. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  5. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  6. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  7. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  8. Understanding heavy lake-effect snowfall: The vertical structure of radar reflectivity in a deep snowband over and downwind of Lake Ontario

    NASA Astrophysics Data System (ADS)

    Welsh, Daniel James

    The distribution of radar-estimated precipitation from lake-effect snow bands over and downwind of Lake Ontario shows more snowfall in downwind areas than over the lake itself. Here we examine two non-exclusive processes contributing to this: the collapse of convection that lofts hydrometeors over the lake and allows then to settle them downwind, and stratiform ascent over land, due to surface cooling, frictional convergence, and terrain, leading to more uniformly distributed precipitation there. The main data sources for this study are vertical profiles of radar reflectivity and hydrometeor vertical velocity in a well-defined, deep long-lake-axis-parallel band, observed on 11 December, 2013 during the Ontario Winter Lake-effect Systems (OWLeS) project. The profiles are derived from an airborne W-band Doppler radar, as well as an array of four Ka-band radars, a X-band profiling radar, a scanning X-band radar, and a scanning S-band radar. The presence of convection offshore is evident from deep, strong (up to 10 m s-1) updrafts producing bounded weak-echo regions and locally heavily rimed snow particles. The decrease of the standard deviation, skewness, and peak values of Doppler vertical velocity during the downwind shore crossing is consistent with the convection collapse hypothesis. Consistent with the stratiform ascent hypothesis are (a) an increase in mean vertical velocity over land; and (b) an increasing abundance of large snowflakes at low levels and over land, due to depositional growth and aggregation, evident from flight-level and surface particle size distribution data, and from differences in reflectivity profiles from S, X, Ka, and W-band radars at nearly the same time and location.

  9. Model of human breathing reflected signal received by PN-UWB radar.

    PubMed

    Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Batkin, Izmail; Dajani, Hilmi R; Groza, Voicu Z

    2014-01-01

    Human detection is an integral component of civilian and military rescue operations, military surveillance and combat operations. Human detection can be achieved through monitoring of vital signs. In this article, a mathematical model of human breathing reflected signal received in PN-UWB radar is proposed. Unlike earlier published works, both chest and abdomen movements are considered for modeling the radar return signal along with the contributions of fundamental breathing frequency and its harmonics. Analyses of recorded reflected signals from three subjects in different postures and at different ranges from the radar indicate that ratios of the amplitudes of the harmonics contain information about posture and posture change.

  10. Measured Changes in C-Band Radar Reflectivity of Clear Air Caused by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1997-01-01

    Wake vortices from a C-130 airplane were observed at the NASA Wallops Flight Facility with a ground-based, monostatic C-band radar and an antenna-mounted boresight video camera. The airplane wake was viewed from a distance of approximately 1 km, and radar scanning was adjusted to cross a pair of marker smoke trails generated by the C-130. For each airplane pass, changes in radar reflectivity were calculated by subtracting the signal magnitudes during an initial clutter scan from the signal magnitudes during vortex-plus-clutter scans. The results showed both increases and decreases in reflectivity on and near the smoke trails in a characteristic sinusoidal pattern of heightened reflectivity in the center and lessened reflectivity at the sides. Reflectivity changes in either direction varied from -131 to -102 dBm(exp -1); the vortex-plus-clutter to noise ratio varied from 20 to 41 dB. The radar recordings lasted 2.5 min each; evidence of wake vortices was found for up to 2 min after the passage of the airplane. Ground and aircraft clutter were eliminated as possible sources of the disturbance by noting the occurrence of vortex signatures at different positions relative to the ground and the airplane. This work supports the feasibility of vortex detection by radar, and it is recommended that future radar vortex detection be done with Doppler systems.

  11. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  12. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  13. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  14. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  15. Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003

    USGS Publications Warehouse

    Johnson, Carole D.; Joesten, Peter K.

    2005-01-01

    In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar-reflection

  16. Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida

    NASA Technical Reports Server (NTRS)

    Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.

    1997-01-01

    Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.

  17. Swath Measurements of Ice Sheet Bottom Topography and Radar Reflectivity

    NASA Astrophysics Data System (ADS)

    Freeman, A.; Gogineni, P. S.; Jezek, K. C.; Rodriguez, E.; Wu, X.

    2009-12-01

    Ice sheet thickness is a fundamental measurement for understanding the dynamics of large ice sheets (terrestrial or extraterrestrial). Radar is the primary tool used to measure ice thickness but a major challenge is accurately measuring the arrival time of the basal echo in the presence of surface clutter, which may arise from processes such as wind driven deposition and erosion or crevassing. Essentially, the basal echo strength, which is weak because of attenuation through the ice, becomes comparable to the surface scattering signal even though the coincident surface return comes from a large, off-nadir angle. During the past 4 years, we explored three surface clutter rejection techniques and applied them to data collected with 150/450 MHz radars operated from aircraft over the Greenland Ice Sheet. We also investigated how the techniques could be used to go beyond nadir sounding of ice sheets and, when operated used with broad-beam antennas, could successfully acquire 3-dimensional intensity images of the ice sheet base. In this paper, we describe experiments to image the ice sheet base using: synthetic aperture radar (SAR) interferogram filtering; SAR tomography; and beam steering. For the case of a broad beam antenna array, we show that interferograms filtering provides the highest quality topographic data from both the left and right sides of the aircraft but only under optimal conditions. We show that a beam-steering/radar tomography hybrid algorithm provides the most robust topography and also yields an intensity map. We provide example topographies for the base of the Greenland Ice Sheet and suggest how the approach could be used for future sounding of extraterrestrial ice. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a grant from the National Aeronautics and Space Administration. 3-d radar image of the base of the ice sheet. Scene is an orthorectified mosaic located just

  18. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  19. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services

    NASA Astrophysics Data System (ADS)

    Angulo, I.; Grande, O.; Jenn, D.; Guerra, D.; de la Vega, D.

    2015-05-01

    The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver. For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam. This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

  20. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  1. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness.

  2. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  3. Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data.

    PubMed

    Miura, Tomoaki; Huete, Alfredo R

    2009-01-01

    In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The "reflectance mode (RM)" method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The "linear-interpolation (LI)" method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and post-flight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The "continuous panel (CP)" method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies. An important

  4. Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) Cost-Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) are designed to prevent space launch vehicles from flight through environments conducive to natural or triggered lightning and are used for all U.S. government and commercial launches at government and civilian ranges. They are maintained by a committee known as the NASA/USAF Lightning Advisory Panel (LAP). The previous LLCC for anvil cloud, meant to avoid triggered lightning, have been shown to be overly restrictive. Some of these rules have had such high safety margins that they prohibited flight under conditions that are now thought to be safe 90% of the time, leading to costly launch delays and scrubs. The LLCC for anvil clouds was upgraded in the summer of 2005 to incorporate results from the Airborne Field Mill (ABFM) experiment at the Eastern Range (ER). Numerous combinations of parameters were considered to develop the best correlation of operational weather observations to in-cloud electric fields capable of rocket triggered lightning in anvil clouds. The Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) was the best metric found. Dr. Harry Koons of Aerospace Corporation conducted a risk analysis of the VAHIRR product. The results indicated that the LLCC based on the VAHIRR product would pose a negligible risk of flying through hazardous electric fields. Based on these findings, the Kennedy Space Center Weather Office is considering seeking funding for development of an automated VAHIRR algorithm for the new ER 45th Weather Squadron (45 WS) RadTec 431250 weather radar and Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Before developing an automated algorithm, the Applied Meteorology Unit (AMU) was tasked to determine the frequency with which VAHIRR would have allowed a launch to safely proceed during weather conditions otherwise deemed "red" by the Launch Weather Officer. To do this, the AMU manually calculated VAHIRR values based on candidate cases from past launches with known anvil cloud

  5. Lava flows in mare imbrium: An evaluation of anomalously low earth-based radar reflectivity

    USGS Publications Warehouse

    Schaber, G.G.; Thompson, T.W.; Zisk, S.H.

    1975-01-01

    The lunar maria reflect two to five times less Earth-based radar power than the highlands, the spectrally blue maria surfaces returning the lowest power levels. This effect of weakening signal return has been attributed to increased signal absorption related to the electrical and magnetic characteristics of the mineral ilmenite (FeTiO3). The surface of Mare Imbrium contains some of the most distinct red-blue colorimetric boundaries and depolarized 70 cm wavelength reflectivity variations on the near side of the Moon. The weakest levels of both 3.8 cm and 70 cm reflectivity within Imbrium are confined to regional mare surfaces of the blue spectral type that can be recognized as stratigraphically unique flow surfaces. Frequency distributions of the 70 cm polarized and depolarized radar return power for five mare surfaces within the basin indicate that signal absorption, and probably the ilmenite content, increases generally from the beginning of the Imbrian Period to the end of the Eratosthenian Period with slight reversal between the end of the Imbrian and beginning of the Eratosthenian. TiO2 calibrated radar reflectivity curves can be utilized for lunar maria geochemical mapping in the same manner as the TiO2 calibrated spectral reflectivity curves of Charette et al. (1974). The long wavelength radar data may be a sensitive indicator of mare chemical variations as it is unaffected by the normal surface rock clutter that includes ray materials from large impact craters. ?? 1975 D. Reidel Publishing Company.

  6. Echo Source Discrimination in Airborne Radar Sounding Data From the Dry Valleys, Antarctica, for Mars Analog Studies

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Williams, B. J.

    2003-12-01

    The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars. We have collected roughly 1,000 line-km of airborne radar sounding data in the Dry Valleys for Mars analog studies. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of surrounding topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. Using a Twin Otter airborne platform, data were collected in three separate flights during the austral summers of 1999-2000 and 2001-2002 using multiple systems, including a chirped 52.5 - 67.5 MHz coherent radar operating at 750 W and 8 kW peak power (with multiple receivers) and 1 - 2 microsecond pulse width, and a 60 MHz pulsed, incoherent radar operating at 8 kW peak power with 60 ns and 250 ns pulse width. The chirped, coherent data are suitable for the implementation of advanced pulse compression algorithms and SAR focusing. Flight elevation was nominally 500 m above the surface. Targets included permafrost, subsurface ice bodies, rock/ice glaciers, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valleys. A laser altimeter (fixed relative to the aircraft frame) was also used during both

  7. Development of Radar Reflectivity-Snowfall Rate Relationships at Multiple Wavelengths

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew; Bansemer, Aaron; Tanelli, Simone; Wood, Norm

    2015-04-01

    Development of Radar Reflectivity-Snowfall Rate Relationships at Multiple Wavelengths In-situ aircraft measurements of particle size distributions and both direct and indirect estimates of particle mass are used to calculate snowfall rates (S) from a number of NASA field programs. Simultaneously, and in close proximity and time to these measurements, there are direct measurements of the radar reflectivity (Z) at X, KU, KA and W bands from overflying aircraft or from the ground. From these observations, Z-S relationships are developed. In the process, a range of backscatter cross-section models are tested against the radar measurements. We expect these relationships to be very useful for CloudSat, GPM and EarthCARE-derived snowfall products.

  8. Ice shelf snow accumulation rates from the Amundsen-Bellingshausen Sea sector of West Antarctica derived from airborne radar

    NASA Astrophysics Data System (ADS)

    Medley, B.; Kurtz, N. T.; Brunt, K. M.

    2015-12-01

    The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.

  9. Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments

    NASA Astrophysics Data System (ADS)

    Cremonini, Roberto; Moisseev, Dmitri; Chandrasekar, Venkatachalam

    2016-10-01

    High-spatial-resolution weather radar observations are of primary relevance for hydrological applications in urban areas. However, when weather radars are located within metropolitan areas, partial beam blockages and clutter by buildings can seriously affect the observations. Standard simulations with simple beam propagation models and digital elevation models (DEMs) are usually not able to evaluate buildings' contribution to partial beam blockages. In recent years airborne laser scanners (ALSs) have evolved to the state-of-the-art technique for topographic data acquisition. Providing small footprint diameters (10-30 cm), ALS data allow accurate reconstruction of buildings and forest canopy heights. Analyzing the three weather C-band radars located in the metropolitan area of Helsinki, Finland, the present study investigates the benefits of using ALS data for quantitative estimations of partial beam blockages. The results obtained applying beam standard propagation models are compared with stratiform 24 h rainfall accumulation to evaluate the effects of partial beam blockages due to constructions and trees. To provide a physical interpretation of the results, the detailed analysis of beam occultations is achieved by open spatial data sets and open-source geographic information systems.

  10. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  11. Recovery giant subglacial lakes: new assessments using IceGRAV airborne radar data

    NASA Astrophysics Data System (ADS)

    Matsuoka, K.; Forsberg, R.; Ferraccioli, F.; Jordan, T. A.; Kohler, J.; Corr, H. F. J.; Olesen, A. V.

    2014-12-01

    Recovery Glacier penetrates deep into the interior of East Antarctica. The subglacial hydraulic system beneath this glacier includes active lakes aligned along the glacier trunk and four giant lakes near the onset of the fast flow. The characteristics of this subglacial system and its impacts on ice flow are therefore central questions for the dynamics of the East Antarctic Ice Sheet. The existence of these lakes is hypothesized to explain satellite-measured ice-surface motion and smoothness. However, direct evidence of the existence of the giant Recovery lakes has until recently been limited to ground-based radar measurements during IPY, showing that the lakes A and B were not distinct lakes at the time of the measurement (January, 2009) and may have drained recently. In order to fill the significant data gap over the Recovery catchment identified by the BEDMAP2 project, over 29,000 line km of new radio-echo sounding, laser altimetry, gravity and magnetic data were acquired using a British Antarctic Survey Twin Otter during the IceGRAV 2012-13 field season. Here, we present a subset of this Recovery Frontier dataset in the vicinity of the giant Recovery lakes A and B to assess their current conditions. Bed reflectivity derived for a range of englacial attenuation rates indicates that the lake surface has larger reflectivity than the adjacent grounded areas, by more than 10 dB. Bed reflectivity varies little over short distances (< 1 km), both around the lakes and adjacent areas. Hydraulic potential varies little over the lakes as well as their downstream sides but increases in the upstream directions. These recent characteristics are clearly distinct from the previous ground-based measurements taken in 2009. We hypothesize that these differences indicate that lakes A and B may be filling. The existence of a major active hydrological system in the interior of the East Antarctic Ice Sheet could influence ice streaming also further downstream, where smaller

  12. New Martian climate constraints from radar reflectivity within the north polar layered deposits

    NASA Astrophysics Data System (ADS)

    Lalich, D. E.; Holt, J. W.

    2017-01-01

    The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.

  13. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services

    NASA Astrophysics Data System (ADS)

    Angulo, I.; Grande, O.; Jenn, D.; Guerra, D.; de la Vega, D.

    2015-02-01

    The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Since nowadays signal processing techniques to mitigate Wind Turbine Clutter (WTC) are scarce, the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the Radar Cross Section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver. This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the Physical Optics theory, and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

  14. General probability-matched relations between radar reflectivity and rain rate

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Wolff, David B.; Atlas, David

    1993-01-01

    An improved method for transforming radar-observed reflectivities Ze into rain rate R is presented. The method is based on a formulation of a Ze-R function constrained such that (1) the radar-retrieved pdf of R and all of its moments are identical to those determined from the gauges over a sufficiently large domain, and (2) the fraction of the time that it is raining above a low but still has an accurately measurable rain intensity is identical for both the radar and for simultaneous measurements of collocated gauges on average. Data measured by a 1.65-deg beamwidth C-band radar and 22 gauges located in the vicinity of Darwin, Australia, are used. The resultant Ze-R functions show a strong range dependence, especially for the rain regimes characterized by strong reflectivity gradients and substantial attenuation. The application of these novel Ze-R functions to the radar data produces excellent matches to the gauge measurements without any systematic bias.

  15. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  16. Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements.

    PubMed

    Strauss, Lukas; Serafin, Stefano; Haimov, Samuel; Grubišić, Vanda

    2015-10-01

    Atmospheric turbulence generated in flow over mountainous terrain is studied using airborne in situ and cloud radar measurements over the Medicine Bow Mountains in southeast Wyoming, USA. During the NASA Orographic Clouds Experiment (NASA06) in 2006, two complex mountain flow cases were documented by the University of Wyoming King Air research aircraft carrying the Wyoming Cloud Radar. The structure of turbulence and its intensity across the mountain range are described using the variance of vertical velocity σw2 and the cube root of the energy dissipation rate ɛ(1/3) (EDR). For a quantitative analysis of turbulence from the cloud radar, the uncertainties in the Doppler wind retrieval have to be taken into account, such as the variance of hydrometeor fall speed and the contamination of vertical Doppler velocity by the horizontal wind. A thorough analysis of the uncertainties shows that 25% accuracy or better can be achieved in regions of moderate to severe turbulence in the lee of the mountains, while only qualitative estimates of turbulence intensity can be obtained outside the most turbulent regions. Two NASA06 events exhibiting large-amplitude mountain waves, mid-tropospheric wave breaking, and rotor circulations are examined. Moderate turbulence is found in a wave-breaking region with σw2 and EDR reaching 4.8 m(2) s(-2) and 0.25 m(2/3) s(-1), respectively. Severe turbulence is measured within the rotor circulations with σw2 and EDR respectively in the ranges of 7.8-16.4 m(2) s(-2) and 0.50-0.77 m(2/3) s(-1). A unique result of this study is the quantitative estimation of the intensity of turbulence and its spatial distribution in the interior of atmospheric rotors, provided by the radar-derived turbulence fields.

  17. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  18. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  19. Application of a three-dimensional variational method for radar reflectivity data correction in a mudslide-inducing rainstorm simulation

    NASA Astrophysics Data System (ADS)

    Li, Hongli; Xu, Xiangde

    2017-04-01

    Various types of radars with different horizontal and vertical detection ranges are deployed in China, particularly over complex terrain where radar blind zones are common. In this study, a new variational method is developed to correct three-dimensional radar reflectivity data based on hourly ground precipitation observations. The aim of this method is to improve the quality of observations of various types of radar and effectively assimilate operational Doppler radar observations. A mudslide-inducing local rainstorm is simulated by the WRF model with assimilation of radar reflectivity and radial velocity data using LAPS (Local Analysis and Prediction System). Experiments with different radar data assimilated by LAPS are performed. It is found that when radar reflectivity data are corrected using this variational method and assimilated by LAPS, the atmospheric conditions and cloud physics processes are reasonably described. The temporal evolution of radar reflectivity corrected by the variational method corresponds well to observed rainfall. It can better describe the cloud water distribution over the rainfall area and improve the cloud water analysis results over the central rainfall region. The LAPS cloud analysis system can update cloud microphysical variables and represent the hydrometeors associated with strong convective activities over the rainfall area well. Model performance is improved and the simulation of the dynamical processes and moisture transport is more consistent with observation.

  20. Spaceborne meteorological radar studies

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1988-01-01

    Various radar designs and methods are studied for the estimation of rainfall parameters from space. An immediate goal is to support the development of the spaceborne radar that has been proposed for the Tropical Rain Measuring Mission (TRMM). The effort is divided into two activities: a cooperative airborne rain measuring experiment with the Radio Research Laboratory of Japan (RRL), and the modelling of spaceborne weather radars. An airborne rain measuring experiment was conducted at Wallops Flight Facility in 1985 to 1986 using the dual-wavelength radar/radiometer developed by RRL. The data are presently being used to test a number of methods that are relevant to spaceborne weather radars. An example is shown of path-averaged rain rates as estimated from three methods: the standard reflectivity rain rate method (Z-R), a dual-wavelength method, and a surface reference method. The results from the experiment shows for the first time the feasibility of using attenuation methods from space. The purposes of the modelling are twofold: to understand in a quantitative manner the relationships between a particular radar design and its capability for estimating precipitation parameters and to help devise and test new methods. The models are being used to study the impact of various TRMM radar designs on the accuracy of rain rate estimation as well as to test the performance of range-profiling algorithms, the mirror-image method, and some recently devised graphical methods for the estimation of the drop size distribution.

  1. Verification of the calibration technique of airborne hyperspectral raw data to reflectance based on sky light reference data

    NASA Astrophysics Data System (ADS)

    Suhama, T.; Rikimaru, A.; Takahashi, K.; Takemine, S.

    Airborne hyperspectral sensor is increasingly being used for the precision agriculture and for the monitoring our environment In general data obtained by airborne hyperspectral sensor are affected by atmospheric conditions and solar illumination geometry Therefore airborne hyperspectral sensor data are commonly expressed as relative radiance value For measuring and monitoring ground surface changes through time it is important to calibrate hyperspectral sensor data to amount of reflectance A number of calibration techniques have been developed ranging from empirical approaches to analytical radiative transfer approaches These methods require a priori knowledge such as field reflectance observations or atmospheric conditions Several airborne hyperspectral sensor systems which are used for commercial purpose include a fiber optic probe on the aircraft roof A fiber optic probe is able to monitor sky light reference data to ratio to hyperspectral raw data This is a simple and practical calibration technique However there is a problem that small inaccuracies in sky right reference data calibrations may lead to unacceptable errors in calculated apparent reflectance In this paper simple calibration technique based on sky light reference data was discussed The resultant reflectance estimates are compared with field reflectance observations of flat and homogeneous ground target and illustrate that proposed calibration technique is possible to derive reasonable reflectance from airborne hyperspectral raw data

  2. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  3. Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.

    1992-01-01

    The paper compares Arecibo Observatory and Magellan radar data for Venus to airborne radar images for potential terrestrial analog surfaces. Volcanic deposits in western Eistla Regio and northern Sedna Planitia are characterized. It is shown that the expected-sense circularly polarized echoes in the 'dark plains' and broad flow aprons of Eistla Regio decrease rapidly with incidence angle. This angular scattering behavior implies surfaces no rougher than terrestrial pahoehoe flows. Polarization ratio comparisons show that the extensive lava flows in Western Eistla Regio and Sedna Planitia are generally consistent with the properties of terrestrial pahoehoe flows, with only limited occurrences of a'a morphology. Three scenarios are suggested. Many of the large flow units in the two study regions were emplaced as complexes of low-effusion rate pahoehoe flows, rather than as higher eruption rate events which might be expected to produce a'a surface textures; the long lava flows were originally emplaced as a'a but have since weathered to a smoother texture; or a combination of atmospheric and magma compositional effects combine to inhibit a'a formation even at high volume eruption rates.

  4. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  5. Airborne Warning and Control Radar Career Ladder, AFSC 328X2.

    DTIC Science & Technology

    1984-11-01

    difficulty, the simulator approach is appropriate for both ground and airborne personnel. Electronics principles instruction may be an area of training where...interrogation systems. The course includes 18 weeks of electronics principles training. Basic resident training is conducted without the benefit of actual mission...training in electronics principles . The Occupational Measurement Center recently completed a survey of electronics principles required across several

  6. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  7. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  8. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  9. Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar.

    PubMed

    Splajt, T; Ferrier, G; Frostick, L E

    2003-09-15

    The utility of ground-penetrating radar and reflectance spectroscopy in the monitoring of landfill sites has been investigated. Strong correlations between red edge inflection position and chlorophyll and heavy metal concentrations have been demonstrated from grassland species affected by leachate contamination of the soil adjacent to the landfill test site. This study demonstrated that reflectance spectroscopy can identify vegetation affected by leachate-contaminated soil at a range of spatial resolutions. To identify the vegetation affected by leachate contamination, the spectroradiometer must have contiguous bands at sufficient spectral resolution over the critical wave range that measures chlorophyll absorption and the red edge (between 650 and 750 nm). The utility of ground-penetrating radar data to identify leachate escaping from breakout points in the contaminant wall has also been demonstrated. An integrated approach using these techniques, combined with field and borehole sampling and contaminant migration modeling, offers a possible cost-effective monitoring approach for landfill sites.

  10. A method for measuring precipitation parameters and raindrop size distributions using radar reflectivity and optical extinction

    NASA Technical Reports Server (NTRS)

    Ulbrich, C. W.; Atlas, D.

    1977-01-01

    A method of determining precipitation parameters from two remotely measurable quantities, the radar reflectivity factor and the optical extinction, is described. The raindrop size spectrum is approximated by a two-parameter exponential form; when these parameters are evaluated in terms of the radar reflectivity factor and the optical extinction, an exponential spectrum is obtained that is generally in very good agreement with the observed size spectrum. Other calculated precipitation parameters, such as rainfall rate and liquid water content, which are derived from the exponential approximation, also agree with experimental data. It is indicated that other combinations of two remote measurables can also be used to obtain more accurate estimates of precipitation parameters than can be obtained by the use of an empirical relationship.

  11. Impacts of 4D-VAR Assimilation of Airborne Doppler Radar Observations on Numerical Simulations of the Genesis of Typhoon Nuri (2008)

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Li, Z.

    2014-12-01

    The Weather Research and Forecasting model and its four-dimensional variational data assimilation system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). The ELDORA airborne radar data, collected during the Office of Naval Research-sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as it enhances the development of convective systems and improves the inner core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation lead to developing and nondeveloping disturbances for Nuri's genesis in the numerical simulations. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri's genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea-level pressure.

  12. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  13. Remote sensing of land scenarios with an airborne 94-GHz synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Essen, Helmut; Makaruschka, R.; Baars, E. Peter

    1996-06-01

    The scattering process of electromagnetic waves is dominated by the match between wavelength and the geometric dimensions of surface structures. With respect to the microwave radar bands millimeter-waves are better matched to small surface features of terrain. Therefore this frequency band is able to gain additional information on the terrain of interest. For high resolution imaging SAR is the favorite solution also for millimeter-wave frequencies. Compared to more classical radar bands millimeter-waves offer advantages in the SAR processing, because due to the higher primary resolution at a given antenna aperture sources of image distortions such as range migration or depth of focus can be neglected at these frequencies. Moreover the inherently short aperture time for a given resolution improves the relation to the time constant of flight instabilities and makes motion compensation a simple process. A coherent, polarimetric, high range resolution radar, operating at a nominal frequency of 94 GHz, has been installed onboard an aircraft to allow remote sensing measurements in a side looking synthetic aperture approach. The radar-raw-data were registered together with time code and inertial data of the aircraft and later on evaluated by an off-line SAR-processor. The resulting images then had to undergo an automatic recognition process to extract certain complex targets using a knowledge based production system. The paper describes the measurement system and discusses the evaluation procedures with emphasis on the applied SAR algorithm. Examples of radar images at 94 GHz are shown and samples of pattern recognition derived from the SAR images are shown.

  14. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability. Second Corrected Copy Issued May 23, 2011

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  15. Radar volume reflectivity estimation using an array of ground-based rainfall drop size detectors

    NASA Astrophysics Data System (ADS)

    Lane, John; Merceret, Francis; Kasparis, Takis; Roy, D.; Muller, Brad; Jones, W. Linwood

    2000-08-01

    Rainfall drop size distribution (DSD) measurements made by single disdrometers at isolated ground sites have traditionally been used to estimate the transformation between weather radar reflectivity Z and rainfall rate R. Despite the immense disparity in sampling geometries, the resulting Z-R relation obtained by these single point measurements has historically been important in the study of applied radar meteorology. Simultaneous DSD measurements made at several ground sites within a microscale area may be used to improve the estimate of radar reflectivity in the air volume surrounding the disdrometer array. By applying the equations of motion for non-interacting hydrometers, a volume estimate of Z is obtained from the array of ground based disdrometers by first calculating a 3D drop size distribution. The 3D-DSD model assumes that only gravity and terminal velocity due to atmospheric drag within the sampling volume influence hydrometer dynamics. The sampling volume is characterized by wind velocities, which are input parameters to the 3D-DSD model, composed of vertical and horizontal components. Reflectivity data from four consecutive WSR-88D volume scans, acquired during a thunderstorm near Melbourne, FL on June 1, 1997, are compared to data processed using the 3D-DSD model and data form three ground based disdrometers of a microscale array.

  16. Radar reflectivity of the surface of Mars at 20 MHz from SHARAD: Cartography and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Kofman, W. W.; Grima, C.; Herique, A.; Seu, R.

    2011-12-01

    In the search for buried water ice on Mars, radar sounding instruments have unique abilities. Their capacity to resolve glacial structures down to kilometers depth has already provided a huge amount of information related to Martian glaciers. Sounding radars are also relevant tools to determine the composition of the surface, since the radar-waves reflectivity is sensitive to the dielectric properties of the sounding materials. It also has the originality to be representative of the first decameter of the surface (depending on the bandwidth), whereas other observations methods do not exceed few millimeters. The Shallow Radar (SHARAD) is a subsurface sounding instrument aboard the NASA's Mars Reconnaissance Orbiter (MRO) spacecraft [3]. SHARAD is working at a 20 MHz central frequency with a 10 MHz bandwidth. The along-track foot print range is between 0.3 and 1 km, while the typical footprint radius (Fresnel zone) is ~3 km. The radar surface echoes from SHARAD observations are extracted to drawn up a reflectivity map covering almost half of the Martian surface and compared to roughness maps. A 2-steps method, based on a stochastic description of the reflectivity, is proposed in order to (i) separate the coherent/incoherent components of the signal by the mean of PDF (Probability Density Functions) fitting of amplitude distributions, (ii) and to express them with respect to roughness/permittivity values by adapting common backscattering models to the nadir case. We show that scattering is the most important process dominating the reflectivity over the Martian terrains. However some nearly-flat regions clearly exhibit the signature of the surface permittivity. We show that the RMS roughness can be derived at centimeter to decimeter scale without prior calibration of the signal for slightly rough surfaces, which raises SHARAD capabilities in determining surface roughness for landing site selection. Sets of derived dielectric constants are obtained and analyzed

  17. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  18. Doppler Compensation for Airborne Non-Side-Looking Phased-Array Radar

    DTIC Science & Technology

    2015-09-01

    looking airborne arrays. The depression angle is a function of the ratio of platform height h to range r , resulting in, )cos(1 2 max aaa r...is operated in the forward-looking mode, is, 2 0 1 2cos2      −== r hvvf aaa λ θ λ (8) Equation (8) clearly shows the range-dependency of

  19. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River-Huaihe River basins

    NASA Astrophysics Data System (ADS)

    Luo, Yali; Qian, Weimiao; Gong, Yu; Wang, Hongyan; Zhang, Da-Lin

    2016-11-01

    The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River-Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2-5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

  20. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  1. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  2. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  3. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  4. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  5. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  6. An observation of sea-spray microphysics by airborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.

    2014-05-01

    This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.

  7. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  8. A History of U.S. Navy Airborne and Shipboard Periscope Detection Radar Design and Development

    DTIC Science & Technology

    2014-01-01

    JH U/ AP L, NR L, TI SH AR EM 12 5 a nd ot he r t es ts in Me dit er ra ne an 19 99 Fle et de mo – air (fir st air te st on N RL...transmitter and a more sensitive receiver, which enabled improved detection ranges against surfaced U-boats.6 By far the most notable and exciting ...the ONR investigations into using SAR for periscope detection were discontinued. Airborne ARPDD By far the most exciting and technically challenging

  9. Seasonal Thickness Changes Revealed by Airborne Radar Interferometry, Pi-SAR2, at Two Glaciers Near Mt. Tsurugi, Japan

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Fukui, K.; Kojima, S.; Matsuoka, T.

    2015-12-01

    Based on ice radar and high-preicision GPS measurements, Fukui and Iida (2012) have reported the presence of "glaciers" near Mt. Tsurugi, central Japan, which had been previously regarded as perenial snowy gorges. While their discovery was brought out by the modern geodetic techniques, there used to be a wrong idea that the equilibrium line altitude in central Japanese Alps is about 4000 meter, causing the actual glaciers to be overlooked; the elevation of Mt Tsurugi is 2999 meter. The presence of glaciers in central Japan is due to the very high seasonal accmulation; the snow fall in the mountainous regions can reach several tens of meters or more. There are, however, few snow-depth measurement data due to the logistic problems. The equilibrium line altitude also remains uncertain. We have performed airborne synthetic aperture radar (SAR) measurements near the two glaciers in August, October 2013, August 2014, and March 2015. The Pi-SAR2 system used in this study consists of X-band SAR antennas, and allows us to perform single-pass interferometry and full polarimetry with the maximum spatial resolution of 0.3 m. Taking advantage of the single-pass interferometry, we have generated digital elevation models (DEM) at each measurement epoch to derive the temporal changes in the thickness by differecing the DEMs of multiple epochs. Snow melt season starts in May at the analyzed area, and the first snow fall usually occurs in late October. As such, the minimum thickness is expected in October, when the glacier ice appears on the surface. Preliminary analyses indicate that the differences between August and October 2013 reaches ~10 to 20 meters with errors of 5-10 meters.

  10. Precipitation Type Specific Radar Reflectivity-Rain Rate Relationships for Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; Krajewski, Witold F.

    2016-10-01

    Implementation of weather radar precipitation estimates into hydrology, especially urban hydrology practice in Poland, requires the introduction of more precise radar reflectivity versus rain rate (Z-R) relationships accounting for drop size distribution (DSD) specific for different precipitation phases. We explored the development of precipitation type dependent Z-R relationship on the basis of approximately two years of DSD recordings at high temporal resolution of ten seconds. We divided the recorded data into four separate precipitation-type groups: rain, snow, rain-with-snow, and hail. The Z-R relationships for rain and rainwith- snow showed a strong resemblance to the well-known Marshall- Palmer Z-R power-type relationship for rain. In the case of snowfall, we found that both the multiplication factor and the exponent coefficients in the Z-R formula have smaller values than for rain. In contrast, for hail precipitation these parameters are higher than for rain, especially the multiplication factor.

  11. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  12. Using Airborne Radar Stratigraphy to Model Surface Accumulation Anomaly and Basal Control over Deformed Basal Ice in Greenland

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.

    2013-12-01

    Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance

  13. Ka-band Digitally Beamformed Airborne Radar Using SweepSAR Technique

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Chuang, Chung-Lun; Ghaemi, Hirad; Heavey, Brandon A.; Lin, Lung-Sheng S.; Quaddus, Momin

    2012-01-01

    A paper describes a frequency-scaled SweepSAR demonstration that operates at Ka-Band (35.6 GHz), and closely approximates the DESDynl mission antenna geometry, scaled by 28. The concept relies on the SweepSAR measurement technique. An array of digital receivers captures waveforms from a multiplicity of elements. These are combined using digital beamforming in elevation and SAR processing to produce imagery. Ka-band (35.6 GHz) airborne SweepSAR using array-fed reflector and digital beamforming features eight simultaneous receive beams generated by a 40-cm offset-fed reflector and eight-element active array feed, and eight digital receiver channels with all raw data recorded and later used for beamforming. Illumination of the swath is accomplished using a slotted-waveguide antenna radiating 250 W peak power. This experiment has been used to demonstrate digital beamforming SweepSAR systems.

  14. Simple method for modeling radar reflections in a homogeneous halfspace, with applications

    NASA Astrophysics Data System (ADS)

    Greenfield, Roy J.; Moran, Mark L.; Davis, J. L.

    2000-04-01

    We have developed a method to rapidly compute synthetic radar records from complex reflecting surfaces. The approach is a 3- D time domain Hemholtz-Kirchhoff (HK) representation, similar to Hilterman (1981), that includes the radiation characteristics of GPR dipoles on the surface of a uniform dielectric halfspace. Validity is established by making comparisons with published model results and by comparisons with field data. Comparison to the ray theory results of Zeng et al. (1997) show excellent agreement in reflection arrival times for pipes of various diameters. We also reproduce the non-specular reflection results of Schleicher et al. (1991), which show that large amplitude reflections can originate from the inflection points of curved surfaces. Our comparisons with field data use reflection records taken at a test site in Borden, Ontario, over horizontally oriented buried metal drums. The H-plane reflection data were collected using shielded 700-MHz dipoles. Our raw synthetic amplitude trends show reasonable agreement to the field data, but are not perfect. Using a small diameter synthetic dipole array, we show that the mismatch is most likely caused by antenna shielding effects. The versatility of the HK method is demonstrated by giving results for a number of interesting applications. These include synthetic records for crisscrossing pipes buried at various depths, reflection synthetics from a truncated cone representing the slag heaps in Daniels and Brower (1998), and reflections from a rough surface. The slag heap models demonstrate the effect of antenna polarization on reflections from sloping surfaces. Analysis of synthetic reflections from rough surfaces shows that the coda following the first impulsive arrival can be used to estimate the surface roughness. This is of interest for interpreting reflections from glacier data. Our results demonstrate that the HK method is useful in interpreting data, as well as for developing field survey strategies.

  15. Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Ulrych, T. J.

    2001-10-01

    High-pass eigenimages of ground-penetrating radar (GPR) profiles were computed in order to quantify the amount of wavy reflections. These wavy reflections are caused by the presence of subsurface trains of climbing dune-forms in the base surge deposits of the Ubehebe hydrovolcanic field (Death Valley National Park, California). The profiles were collected along a flow direction radial to the Ubehebe Crater to study the lateral facies variation of the pyroclastic deposits. The reflections become increasingly less wavy moving away from the crater because the number and size of the climbing dune-forms decrease downflow. The high-pass eigenimages act as a filter discarding the highly correlated parts of the traces (i.e. those forming the flat reflections) and leaving the portions of the profiles with the wavy reflections. For this reason, the energy of the eigenimages appears to be an index of the waviness of the reflections. This index is relatively fast to compute and quantifies the decrease of the number and size of the climbing dune-forms in the deposits.

  16. Mapping sea ice using reflected GNSS signals in a bistatic radar system

    NASA Astrophysics Data System (ADS)

    Chew, Clara; Zuffada, Cinzia; Shah, Rashmi; Mannucci, Anthony

    2016-04-01

    Global Navigation Satellite System (GNSS) signals can be used as a kind of bistatic radar, with receivers opportunistically recording ground-reflected signals transmitted by the GNSS satellites themselves. This technique, GNSS-Reflectometry (GNSS-R), has primarily been explored using receivers flown on aircraft or balloons, or in modeling studies. Last year's launch of the TechDemoSat-1 (TDS-1) satellite represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land and ocean surface. Here, we examine the ability of reflected GNSS signals to estimate sea ice extent and sea ice age, as well as comment on the possibility of using GNSS-R to detect leads and polynyas within the ice. In particular, we quantify how the peak power of Delay Doppler Maps (DDMs) generated within the GNSS receiver responds as the satellite flies over the Polar Regions. To compute the effective peak power of each DDM, we first normalize the peak power of the DDM by the noise floor. We also correct for antenna gain, range, and incidence angle. Once these corrections are made, the effective peak power across DDMs may be used as a proxy for changes in surface permittivity and surface roughness. We compare our calculations of reflected power to existing sea ice remote sensing products such as data from the SSMI/S as well as Landsat imagery. Our analysis shows that GNSS reflections are extremely sensitive to the sea ice edge, with increases in reflected power of more than 10 dB relative to reflected power over the open ocean. As the sea ice ages, it thickens and roughens, and reflected power decreases, though it does not decrease below the power over the open ocean. Given the observed sensitivity of GNSS reflections to small features over land and the sensitivity to the sea ice edge, we hypothesize that reflection data could help map the temporal evolution of leads and polynyas.

  17. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and detailed neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, T. B.; Hawley, R. L.; Helm, V.; Morris, E. M.; Chaudhary, R. N.

    2015-12-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and detailed neutron-probe (NP) density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 %) from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995-2004 compared to 1985-1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.

  18. Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods

    NASA Technical Reports Server (NTRS)

    Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.

    2015-01-01

    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.

  19. Determining the Best Method for Estimating the Observed Level of Maximum Detrainment Based on Radar Reflectivity

    SciTech Connect

    Carletta, Nicholas D.; Mullendore, Gretchen L.; Starzec, Mariusz; Xi, Baike; Feng, Zhe; Dong, Xiquan

    2016-08-01

    Convective mass transport is the transport of mass from near the surface up to the upper troposphere and lower stratosphere (UTLS) by a deep convective updraft. This transport can alter the chemical makeup and water vapor balance of the UTLS, which affects cloud formation and the radiative properties of the atmosphere. It is therefore important to understand the exact altitudes at which mass is detrained from convection. The purpose of this study was to improve upon previously published methodologies for estimating the level of maximum detrainment (LMD) within convection using data from a single ground-based radar. Four methods were used to identify the LMD and validated against dual-Doppler derived vertical mass divergence fields for six cases with a variety of storm types. The best method for locating the LMD was determined to be the method that used a reflectivity texture technique to determine convective cores and a multi-layer echo identification to determine anvil locations. Although an improvement over previously published methods, the new methodology still produced unreliable results in certain regimes. The methodology worked best when applied to mature updrafts, as the anvil needs time to grow to a detectable size. Thus, radar reflectivity is found to be valuable in estimating the LMD, but storm maturity must also be considered for best results.

  20. Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation

    NASA Astrophysics Data System (ADS)

    Das, Saurabh; Maitra, Animesh

    2017-03-01

    Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).

  1. A fast smoothing algorithm for post-processing of surface reflectance spectra retrieved from airborne imaging spectrometer data.

    PubMed

    Gao, Bo-Cai; Liu, Ming

    2013-10-14

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented.

  2. A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data

    PubMed Central

    Gao, Bo-Cai; Liu, Ming

    2013-01-01

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022

  3. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  4. Power line characterization from an airborne data collection with a millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Goshi, Darren S.; Bui, Long Q.

    2014-05-01

    Enhancing the operational safety of small, maneuverable rotorcraft has been a critical consideration in the development of next generation situational awareness sensor suites. From landing assistance to target detection and obstacle avoidance, millimeter wave radars have become the leading candidate for such solutions due to their ability to operate in degraded visual environments, whether it is weather, induced debris, or night conditions that must be dealt with. Power lines pose arguably the largest safety risk for helicopter operation due to their difficulty in detection and proper identification to support avoidance maneuvering, where even under perfect conditions they can be nearly invisible to the naked eye. The backscatter phenomenology from braided power lines has been well-studied and formulated in previous literature, albeit mainly in controlled laboratory settings or limited field trials. Subsequently, the ability to simply detect power lines at operational distances up to around 2 km has been demonstrated. In this work, an analysis is performed on the measureable characteristics of power lines captured in a representative operational environment for helicopters. The test location included a diverse set of power line configurations with surrounding ground and tower clutter, representing a realistic scenario. A radiometrically calibrated w-band real-beam FMCW sensor allows the study and estimation of target RCS, as well as evaluation against the developed theory. All analysis is performed on dynamically captured data from a helicopter, where platform dynamics and system stability also play a significant role in a processed result. Results from this work will aid the effective development of next generation situational awareness systems.

  5. Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Marmorino, George O.; Holt, Benjamin; Molemaker, M. Jeroen; Digiacomo, Paul M.; Sletten, Mark A.

    2010-05-01

    Repeat sampling on hourly time scales using an airborne synthetic aperture radar (SAR) is used to investigate the occurrence and evolving characteristics of spiral-shaped slick patterns, commonly presumed to be indicators of submesoscale ocean eddies, in the area around Santa Catalina Island, California (˜33.4°N, 118.4°W). Simultaneous SAR imagery and boat survey data are examined over two ˜5 h long periods spaced 3 days apart in April 2003. The SAR imagery reveals several spiral-like patterns, roughly 5 km in diameter, occurring downstream of the western end of Catalina. We believe that the most likely formation mechanism for these patterns is current-wake instability related to the flow of the Southern California Countercurrent along the north shore of Catalina. In one case, there is an observed cold-core eddy and vortex sheet attached to the tip of the island, similar to island-wake simulations done by Dong and McWilliams (2007). In another case, the SAR imagery shows a series of slick patterns that, at least initially, resemble spiral eddies, but the data show no clear evidence of actual ocean eddies being present either at depth or through a rotating surface expression. A speculation is that such features signify island-wake eddies that are relatively weak and dissipate quickly. An unexpected finding was how quickly a spiral slick pattern could deteriorate, suggesting a time scale for the surface feature of the order of only several hours. An implication of this result is that care is needed when interpreting a single satellite SAR imagery for evidence of active submesoscale eddies. Recommendations are made for future field studies.

  6. Estimation of Rainfall Kinetic Energy by Rain Intensity and/or Radar Reflectivity Factor

    NASA Astrophysics Data System (ADS)

    Yu, N.; Delrieu, G.; Boudevillain, B.; Hazenberg, P.; Uijlenhoet, R.

    2011-12-01

    This study presents an approach to estimate the rainfall kinetic energy (KE) by rain intensity (R) and radar reflectivity factor (Z) separately, or jointly, on the basis of a one- or two-moment scaled formulation. This formulation considers the raindrop size distribution (DSD) as a combination of bulk rainfall variable(s) (R or/and Z) and an intrinsic distribution g(x), which is in function of the scaled raindrop diameter x. Results from previous studies showed that g(x) remains more or less constant, hence the variability of DSD is mainly explained by the bulk rainfall variable(s). In this study, the Gamma probability density function (pdf) with two parameters is used to model the g(x). Considered the self-consistent relationships between parameters, a robust method is proposed to estimate three climatological g(x), in R-, Z- and RZ-scaled formulation respectively, with a 28-month DSD dataset collected in the Cevennes-Vivarais region, France. Three relationships (KE-R, KE-Z and KE-(R,Z)), which link the observations (R and/or Z) to rainfall kinetic energy (KE), are established based on three climatological g(x). As expected, the combination of R and Z yields a significant improvement of the estimation of KE compared to the single-moment formulations. And Z yields a better performance in KE estimating compared to the KE-R relationship. In terms of the application of these relationships based on real radar reflectivity factors and/or rain gauge measurements, the combination of R and Z yields also the best performance in estimation of KE among the three relationships. Different from the application of the disdrometer data, the performance of the real KE-Z relationship degrades compared to the real KE-R relationship, which is probably due to the sampling error of radar. However, KE estimated by radar possess the advantages in spatialization of kinetic energy over that based on rain gauge stations. This study was supported financially by the HYDRATE project of the

  7. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  8. Quantitative investigations of geologic surfaces utilizing airborne visible/infrared imaging spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data were collected over Death Valley, California, USA, in September 1989. These two data sets were used to quantitatively characterize both the mineralogy and surface structure of the valley floor. Field mapping and characterization of the salt flats across the valley identified 16 separate units. The AVIRIS data were calibrated using the 'empirical line' method, and spectra extracted for the 16 units. A water vapor map was generated from the AVIRIS data and showed spatial variations in its distribution due to evaporation of surface water. Unmixing of the 16 spectral units produced maps of endmember abundance.

  9. Radarclinometry - Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    NASA Technical Reports Server (NTRS)

    Wildey, Robert L.

    1988-01-01

    A method for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image is derived. The method is based on enforcing mathematical consistency between the frequency distribution of the images' pixel signals and a one-dimensional frequency distribution of slope component, which is obtained from a radar or laser altimetry profile in or near the imaged area. To test the resulting algorithm, an arbitrarily selected reflectance function is used to generate an artificial radar image from a digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S. It is found that, for 99 percent of the data, the maximum error is 1 degree.

  10. Use of reflectance spectra of native plant species for interpreting airborne multispectral scanner data in the East Tintic Mountains, Utah.

    USGS Publications Warehouse

    Milton, N.M.

    1983-01-01

    Analysis of in situ reflectance spectra of native vegetation was used to interpret airborne MSS data. Representative spectra from three plant species in the E Tintic Mountains, Utah, were used to interpret the color components on a color ratio composite image made from MSS data in the visible and near-infrared regions. A map of plant communities was made from the color ratio composite image and field checked. -from Author

  11. Application of the Empirical Mode Decomposition to Seismic Reflection and Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Battista, B. M.; Addison, A.; Knapp, C.; McGee, T.

    2006-12-01

    Advancements in signal processing may allow for improved imaging and analysis of complex geologic targets found in seismic reflection and ground penetrating radar data (GPR). A recent contribution to signal processing is the Empirical Mode Decomposition (EMD). The EMD empirically reduces a time series to several sub- signals whose sum yield the original time series. The benefit of such a process is to empirically develop signal-dependent, time-variant filters in the time domain. The objective of this work is to determine whether the EMD allows for empirically derived characteristics to be used in filter design and application, resulting in better filter performance and enhanced signal-to-noise ratio. Two data sets are used to show successful application of the EMD to geophysical data. Nonlinear cable strum is removed from one data set while the other is used to remove WOW noise from GPR data. Comparison to traditional techniques demonstrates the effectiveness of the technique.

  12. Seismic-Reflection and Ground Penetrating Radar for Environmental Site Characterization

    SciTech Connect

    Steeples, Don W.; Plumb, Richard

    1999-06-01

    The goals of the project are: (1) To examine the complementary site-characterization capabilities of modern, three component shallow seismic reflection (SSR) techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) To demonstrate the usefulness of the two methods when used in concert to characterize, in three dimensions, the cone of depression of a pumping well that will serve as a proxy site for fluid-flow at an actual, polluted site; (3) To use the site as an outdoor mesoscale laboratory to validate existing three dimensional ground-penetrating radar and seismic-reflection computer models developed at the University of Kansas. To do this, seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location, and although the site itself is not environmentally sensitive, the area offers attributes that are particularly useful for this research and allow the site to serve as a proxy for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the seismic and GPR surveys are repeated on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates seasonally at this site, variations in the two types of data over time also can be observed. Such noninvasive, in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost conscious cleanup strategies in the near future.

  13. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  14. The effect of boreal forest canopy to reflectance of snow covered terrain based on airborne imaging spectrometer observations

    NASA Astrophysics Data System (ADS)

    Heinilä, Kirsikka; Salminen, Miia; Pulliainen, Jouni; Cohen, Juval; Metsämäki, Sari; Pellikka, Petri

    2014-04-01

    Optical remote sensing methods for mapping of the seasonal snow cover are often obstructed by the masking effect of forest canopy. Therefore, optical algorithms tend to underestimate the amount of snow cover in forested regions. In this paper, we investigate the influence of boreal forest stand characteristics on the observed scene reflectance under full dry snow cover conditions by applying an advantageous experimental setup combining airborne hyperspectral imaging and LIDAR data sets from a test region in Sodankylä, northern Finland. This is particularly useful to the understanding of the composition of the mixed satellite scene reflectance behavior and it is relation to the natural ground targets' spectral signatures.

  15. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Lutz, Kurt R.

    1994-01-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.

  16. Firn and percolation conditions in the vicinity of recently formed high elevation supra-glacial lakes on the Greenland Ice Sheet assessed by airborne radar

    NASA Astrophysics Data System (ADS)

    de la Peña, S.; Howat, I. M.; Chen, C.; Price, S. F.

    2014-12-01

    The western region of the Greenland Ice Sheet around and above the equilibrium line is characterized by relatively high accumulation rates with short-lasting melt events of variable intensity during the summer months. During melt season, supra-glacial lakes are formed at least temporarily in depressions found in the topography of the ice. These ponds can form and drain rapidly, affecting the dynamics of the ice below. Recent warming trends have gradually increased the amount of meltwater found every summer over the ice sheet, with melt regimes migrating to higher altitudes. Consequentially, supra-glacial lakes are being found at higher elevations, yet it is unclear what mechanisms control their formation over firn. We used data from different radar systems acquired by Operation Icebridge around and over lakes formed above the equilibrium line of the Greenland Ice Sheet to study internal features of identified frozen/drained supra-glacial lakes, and to investigate near-surface snow and firn conditions in the vicinity of the ponds by radar-mapping internal snowpack structure. Airborne radar and additional field observations revealed extensive and impermeable ice layers 20-70 cm thick formed at elevations between 1500 m and 2200 m. Buried by winter accumulation, these ice layers prevent further meltwater to percolate deeper during melt season, limiting firn capacity to absorb meltwater and causing near-surface snowpack saturation, thus facilitating the transport of meltwater to newly-formed basins above the equilibrium line. Ice penetrating capabilities from the different radar systems allow the survey of different firn layers and internal features created by refrozen meltwater. IceBridge data is acquired in early spring, when no liquid water content is found over this region ensuring adequate radar response.

  17. Steam injection pilot study in a contaminated fractured limestone (Maine, USA): Modeling and analysis of borehole radar reflection data

    USGS Publications Warehouse

    Gregoire, C.; Lane, J.W.; Joesten, P.K.

    2005-01-01

    Steam-enhanced remediation (SER) has been successfully used to remove DNAPL and LNAPL contaminants in porous media. Between August and November 2002, SER was tested in fractured limestone at the former Loring Air Force Base, in Maine, USA. During the SER investigation, the U.S. Geological Survey conducted a series of borehole radar surveys to evaluate the effectiveness of radar methods for monitoring the movement of steam and heat through the fractured limestone. The data were collected before steam injection, 10 days after the beginning of injection, and at the end of injection. In this paper, reflection-mode borehole radar data from wells JBW-7816 and JBW-7817A are presented and discussed. Theoretical modeling was performed to predict the variation of fracture reflectivity owed to heating, to show displacement of water and to assess the effect of SER at the site. Analysis of the radar profile data indicates some variations resulting from heating (increase of continuity of reflectors, attenuation of deeper reflections) but no substantial variation of traveltimes. Spectral content analysis of several individual reflections surrounding the boreholes was used to investigate the replacement of water by steam in the fractures. Observed decrease in radar reflectivity was too small to be explained by a replacement of water by steam, except for two high-amplitude reflectors, which disappeared near the end of the injection; moreover, no change of polarity, consistent with steam replacing water, was observed. The decrease of amplitude was greater for reflectors near well JBW-7817A and is explained by a greater heating around this well.

  18. Airborne Radar Systems (AFSC 1A5X3, formerly AFSC 118X2) and the Airborne Warning and Control Radar (AFSC 2A1X4, formerly AFSC 455X4)

    DTIC Science & Technology

    1994-06-01

    or coaxial cables 68 G179 Inspect card slots 68 L418 Interpret on-line RCMP display messages 66 L428 Operate magnetic tape transport (MIT) radar...control 93 M473 Connect or disconnect SF-6 ground service carts 93 L428 Operate magnetic tape transport (M’T) radar programs, including 93 surveillance...ISLS) switches 60 A4 TABLE A5 FIELD TRAINING DETACHMENT JOB (STG20) PERCENT MEMBERS PERFORMING TASKS (N=5) L450 Recycle radar programs 100 L428

  19. Remote sensing with laser spectrum radar

    NASA Astrophysics Data System (ADS)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  20. Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites.

    NASA Astrophysics Data System (ADS)

    Clothiaux, Eugene E.; Ackerman, Thomas P.; Mace, Gerald G.; Moran, Kenneth P.; Marchand, Roger T.; Miller, Mark A.; Martner, Brooks E.

    2000-05-01

    The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is deploying sensitive, millimeter-wave cloud radars at its Cloud and Radiation Test Bed (CART) sites in Oklahoma, Alaska, and the tropical western Pacific Ocean. The radars complement optical devices, including a Belfort or Vaisala laser ceilometer and a micropulse lidar, in providing a comprehensive source of information on the vertical distribution of hydrometeors overhead at the sites. An algorithm is described that combines data from these active remote sensors to produce an objective determination of hydrometeor height distributions and estimates of their radar reflectivities, vertical velocities, and Doppler spectral widths, which are optimized for accuracy. These data provide fundamental information for retrieving cloud microphysical properties and assessing the radiative effects of clouds on climate. The algorithm is applied to nine months of data from the CART site in Oklahoma for initial evaluation. Much of the algorithm's calculations deal with merging and optimizing data from the radar's four sequential operating modes, which have differing advantages and limitations, including problems resulting from range sidelobes, range aliasing, and coherent averaging. Two of the modes use advanced phase-coded pulse compression techniques to yield approximately 10 and 15 dB more sensitivity than is available from the two conventional pulse modes. Comparison of cloud-base heights from the Belfort ceilometer and the micropulse lidar confirms small biases found in earlier studies, but recent information about the ceilometer brings the agreement to within 20-30 m. Merged data of the radar's modes were found to miss approximately 5.9% of the clouds detected by the laser systems. Using data from only the radar's two less-sensitive conventional pulse modes would increase the missed detections to 22%-34%. A significant remaining problem is that the radar's lower-altitude data are often

  1. A simulation analysis of space-based and airborne moving platform radars in look-down clutter

    NASA Astrophysics Data System (ADS)

    Repak, P. L.

    1983-05-01

    A simulation technique has been developed to provide the radar engineer with a tool for comparative examination of radar systems and target detection in the presence of look-down clutter. Using a plotting interface such as the Dedicated User Interface System (DUIS), an engineer can evaluate proposed radar designs against one another for target detection performance in a precise graphical format. The user is able to select an antenna function from either measured data or derived data under the existing Parametric Antenna Analysis Software (PAAS). The antenna platform may be at any designated altitude and velocity with respect to ground clutter scatterers. Entry of an exoatmospheric altitude automatically computes the proper circular satellite orbit velocity and introduces Earth rotation. Target radar echoes at specified ground locations are compared to clutter echoes in the sidelobes as well as the radar mainbeam. Analysis of output date serves as a measure of moving target minimum detectable velocity (MDV) for the total radar system. Written for analysts with some technical Doppler radar and clutter understanding this report leads the engineer through the theory and equations which develop the simulation computer program. Example cases and analyses are given to show program utility and output results.

  2. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    SciTech Connect

    Steeples, D.W.; Plumb, R.

    1998-06-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  3. Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartICus reflectivity factors

    NASA Astrophysics Data System (ADS)

    Mascio, Jeana; Mace, Gerald G.

    2017-02-01

    Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.

  4. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  5. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  6. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  7. A comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery - The value of archived multiple data sets

    NASA Technical Reports Server (NTRS)

    Hanson, Bradford C.; Dellwig, Louis F.

    1988-01-01

    In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.

  8. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  9. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah/USA - integrating field work, ground penetrating radar and airborne imagery analysis

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; Grützner, C.; van Gent, H. W.; Urai, J. L.; Reicherter, K.; Mertens, J.

    2015-03-01

    The grabens of the Canyonlands National Park are a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the subsurface and a slight regional tilt of the faulted strata. We present results of ground penetrating radar surveys in combination with field observations and analysis of high resolution airborne imagery. GPR data show intense faulting of the Quaternary sediments at the flat graben floors, implying a more complex fault structure than visible at the surface. Direct measurements of heave and throw at several locations to infer fault dips at depth, combined with observations of primary joint surfaces in the upper 100 m suggest a model of the highly dilatant fault geometry in profile. Sinkholes observed in the field as well as in airborne imagery give insights in local massive dilatancy and show where water and sediments are transported underground. Based on correlations of paleosols observed in outcrops and GPR profiles, we argue that the grabens in Canyonlands National Park are either older than previously assumed, or that sedimentation rates were much higher in the Pleistocene.

  10. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA - integrating fieldwork, ground-penetrating radar and airborne imagery analysis

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; Grützner, C.; van Gent, H. W.; Urai, J. L.; Reicherter, K.; Mertens, J.

    2015-07-01

    The grabens of Canyonlands National Park are a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the subsurface and a slight regional tilt of the faulted strata. We present results of ground-penetrating radar (GPR) surveys in combination with field observations and analysis of high-resolution airborne imagery. GPR data show intense faulting of the Quaternary sediments at the flat graben floors, implying a more complex fault structure than visible at the surface. Direct measurements of heave and throw at several locations to infer fault dips at depth, combined with observations of primary joint surfaces in the upper 100 m, suggest a highly dilatant fault geometry. Sinkholes observed in the field as well as in airborne imagery give insights in local dilatancy and show where water and sediments are transported underground. Based on correlations of paleosols observed in outcrops and GPR profiles, we argue that either the grabens in Canyonlands National Park are older than previously assumed or that sedimentation rates were much higher in the Pleistocene.

  11. Characterization of Mesoscale Convective Systems by Means of Composite Radar Reflectivity Data

    NASA Technical Reports Server (NTRS)

    Geerts, Bart

    1998-01-01

    A mesoscale convective system (MCS) is broadly defined as a cloud and precipitation system of mesoscale dimensions (often too large for most aircraft to circumnavigate) with deep-convective activity concentrated in at least part of the MCS, or present during part of its evolution. A large areal fraction of MCSs is stratiform in nature, yet estimates from MCSs over the Great Plains, the Southeast, and tropical waters indicate that at least half of the precipitation is of convective origin. The presence of localized convection is important, because within convective towers cloud particles and hydrometeors are carried upward towards the cloud top. Ice crystals then move over more stratiform regions, either laterally, or through in situ settling over decaying and spreading convection. These ice crystals then grow to precipitation-size particles in mid- to upper tropospheric mesoscale updrafts. The convective portion of a MCS is often a more or less continuous line of thunderstorms, and may be either short-lived or long-lived. Geerts (1997) presents a preliminary climatology of MCSs in the southeastern USA, using just one year of composite digital radar reflectivity data. In this study MCSs are identified and characterized by means of visual inspection of animated images. A total of 398 MCSs were identified. In the warm season MCSs were found to be about twice as frequent as in the cold season. The average lifetime and maximum length of MCSs are 9 hours, and 350 km, respectively, but some MCSs are much larger and more persistent. In the summer months small and short-lived MCSs are relatively more common, whereas in winter larger and longer-lived systems occur more frequently. MCSs occur more commonly in the afternoon, in phase with thunderstorm activity, but the amplitude of the diurnal cycle is small compared to that of observed thunderstorms. It is estimated that in the Southeast more than half of all precipitation and severe weather results from MCSs.

  12. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  13. Microwave backscatter and emission observed from Shuttle Imaging Radar B and an airborne 1.4 GHz radiometer

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schiue, J. C.; Schmugge, T. J.; Engman, E. T.; Mo, T.; Lawrence, R. W.

    1985-01-01

    A soil moisture experiment conducted with the Shuttle Imaging Radar B (SIR-B) is reported. SIR-B operated at 1.28 GHz provided the active microwave measurements, while a 4-beam pushbroom 1.4 GHz radiometer gave the complementary passive microwave measurements. The aircraft measurements were made at an altitude of 330 m, resulting in a ground resolution cell of about 100 m diameter. SIR-B ground resolution from 225 km was about 35 m. More than 150 agricultural fields in the San Joaquin Valley of California were examined in the experiment. The effect of surface roughness height on radar backscatter and radiometric measurements was studied.

  14. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  15. The use of airborne radar reflectometry to characterize near-surface snow/firn stratigraphy on Devon Ice Cap, Canadian Arctic: A path to identifying refrozen melt layers

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2015-12-01

    Under present warming conditions, summer surface melt has been observed to intensify and shift towards higher elevations in the accumulation zones of Canadian Arctic ice caps. Consequently, more meltwater percolates into the near surface snow and firn, and refreezes as ice layers. This process can lead to a significant increase in firn densification rates. Knowledge of spatiotemporal variations of the near-surface firn density, especially the distribution of ice layer formation is of great importance when assessing mass change estimates from repeat altimetry measurements. Here, we present an approach for characterizing the near-surface firn stratigraphy and determining the spatial distribution of refrozen melt layers on Devon Ice Cap, using the surface echo from airborne radio-echo sounding (RES) measurements. The RES surface echo is affected by the upper few meters of snow/firn/ice and thus contains information about the near-surface properties. More specifically, the radar surface return is a combination of a coherent (Pc) and a scattering signal component (Pn). Pc is related to the dielectric constant of the probed surface, whereas Pn is related to the near surface roughness. Hence, different near-surface snow/firn properties can be investigated by analyzing the signal components Pc and Pn and their spatial variability. The Radar Statistical Reconnaissance (RSR) methodology [1] allows the extraction of Pc and Pn from the surface radar return, which then can be used to compute near-surface roughness and firn density estimates. We apply the RSR method to RES data collected on Devon Ice Cap and determine Pc and Pn values. We then compare the results to ground based RES measurements and shallow firn cores (~11 m deep) collected along the airborne RES flight lines. This comparison shows that variations in the scattering coefficient Pn correlate to changes in the pattern of near-surface firn stratigraphy revealed by the ground based RES data and firn cores. Based on

  16. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  17. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  18. Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Luo, Juhua; Chen, Pengfei

    2016-11-01

    Timely and accurate assessment of canopy nitrogen content (CNC) provides valuable insight into rapid and real-time nitrogen status monitoring in crops. A semi-empirical approach based on spectral index was extensively used for nitrogen content estimation. However, in many cases, due to specific vegetation types or local conditions, the applicability and robustness of established spectral indices for nitrogen retrieval were limited. The objective of this study was to investigate the optimal spectral index for winter wheat (Triticum aestivum L.) CNC estimation using Pushbroom Hyperspectral Imager (PHI) airborne hyperspectral data. Data collected from two different field experiments that were conducted during the major growth stages of winter wheat in 2002 and 2003 were used. Our results showed that a significant linear relationship existed between nitrogen and chlorophyll content at the canopy level, and it was not affected by cultivars, growing conditions and nutritional status of winter wheat. Nevertheless, it varied with growth stages. Periods around heading stage mainly worsened the relationship and CNC estimation, and CNC assessment for growth stages before and after heading could improve CNC retrieval accuracy to some extent. CNC assessment with PHI airborne hyperspectra suggested that spectral indices based on red-edge band including narrowband and broadband CIred-edge, NDVI-like and ND705 showed convincing results in CNC retrieval. NDVI-like and ND705 were sensitive to detect CNC changes less than 5 g/m2, narrowband and broadband CIred-edge were sensitive to a wide range of CNC variations. Further evaluation of CNC retrieval using field measured hyperspectra indicated that NDVI-like was robust and exhibited the highest accuracy in CNC assessment, and spectral indices (CIred-edge and CIgreen) that established on narrow or broad bands showed no obvious difference in CNC assessment. Overall, our study suggested that NDVI-like was the optimal indicator for winter

  19. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  20. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  1. Accumulation rates during 1311-2011 CE in North Central Greenland derived from air-borne radar data

    NASA Astrophysics Data System (ADS)

    Karlsson, Nanna; Eisen, Olaf; Dahl-Jensen, Dorthe; Freitag, Johannes; Kipfstuhl, Sepp; Lewis, Cameron; Nielsen, Lisbeth; Paden, John; Winter, Anna; Wilhelms, Frank

    2016-11-01

    Radar-detected internal layering contains information on past accumulation rates and patterns. In this study, we assume that the radar layers are isochrones, and use the layer stratigraphy in combination with ice-core measurements and numerical methods to retrieve accumulation information for the northern part of central Greenland. Measurements of the dielectric properties of an ice core from the NEEM (North Greenland Eemian Ice Drilling) site, allow for correlation of the radar layers with volcanic horizons to obtain an accurate age of the layers. We obtain accumulation patterns averaged over 100 a for the period 1311-2011. Our results show a clear trend of high accumulation rates west of the ice divide and low accumulation rates east of the ice divide. At the NEEM site the accumulation pattern is persistent during our study period and only small temporal variations occur in the accumulation rate. However, from approximately 200 km south of the NEEM drill site, the accumulation rate shows temporal variations based on our centennial averages. We attribute this variation to shifts in the location of the high-low accumulation boundary that usually is aligned with the ice divide, but appears to have moved across the divide in the past.

  2. Surface reflectance measurements in the ultraviolet from an airborne platform. II

    NASA Technical Reports Server (NTRS)

    Doda, D. D.; Green, A. E. S.

    1981-01-01

    The spectral and broadband reflectance of naturally occurring desert sand, black lava, gypsum sand, and snow cover is measured from a twin engine Cessna 402-series aircraft. The measurement system is computer controlled and electrically isolated from the aircraft. It consists of upward and downward looking hemispheric diffusers, filters, a rotating 90 degree mirror, a focusing lens, and a double monochromator/PMT or a UV enhanced photodiode. Measurements are made at several altitudes enabling the empirical determination of the backscatter and attenuation effects on the reflectance. These reflectance results along with those reported earlier for a pine forest, green farmland, the open ocean, and brown farmland are represented analytically.

  3. Correlation of Radar Reflectivity and Snowfall Rate during Moderate to Heavy Snow

    DTIC Science & Technology

    1978-04-03

    surface temperature below freezing), the correlation coefficient between radar returns and snowfall rate runs as high as r = 0.85. However, in wet snow...surface temperature above freezing) with bright band characteristics, the correlation coefficient is very poor, as low as r = 0.35. In spite of this

  4. Snowfall Rates Obtained from Radar Reflectivity within a 50 km Range.

    DTIC Science & Technology

    1981-09-15

    measurements yielded a correlation coefficient of 0.88. However, in correlating the total storm snowfall, the amount of radar-measured snowfall above a...reference snowfall measurement site was made equal to the snowfall actually measured at this location. This calibration technique improved the storm snowfall correlation coefficient to 0.96. (author)

  5. EXTRACTING A RADAR REFLECTION FROM A CLUTTERED ENVIRONMENT USING 3-D INTERPRETATION

    EPA Science Inventory

    A 3-D Ground Penetrating Radar (GPR) survey at 50 MHz center frequency was conducted at Hill Air Force Base, Utah, to define the topography of the base of a shallow aquifer. The site for the survey was Chemical Disposal Pit #2 where there are many man-made features that generate ...

  6. Comparison Between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports

    NASA Technical Reports Server (NTRS)

    Dworak, Richard; Bedka, Kristopher; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Studies have found that convective storms with overshooting-top (OT) signatures in weather satellite imagery are often associated with hazardous weather, such as heavy rainfall, tornadoes, damaging winds, and large hail. An objective satellite-based OT detection product has been developed using 11-micrometer infrared window (IRW) channel brightness temperatures (BTs) for the upcoming R series of the Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager. In this study, this method is applied to GOES-12 IRW data and the OT detections are compared with radar data, severe storm reports, and severe weather warnings over the eastern United States. The goals of this study are to 1) improve forecaster understanding of satellite OT signatures relative to commonly available radar products, 2) assess OT detection product accuracy, and 3) evaluate the utility of an OT detection product for diagnosing hazardous convective storms. The coevolution of radar-derived products and satellite OT signatures indicates that an OT often corresponds with the highest radar echo top and reflectivity maximum aloft. Validation of OT detections relative to composite reflectivity indicates an algorithm false-alarm ratio of 16%, with OTs within the coldest IRW BT range (less than 200 K) being the most accurate. A significant IRW BT minimum typically present with an OT is more often associated with heavy precipitation than a region with a spatially uniform BT. Severe weather was often associated with OT detections during the warm season (April September) and over the southern United States. The severe weather to OT relationship increased by 15% when GOES operated in rapid-scan mode, showing the importance of high temporal resolution for observing and detecting rapidly evolving cloud-top features. Comparison of the earliest OT detection associated with a severe weather report showed that 75% of the cases occur before severe weather and that 42% of collocated severe

  7. News and Views: Take the long view; Postgraduate degrees produce employable people - it's official; Airborne radar reveals fault rupture

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Academics in the field have long thought that postgraduate degrees in astronomy, astrophysics and planetary science and particle physics are a good bet for careers. But now a survey has confirmed that they bring excellent long-term employment prospects and above-average salaries, within sciences and elsewhere, boosting the case for funding studentships in order to support science and industry. Satellite synthetic aperture radar is a valuable tool for understanding the deformation of the surface of the Earth at earthquake faults; now NASA scientists have used SAR on planes to get an altogether closer look at quake effects.

  8. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency

  9. Estimation of lava flow field volumes and volumetric effusion rates from airborne radar profiling and other data: Monitoring of the Nornahraun (Holuhraun) 2014/15 eruption in Iceland

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias; Gudmundsson, Magnús; Högnadóttir, Thordís; Jónsdóttir, Ingibjörg; Gudbjörnsson, Snaebjörn; Lárusson, Örnólfur; Höskuldsson, Ármann; Thordarson, Thorvaldur; Riishuus, Morten; Magnússon, Eyjólfur

    2015-04-01

    Monitoring of lava-producing eruptions involves systematic measurement of flow field volumes, which in turn can be used to obtain average magma discharge over the period of observation. However, given inaccessibility to the interior parts of active lava fields, remote sensing techniques must be applied. Several satellite platforms provide data that can be geo-referenced, allowing area estimation. However, unless sterographic or tandem satellite data are available, the determination of thicknesses is non-trivial. The ongoing eruption ('Nornaeldar')at Dyngjusandurin the Icelandic highlands offers an opportunity to monitor the temporal and spatial evolution of a typical Icelandic lava flow field. The mode of emplacementis complex and includesboth horizontal and vertical stacking, inflation of lobes and topographic inversions. Due to the large extent of the flow field (>83 km2 on 5 Jan 2015, and still growing) and its considerable local variation in thickness (30 m) and surface roughness, obtaining robust quantification of lava thicknesses is very challenging,despite the lava is being emplaced onto a low-relief sandur plain. Creative methods have been implemented to obtain as reliable observation as possible into the third dimension: Next to areal extent measurements from satellites and maps generated with airborne synthetic-aperture radar (SAR), lava thickness profiles are regularly obtained by low-level flights with a fixed-wing aircraft that is equipped with a ground clearance radar coupled witha submeter DGPS,a system originally designed for monitoring surface changes of glaciers above geothermally active areas.The resulting radar profile data are supplemented by analyses of aerial photos and complemented by results from an array of ground based thickness measurement methods. The initial results indicate that average effusion ratewas ~200 m3/s in the first weeks of the eruption (end August, early September) but declined to 50-100 m3/s in November to December period

  10. Estimation of the lateral correlation structure of subsurface water content from surface-based ground-penetrating radar reflection images

    NASA Astrophysics Data System (ADS)

    Irving, James; Knight, Rosemary; Holliger, Klaus

    2009-12-01

    Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.

  11. Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2014-04-01

    The scanning Atmospheric Radiation Measurement (ARM) cloud radars (SACRs) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a suggested scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range-Height Indicator - CW-RHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Southern Great Plains and Cape Cod sites are post-processed (detection mask, gaseous attenuation correction, insect filtering and velocity de-aliasing). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimensions. Next the Cartesian-gridded Doppler velocity fields are decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith-pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D cloud dynamical representations up to 25-30 degrees off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics and anisotropy and lead to more realistic 3-D radiative transfer calculations.

  12. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  13. Investigations on the links between rain intensity or reflectivity structures estimated from radar and drop size distributions

    NASA Astrophysics Data System (ADS)

    Hachani, Sahar; Boudevillain, Brice; Bargaoui, Zoubeida; Delrieu, Guy

    2015-04-01

    During the first Special Observation Period (SOP) of the Hydrological cycle in the Mediterranean Experiment (HyMeX, www.hymex.org) held in fall 2012 in the Northwestern Mediterranean region, an observation network dedicated to rain studies was implemented in the Cévennes region, France. It was mainly constituted by weather radars, micro rain radars, disdrometers and rain gauges. Observations are performed by a network of 25 OTT Parsivel optical disdrometers distributed with inter-distances ranging from a few meters up to about one hundred kilometers. This presentation focuses on the comparison of one optical disdrometer observations located at Villeneuve-de-berg to observations using weather Météo-France / ARAMIS radar located at Bollène which is in a neighborhood of 60 km from the disdrometer.The period from September to November 2012 is studied. To analyze the structure of the rain observed by radar, a window of investigation centered on the disdrometer was selected and the mean spatial values, standard deviation, gradients, and intermittency of radar reflectivity or rainfall intensity were computed for a time step of 5 minutes.Four different windowsizes were analyzed: 1 km², 25 km², 100 km² and 400 km². On the other hand, the total concentration of drops Nt, the characteristic diameter of drops Dc, and a Gamma distribution shape parameter µ were estimated. Gamma distribution for the DSD related to disdrometer observations was estimated according to the modeling framework proposed by Yu et al. (2014). Correlation coefficient between intensity R obtained by the disdrometer and windowaverage R estimated using radar data is nearly 0.70 whatever the window. The highest value is found for the window 25 km² (0.74). Correlation coefficients between Dc and window average R vary from 0.35 for the window 1 km² to 0.4 for the window 400 km². So, they areweak and not sensitive to the choice of the window. Contrarily, formean radar reflectivityZ, correlation

  14. Flood disaster monitoring in Thailand by using a airborne L-band SAR: Polarimetric and interferometry Synthetic Aperture Radar with L-band(Pi-SAR-L)

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Sobue, S.; Shimada, M.; Ohyoshi, K.

    2012-04-01

    It was heavy rainfall around the northern region of Thailand from July to September 2011, which caused flood disaster to quite wide region of Thailand, it finally reached to the Bangkok central in the end of October 2011. Japan Aerospace Exploration Agency (JAXA) conducted an emergency observation by using a airborne L-band SAR: Polarimetric and interferometry Synthetic Aperture Radar with L-band(Pi-SAR-L) from 5th to 27th November to monitor flood area. Pi-SAR-L has a center frequency of 1271.5 MHz, a band width of 50 MHz, a slant range resolution of 3 m, and an acquisition swath of 15 km on the ground. Pi-SAR-L is boarded on an aircraft of the Gulfstream-II operated by the Diamond Air Service(DAS), Japan, and the Gulfstream-II was ferried to the Chieng-Mai airport in the North Thailand, from Japan. In our presentation, we will show flood area around Bangkok and its variations detected by Pi-SAR-L

  15. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  16. Surface reflectance measurements in the UV from an airborne platform. I

    NASA Technical Reports Server (NTRS)

    Doda, D. D.; Green, A. E. S.

    1980-01-01

    The reflectance of naturally occurring surfaces is measured from a twin engine Cessna 402B aircraft both spectrally (0.29-0.40 micron) with a compact double monochromator and broadband (0.29-1.2 micron) with a UV enhanced photodiode. The measurement system, which is computer controlled and electrically isolated from the aircraft, consists of upward and downward looking hemispheric diffusers, filters, a rotating 90 deg mirror, a focusing lens, and a double monochromator/PMT or the UV photodiode. Measurements are taken at several altitudes enabling the empirical determination of backscatter and attenuation effects on the reflectance. The results are presented for pine forest canopy, green farmland, open ocean, and brown farmland as a function of wavelength and altitude.

  17. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  18. A Computer Model for Bistatic Sea Surface Microwave Reflectivity

    DTIC Science & Technology

    2014-08-14

    surface for transmit and receive grazing angles less than 10 degrees and any relative geometry through 360 degrees. In the forward scatter region...microwave reflectivity of the sea surface. This report will only address low grazing angles, as encountered with shipboard radar systems, but include...both in-plane and out-of-plane geometries. Higher grazing angles as well as airborne or space- based radars will need additional models. In the

  19. Enhanced radar imaging of object with extrapolation of Fourier transform of space-limited reflectivity function

    NASA Astrophysics Data System (ADS)

    Zhao, Yi-Gong; Corsini, G.; Dalle Mese, E.

    The method of extrapolation of frequency data based on the finite size property of the Gerchberg-Papoulis algorithm is used to address the problem of radar image enhancement. The rate of convergence of the algorithm and the behavior of noise-affected data are discussed. Simulation results show that the convergence rate can be very slow, depending on the ratio of the amount of extrapolated data to that of observed data. This behavior is due to the eigenvalues of the system matrix close to 1.

  20. Goose Bay radar observations of Earth-reflected, atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Samson, J.C.; Greenwald, R.A.; Ruohoniemi, J.M.; Frey, A.; Baker, K.B. )

    1990-06-01

    In the late fall and early winter, The Johns Hopkins University HF radar at Goose Bay, Labrador, observes the effects of atmospheric gravity waves on radar transmissions that are obliquely reflected from the ionosphere and subsequently backscattered from the Earth's surface. The waves exist under a wide variety of geomagnetic conditions; however, they are particularly noticeable under quiet conditions (O {le} Kp {le} 1 +). The clearest signatures of the waves are spatially localized enhancements in the backscattered power and quasi-periodic fluctuations in the backscatter powers, Doppler velocities, and reflection heights. The waves are generally observed during daylight hours and propagate equatorward from regions of high-latitude ionospheric backscatter that are located near the ionospheric convection reversal boundary. The gravity waves appear to be generated just equatorward of the dayside flow-reversal boundary in the vicinity of the auroral electrojet at altitudes of 115 to 135 km and propagate approximately perpendicular to the boundary along azimuths ranging from 156{degree} to 180{degree}. The waves propagate obliquely downward through the lower atmosphere until they are reflected by the Earth's surface back into the upper atmosphere. The frequencies associated with these gravity waves cover the range of 0.3 to 0.6 mHz, with wavelengths of 300 to 500 km, and with average phase velocities of 110 to 180 m/s. The maximum phase speeds are 270 to 300 m/s, which is slightly less than the speed of sound in the lower atmosphere. Poleward-propagating gravity waves are sometimes observed under disturbed conditions when the polar cap and convection reversal boundary have expanded equatorward.

  1. Constraining mass-diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils

    NASA Astrophysics Data System (ADS)

    Fontaine, E.; Schwarzenboeck, A.; Delanoë, J.; Wobrock, W.; Leroy, D.; Dupuy, R.; Protat, A.

    2014-01-01

    In this study the density of hydrometeors in tropical clouds is derived from a combined analysis of particle images from 2-D-array probes and associated reflectivities measured with a Doppler cloud radar on the same research aircraft. The mass-diameter m(D) relationship is expressed as a power law with two unknown coefficients (pre-factor, exponent) that need to be constrained from complementary information on hydrometeors, where absolute ice density measurement methods do not apply. Here, at first an extended theoretical study of numerous hydrometeor shapes simulated in 3-D and arbitrarily projected on a 2-D plane allowed to constrain the temporal evolution of the exponent of the mass-diameter relationship with that of the exponent of the surface-diameter relationship that is measured by the 2-D-array probes. The pre-factor is then constrained from theoretical simulations of the radar reflectivities matching the measured reflectivities along the aircraft trajectory. The study has been performed as part of the Megha-Tropiques satellite project, where two types of mesoscale convective systems (MCS) have been investigated: (i) above the African Continent and (ii) above the Indian Ocean. In general, both mass-diameter coefficients (pre-factor and exponent) decrease with decreasing temperature, the decrease is more pronounced for oceanic MCS. The condensed water contents (CWC) calculated from particle size distributions (PSD) and m(D) also decrease with altitude while the concentrations of the hydrometeors increase with altitude. The calculated values of CWC are largest for continental MCS.

  2. Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen

    2015-01-01

    Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.

  3. Side looking radar calibration study

    NASA Technical Reports Server (NTRS)

    Edwards, W. D.

    1975-01-01

    Calibration of an airborne sidelooking radar is accomplished by the use of a model that relates the radar parameters to the physical mapping situation. Topics discussed include: characteristics of the transmitters; the antennas; target absorption and reradiation; the receiver and map making or radar data processing; and the calibration process.

  4. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  5. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  6. Use of borehole radar reflection logging to monitor steam-enhanced remediation in fractured limestone-results of numerical modelling and a field experiment

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.; Lane, J.W.

    2006-01-01

    Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature

  7. First observations of mesospheric dynamics with a partial reflection radar in Hawaii (22 deg N, 160 deg W)

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Isler, Joseph R.

    1992-01-01

    A partial-reflection MF radar was installed at the Pacific Missile Range Facility on Kanai, Hawaii in September 1990. The wind measurements obtained with this radar system in Hawaii during the first year of operation are reviewed. The data reveal a broad spectrum of motions ranging from a mix of the equatorial mesopause semiannual oscillation (MSAO) and the annual mean cycle at middle and high latitudes in the zonal mean structure to low-frequency, tidal, and gravity wave motions at higher frequencies. The zonal mean wind structure is characterized by a downward progression of strong eastward and westward phases of the MSAO from approximately January to July. An eastward maximum of about 60/ms near 80 km during January and February is found, which descends rapidly, and a westward maximum of about 50 ms near 85 km during March and April is found, which descends much more slowly. The second MSAO cycle is greatly suppressed relative to the first due to the reversal of the correlation between this and the annual cycle at higher latitudes from July to December.

  8. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.; Zhang, Fuqing

    2014-03-01

    the Pennsylvania State University (PSU) real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) that assimilates airborne Doppler radar observations, the sensitivity and uncertainty of forecasts initialized several days prior to landfall of Hurricane Sandy (2012) are assessed. The performance of the track and intensity forecasts of both the deterministic and ensemble forecasts by the PSU WRF-EnKF system show significant skill and are comparable to or better than forecasts produced by operational dynamical models, even at lead times of 4-5 days prior to landfall. Many of the ensemble members correctly capture the interaction of Sandy with an approaching midlatitude trough, which precedes Sandy's forecasted landfall in the Mid-Atlantic region of the United States. However, the ensemble reveals considerable forecast uncertainties in the prediction of Sandy. For example, in the ensemble forecast initialized at 0000 UTC 26 October 2012, 10 of the 60 members do not predict a United States landfall. Using ensemble composite and sensitivity analyses, the essential dynamics and initial condition uncertainties that lead to forecast divergence among the members in tracks and precipitation are examined. It is observed that uncertainties in the environmental steering flow are the most impactful factor on the divergence of Sandy's track forecasts, and its subsequent interaction with the approaching midlatitude trough. Though the midlatitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land.

  9. Dynamics and predictability of tropical cyclones evaluated through convection-permitting ensemble analyses and forecasts with airborne radar and sounding observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.

    The dynamics and predictability of various aspects of tropical cyclone track and intensity forecasting are explored through the use of real-time convection-permitting ensemble forecasts generated by a regional-scale model that employs advanced data assimilation techniques. Airborne Doppler radar observations, as well as sounding observations gathered during NASA's Hurricane and Severe Storm Sentinel (HS3) are assimilated and the resulting sensitivity and uncertainty of divergent track and intensity forecasts for three Atlantic tropical cyclones (TCs; Hurricane Sandy (2012), Hurricane Nadine (2012), and Hurricane Edouard (2014)) are explored. Ensemble members are separated into groups according to their performance and composite analyses and ensemble sensitivity techniques are employed to diagnose the sources of greatest sensitivity and uncertainty, as well as to dynamically explain the divergent behavior observed in the forecasts. The analysis of the Hurricane Sandy (2012) ensemble reveals that the divergent track forecasts result from differences in the location of Sandy that develop over the first 48-h of the simulation as a result of variance in the strength of the environmental winds that Sandy is embedded in throughout this period. Disparities in the strength and position of an approaching mid-latitude trough yield divergence in track forecasts of Hurricane Nadine (2012); an increased interaction between the mid-latitude system and the TC steers Nadine eastward, while a reduced interaction allows the TC to be steered westward ahead of the approaching trough. In addition, the inclusion of 6-h sea surface temperature (SST) updates considerably improves Nadine's intensity forecasts, highlighting the importance of accurate SST fields when simulating TCs embedded in marginally favorable environmental conditions. Finally, considerable variance in the rapid intensification (RI) onset time in the Hurricane Edouard (2014) ensemble results from small distinctions in the

  10. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

    PubMed

    Kwon, Cheol-Woong; Chirila, Madalina M; Lee, Taekhee; Harper, Martin; Rando, Roy J

    2013-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m(3); geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm(-1), whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm(-1), with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm(-1). The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%.

  11. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

    PubMed Central

    Kwon, Cheol-Woong; Chirila, Madalina M.; Lee, Taekhee; Harper, Martin; Rando, Roy J.

    2015-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m3; geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm−1, whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm−1, with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm−1. The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%. PMID:26526539

  12. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    NASA Technical Reports Server (NTRS)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  13. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  14. Constraining mass-diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils

    NASA Astrophysics Data System (ADS)

    Fontaine, E.; Schwarzenboeck, A.; Delanoë, J.; Wobrock, W.; Leroy, D.; Dupuy, R.; Gourbeyre, C.; Protat, A.

    2014-10-01

    In this study the density of ice hydrometeors in tropical clouds is derived from a combined analysis of particle images from 2-D-array probes and associated reflectivities measured with a Doppler cloud radar on the same research aircraft. Usually, the mass-diameter m(D) relationship is formulated as a power law with two unknown coefficients (pre-factor, exponent) that need to be constrained from complementary information on hydrometeors, where absolute ice density measurement methods do not apply. Here, at first an extended theoretical study of numerous hydrometeor shapes simulated in 3-D and arbitrarily projected on a 2-D plan allowed to constrain the exponent βof the m(D) relationship from the exponent σ of the surface-diameterS(D)relationship, which is likewise written as a power law. Since S(D) always can be determined for real data from 2-D optical array probes or other particle imagers, the evolution of the m(D) exponent can be calculated. After that, the pre-factor α of m(D) is constrained from theoretical simulations of the radar reflectivities matching the measured reflectivities along the aircraft trajectory. The study was performed as part of the Megha-Tropiques satellite project, where two types of mesoscale convective systems (MCS) were investigated: (i) above the African continent and (ii) above the Indian Ocean. For the two data sets, two parameterizations are derived to calculate the vertical variability of m(D) coefficients α and β as a function of the temperature. Originally calculated (with T-matrix) and also subsequently parameterized m(D) relationships from this study are compared to other methods (from literature) of calculating m(D) in tropical convection. The significant benefit of using variable m(D) relations instead of a single m(D) relationship is demonstrated from the impact of all these m(D) relations on Z-CWC (Condensed Water Content) and Z-CWC-T-fitted parameterizations.

  15. Goose Bay radar observations of earth-reflected atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Samson, J.C.

    1990-05-03

    An HF backscatter radar at Goose Bay, Labrador made it possible to observe irregularities in the distribution of ionospheric ionization at E and F region altitudes (100 - 600 km) in the high-latitude (65 - 85 deg Lambda) ionosphere. Recently it has been established that the passage of atmospheric gravity waves perturbs the ionosphere in ways that are readily detected in returns that reflect off the ionospheric layers. The particular strength of the technique lies in the nearly instantaneous measurement of gravity wave effects over large areas ( 1 million sq. km). With this information the propagation of gravity waves can be accurately modelled. Generally gravity waves are observed during daylight hours propagating away from the auroral electrojets. The propagation mode involves penetration of wave energy through the lower atmosphere and subsequent reflection by the earth's surface. The frequencies associated with the waves lie in the 0.4 - 0.6 mHz range and the wavelengths vary from 300 to 500 km. The excitation sources appear to lie in the vicinity of the high-latitude electrojets. In this paper we outline the analysis of gravity wave effects on HF propagation and present an example of a modelled gravity wave event.

  16. Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons

    NASA Technical Reports Server (NTRS)

    Sayres, D. S.; Smith, J. B.; Pittman, J. V.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Fridland, A. M.; Ackerman, A. S.

    2007-01-01

    In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches.

  17. An Intercomparison Between Radar Reflectivity and the IR Cloud Classification Technique for the TOGA-COARE Area

    NASA Technical Reports Server (NTRS)

    Carvalho, L. M. V.; Rickenbach, T.

    1999-01-01

    Satellite infrared (IR) and visible (VIS) images from the Tropical Ocean Global Atmosphere - Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) experiment are investigated through the use of Clustering Analysis. The clusters are obtained from the values of IR and VIS counts and the local variance for both channels. The clustering procedure is based on the standardized histogram of each variable obtained from 179 pairs of images. A new approach to classify high clouds using only IR and the clustering technique is proposed. This method allows the separation of the enhanced convection in two main classes: convective tops, more closely related to the most active core of the storm, and convective systems, which produce regions of merged, thick anvil clouds. The resulting classification of different portions of cloudiness is compared to the radar reflectivity field for intensive events. Convective Systems and Convective Tops are followed during their life cycle using the IR clustering method. The areal coverage of precipitation and features related to convective and stratiform rain is obtained from the radar for each stage of the evolving Mesoscale Convective Systems (MCS). In order to compare the IR clustering method with a simple threshold technique, two IR thresholds (Tir) were used to identify different portions of cloudiness, Tir=240K which roughly defines the extent of all cloudiness associated with the MCS, and Tir=220K which indicates the presence of deep convection. It is shown that the IR clustering technique can be used as a simple alternative to identify the actual portion of convective and stratiform rainfall.

  18. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  19. COMPARISON OF MILLIMETER-WAVE CLOUD RADAR MEASUREMENTS FOR THE FALL 1997 CLOUD IOP

    SciTech Connect

    SEKELSKY,S.M.; LI,L.; GALLOWAY,J.; MCINTOSH,R.E.; MILLER,M.A.; CLOTHIAUX,E.E.; HAIMOV,S.; MACE,G.; SASSEN,K.

    1998-03-23

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (35GHz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), (Moran, 1997), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), (Sekelsky, 1996), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air (Galloway, 1996), the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar (Clothiaux, 1995). In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  20. Airborne Particulate Matter (PM) filter analysis and modeling by Total reflection X-Ray Fluorescence (TXRF) and X-Ray Standing Wave (XSW)

    PubMed Central

    Borgese, L.; Salmistraro, M.; Gianoncelli, A; Zacco, A.; Lucchini, R.; Zimmerman, N.; Pisani, L.; Siviero, G.; Depero, L. E.; Bontempi, E.

    2011-01-01

    This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray Standing Wave (XSW) and Total reflection X-Ray Fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample; and to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XRW improve the accuracy of TXRF analysis. PMID:22284465

  1. Understanding the Relationships Between Lightning, Cloud Microphysics, and Airborne Radar-derived Storm Structure During Hurricane Karl (2010)

    NASA Technical Reports Server (NTRS)

    Reinhart, Brad; Fuelberg, Henry; Blakeslee, Richard; Mach, Douglas; Heymsfield, Andrew; Bansemer, Aaron; Durden, Stephen L.; Tanelli, Simone; Heymsfield, Gerald; Lambrigtsen, Bjorn

    2013-01-01

    This study explores relationships between lightning, cloud microphysics, and tropical cyclone (TC) storm structure in Hurricane Karl (16 September 2010) using data collected by the NASA DC-8 and Global Hawk (GH) aircraft during NASA's Genesis and Rapid Intensification Processes (GRIP) experiment. The research capitalizes on the unique opportunity provided by GRIP to synthesize multiple datasets from two aircraft and analyze the microphysical and kinematic properties of an electrified TC. Five coordinated flight legs through Karl by the DC-8 and GH are investigated, focusing on the inner-core region (within 50km of the storm center) where the lightning was concentrated and the aircraft were well coordinated. GRIP datasets are used to compare properties of electrified and nonelectrified inner-core regions that are related to the noninductive charging mechanism, which is widely accepted to explain the observed electric fields within thunderstorms. Three common characteristics of Karl's electrified regions are identified: 1) strong updrafts of 10-20ms21, 2) deep mixed-phase layers indicated by reflectivities.30 dBZ extending several kilometers above the freezing level, and 3) microphysical environments consisting of graupel, very small ice particles, and the inferred presence of supercooled water. These characteristics describe an environment favorable for in situ noninductive charging and, hence, TC electrification. The electrified regions in Karl's inner core are attributable to a microphysical environment that was conducive to electrification because of occasional, strong convective updrafts in the eyewall.

  2. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments.

  3. Radar Turbulence Estimates. Effects of Wind Shear and Reflectivity Factor Gradients.

    DTIC Science & Technology

    1985-02-01

    The analysis is described below. First, as with velocity (eq. 8), a linear variation of reflectivity factor in dBz (10 log Z) is used dBz -d-6. f Q, r ...i.... .... . - - r - - - -. •. V - p 21 -~ ~ /I( ____(18) A similar procedure, applying the same formulae, yields V°"" F (" " 1 H."- r ~ ’ 2 i... a distance, r , apart, i.e.: 12 -°-(1) and provides the turbulence energy dissipation rate (c) through the relation: DV (2) where C is a universal

  4. Intensity-Modulated Continuous-Wave Lidar Measurements of Surface Reflectance and Implications for CO2 Column Measurements: Results from 2013 ASCENDS Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Browell, E. V.; Harrison, F. W.; Dobler, J. T.; Lin, B.; Ismail, S.; Kooi, S. A.; Obland, M. D.

    2013-12-01

    Improved knowledge of the Earth's surface reflectance in the 1.57-micron spectral band is of particular importance for accurate Integrated Path Differential Absorption (IPDA) measurements and modeling of IPDA CO2 column measurements as required by the Active Sensing of CO2 Emission of Nights Days and Seasons (ASCENDS) Decadal Survey space mission. The Earth's surface albedo in the near-infrared portion of the spectrum is extremely low for snow and ice and for water under high wind conditions, and this can lead to degraded signal to noise ratios of surface reflectances and of IPDA CO2 column retrievals, requiring increased integration periods. This paper discusses the magnitude and variability of the surface reflectance and corresponding column CO2 measurements over snow measured using an intensity-modulated continuous-wave (IM-CW) laser absorption spectrometer (LAS), namely the Exelis Multi-function Fiber Laser Lidar (MFLL), during the winter 2013 ASCENDS airborne campaign. This LAS system is currently being evaluated by NASA Langley as the ASCENDS space mission prototype system. The surface reflectance measurements over snow and ice as well as over water collected during the 2013 winter DC-8 flight campaign were calibrated using surface reflectance data obtained over well-established satellite radiometric calibration sites such as Railroad Valley, Nevada and over other homogeneous desert sites in California and Arizona that have been used for similar calibrations on past ASCENDS airborne campaigns. Two separate flights targeting differences in surface reflectances between fresh and aged snow were conducted over the U.S. Central Plains and Colorado Rockies, respectively. From these measurements, the nominal surface reflectance of fresh snow (less than 1-2 days old; ~ 0.01/sr at 1.57 microns) was found to be approximately half that of aged snow (3-4 days old; ~ 0.02/sr) which is believed to be a result of increased absorption due to the snow water content. The

  5. Multifunction Radar for Airborne Applications.

    DTIC Science & Technology

    1986-07-01

    shown o Fiso of A1 %uba t array elements is selected for adaptation elements k n k nd k3 i iI. > apa - receivers are required for the main array output and...Tiefeunyproduct - 0. Time-frequenlcy product - 0. Time-frequency Product too,0 Iomlie repetitio tim - . Nrai eeiion time I Norma loa reptit.I. tme I Oftus...Iiton time - I Norma lie reeito tim i Nomlie reeito tme - # of pulse repeti tioms " of pulse repetitions IS 0 ofepulse rspetitiont Conmtdnt delay - 0

  6. Rain cell-based identification of the vertical profile of reflectivity as observed by weather radar and its use for precipitation uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    The wide scale implementation of weather radar systems over the last couple of decades has increased our understanding concerning spatio-temporal precipitation dynamics. However, the quantitative estimation of precipitation by these devices is affected by many sources of error. A very dominant source of error results from vertical variations in the hydrometeor size distribution known as the vertical profile of reflectivity (VPR). Since the height of the measurement as well as the beam volume increases with distance from the radar, for stratiform precipitation this results in a serious underestimation (overestimation) of the surface reflectivity while sampling within the snow (bright band) region. This research presents a precipitation cell-based implementation to correct volumetric weather radar measurements for VPR effects. Using the properties of a flipping carpenter square, a contour-based identification technique was developed, which is able to identify and track precipitation cells in real time, distinguishing between convective, stratiform and undefined precipitation. For the latter two types of systems, for each individual cell, a physically plausible vertical profile of reflectivity is estimated using a Monte Carlo optimization method. Since it can be expected that the VPR will vary within a given precipitation cell, a method was developed to take the uncertainty of the VPR estimate into account. As a result, we are able to estimate the amount of precipitation uncertainty as observed by weather radar due to VPR for a given precipitation type and storm cell. We demonstrate the possibilities of this technique for a number of winter precipitation systems observed within the Belgian Ardennes. For these systems, in general, the precipitation uncertainty estimate due to vertical reflectivity profile variations varies between 10-40%.

  7. Summary of flight tests of an airborne lighting locator system and comparison with ground-based measurements of precipitation and turbulence

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Crabill, N. L.

    1981-01-01

    Data from an airborne lightning locator system and data relating to storm intensity obtained by ground-based Doppler radars and the S-band research radar are presented. When comparing lightning locations from the airborne lightning locator system with ground-based Doppler radar measurements of reflectivity and spectrum width, the lightning locations tended to be further from the aircraft position than the Doppler radar contours, but at the same relative bearing from the aircraft as the Doppler contours. The results also show that convective storms generate little or no lightning for a significant part of their life cycle, but can produce at least moderate turbulence. Therefore, it is concluded that a lack of lightning activity cannot be accepted as an inference of a corresponding lack of other hazards to the flight of aircraft through convective storms.

  8. Quantifying the variability of surface reflectance and estimating canopy chlorophyll content and green leaf biomass using hyperspectral close-range data and airborne imagery

    NASA Astrophysics Data System (ADS)

    Razzaghi, Tarlan

    Advances in agricultural studies have benefited from the use of remote sensing in generating and analyzing datasets, efficiently. Remotely sensed images facilitate a diverse array of non-intrusive agricultural investigations including new approaches such as high-throughput phenotyping. This research examines the variability of surface reflectance and estimates two biophysical parameters associated with crops. The first goal of the project was to provide an estimation of reflectance variability within low-resolution satellite imagery. The quantified variability of intra-pixel spectral reflectance can then be used to determine the level of uncertainty in estimating biophysical characteristics of plants. The study revealed how the variability in a composite spectral signal emanating from a large pixel was influenced by crop type, phenological stage, and irrigation method. A second goal of this study was to examine algorithms developed using multi-temporal airborne hyperspectal imagery for estimation and mapping of canopy Chl content in irrigated and rainfed maize and soybean fields. The optimal spectral range for two conceptual models, Chlorophyll Index and Normalized Difference, were determined and calibrated for the spectral bands of AISA, Sentinel-2 MSI and Sentinel-3 OLCI sensors. The results showed that CI red edge model derived solely from airborne imagery was capable of accurately estimating canopy Chl in fields with different crop management practices, field history and climatic conditions. The spatial and temporal dynamics of canopy Chl content were elucidated for maize and soybean fields at different phenological stages and rainfall regimes. The final goal of this study was to evaluate the performance of several vegetation indices for estimating green leaf biomass (GLB) in maize and soybean fields using canopy reflectance collected at close-range and airborne imagery. It was determined that models containing red edge and near-infrared bands were capable of

  9. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  10. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  11. Regional-scale mineral mapping using ASTER VNIR/SWIR data and validation of reflectance and mineral map products using airborne hyperspectral CASI/SASI data

    NASA Astrophysics Data System (ADS)

    Jing, Cui; Bokun, Yan; Runsheng, Wang; Feng, Tian; Yingjun, Zhao; Dechang, Liu; Suming, Yang; Wei, Shen

    2014-12-01

    ASTER data have been widely and successfully used in lithological mapping and mineral exploration for decades. The errors due to atmospheric water vapor and the characteristics of the photoelectric sensor could lead to the anomalous characteristics of band 5 and 9 in the ASTER standard reflectivity product. These anomalies could result in the spectroscopic misidentification of minerals. This study proposed a simple method of atmospheric correction for converting radiance-at-sensor to ground reflectance. The ASTER VNIR/SWIR reflectance correction factor was derived to correct the spectral shape bias resulting from the radiometric calibration error using airborne hyperspectral CASI_SASI data. The ASTER VNIR/SWIR reflectance correction factor was derived to correct the spectral shape bias resulting from the radiometric calibration error. After applying the reflectance factor to the atmospheric-corrected ASTER L1B data, a band combination mapping method was proposed for identifying minerals more quickly and accurately. The results indicate that this method for atmospheric correction of ASTER data produces very good results in the arid and bare areas. It is still unknown whether the method is suitable for humid and rainy areas where atmospheric water vapor varies spatially more than in arid and bare areas. After applying the reflectance factor to the atmospheric-corrected ASTER L1B data, the mean error of all reflectance bands decreased from 0.0256 to 0.002, and the standard deviation decreased from 0.04251 to 0.0007. The errors of the 2/1, 5/6 and 9/8 band ratios decreased from 2.38%, 4.102%, and 4.28% to 1.26%, -0.162%, and 0.31%, respectively. The radiometric calibration error of the ASTER band 1-9 data can lead to the overestimation of kaolinite. A band index of 2/1 for retrieving Fe3+ cannot produce a reliable Fe3+ distribution map, and a new index should be developed.

  12. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    NASA Astrophysics Data System (ADS)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  13. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  14. High ice water content at low radar reflectivity near deep convection - Part 1: Consistency of in situ and remote-sensing observations with stratiform rain column simulations

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-10-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 °C. Power loss events commonly occur during flight through radar reflectivity (Ze) less than 20-30 dBZ and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-Ze regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 km), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 μm. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of Ze, mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  15. High ice water content at low radar reflectivity near deep convection - Part 1: Consistency of in situ and remote-sensing observations with stratiform rain column simulations

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-06-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 °C. Power loss events commonly occur during flight through radar reflectivity (Ze) less than 20-30 dBZ and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012 Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-Ze regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations circa 11 km, the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 μm. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of Ze, mean Doppler velocity, and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size distribution features in Part 2.

  16. Detection of target distance in the presence of an interfering reflection using a frequency-stepped double side-band suppressed carrier microwave radar system

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.; Marshall, Robert E.

    1991-01-01

    A technique for detecting the distance to a highly reflective target in the presence of an interesting reflection using a frequency-stepped double-sideband suppressed carrier (DSBSC) microwave-millimeter-wave radar system is analytically derived. The main result of the analysis shows that the measured group delays produced by the DSBSC system possess a periodicity inversely proportional to the difference between the time delays to the target and interferer, independent of the signal-to-interference ratio (SIR). Simulation results are presented in the context of electron plasma density range estimation using a block diagram communications CAD tool. A unique and accurate plasma model is introduced. A high-resolution spectral estimation technique based on an autoregressive time series analysis is applied to the measured group delays, and it is shown that accurate target distance estimates may be obtained, independent of SIR.

  17. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  18. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  19. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  20. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  1. Reflectance spectra from eutrophic Mono Lake California, measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Melack, John M.; Pilorz, Stuart H.

    1990-01-01

    An AVIRIS image was obtained for Mono Lake, California, on May 26, 1989, a day with excellent visibility. Atmospherically-corrected reflectance spectra derived from the image indicate a spectral signature for chlorophyll a, the dominant photosynthetic pigment in the phytoplankton of the lake. Chlorophyll a concentrations in the lake were about 22 mg/cu m, and the upwelling radiance was low with a peak reflectance at about 570 nm of about 5 percent. Coherent noise appeared in the image as regular variations of 0.1 to 0.2 microwatts/sq cm per str oriented diagonally to the flight line. A simple ratio of two spectral bands removed the conspicuous undulations, but modifications of the shielding within the instrument are needed to improve the signal especially over dark targets such as lakes.

  2. A note on the effect of reflected solar radiation on airborne and ground measurements in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Whitehead, V. S.

    1971-01-01

    The magnitude of thermal solar radiation reflected from water surfaces is considered. It is shown both theoretically and by field observation that, for instruments with small fields of view, the reflected thermal solar radiation can contribute significantly to the measured energy. Comparison of thermal scanner data taken from aircraft at a 16 deg azimuth angle from the mirror point of the sun over the open ocean with data taken at a 164 deg anzimuth angle from the mirror point of the sun at the same angle from nadir is indicative of a difference of 2.8 K in the equivalent black body radiation temperature. Observations taken from a surface vessel into sunglint 80 deg from nadir are indicative of an equivalent black body radiation temperature that is 34 K warmer than the temperature obtained at a similar nadir angle away from the sunglint.

  3. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  4. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  5. Airborne hyperspectral surface and cloud bi-directional reflectivity observations in the Arctic using a commercial, digital camera

    NASA Astrophysics Data System (ADS)

    Ehrlich, A.; Bierwirth, E.; Wendisch, M.; Herber, A.; Gayet, J.-F.

    2011-09-01

    Spectral radiance measurements by a digital single-lens reflex camera were used to derive the bi-directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the SMART-Albedometer showed an agreement within the uncertainties of both instruments. The bi-directional reflectivity in terms of the hemispherical directional reflectance factor HDRF was obtained for sea ice, ice free ocean and clouds. The sea ice, with an albedo of ρ = 0.96, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12). For the cloud observations with ρ = 0.62, the fog bow - a backscatter feature typically for scattering by liquid water droplets - was covered by the camera. For measurements above a heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF which clearly exhibits the fog bow has been estimated with about 50 images (10 min flight time). A representation of the HDRF as function of the scattering angle only reduces the image number to about 10 (2 min flight time). The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s-1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak fog bow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  6. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    USGS Publications Warehouse

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  7. Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Sheffner, E. J.; Linthicum, K. J.; Bailey, C. L.; Logan, T. M.; Kasischke, E. S.; Birney, K.; Njogu, A. R.; Roberts, C. R.

    1992-01-01

    Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat TM data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquite breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization SAR imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination between flooded and nonflooded sites in both sedge and short-grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.

  8. High-Resolution Rainfall From Radar Reflectivity and Terrestrial Rain Gages for use in Estimating Debris-Flow Susceptibility in the Day Fire, California

    NASA Astrophysics Data System (ADS)

    Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.

    2007-12-01

    Constraining the distribution of rainfall is essential to evaluating the post-fire mass-wasting response of steep soil-mantled landscapes. As part of a pilot early-warning project for flash floods and debris flows, NOAA deployed a portable truck-mounted Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) to the 2006 Day fire in the Transverse Ranges of Southern California. In conjunction with a dense array of ground- based instruments, including 8 tipping-bucket rain gages located within an area of 170 km2, this C-band mobile Doppler radar provided 200-m grid cell estimates of precipitation data at fine temporal and spatial scales in burned steeplands at risk from hazardous flash floods and debris flows. To assess the utility of using this data in process models for flood and debris flow initiation, we converted grids of radar reflectivity to hourly time-steps of precipitation using an empirical relationship for convective storms, sampling the radar data at the locations of each rain gage as determined by GPS. The SMART-R was located 14 km from the farthest rain gage, but <10 km away from our intensive research area, where 5 gages are located within <1-2 km of each other. Analyses of the nine storms imaged by radar throughout the 2006/2007 winter produced similar cumulative rainfall totals between the gages and their SMART-R grid location over the entire season which correlate well on the high side, with gages recording the most precipitation agreeing to within 11% of the SMART-R. In contrast, on the low rainfall side, totals between the two recording systems are more variable, with a 62% variance between the minimums. In addition, at the scale of individual storms, a correlation between ground-based rainfall measurements and radar-based rainfall estimates is less evident, with storm totals between the gages and the SMART-R varying between 7 and 88%, a possible result of these being relatively small, fast-moving storms in an unusually dry winter. The

  9. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  10. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ..., Airborne Weather Radar Equipment. The objective is to leverage the installation specific guidance from the... previously addressed as additional functionality added to TSO-C63c, Airborne Weather and Ground...

  11. ESA Cryovex 2011 Airborne Campaign for CRYOSAT-2 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Skourup, H.; Einarsson, I.; Sandberg, L.; Forsberg, R.; Stenseng, L.; Hendricks, S.; Helm, V.; Davidson, M.

    2011-12-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. DTU Space has been involved in ESA's CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done by comparing the radar and laser measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. We present an overview of the 2011 airborne campaign together with first results of the CryoSat-2 underflights.

  12. Multiple-wavelength radar perspectives of mixed-phase convective precipitation in MC3E

    NASA Astrophysics Data System (ADS)

    Nesbitt, S. W.; Gleicher, K. J.; Petersen, W. A.; Schwaller, M.

    2011-12-01

    During the NASA/DOE Midlatitude Continental Convective Clouds Experiment (MC3E), conducted in April-June 2011 near the Southern Great Plains (SGP) site in northern Oklahoma, multiple wavelength aircraft radar observations of a spectra of convective events were collected from ground based scanning and vertically pointing radars and airborne radars. Ground based radars ranged from W to S band (NASA NPOL dual-polarization (S), NASA D3R dual-polarization (Ku/Ka, DOE C-SAPR dual-polarization (C), DOE dual-polarization (X), DOE Ka/W-SACR dual polarization), while the NASA HIWRAP Ku/Ka band Doppler radar flew aboard the NASA ER-2 high altitude aircraft. In-situ microphysics were provided in weak convection from the University of North Dakota Citation aircraft. From an incoherent spaceborne radar perspective, in order to accurately attenuation-correct the profile of radar reflectivity and rainfall rate, it is important to distinguish amongst ice-phase, mixed-phase, and liquid precipitation in convection. In this study, we will investigate whether height (as is done for the Tropical Rainfall Measuring Mission precipitation radar), temperature, reflectivity, dual-frequency ratio, or other assumptions are best at delineating mixed phase precipitation in convection for application in TRMM and GPM measurements. Using D3R and HIWRAP measurements as a test bed, validation data in the form of spatiotemporally matched data sets from dual-polarization radar variables and hydrometeor identification at longer wavelengths, as well as in situ microphysics data will be used to discriminate mixed phase precipitation zones and as an attenuation reference to examine dual-frequency ratio methods for identification of mixed precipitation and attenuation correction in such zones. Statistical methods for evaluating and correcting single-frequency methods and assumptions in identifying mixed precipitation for TRMM applications will also be discussed.

  13. Simulation of TRMM Microwave Imager Brightness Temperature using Precipitation Radar Reflectivity for Convective and Stratiform Rain Areas over Land

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Rain is highly variable in space and time. In order to measure rainfall over global land with satellites, we need observations with very high spatial resolution and frequency in time. On board the Tropical Rainfall Measuring Mission (TRMM) satellite, the Precipitation Radar (PR) and Microwave Imager (TMI) are flown together for the purpose of estimating rain rate. The basic method to estimate rain from PR has been developed over the past several decades. On the other hand, the TMI method of rain estimation is still in the state development, particularly over land. The objective of this technical memorandum is to develop a theoretical framework that helps relate the observations made by these two instruments. The principle result of this study is that in order to match the PR observations with the TMI observations in convective rain areas, a mixed layer of graupel and supercooled water drops above the freezing level is needed. On the other hand, to match these observations in the stratiform region, a layer of snowflakes with appropriate densities above the freezing level, and a melting layer below the freezing level, are needed. This understanding can lead to a robust rainfall estimation technique from the microwave radiometer observations.

  14. A Study on Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    An important objective for the Dual-wavelength Ku-/Ka-band Precipitation Radar (DPR) that will be on board the Global Precipitation Measuring (GPM) core satellite, is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku- and Ka-bands, and the radar reflectivity factor at Ku-band, ZKu, for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu-DFR plane assuming that the snow follows the Gunn-Marshall size distribution (1958) and rain follows the Marshall-Palmer size distribution (1948). In an effort to verify the simulated results, the data collected by the Airborne Second Generation Precipitation Radar (APR-2) in the Wakasa Bay AMSR-E campaign are employed. Using the signatures of Linear Depolarization Ratio (LDR) at Ku-band, the APR-2 data can be easily divided into the regions of snow, mixed phase and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu-DFR plane. It has been found that in 90% of the cases, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of GPM DPR at Ku-band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

  15. CloudSat as a Global Radar Calibrator

    SciTech Connect

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  16. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  17. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  18. Monitoring of topographic changes in glacier ice and lava during the 2014-2015 Bárðarbunga unrest with airborne radar profiling

    NASA Astrophysics Data System (ADS)

    Högnadóttir, Thórdís; Gudmundsson, Magnús T.; Gudbjörnsson, Snæbjörn; Lárusson, Örnólfur; Magnússon, Eyjólfur; Pálsson, Finnur; Reynolds, Hannah I.; Oddsson, Björn

    2015-04-01

    The subsidence of the ice covered Bárðarbunga caldera, creation and evolution of ice cauldrons over the subglacial path of the lateral dyke, and the formation of a large lava to the north of the Vatnajökull glacier has called for repeated survey of the evolving ice and lava topography. For these measurements a system is used that was designed to monitor glacier surfaces, principally with the aim of detecting changes in subglacial geothermal activity, particularly at the ice-covered Katla and Grímsvötn calderas. The system is composed of ground clearance radar and a sub-meter differential GPS system aboard a Beech B200 Super King Air, two-engine survey aircraft. The system measures the aircraft position, elevation and air clearance four times a second, yielding surface elevation point readings at 15-20 m intervals. The absolute accuracy of the system is estimated 2-3 meters while the relative accuracy is 1-2 m along the profiles that are usually flown at an altitude of 80-120 m over the measured surface. During the ongoing unrest since August 2014, tasks that have been carried out using the aircraft profiling platform include: Survey of the: (i) shape, depth and volume of the subsidence bowl formed in the ice surface in the Bárðarbunga caldera since late August; (ii) shape, depth and volume of small cauldrons considered to have formed in minor, short-lived subglacial eruptions to the SE of the Bárðarbunga caldera and on three locations in the outlet glacier overlying the path of the dyke formed in the second part of August; (iii) evolution of three geothermal ice cauldrons located over the topographic rims of the Bárðarbunga caldera, (iv) mapping of the graben formed to the south of the volcanic fissure in Holuhraun, and (v) the topography of the new lava field. Many of the above tasks could possibly be carried out using satellite data, but the limited repeat rate, interfering cloud cover and short winter days, and timing of satellite overpasses restricts

  19. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  20. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  1. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  2. Investigation of the winds and electron concentration variability in the D region of the ionosphere by the partial-reflection radar technique

    NASA Technical Reports Server (NTRS)

    Weiland, R. M.; Bowhill, S. A.

    1981-01-01

    The development and first observations of the partial-reflection drifts experiment at Urbana, Illinois (40 N) are described. The winds data from the drifts experiment are compared with electron concentration data obtained by the differential-absorption technique to study the possible meteorological causes of the winter anomaly in the mesosphere at midlatitudes. winds data obtained by the meteor-radar experiment at Urbana are also compared with electron concentration data measured at Urban. A significant correlation is shown is both cases between southward winds and increasing electron concentration measured at the same location during winter. The possibility of stratospheric/mesospheric coupling is investigated by comparing satellite-measured 0.4 mbar geopotential data with mesospheric electron concentration data. No significant coupling was observed. The winds measured at Saskatoon, Saskatchewan (52 N) are compared with the electron concentrations measured at Urban, yielding constant fixed relationship, but significant correlations for short segments of the winter. A significant coherence is observed at discrete frequencies during segments of the winter.

  3. Examining the Vertical Structure of Clouds Systems in CAM5 Using Simulated Cloudsat Radar Reflectivities with Estimated Uncertainties from Precipitation Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.; Ma, H. Y.

    2014-12-01

    Climate models have difficulties in correctly simulating clouds and precipitation. It is critical to know the internal structure of clouds and precipitation since it is the vertical distribution of condensate that determines the characteristics of the cloud radiative forcing and lends insight into the vertical structure of condensation heating, which have large impact on the evolution of cloud systems. Cloudsat and CALIPSO provide the unprecedented data that allow us to look at detailed cloud and precipitation structures. In this study, we examine the vertical distribution of clouds and precipitation in CAM5 using simulated CloudSat radar reflectivities. Our focus is to evaluate how well the model simulated clouds over several different important cloud regimes and estimate the effects of simulator uncertainties from precipitation sub-column distribution. The selected regimes include TWP, Southern Ocean, and Australian stratus region. The impacts of different assumptions used to assign precipitation to sub-columns are examined, and the uncertainties from precipitation distribution are analyzed. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Haynes, M.

    2015-12-01

    The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.

  5. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  6. High Ice Water Content at Low Radar Reflectivity near Deep Convection: Part II. Evaluation of Microphysical Pathways in Updraft Parcel Simulations

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.

    2015-01-01

    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present; these conditions are encountered almost exclusively in the vicinity of deep convection. Part 1 (Fridlind et al., 2015) of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 C, and concludes that the measured ice particle size distributions are broadly consistent with past literature with profiling radar measurements of Z(sub e) and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions, the Airbus measurements generally indicate variable IWC that often exceeds 2 gm (exp -3) with relatively uniform mass median area-equivalent diameter (MMD(sub eq) of 200-300 micrometers. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMD(sub eq) than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of the production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice-multiplication source strength increases and as competition for water vapor increases. Both mass and modal

  7. High ice water content at low radar reflectivity near deep convection - Part 2: Evaluation of microphysical pathways in updraft parcel simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.

    2015-06-01

    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present, encountered almost exclusively in the vicinity of deep convection. Part 1 of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 °C, and concludes that the measured ice particle size distributions are broadly consistent with past literature and with profiling radar measurements of Ze and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions the Airbus measurements generally indicate variable IWC that often exceeds 2 g m-3 with relatively uniform mass median area-equivalent diameter (MMDeq) of 200-300 μm. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMDeq than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 °C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice multiplication source strength increases and as competition for water vapor increases. Both mass and modal diameter are reduced by entrainment and by increasing aerosol concentrations

  8. High ice water content at low radar reflectivity near deep convection - Part 2: Evaluation of microphysical pathways in updraft parcel simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.

    2015-10-01

    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present; these conditions are encountered almost exclusively in the vicinity of deep convection. Part 1 (Fridlind et al., 2015) of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 °C, and concludes that the measured ice particle size distributions are broadly consistent with past literature with profiling radar measurements of Ze and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions, the Airbus measurements generally indicate variable IWC that often exceeds 2 g m-3 with relatively uniform mass median area-equivalent diameter (MMDeq) of 200-300 μm. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMDeq than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 °C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of the production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice-multiplication source strength increases and as competition for water vapor increases. Both mass and modal diameter are reduced by

  9. Radar Studies of Aviation Hazards

    DTIC Science & Technology

    1994-05-31

    4. TITLE AND SURTITLE S. FUNDING NUMBERS RADAR STUDIES OF AVIATION HAZARDS F1 9628-93- C -0054 _____________ __PE63707F 6. AUTHOR(S) PR278 1...foilowing processing steps have been adopted: a. acquire single scan radar data, b. distinguish individual storms, c . eliminate spurious data for...occurred only with radar reflectivities above 40 dBZ at the -10° C level and cloud tops above the -200C level. Lightning occurred only when tops extended

  10. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  11. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  12. Analysis of Vertical Profiles of Reflectivity and Doppler Velocity from ER2-HIWRAP in Convective Clouds During MC3E

    NASA Astrophysics Data System (ADS)

    Tian, L.; Heymsfield, G. M.; Liao, L.; Meneghini, R.; Grecu, M.

    2013-12-01

    Retrieval of precipitation in mixed-phase region in convection over land is a challenging problem in GPM DPR algorithm. Dual-wavelength (Ku/Ka band) airborne radar observations from the NASA's ER2-HIWRAP radar system in deep convections during MC3E provide observations that can be used to test assumptions in the algorithm for retrievals in the mixed-phase region. In this study, we use the reflectivity and Doppler velocity from ER2-HIWRAP, and Zh and ZDR from ground-based polarimetric radar to show that the present of mixed-phased hydrometeor (e.g., water-coated hail/graupel) produces a scattering signature similar to the bright band in stratiform rain. Such signature may be used to identify the mixed phased region in deep convective storm. We will also discuss implications of using this information for the GPM radar and radiometer retrieval algorithms.

  13. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  14. Synthetic aperture radar processing with tiered subapertures

    SciTech Connect

    Doerry, A.W.

    1994-06-01

    Synthetic Aperture Radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the Discrete Fourier Transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged, and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are Polar Format processing, and Overlapped Subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized Tiered Subaperture (TSA) techniques that are a superset of both Polar Format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

  15. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  16. The study of fresh-water lake ice using multiplexed imaging radar

    USGS Publications Warehouse

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  17. Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica

    NASA Astrophysics Data System (ADS)

    Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a

  18. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  19. Airborne Radar Search for Diesel Submarines

    DTIC Science & Technology

    2005-12-15

    Agency, 1995. CASA, Flight Manual to Operators CASA 212 S43 Aircraft, Spain. Comando Naval de Operaciones , Venezuelan Navy, Manual de Doctrina de...Empleo del Comando de la Aviaci6n Naval (MAN-DC-CNAOP-0004), 2001. Comando Naval de Operaciones Venezuelan Navy. Observatorio Naval Cajigal, Aguas Marinas

  20. Enhanced Capabilities of Advanced Airborne Radar Simulation.

    DTIC Science & Technology

    1996-01-01

    RCF UNIX-Based Machine 65 BAUHAUS A-l Illustrations to Understand How GTD Files are Read 78 C-l Input File for Sidelobe Jammer Nulling...on the UNIX-based machine BAUHAUS are provided to illustrate the enhancements in run time, as compared to the original version of the simulation [1...Figure 27 presents some CPU run times for executing the enhanced simulation on the RCF UNIX-based machine BAUHAUS . The run times are shown only for

  1. Airborne Sense and Avoid Radar Panel

    DTIC Science & Technology

    2014-10-01

    land and crop surveys, aerial photography , and critical infrastructure protection—their widespread usage within the National Airspace System is...RFIC) developed for the ABSAA panel enable state-of-the- art performance by providing two indepen- dent channels for the amplification, the phase

  2. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  3. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  4. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  5. Simultaneous dual-band radar development

    NASA Technical Reports Server (NTRS)

    Liskow, C. L.

    1974-01-01

    Efforts to design and construct an airborne imaging radar operating simultaneously at L band and X band with an all-inertial navigation system in order to form a dual-band radar system are described. The areas of development include duplex transmitters, receivers, and recorders, a control module, motion compensation for both bands, and adaptation of a commercial inertial navigation system. Installation of the system in the aircraft and flight tests are described. Circuit diagrams, performance figures, and some radar images are presented.

  6. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  7. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  8. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  9. Radar-derived hydrological conditions beneath Evans Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Ashmore, D. W.; Bingham, R. G.; Hindmarsh, R. C.

    2012-12-01

    Airborne ice-penetrating radar (radio-echo sounding) is the most efficient method for investigating subglacial environments across polar ice-sheets. Theoretically, analyses of the shape and amplitude of the basal reflector can yield physical information on subglacial conditions. Most notably, due to the high relative permittivity of liquid water a high amplitude reflection indicates a temperate (unfrozen) bed, whose diagnosis is pertinent for understanding controls on ice dynamics and, in particular, tributary and fast-flow phenomena. However exploiting datasets in this way remains difficult as consistent algorithms for the quantitative analysis of basal reflectors are yet to be established, with perhaps the greatest difficulty being posed by characterising how the ice itself attenuates the radar signal. Here we consider the above problem using airborne ice-penetrating radar data acquired over Evans Ice Stream, West Antarctica, in 2006/07, using the British Antarctic Survey 150 MHz centre-frequency radar (PASIN). Evans Ice Stream drains a significant portion of the Weddell Sea Sector of West Antarctica and remains comparatively understudied. Five distinct tributaries converge in a large steep-sided basin to form a wide and fast flowing trunk which flows to a sinuous and tidally influenced grounding line. We discuss the analysis of the peak amplitude of the basal reflection, a specularity proxy and the application of an englacial attenuation correction using temperatures from a 3D numerical model. Coupled with qualitative indicators of subglacial conditions we suggest the spatial variability of basal conditions and discuss the associated sources of potential error.

  10. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  11. Comparison of Radar Rainfall Retrieval Algorithms in Convective Rain During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Haddad, Z. S.

    1998-01-01

    The authors compare deterministic and stochastic rain-rate retrieval algorithms by applying them to 14-GHz nadir-looking airborne radar reflectivity profiles acquired in tropical convective rain during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, The deterministic algorithms both use the path-integrated attenuation (PIA), measured by the surface reference technique, as a constraint. One deterministic algorithm corrects the k-R relation, while the second corrects the Z-R relation. The stochastic algorithms are based on applying an extended Kalman filter to the reflectivity profile. One employs radar reflectivity only; the other additionally uses the PIA. The authors find that the stochastic algorithm, which uses the PIA, is the most robust algorithm with regard to incorrect assumptions about the drop size distribution (DSD). The deterministic algorithm that uses the PIA to adjust the Z-R relation is also fairly robust and produces rain rates similar to the stochastic algorithm that uses the PIA, The deterministic algorithm that adjusts only the k-R relation and the stochastic radar-only algorithm are more sensitive to assumptions about the DSD. It is likely that they underestimate convective rainfall, especially if the DSD is erroneously assumed to be appropriate for stratiform rain conditions.

  12. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo

  13. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    pulse-limited radar altimeter that has a footprint that varies from a few meters to a few tens of meters depending on altitude and roughness of the reflective surface. Intercalibration of the two instruments was accomplished at leads in the ice and by multiple over-flights of four radar corner-cubes set ~ 2 m above the snow along the ground-truth line. Direct comparison of successive flights of the ground-truth line to flights done in a grid pattern over and adjacent to the line was complicated by the ~ 20-30 m drift of the ice-floe between successive flight-lines. This rapid ice movement required the laser and radar data be translated into an ice-fixed, rather than a geographic reference frame. This was facilitated by geodetic GPS receiver measurements at the ice-camp and Pt. Barrow. The NRL data set, in combination with the ground-truth line and submarine upward-looking sonar data, will aid in understanding the error budgets of our systems, the ICEBRIDGE airborne measurements (also flown over the ground-truth line), and the CRYOSAT-2 data over a wide range of ice types.

  14. Low-brightness quantum radar

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2015-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramatically increase the performance of a wide variety of classical information processing devices. These advances in quantum information science have had a considerable impact on the development of standoff sensors such as quantum radar. In this paper we analyze the theoretical performance of low-brightness quantum radar that uses entangled photon states. We use the detection error probability as a measure of sensing performance and the interception error probability as a measure of stealthiness. We compare the performance of quantum radar against a coherent light sensor (such as lidar) and classical radar. In particular, we restrict our analysis to the performance of low-brightness standoff sensors operating in a noisy environment. We show that, compared to the two classical standoff sensing devices, quantum radar is stealthier, more resilient to jamming, and more accurate for the detection of low reflectivity targets.

  15. Radar Image with Color as Height, Ancharn Kuy, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Ancharn Kuy, Cambodia, was taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR). The image depicts an area northwest of Angkor Wat. The radar has highlighted a number of circular village mounds in this region, many of which have a circular pattern of rice fields surrounding the slightly elevated site. Most of them have evidence of what seems to be pre-Angkor occupation, such as stone tools and potsherds. Most of them also have a group of five spirit posts, a pattern not found in other parts of Cambodia. The shape of the mound, the location in the midst of a ring of rice fields, the stone tools and the current practice of spirit veneration have revealed themselves through a unique 'marriage' of radar imaging, archaeological investigation, and anthropology.

    Ancharn Kuy is a small village adjacent to the road, with just this combination of features. The region gets slowly higher in elevation, something seen in the shift of color from yellow to blue as you move to the top of the image.

    The small dark rectangles are typical of the smaller water control devices employed in this area. While many of these in the center of Angkor are linked to temples of the 9th to 14th Century A.D., we cannot be sure of the construction date of these small village tanks. They may pre-date the temple complex, or they may have just been dug ten years ago!

    The image dimensions are approximately 4.75 by 4.3 kilometers (3 by 2.7 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches) wavelength radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color; that is going from blue to red to yellow to green and back to blue again; corresponds to 10 meters (32.8 feet) of elevation change.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif

  16. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  17. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    NASA Technical Reports Server (NTRS)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar

  18. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  19. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  20. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  1. An X-Band Radar Terrain Feature Detection Method for Low-Altitude SVS Operations and Calibration Using LiDAR

    NASA Technical Reports Server (NTRS)

    Young, Steve; UijtdeHaag, Maarten; Campbell, Jacob

    2004-01-01

    To enable safe use of Synthetic Vision Systems at low altitudes, real-time range-to-terrain measurements may be required to ensure the integrity of terrain models stored in the system. This paper reviews and extends previous work describing the application of x-band radar to terrain model integrity monitoring. A method of terrain feature extraction and a transformation of the features to a common reference domain are proposed. Expected error distributions for the extracted features are required to establish appropriate thresholds whereby a consistency-checking function can trigger an alert. A calibration-based approach is presented that can be used to obtain these distributions. To verify the approach, NASA's DC-8 airborne science platform was used to collect data from two mapping sensors. An Airborne Laser Terrain Mapping (ALTM) sensor was installed in the cargo bay of the DC-8. After processing, the ALTM produced a reference terrain model with a vertical accuracy of less than one meter. Also installed was a commercial-off-the-shelf x-band radar in the nose radome of the DC-8. Although primarily designed to measure precipitation, the radar also provides estimates of terrain reflectivity at low altitudes. Using the ALTM data as the reference, errors in features extracted from the radar are estimated. A method to estimate errors in features extracted from the terrain model is also presented.

  2. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  3. RADAR WARNING SYSTEM,

    DTIC Science & Technology

    RADAR TRACKING, *AIRCRAFT DEFENSE SYSTEMS, RADAR EQUIPMENT, AIR TO AIR, SEARCH RADAR, GUIDED MISSILES, HIGH SPEED BOMBING, EARLY WARNING SYSTEMS, FIRE CONTROL SYSTEM COMPONENTS, AIRCRAFT, TIME, CHINA.

  4. Mars Radar Observations with the Goldstone Solar System Radar

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Larsen, K. W.; Arvidson, R. E.; Slade, M. A.

    2002-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, radar data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The radar data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler radar tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.

  5. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  6. External calibration technique of millimeter-wave cloud radar

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  7. MST radar detection of middle atmosphere tides

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1983-01-01

    Meteorological and dynamical requirements pertaining to the specification of middle atmosphere tides by the MST radar technique are outlined. Major issues addressed include: (1) the extraction of tidal information from measurements covering a fraction of a day; (2) the ramifications of transient effects (tidal variability) on the determination and interpretation of tides; (3) required temporal and spatial resolutions and; (4) global distributions of MST radars, so as to complement existing MST, meteor wind, and partial reflection drift radar locations.

  8. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  9. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Cambodia's Angkor region, taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR), reveals a temple (upper-right) not depicted on early 19th Century French archeological survey maps and American topographic maps. The temple, known as 'Sman Teng,' was known to the local Khmer people, but had remained unknown to historians due to the remoteness of its location. The temple is thought to date to the 11th Century: the heyday of Angkor. It is an important indicator of the strategic and natural resource contributions of the area northwest of the capitol, to the urban center of Angkor. Sman Teng, the name designating one of the many types of rice enjoyed by the Khmer, was 'discovered' by a scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., working in collaboration with an archaeological expert on the Angkor region. Analysis of this remote area was a true collaboration of archaeology and technology. Locating the temple of Sman Teng required the skills of scientists trained to spot the types of topographic anomalies that only radar can reveal.

    This image, with a pixel spacing of 5 meters (16.4 feet), depicts an area of approximately 5 by 4.7 kilometers (3.1 by 2.9 miles). North is at top. Image brightness is from the P-band (68 centimeters, or 26.8 inches) wavelength radar backscatter, a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 25 meters (82 feet) of elevation change, so going from blue to red to yellow to green and back to blue again corresponds to 25 meters (82 feet) of elevation change.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data

  10. Radar Image with Color as Height, Nokor Pheas Trapeng, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nokor Pheas Trapeng is the name of the large black rectangular feature in the center-bottom of this image, acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Its Khmer name translates as 'Tank of the City of Refuge'. The immense tank is a typical structure built by the Khmer for water storage and control, but its size is unusually large. This suggests, as does 'city' in its name, that in ancient times this area was far more prosperous than today.

    A visit to this remote, inaccessible site was made in December 1998. The huge water tank was hardly visible. From the radar data we knew that the tank stretched some 500 meters (1,640 feet) from east to west. However, between all the plants growing on the surface of the water and the trees and other vegetation in the area, the water tank blended with the surrounding topography. Among the vegetation, on the northeast of the tank, were remains of an ancient temple and a spirit shrine. So although far from the temples of Angkor, to the southeast, the ancient water structure is still venerated by the local people.

    The image covers an area approximately 9.5 by 8.7 kilometers (5.9 by 5.4 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches) wavelength radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 20 meters (65.6 feet) of elevation change; that is, going from blue to red to yellow to green and back to blue again corresponds to 20 meters (65.6 feet) of elevation change.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate

  11. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature

    NASA Astrophysics Data System (ADS)

    Austin, Richard T.; Heymsfield, Andrew J.; Stephens, Graeme L.

    2009-04-01

    A new remote sensing retrieval of ice cloud microphysics has been developed for use with millimeter-wave radar from ground-, air-, or space-based sensors. Developed from an earlier retrieval that used measurements of radar reflectivity factor together with a priori information about the likely cloud targets, the new retrieval includes temperature information as well to assist in determining the correct region of state space, particularly for those size distribution parameters that are less constrained by the radar measurements. These algorithms have served as the ice cloud retrieval algorithms in Releases 3 and 4 of the CloudSat 2B-CWC-RO Standard Data Product. Several comparison studies have been performed on the previous and current retrieval algorithms: some involving tests of the algorithms on simulated radar data (based on actual cloud probe data or cloud resolving models) and others featuring statistical comparisons of the R04 2B-CWC-RO product (current algorithm) to ice cloud mass retrievals by other spaceborne, airborne, and ground-based instruments or alternative algorithms using the same CloudSat radar data. Comparisons involving simulated radar data based on a database of cloud probe data showed generally good performance, with ice water content (IWC) bias errors estimated to be less than 40%. Comparisons to ice water content and ice water path estimates by other instruments are mixed. When the comparison is restricted to different retrieval approaches using the same CloudSat radar measurements, CloudSat R04 results generally agree with alternative IWC retrievals for IWC < 1000 mg m-3 at altitudes below 12 km but differ at higher ice contents and altitudes, either exceeding other retrievals or falling within a spread of retrieval values. Validation and reconciliation of all these approaches will continue to be a topic for further research.

  12. Partly cloudy with a chance of migration: Weather, radars, and aeroecology

    USGS Publications Warehouse

    Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.

    2012-01-01

    Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.

  13. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  14. Ground-Based Deep-Penetrating Radar Studies Along The US-ITASE Traverse

    NASA Astrophysics Data System (ADS)

    Jacobel, R. W.; Welch, B. C.; Bills, M. T.; Engle, T. J.

    2003-12-01

    In recent years airborne geophysical surveys have provided high-quality data over selected portions of the West Antarctic Ice Sheet (WAIS). Coupled with new information at visible and radar wavelengths from satellite sensors, these surveys have greatly enhanced our understanding of the dynamics of the WAIS. Until recently, ground-based radar studies have generally been limited to more localized areas and small-scale ice dynamics problems where they provide greater spatial resolution than airborne surveys, often with higher definition (S/N) of imaged features. During the past four years, the US-ITASE platform has provided an opportunity for ground-based deep radar profiling over several thousand kilometers of the WAIS and portions of the East Antarctic Ice Sheet, including more detailed studies of selected sites where ice cores have been drilled. These traverses have enabled us to produced high definition images of bedrock and internal stratigraphy on a continental scale, combining attributes of both airborne and ground-based surveys. We have developed a ruggedized impulse-based radar system to withstand the physical demands of a heavy vehicle traverse at speeds up to 15 Km/hr and also obtain data with high spatial resolution along-track and high definition of internal reflectors. Operating at a center frequency of 3 MHz this system utilizes a 14 bit A/D board at digitizing rates of 100 MHz and records stacked waveforms depicting bedrock and ice internal reflections approximately every 15 meters of surface travel. Surface coordinates are obtained from precision GPS measurements which together with the high data density enable us to migrate profile sections to correctly image steeply-dipping reflectors. We present here a sample of results from over 2000 km of profiles completed during the 2001-2003 field seasons, including routes from Byrd Station toward Siple Station and Byrd to South Pole. In addition to the bedrock record that identifies a number of new regions of

  15. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  16. Combined synthetic aperture radar/Landsat imagery

    NASA Technical Reports Server (NTRS)

    Marque, R. E.; Maurer, H. E.

    1978-01-01

    This paper presents the results of investigations into merging synthetic aperture radar (SAR) and Landsat multispectral scanner (MSS) images using optical and digital merging techniques. The unique characteristics of airborne and orbital SAR and Landsat MSS imagery are discussed. The case for merging the imagery is presented and tradeoffs between optical and digital merging techniques explored. Examples of Landsat and airborne SAR imagery are used to illustrate optical and digital merging. Analysis of the merged digital imagery illustrates the improved interpretability resulting from combining the outputs from the two sensor systems.

  17. Radar monitoring of oil pollution

    NASA Technical Reports Server (NTRS)

    Guinard, N. W.

    1970-01-01

    Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.

  18. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  19. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  20. Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions

    NASA Technical Reports Server (NTRS)

    Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.

    2000-01-01

    This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.

  1. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  2. Structural geologic interpretations from radar imagery

    USGS Publications Warehouse

    Reeves, Robert G.

    1969-01-01

    Certain structural geologic features may be more readily recognized on sidelooking airborne radar (SLAR) images than on conventional aerial photographs, other remote sensor imagery, or by ground observations. SLAR systems look obliquely to one or both sides and their images resemble aerial photographs taken at low sun angle with the sun directly behind the camera. They differ from air photos in geometry, resolution, and information content. Radar operates at much lower frequencies than the human eye, camera, or infrared sensors, and thus "sees" differently. The lower frequency enables it to penetrate most clouds and some precipitation, haze, dust, and some vegetation. Radar provides its own illumination, which can be closely controlled in intensity and frequency. It is narrow band, or essentially monochromatic. Low relief and subdued features are accentuated when viewed from the proper direction. Runs over the same area in significantly different directions (more than 45° from each other), show that images taken in one direction may emphasize features that are not emphasized on those taken in the other direction; optimum direction is determined by those features which need to be emphasized for study purposes. Lineaments interpreted as faults stand out on radar imagery of central and western Nevada; folded sedimentary rocks cut by faults can be clearly seen on radar imagery of northern Alabama. In these areas, certain structural and stratigraphic features are more pronounced on radar images than on conventional photographs; thus radar imagery materially aids structural interpretation.

  3. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  4. First radar echoes from cumulus clouds

    NASA Technical Reports Server (NTRS)

    Knight, Charles A.; Miller, L. J.

    1993-01-01

    In attempting to use centimeter-wavelength radars to investigate the early stage of precipitation formation in clouds, 'mantle echoes' are rediscovered and shown to come mostly from scattering by small-scale variations in refractive index, a Bragg kind of scattering mechanism. This limits the usefulness of single-wavelength radar for studies of hydrometeor growth, according to data on summer cumulus clouds in North Dakota, Hawaii, and Florida, to values of reflectivity factor above about 10 dBZe with 10-cm radar, 0 dBZe with 5-cm radar, and -10 dBZe with 3-cm radar. These are limits at or above which the backscattered radar signal from the kinds of clouds observed can be assumed to be almost entirely from hydrometeors or (rarely) other particulate material such as insects. Dual-wavelength radar data can provide the desired information about hydrometeors at very low reflectivity levels if assumptions can be made about the inhomogeneities responsible for the Bragg scattering. The Bragg scattering signal itself probably will be a useful way to probe inhomogeneities one-half the radar wavelength in scale for studying cloud entrainment and mixing processes. However, this use is possible only before scattering from hydrometeors dominates the radar return.

  5. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    NASA's Global Hawk aircraft (AV1)has two microwave sensors: the passive Hurricane Imaging Radiometer (HIRAD), and the active High-altitude Imaging Wind and Rain Airborne Profiler(HIWRAP). Results are presented for a rain measurement validation opportunity that occurred in 2013, when the AV1 flew over a tropical squall-line that was simultaneously observed by the Tampa NEXRAD radar. During this experiment, Global Hawk made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD performed volume scans every 5 minutes. In this poster, the three-way inter-comparison of HIRAD Tb (base temperature), HIWRAP dbZ (decibels relative to equivalent reflectivity) and NEXRAD rain rate imagery are presented. Also, observed HIRAD Tbs are compared with theoretical radiative transfer model results using HIWRAP Rain Rates.

  6. Laboratory demonstration of an effective range sidelobe suppression technique for spaceborne rain radars

    NASA Astrophysics Data System (ADS)

    Im, E.; Tanner, A.; Wilson, W.; Denning, R.; Durden, S.; Li, F.

    A 13.8 GHz linear frequency-modulated pulse compression radar electronics system for spaceborne and airborne radar rain mapping applications has been built and tested. Preliminary test results indicate that the far range sidelobes can be suppressed to the desired -60 B level in the laboratory environment.

  7. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  8. Laboratory demonstration of an effective range sidelobe suppression technique for spaceborne rain radars

    NASA Technical Reports Server (NTRS)

    Im, E.; Tanner, A.; Wilson, W.; Denning, R.; Durden, S.; Li, F.

    1991-01-01

    A 13.8 GHz linear frequency-modulated pulse compression radar electronics system for spaceborne and airborne radar rain mapping applications has been built and tested. Preliminary test results indicate that the far range sidelobes can be suppressed to the desired -60 B level in the laboratory environment.

  9. NASA's DC-8 With Rain Mapping Radar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In a joint venture between NASA and Japan's NASDA, scientists have been using satellites, airplanes, and boats to measure rain physics in and under thunderstorms over open water. This Quick Time movie shows NASA's DC-8 jet with the instruments like the airborne rain mapping radar, i.e., the Advanced Microwave Precipitation Radiometer (AMPR) and a lightening imaging sensor. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  10. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  11. Investigating subglacial landscapes and crustal structure of the Gamburtsev Province in East Antarctica with the aid of new airborne gravity data

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Studinger, M.; Bell, R. E.; Damaske, D.; Elieff, S.; Finn, C.; Braaten, D. A.; Corr, H.

    2009-12-01

    The AGAP project was undertaken as part of the 2008\\09 field season and explored the Gamburtsev Subglacial Mountains (GSM) province in East Antarctica. AGAP collected >120, 000 line km of new airborne radar, aerogravity and aeromagnetic data. Here we focus on the airborne gravity part of the survey. The airborne gravity data were collected from two Twin Otters operating from remote field camps either side of Dome A. A high-resolution Sander Geophysics AIRGrav system was used for the first time in Antarctica and was mounted in the US plane. A more traditional L&R airborne gravity meter modified by ZLS was installed on the British Antarctic Survey aircraft. The AIRGrav system was flown in draped mode, which proved ideal for the simultaneous acquisition of radar and magnetic data, while the L&R system required flying along constant elevation survey blocks. The processed free-air gravity anomalies exhibit low cross-over errors of 1 mGal over the southern sector of the GSM, where the AIRGrav system was primarily used, and a spatial resolution of 3.5 km. Larger cross-over errors of 3.5 mGal and a coarser spatial resolution of 8 km characterise the northern part of the GSM and the adjacent Lambert Glacier, where the L&R meter was mainly flown. The merged free-air gravity anomaly grid primarily reflects the subglacial topography of the GSM province. The contrast between the Pensacola-Pole and Lambert Glacier basins and the rugged alpine-type relief of the GSM is clearly imaged. A dentritic system of subglacial valleys is mapped in the GSM, in good agreement with independent radar data. Inversion of the free-air gravity data assists in tracing the bedrock under several km-thick and fast-flowing crevassed ice of the Lambert Glacier. Using the ice thickness and bedrock topography data derived from airborne radar we compiled a new Bouguer anomaly map for the GSM province. The new gravity anomaly data can be used to estimate crustal thickness variations under the GSM and

  12. The National Research Council of Canada`s flight facilities for airborne research

    SciTech Connect

    Marcotte, D.L.; MacPherson, J.I.; Douglas, C.

    1996-10-01

    The NRC maintains a fleet of research aircraft in support of programs in Flight Mechanics and Airborne Research Experiments. Two of these, a Convair-580 and a deHavilland DHC-6 Twin Otter, are equipped for a diverse program in Airborne Research including studies in atmospheric geoscience, airborne system development in resource geoscience and airborne radar development. While both aircraft share some common instrumentation, they have distinct capabilities and have developed different specializations. These capabilities are outlined and current and recent developments are reviewed. 5 refs., 4 figs., 2 tabs.

  13. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows: Radar QPE (Kwon et al.; Hall et al.; Chen and Chandrasekar; Seo and Krajewski; Sandford).

  14. Use of Dual-wavelength Radar for Snow Parameter Estimates

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    2005-01-01

    Use of dual-wavelength radar, with properly chosen wavelengths, will significantly lessen the ambiguities in the retrieval of microphysical properties of hydrometeors. In this paper, a dual-wavelength algorithm is described to estimate the characteristic parameters of the snow size distributions. An analysis of the computational results, made at X and Ka bands (T-39 airborne radar) and at S and X bands (CP-2 ground-based radar), indicates that valid estimates of the median volume diameter of snow particles, D(sub 0), should be possible if one of the two wavelengths of the radar operates in the non-Rayleigh scattering region. However, the accuracy may be affected to some extent if the shape factors of the Gamma function used for describing the particle distribution are chosen far from the true values or if cloud water attenuation is significant. To examine the validity and accuracy of the dual-wavelength radar algorithms, the algorithms are applied to the data taken from the Convective and Precipitation-Electrification Experiment (CaPE) in 1991, in which the dual-wavelength airborne radar was coordinated with in situ aircraft particle observations and ground-based radar measurements. Having carefully co-registered the data obtained from the different platforms, the airborne radar-derived size distributions are then compared with the in-situ measurements and ground-based radar. Good agreement is found for these comparisons despite the uncertainties resulting from mismatches of the sample volumes among the different sensors as well as spatial and temporal offsets.

  15. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji

    2016-04-01

    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  16. Radar Image with Color as Height, Old Khmer Road, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image shows the Old Khmer Road (Inrdratataka-Bakheng causeway) in Cambodia extending from the 9th Century A.D. capitol city of Hariharalaya in the lower right portion of the image to the later 10th Century AD capital of Yasodharapura. This was located in the vicinity of Phnom Bakheng (not shown in image). The Old Road is believed to be more than 1000 years old. Its precise role and destination within the 'new' city at Angkor is still being studied by archeologists. But wherever it ended, it not only offered an immense processional way for the King to move between old and new capitols, it also linked the two areas, widening the territorial base of the Khmer King. Finally, in the past and today, the Old Road managed the waters of the floodplain. It acted as a long barrage or dam for not only the natural streams of the area but also for the changes brought to the local hydrology by Khmer population growth.

    The image was acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Image brightness is from the P-band (68 cm wavelength) radar backscatter, which is a measure of how much energy the surface reflects back towards the radar. Color is used to represent elevation contours. One cycle of color represents 20 m of elevation change, that is going from blue to red to yellow to green and back to blue again corresponds to 20 m of elevation change. Image dimensions are approximately 3.4 km by 3.5 km with a pixel spacing of 5 m. North is at top.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built, operated and managed by JPL, AIRSAR is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.

  17. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  18. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  19. Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images

    DTIC Science & Technology

    2009-12-01

    In particular, radar target images in the X -band region around 10 GHz are of considerable interest; most military maritime and air-borne radar systems...image simulation of targets in the X -band radar frequency. This numerical method permits computation of a complex-target image to be done within a...reasonable amount of computational time. Measured X -band image data of a canonical target known as SLICY (Sandia Laboratory Implementation of Cylinders

  20. Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.

    1996-01-01

    We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.

  1. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  2. Penn State Radar Systems: Implementation and Observations

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  3. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    over the shorter time period (resulting in a multilook SAR ) with the result that spatial resolution, the usual r~ason for using SAR techniques, degrades...Field - - - ALT 21. Sea Surface Topography - - - SAR , ALT 22. Ocean Waves (sea, swell, surf) V. Good Some V. Good SAR , ALT * with additional lower freq...OLS - Operational Line-scan System radiometer (4-6 GHz?) ALT - Altimeter •* good at low microwave SAR - Synthetic Aperture frequencies Radar + over

  4. Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X- and W-Bands

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2010-01-01

    Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright band, are checked by means of comparisons with simultaneous measurements of the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional water content of melting particle as an exponential function in particle radius, it is found that at X band the simulated radar bright-band profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured bright-band profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W band Doppler velocity measurements. The bright-band model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM and GPM satellite missions.

  5. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  6. Weather Radar Studies

    DTIC Science & Technology

    1988-03-31

    Reflectivity Core Recognition 68 IV-10 Middle-Level Precursor Recognition 69 IV-l I Early Microburst Hazard Declaration 70 IV-12 Example of Results from...Denver Test Bed 106 V-I Selected Product Types 14 V-2 Encoded Map Size (in ELMs ) for Terminal Map Data Set 119 V-3 Encoded Map Size (in ELMs ) for En...Route Data Sets 119 V-4 Encoded Map Size (in ELMs ) for Terminal Map Data Set 125 xiii WEATHER RADAR STUDIES 1. INTRODUCTION The principal areas of

  7. Radar clutter classification

    NASA Astrophysics Data System (ADS)

    Stehwien, Wolfgang

    1989-11-01

    The problem of classifying radar clutter as found on air traffic control radar systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter is proposed. The classifier is tested using data recorded from L-band air traffic control radars. The Doppler spectra of these data are examined; the properties of the feature set computed using these data are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal to noise ratio were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified plane position indicator displays.

  8. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  9. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  10. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  11. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  12. Comparison of various enhanced radar imaging techniques

    NASA Astrophysics Data System (ADS)

    Gupta, Inder J.; Gandhe, Avinash

    1998-09-01

    Recently, many techniques have been proposed to enhance the quality of radar images obtained using SAR and/or ISAR. These techniques include spatially variant apodization (SVA), adaptive sidelobe reduction (ASR), the Capon method, amplitude and phase estimation of sinusoids (APES) and data extrapolation. SVA is a special case of ASR; whereas the APES algorithm is similar to the Capon method except that it provides a better amplitude estimate. In this paper, the ASR technique, the APES algorithm and data extrapolation are used to generate radar images of two experimental targets and an airborne target. It is shown that although for ideal situations (point targets) the APES algorithm provides the best radar images (reduced sidelobe level and sharp main lobe), its performance degrades quickly for real world targets. The ASR algorithm gives radar images with low sidelobes but at the cost of some loss of information about the target. Also, there is not much improvement in radar image resolution. Data extrapolation, on the other hand, improves image resolution. In this case one can reduce the sidelobes by using non-uniform weights. Any loss in the radar image resolution due to non-uniform weights can be compensated by further extrapolating the scattered field data.

  13. Rain Profiling Algorithm for the TRMM Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Kozu, Toshiaki; Meneghini, Robert; Okamoto, Kenichi

    1997-01-01

    This paper describes an outline of the algorithm that estimates the instantaneous profiles of the true radar reflectivity factor and rainfall rate from the radar reflectivity profiles observed by the Precipitation Radar (PR) onboard the TRMM satellite. The major challenge of the algorithm lies in the correction of rain attenuation with the non-uniform beam filling effect. The algorithm was tested with synthetic data and the result is shown.

  14. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  15. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  16. Phase calibration of polarimetric radar images

    NASA Technical Reports Server (NTRS)

    Sheen, Dan R.; Kasischke, Eric S.; Freeman, Anthony

    1989-01-01

    The problem of phase calibration between polarization channels of an imaging radar is studied. The causes of various types of phase errors due to the radar system architecture and system imperfections are examined. A simple model is introduced to explain the spatial variation in phase error as being due to a displacement between the phase centers of the vertical and horizontal antennas. It is also shown that channel leakage can cause a spatial variation in phase error. Phase calibration using both point and distributed ground targets is discussed and a method for calibrating phase using only distributed target is verified, subject to certain constraints. Experimental measurements using the NADC/ERIM P-3 synthetic-aperture radar (SAR) system and NASA/JPL DC-8 SAR, which operates at C-, L-, and P-bands, are presented. Both of these systems are multifrequency, polarimetric, airborne, SAR systems.

  17. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data ( R2 > 0.97), validating the atmospheric correction of the latter.

  18. Synthetic Aperture Radar Oceanographic Investigations.

    DTIC Science & Technology

    1987-03-01

    Shuchman, P.G. Teleki, S.V. Hsiao, O.H. Shemdin , and W.E. Brown, Synthetic Aperture Radar Imaging of Ocean Waves : Comparison with Wave Measurements, J... Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves during the Marineland Experiment, IEEE J. Oceanic Eg., OE-8, pp. 83-90, 1983. 12. R.A...If the surface reflectivity is assumed to be spatially un- section. are computed from the wave height spectrum as correlated, i.e. follows . (x. Y. t

  19. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  20. ARES - A New Airborne Reflective Emissive Spectrometer

    DTIC Science & Technology

    2005-10-01

    then 150 nm in the thermal. ARES will be used mainly for environmental applications in terrestrial ecosystems. The thematic focus is thought to be...been used for as different applications as geological mapping, determination of soil properties, agricultural and forest applications, water quality...operated in a DLR Do228 the instrument could be installed in a wide range of remote sensing aircraft as used for conventional aerial work. The general

  1. Multispectral microwave imaging radar for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Rawson, R.; Ausherman, D.; Bryan, L.; Porcello, L.

    1974-01-01

    A multispectral airborne microwave radar imaging system, capable of obtaining four images simultaneously is described. The system has been successfully demonstrated in several experiments and one example of results obtained, fresh water ice, is given. Consideration of the digitization of the imagery is given and an image digitizing system described briefly. Preliminary results of digitization experiments are included.

  2. Buried mine detection using ground-penetrating impulse radar

    SciTech Connect

    Sargis, P.D.

    1995-03-01

    LLNL is developing a side-looking, ground-penetrating impulse radar system that can eventually be mounted on a robotic vehicle or an airborne platform to locate buried land mines. The system is described and results from field experiments are presented.

  3. Interpreting Electromagnetic Reflections In Glaciology

    NASA Astrophysics Data System (ADS)

    Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.

    Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physical­chemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.

  4. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    NASA Astrophysics Data System (ADS)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  5. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  6. Radar imaging of glaciovolcanic stratigraphy, Mount Wrangell caldera, Alaska - Interpretation model and results

    NASA Technical Reports Server (NTRS)

    Clarke, Garry K. C.; Cross, Guy M.; Benson, Carl S.

    1989-01-01

    Glaciological measurements and an airborne radar sounding survey of the glacier lying in Mount Wrangell caldera raise many questions concerning the glacier thermal regime and volcanic history of Mount Wrangell. An interpretation model has been developed that allows the depth variation of temperature, heat flux, pressure, density, ice velocity, depositional age, and thermal and dielectric properties to be calculated. Some predictions of the interpretation model are that the basal ice melting rate is 0.64 m/yr and the volcanic heat flux is 7.0 W/sq m. By using the interpretation model to calculate two-way travel time and propagation losses, radar sounding traces can be transformed to give estimates of the variation of power reflection coefficient as a function of depth and depositional age. Prominent internal reflecting zones are located at depths of approximately 59-91m, 150m, 203m, and 230m. These internal reflectors are attributed to buried horizons of acidic ice, possibly intermixed with volcanic ash, that were deposited during past eruptions of Mount Wrangell.

  7. Modern radar: Theory, operation and maintenance /2nd edition/

    NASA Astrophysics Data System (ADS)

    Safford, E. L., Jr.

    1981-02-01

    A compendium on radar systems and theory is presented. The development of the magnetron and the klystron is reviewed along with the methods used to solve the original radar problems. The early display devices are surveyed with a view to their ongoing evolution. The pulse, Doppler, CW, and pulse-Doppler radar systems are detailed. Target reflectivity, pulse calculations, Doppler clutter, signal processing, and bandwidth are discussed. The uses and basic components are examined of the radar systems utilized in military, intruder detection, avionics, aerospace, police, satellite, and guided missile applications. A coverage of radar frequency components, tracking systems, aircraft signatures, and receivers is provided.

  8. Magneto-Radar Hidden Metal Detector

    DOEpatents

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  9. The Radar Image Generation (RIG) model

    NASA Technical Reports Server (NTRS)

    Stenger, Anthony J.

    1993-01-01

    RIG is a modeling system which creates synthetic aperture radar (SAR) and inverse SAR images from 3-D faceted data bases. RIG is based on a physical optics model and includes the effects of multiple reflections. Both conducting and dielectric surfaces can be modeled; each surface is labeled with a material code which is an index into a data base of electromagnetic properties. The inputs to the program include the radar processing parameters, the target orientation, the sensor velocity, and (for inverse SAR) the target angle rates. The current version of RIG can be run on any workstation, however, it is not a real-time model. We are considering several approaches to enable the program to generate realtime radar imagery. In addition to its image generation function, RIG can also generate radar cross-section (RCS) plots as well as range and doppler radar return profiles.

  10. SUB-PIXEL RAINFALL VARIABILITY AND THE IMPLICATIONS FOR UNCERTAINTIES IN RADAR RAINFALL ESTIMATES

    EPA Science Inventory

    Radar estimates of rainfall are subject to significant measurement uncertainty. Typically, uncertainties are measured by the discrepancies between real rainfall estimates based on radar reflectivity and point rainfall records of rain gauges. This study investigates how the disc...

  11. Artificial ionospheric mirrors for radar applications

    SciTech Connect

    Short, R.D.; Wallace, T.; Stewart, C.V.; Lallement, P.; Koert, P.

    1990-10-01

    Recognition of performance limitations associated with traditional skywave over-the-horizon (OTH) high frequency (HF) radars has led a number of investigators to propose the creation of an Artificial Ionospheric Mirror (AIM) in the upper atmosphere, in order to reflect ground-based radar signals for OTH surveillance. The AIM is produced by beaming sufficient electromagnetic Power to the lower ionosphere (around 70 km) to enhance the in situ ionization level to 107 108 electrons/cm3, thereby providing an ionized layer capable of reflecting radar frequencies of 5 - 90 MHz. This paper presents a baseline AIM system concept and an associated performance evaluation, based upon the relevant ionization and propagation physics and in the context of air surveillance for the cruise missile threat. Results of the subject study indicate that a system using this concept would both complement and enhance the performance of the existing skywave OTH radars.

  12. Physical working principles of medical radar.

    PubMed

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  13. A radar-echo model for Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.

  14. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  15. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  16. Ground and Space Radar Volume Matching and Comparison Software

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  17. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  18. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  19. Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Rothermel, Jeffrey; Tratt, David M.; Cutten, Dean; Darby, Lisa S.; Hardesty, R. Michael

    1999-10-01

    The Multicenter Airborne Coherent Atmospheric Wind Sensor instrument is an airborne coherent Doppler laser radar (Lidar) capable of measuring atmospheric wind fields and aerosol structure. Since the first demonstration flights onboard the NASA DC-8 research aircraft in September 1995, two additional science flights have been completed. Several system upgrades have also bee implemented. In this paper we discuss the system upgrades and present several case studies which demonstrate the various capabilities of the system.

  20. Bistatic radar sea state monitoring

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Barrick, D. E.; Kaliszewski, T.

    1972-01-01

    Bistatic radar techniques were examined for remote measurement of the two-dimensional surface wave height spectrum of the ocean. One technique operates at high frequencies (HF), 3-30 MHz, and the other at ultrahigh frequencies (UHF), approximately 1 GHz. Only a preliminary theoretical examination of the UHF technique was performed; however the principle underlying the HF technique was demonstrated experimentally with results indicating that an HF bistatic system using a surface transmitter and an orbital receiver would be capable of measuring the two-dimensional wave height spectrum in the vicinity of the transmitter. An HF bistatic system could also be used with an airborne receiver for ground truth ocean wave spectrum measurements. Preliminary system requirements and hardware configurations are discussed for both an orbital system and an aircraft verification experiment.

  1. Multi-variable X-band radar observation and tracking of ash plume from Mt. Etna volcano on November 23, 2013 event

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.

    2015-04-01

    Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar

  2. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing

  3. Radar Image with Color as Height, Lovea, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Lovea, Cambodia, was acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Lovea, the roughly circular feature in the middle-right of the image, rises some 5 meters (16.4 feet) above the surrounding terrain. Lovea is larger than many of the other mound sites with a diameter of greater than 300 meters (984.3 feet). However, it is one of a number highlighted by the radar imagery. The present-day village of Lovea does not occupy all of the elevated area. However, at the center of the mound is an ancient spirit post honoring the legendary founder of the village. The mound is surrounded by earthworks and has vestiges of additional curvilinear features. Today, as in the past, these harnessed water during the rainy season, and conserved it during the long dry months of the year.

    The village of Lovea located on the mound was established in pre-Khmer times, probably before 500 A.D. In the lower left portion of the image is a large trapeng and square moat. These are good examples of construction during the historical 9th to 14th Century A.D. Khmer period; construction that honored and protected earlier circular villages. This suggests a cultural and technical continuity between prehistoric circular villages and the immense urban site of Angkor. This connection is one of the significant finds generated by NASA's radar imaging of Angkor. It shows that the city of Angkor was a particularly Khmer construction. The temple forms and water management structures of Angkor were the result of pre-existing Khmer beliefs and methods of water management.

    Image dimensions are approximately 6.3 by 4.7 kilometers (3.9 by 2.9 miles). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches wavelength) radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 20 meters (65.6 feet) of elevation change; that is, going

  4. Radar Detectability of Light Aircraft

    DTIC Science & Technology

    1976-04-01

    the aircraft is mounted on a structure that enables the viewing angle (aspect) presented to the radar to be varied. For each aircraft type, the RCS...environment; there are no spurious reflections from the ground or from the supporting structure ; and the effects of propeller rotation, small aircraft...motions due to c-ntrol action or atmospheric turbulence, and structural deflections due to inertial and aerodynamic loading, are properly represented

  5. Imaging Radar Applications in the Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1996-01-01

    Death Valley has had a long history as a testbed for remote sensing techniques (Gillespie, this conference). Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the valley since the 1970's, yielding new insights into the geologic applications of that technology. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in Death Valley because it has a variety of surface types in a small area without the confounding effects of vegetation. In one of the classic references of these early radar studies, in a semi-quantitative way the response of an imaging radar to surface roughness near the radar wavelength, which typically ranges from about 1 cm to 1 m was explained. This laid the groundwork for applications of airborne and spaceborne radars to geologic problems in and regions. Radar's main advantages over other sensors stems from its active nature- supplying its own illumination makes it independent of solar illumination and it can also control the imaging geometry more accurately. Finally, its long wavelength allows it to peer through clouds, eliminating some of the problems of optical sensors, especially in perennially cloudy and polar areas.

  6. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  7. Phase-sensitive radar on thick Antarctic ice - how well does it work?

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; Eisen, Olaf; Helm, Veit; Humbert, Angelika; Steinhage, Daniel

    2016-04-01

    Phase-sensitive radar (pRES) has become one of the mostly used tools to determine basal melt rates as well as vertical strain in ice sheets. Whereas most applications are performed on ice shelves, only few experiments were conducted on thick ice in Greenland or Antarctica. The technical constrains on an ice shelf to deduce basal melt rates are less demanding than on inland ice of more than 2 km thickness. First, the ice itself is usually only several 100s of meters thick; and, second, the reflection coefficient at the basal interface between sea water and ice is the second strongest one possible. Although the presence of marine ice with higher conductivities might increase attenuation in the lower parts, most experiments on shelves were successful. To transfer this technology to inland regions, either for the investigation of basal melt rates of subglacial hydrological networks or for determining vertical strain rates in basal regions, a reliable estimate of the current system performance is necessary. To this end we conducted an experiment at and in the vicinity of the EPICA deep ice core drill site EDML in Dronning Maud Land, Antarctica. That site has been explored in extraordinary detail with different geophysical methods and provides an already well-studied ice core and borehole, in particular with respect to physical properties like crystal orientation fabric, dielectric properties and matching of internal radar horizons with conductivity signals. We present data from a commercially available pRES system initially recorded in January 2015 and repeated measurements in January 2016. The pRES data are matched to existing and already depth-calibrated airborne radar data. Apart from identifying prominent internal layers, e.g. the one originating from the deposits of the Toba eruption at around 75 ka, we put special focus on the identification of the basal reflection at multiple polarizations. We discuss the potential uncertainty estimates and requirements to

  8. Space Radar Image of Namibia Sand Dunes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows part of the vast Namib Sand Sea on the west coast of southern Africa, just northeast of the city of Luderitz, Namibia. The magenta areas in the image are fields of sand dunes, and the orange area along the bottom of the image is the surface of the South Atlantic Ocean. The region receives only a few centimeters (inches) of rain per year. In most radar images, sandy areas appear dark due to their smooth texture, but in this area the sand is organized into steep dunes, causing bright radar reflections off the dune 'faces.' This effect is especially pronounced in the lower center of the image, where many glints of bright radar reflections are seen. Radar images of this hyper-arid region have been used to image sub-surface features, such as abandoned stream courses. The bright green features in the upper right are rocky hills poking through the sand sea. The peninsula in the lower center, near Hottentott Bay, is Diaz Point; Elizabeth Point is south of Diaz Point. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 11, 1994. The image is 54.2 kilometers by 82.2 kilometers (33.6 miles by 51.0 miles) and is centered at 26.2 degrees South latitude, 15.1 degrees East longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, horizontally received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  9. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  10. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  11. Airborne SAR imagery to support hydraulic models

    NASA Astrophysics Data System (ADS)

    Castiglioni, S.

    2009-04-01

    Satellite images and airborne SAR (Synthetic Aperture Radar) imagery are increasingly widespread and they are effective tools for measuring the size of flood events and for assessment of damage. The Hurricane Katrina disaster and the tsunami catastrophe in Indian Ocean countries are two recent and sadly famous examples. Moreover, as well known, the inundation maps can be used as tools to calibrate and validate hydraulic model (e.g. Horritt et al., Hydrological Processes, 2007). We carry out an application of a 1D hydraulic model coupled with a high resolution DTM for predicting the flood inundation processes. The study area is a 16 km reach of the River Severn, in west-central England, for which, four maps of inundated areas, obtained through airborne SAR images, and hydrometric data are available. The inundation maps are used for the calibration/validation of a 1D hydraulic model through a comparison between airborne SAR images and the results of hydraulic simulations. The results confirm the usefulness of inundation maps as hydraulic modelling tools and, moreover, show that 1D hydraulic model can be effectively used when coupled with high resolution topographic information.

  12. Intra-eruption Geologic Map from an X-band Radar Image During the May 18, 1980 Eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. B.

    1985-01-01

    The use of side-looking airborne radar images for geologic interpretations has increased with the Vesuvian exploration projects. Interpretation of images without ground truth relies on examples in terrestrial environments for which geologic data are available.

  13. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  14. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  15. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  16. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  17. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  18. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  19. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  20. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  1. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  2. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  3. Multiple arrested synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Shuster, J. S.

    1981-05-01

    This report contains the formulation and analysis of an airborne synthetic aperture rate scheme which employs a multiplicity of antennas with the displaced phase center antenna technique to detect slowly moving targets embedded in a severe clutter environment. The radar is evaluated using the target to clutter power ratio as the measure of performance. Noise is ignored in the analysis. An optimization scheme which maximizes this ratio is employed to obtain the optimum processor weighting. The performance of the MASAR processor with optimum weights is compared against that using target weights (composed of the target signal) and that using binomial weights (which, effectively, form an n-pulse canceller). Both the target and the clutter are modeled with the electric field backscattering coefficient. The target is modeled simply as a deterministically moving point scatterer with the same albedo as a point of clutter. The clutter is modeled as a homogeneous, isotropic, two dimensional, spatiotemporal random field for which only the correlation properties are required. The analysis shows that this radar, with its optimum weighting scheme, is a promising synthetic aperture concept for the detection of slowly moving targets immersed in strong clutter environments.

  4. The Greenland ice sheet perennial firn aquifer: characteristics, extent and evolution obtained from airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Miège, C.; Forster, R. R.; Koenig, L.; Brucker, L.; Box, J. E.; Burgess, E. W.

    2013-12-01

    The presence of a perennial firn aquifer (PFA) was identified April 2011, in the southeast part of the Greenland ice sheet, from firn-core drilling, surface- and airborne-radar. The PFA is a component of the ice sheet hydrology and corresponds to a liquid water saturated firn aquifer, which persists over the winter without freezing. The average depth of the top of the aquifer is ~20 m below the surface, and is guided by surface topography, following surface undulations, similar to an unconfined aquifer observed in other groundwater aquifer systems. We use a combination of 400 MHz ground-based radar and the 600 to 900 MHz Accumulation Radar on board NASA's airborne Operation IceBridge (OIB) to identify and map PFA extent and evolution between 2011 and 2013. Here, we present an ice-sheet wide mapping of the PFA, including the 2013 field campaign with detailed ground-based radar grids near the firn core site drilled in April 2013 (PFA-13, 66.18°N, 39.04°W and 1563 m). At the PFA-13 location, OIB Accumulation Radar and ground-based radar data were acquired along the same track within two weeks in both 2011 and 2013, offering a unique comparison dataset. This dataset is used to analyze the three year (2011-2013) evolution of PFA top depth, i.e. stored meltwater volume, in areas where radar transects are repeated from one year to the next. This evolution suggests possible horizontal flow of this stored meltwater toward the ice-sheet margins but must be confirmed by further field investigations. In addition, we derive surface slope from latest digital elevation model available for Southeast Greenland and use this slope as parameter to interpolate the PFA top in the area between ground radar transects and airborne radar flight lines. This slope interpolation would aim to improve PFA water volume/extent estimations for areas without airborne radar coverage. The fate of this stored meltwater is currently unknown, even if flow is suggested and drainage into nearby crevasses

  5. Potential application of satellite radar to monitor soil moisture

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bradley, G. A.; Dobson, M. C.

    1981-01-01

    The microwave backscattering characteristics of soils as a function of moisture content are reviewed as a basis for the evaluation of the applicability of satellite radar to soil moisture determinations. Results of experiments showing the dependence of the complex dielectric constant, power reflection coefficient and backscattering coefficient of soil on its volumetric moisture content are presented. Results of a research program using the truck-mounted University of Kansas microwave active spectrometer to determine if, by the proper choice of sensor frequency, polarization and incidence, the sensor dynamic range in response to moisture variations may be greater than its response to other variations are considered in detail, and the optimum conditions of frequency (between 4 and 5 GHz), angular incidence (between 7 and 20 deg from nadir) and polarization (HH) obtained are indicated. An empirical model for the backscattering coefficient as a function of gravimetric moisture content derived on the basis of the experimental data is presented, and it is noted that available airborne and spaceborne data confirm the results of the ground-based sensors.

  6. Satellite Observations For Calibration of Ground Radar Networks

    NASA Astrophysics Data System (ADS)

    Schwaller, M.; Morris, K.

    2011-12-01

    Calibration differences between weather service ground radars is one source of error that can lead to bias in quantitative precipitation estimates. In the U.S., calibration differences among Weather Service Radar-1988 Doppler (WSR-88D) radars are know to vary by up to several decibels in reflectivity. Such differences have been shown to cause significant radar-to-radar observation differences, and can lead to significant error in precipitation estimates. The calibration of 21 WSR-88D radars in the southeast U.S. was assessed using methods developed for NASA's Global Precipitation Mission (GPM) Validation Network (VN) prototype. The VN performs geometric matching of Precipitation Radar (PR) data from the Tropical Rainfall Measuring Mission (TRMM) satellite to ground radars. The VN geometric matching method averages PR reflectivity (both raw and attenuation corrected) and rain rate, and ground radar (GR) reflectivity at the geometric intersection of the PR rays with the individual GR elevation sweeps. The algorithm thus averages the minimum PR and GR sample volumes needed to ''matchup'' the spatially coincident PR and ground radar data types. This geometric matching method has been demonstrated to out-perform gridding techniques by providing better estimates of GR-to-PR bias. TRMM PR data were used as the calibration reference because analyses of the PR performance estimated the instrument calibration to be stable and accurate to within less than 1dBZ (3-sigma). The calibration accuracy of the 21 WSR-88D radars was assessed for the period of record from August 2006 to July 2011. For purposes of calibration assessments, the data were restricted to PR-GR match-up volumes >750m above the bright band in stratiform rain areas where PR radar attenuation is not at issue. Based on space and ground radar matchups, most WSR-88D radars were found to have a mean PR-GR bias of less than 1 dBZ. Several adjacent WSR-88D sites near or along the Gulf Coast between Louisiana and

  7. The Retrieval of Vertical Air Motion from an Airborne W-Band using Mie Scattering

    NASA Astrophysics Data System (ADS)

    Jung, E.; Albrecht, B. A.; Kollias, P.

    2010-12-01

    Raindrops have diameters comparable to the wavelength (3.2 mm) of a 95-GHz radar. As a result, the Rayleigh scattering approximation is not valid and the full Mie scattering theory is required to explain the oscillations of the backscattering cross section between successive peaks and valleys as a function of the raindrop diameter. At radar wavelengths of 3 mm, the first minimum in the backscattering cross section occurs at a raindrop diameter equals to 1.7 mm. Since raindrop diameters often exceed this size, these oscillations are captured in the radar Doppler spectrum and thus can be used as reference for the retrieval of the vertical air motion. This technique, which has been successfully developed for surface-based radars, is applied to radar Doppler spectra from an airborne, upward pointing W-band radar operated during the Barbados Aerosol Cloud Experiment (BACEX) from precipitating cumulus. Before the technique is applied to the airborne W-band radar data, the observed Doppler velocities are corrected for aircraft motions and attitude as recorded by the aircraft navigation system. The first order corrections to the vertical component of the Doppler velocity involve the pitch and speed of the aircraft and the vertical motion of aircraft itself for the radar operating in an upward pointing configuration. The vertical air velocity can then be deduced form the difference between the terminal velocity of a raindrop with a diameter of 1.7mm and the value of observed first minimum in the Doppler spectrum. An air density correction for the terminal velocity is made using the mean profile of density. The vertical air velocity retrieved from the technique is extrapolated to the level of aircraft (the radar has a dead zone of approximately ~50m) for comparison with the vertical air motion obtained from the aircraft sensors. Possible applications of this technique for airborne observations of the vertical profiles of air vertical velocities and the relative drop

  8. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign

    NASA Astrophysics Data System (ADS)

    Martin, Adrien C. H.; Gommenginger, Christine; Marquez, Jose; Doody, Sam; Navarro, Victor; Buck, Christopher

    2016-03-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) senses the motion of the ocean surface by measuring the Doppler shift of reflected signals. Measurements are affected by a Wind-wave-induced Artifact Surface Velocity (WASV) which was modeled theoretically in past studies and has been estimated empirically only once before with Envisat ASAR by Mouche et al. (2012). An airborne campaign in the tidally dominated Irish Sea served to evaluate this effect and the current retrieval capabilities of a dual-beam SAR interferometer known as Wavemill. A comprehensive collection of Wavemill airborne data acquired in a star pattern over a well-instrumented validation site made it possible for the first time to estimate the magnitude of the WASV, and its dependence on azimuth and incidence angle from data alone. In light wind (5.5 m/s) and moderate current (0.7 m/s) conditions, the wind-wave-induced contribution to the measured ocean surface motion reaches up to 1.6 m/s upwind, with a well-defined second-order harmonic dependence on direction to the wind. The magnitude of the WASV is found to be larger at lower incidence angles. The airborne WASV results show excellent consistency with the empirical WASV estimated from Envisat ASAR. These results confirm that SAR and ATI surface velocity estimates are strongly affected by WASV and that the WASV can be well characterized with knowledge of the wind knowledge and of the geometry. These airborne results provide the first independent validation of Mouche et al. (2012) and confirm that the empirical model they propose provides the means to correct airborne and spaceborne SAR and ATI SAR data for WASV to obtain accurate ocean surface current measurements. After removing the WASV, the airborne Wavemill-retrieved currents show very good agreement against ADCP measurements with a root-mean-square error (RMSE) typically around 0.1 m/s in velocity and 10° in direction.

  9. A study of radar backscattering from water surface in response to rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Zheng, Quanan; Liu, Ren; Wang, Dan; Duncan, James H.; Huang, Shih-Jen

    2016-03-01

    In this paper, radar backscattering from a water surface in response to rainfall was studied. The paper consists of two parts. First, the spatial characteristics of raindrops in rain fields were analyzed based on published data and the response of a water surface to rainfall was experimentally studied in the laboratory. Rain-generated surface features including stalks, crowns, ring waves, and secondary drops were measured. It was found that stalks and crowns are dominant in terms of their height and energy. Second, the radar signatures of a rainfall event simultaneously observed by C band ENVISAT (European satellite), ASAR (Advanced Synthetic Aperture Radar), and ground-based weather radar in the Northwest Pacific were investigated. The relationship between the radar return intensity extracted from the C band ASAR image and the reflectivity factor (rain rate) obtained from ground-based weather radar was analyzed. For light/moderate rain (with low reflectivity factors), the radar backscattering intensity increases as the reflectivity factor increases. For heavy rain (with high reflectivity factors), the radar backscattering intensity decreases as the reflectivity factor increases. The maximum radar backscattering intensity occurs at a reflectivity factor of 45 dBZ (with rain rate of 24 mm/h). It was found that the spaceborne radar backscattering intensity strongly correlates with the average distance between the stalks on the water surface in the rain field in a nonlinear manner. The physics of the radar signatures of the rain event are explored.

  10. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  11. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical prop