Science.gov

Sample records for airborne radio-echo sounding

  1. Investigation of a rift zone in the western Fimbulisen by means of airborne radio echo sounding, satellite imagery, and ice flow modelling

    NASA Astrophysics Data System (ADS)

    Humbert, Angelika; Steinhage, Daniel

    2010-05-01

    The Fimbulisen, an ice shelf located roughly between 3°W-8°E at the coast of Dronning Maud Land, East Antarctica, consists of the fast flowing extension of Jutulstraumen and slower moving parts west and east of it. The largely rifted western part of the Fimbulisen is the subject of this study, which combines observations and modelling. Airborne radio echo sounding performed by the Alfred Wegener Institute between 1996 and 2008 with a frequency of 150 MHz and pulse length of 60 ns, respectively 600 ns, is analysed in order to study the internal structure of the ice in parts of the rift zone and to estimate the ice thickness in this area precisely. High-resolution radar imagery acquired by the TerraSAR-X in 2008 and 2009 is used to evaluate principal deformation axis at characteristic locations, to detect crack modes as well as to classify zones of similar structural characteristics. These zones were incorporated in a 2D diagnostic ice flow model as sub-domains with variable stress enhancement factor and thus treated as zones of different damage related stiffness. The temperature-dependent stiffness is calculated by applying the solution of a validated 3D temperature model of the ice shelf and thus the simulations focus on the softening effect caused by cracks. Extensive parameter studies show the effect of the stress enhancement factor on the principal deformation rates and axis. Comparison with the estimated deformation pattern aims to confine the softening effect for each zone separately.

  2. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  3. Automatic Detection of the Holocene Transition in Radio-Echo Sounding Data from the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Karlsson, N. B.; Dahl-Jensen, D.; Gogineni, S. P.; Paden, J.; Hvidberg, C. S.

    2012-04-01

    Radio-echo sounding has provided important insights into the subsurface properties of the Greenland Ice-Sheet. Recent years have seen increasing interest in englacial radio reflectors (or internal layers) because their stratigraphy reflects both mass balance rates and flow dynamics. Thus patterns of internal layers contain information about the past behaviour of an ice mass. Unfortunately retrieving this information often relies on a large amount of user interaction and can be very time consuming. As the amount of radio-echo sounding data increases, the development of quantitative techniques for digitising internal layers in radar data is a logical step forward. In this study we present an automated method for estimating the elevation of the Holocene transition in radio-echo sounding data from Greenland. The data was collected by the Center for Remote Sensing of Ice Sheets (CReSIS), University of Kansas. The automated method is based on the observation that the CReSIS radio-echo data often display a characteristic appearance: the upper half of the radio-echo data contains numerous internal layering and appears much darker than the lower, older part, where only a few visible layers can be seen. Compared to the depth-age relationship from the NorthGRIP ice core this change in the radar-echo data coincides with the transition to the Holocene period. The method obtains a good match with manually traced data and also returns an estimate of the confidence in its output. The depth of the Holocene transition will provide insight into the large-scale variation of mass balance and basal melt rate over the Greenland Ice Sheet and will assist in efforts to model the past evolution of the ice sheet.

  4. Radio-echo sounding at Dome C, East Antarctica: A comparison of measured and modeled data

    NASA Astrophysics Data System (ADS)

    Winter, Anna; Eisen, Olaf; Steinhage, Daniel; Zirizzotti, Achille; Urbini, Stefano; Cavitte, Marie; Blankenship, Donald D.; Wolff, Eric

    2016-04-01

    The internal layering architecture of ice sheets, detected with radio-echo sounding (RES), contains clues to past ice-flow dynamics and mass balance. A common way of relating the recorded travel time of RES reflections to depth is by integrating a wave-speed distribution. This results in an increasing absolute error with depth. We present a synchronization of RES-internal layers of different radar systems (Alfred Wegener Institute, Center for Remote Sensing of Ice Sheets, Istituto Nazionale di Geofisica e Vulcanologia, British Antarctic Survey and University of Texas Institute for Geophysics) with ice-core records from the Antarctic deep drill site Dome C. Synthetic radar traces are obtained from measurements of ice-core density and conductivity with a 1D model of Maxwell's equations. The reflection peaks of the different radar systems' measurements are shifted by a wiggle-matching algorithm, so they match the synthetic trace. In this way, we matched pronounced internal reflections in the RES data to conductivity peaks with considerably smaller depth uncertainties, and assigned them with the ice-core age. We examine the differences in shifts and resolution of the different RES data to address the question of their comparability and combined analysis for an extensive age-depth distribution.

  5. Aeromagnetic and radio echo ice-sounding measurements show much greater area of the Dufek intrusion, Antarctica

    USGS Publications Warehouse

    Behrendt, John C.; Drewry, D.J.; Jankowski, E.; Grim, M.S.

    1980-01-01

    A combined aeromagnetic and radio echo ice-sounding survey made in 1978 in Antarctica over the Dufek layered mafic intrusion suggests a minimum area of the intrusion of about 50,000 square kilometers, making it comparable in size with the Bushveld Complex of Africa. Comparisons of the magnetic and subglacial topographic profiles illustrate the usefulness of this combination of methods in studying bedrock geology beneath ice-covered areas. Magnetic anomalies range in peak-to-trough amplitude from about 50 nanoteslas over the lowermost exposed portion of the section in the Dufek Massif to about 3600 nanoteslas over the uppermost part of the section in the Forrestal Range. Theoretical magnetic anomalies, computed from a model based on the subice topography fitted to the highest amplitude observed magnetic anomalies, required normal and reversed magnetizations ranging from 10-3 to 10-2 electromagnetic units per cubic centimeter. This result is interpreted as indicating that the Dufek intrusion cooled through the Curie isotherm during one or more reversals of the earth's magnetic field. Copyright ?? 1980 AAAS.

  6. Preliminary results of a radio echo sounding survey of the Recovery Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Humbert, Angelika; Kleiner, Thomas; Steinhage, Daniel

    2014-05-01

    The Recovery Glacier is draining about 8% of the East Antarctic ice sheet and feeds into the Filchner Ice Shelf. This ice shelf might be subjected in future to increasing basal melting (Hellmer et al., 2012) forcing potentially grounding line retreat. Compared to other areas in Antarctica this glacier is been surveyed very sparse and hence does not allow modeling studies yet. As many large and small subglacial lakes are present underneath this ice stream at different locations along the flow, the question of the influence of the lakes on ice stream genesis and ice stream dynamics arose. For investigating this influence by observation and subsequent modelling, an airborne campaign of the Alfred Wegener Institute was carried out in January 2014, covering the Recovery Ice Stream and two smaller glaciers merging with it, the Ramp Glacier and the Blackwall Glacier. The radar system uses a carrier frequency of 150MHz and a 600ns pulse. The survey includes several flights along flow lines in order to assess the basal roughness of the ice stream. Here we present the first preliminary data analysis.

  7. Organized flow from the South Pole to the Filchner-Ronne ice shelf: An assessment of balance velocities in interior East Antarctica using radio echo sounding data

    NASA Astrophysics Data System (ADS)

    Bingham, Robert G.; Siegert, Martin J.; Young, Duncan A.; Blankenship, Donald D.

    2007-09-01

    Ice flow through central Antarctica has the potential to transmit accumulation changes from deep-interior East Antarctica rapidly to the shelf, but it is poorly constrained owing to a dearth of ice-velocity observations. We use parameters derived from airborne radio echo sounding (RES) data to examine the onset, areal extent, and englacial conditions of an organized flow network (tributaries feeding an ice stream) draining from the South Pole to the Filchner-Ronne Ice Shelf. We classified RES flight tracks covering the region according to whether englacial stratigraphy was disrupted (i.e., internal layers diverged significantly from the surface and bed echoes) or undisrupted (i.e., internal layers closely parallel surface and basal topography), and we calculated subglacial roughness along basal reflectors. Where satellite-measured surface ice-flow speeds are available (covering 39% of the study region), regions of fast and tributary flow correspond with RES flight tracks that exhibit more disrupted internal layers and smoother subglacial topography than their counterparts in regions of slow flow. This suggests that disrupted internal layering and smooth subglacial topography identified from RES profiles can be treated as indicators of past or present enhanced-flow tributaries where neither satellite nor ground-based ice-flow measurements are available. We therefore use these RES-derived parameters to assess the balance-flux-modeled steady state flow regime between the South Pole and Filchner-Ronne Ice Shelf. The RES analysis confirms that an organized flow network drains a wide region around the South Pole into the Filchner-Ronne Ice Shelf. However, the spatial extent of this network, as delineated by the RES data, diverges from that predicted by currently available balance-flux models.

  8. Mapping the Bølling-Allerød transition in the Greenland Ice Sheet using radio-echo sounding data

    NASA Astrophysics Data System (ADS)

    Karlsson, Nanna B.; Dahl-Jensen, Dorthe; Prasad Gogineni, S.; Paden, John D.

    2013-04-01

    Ice cores have provided high resolution data of the chronology of the Greenland Ice Sheet enabling reconstructions of temperature, accumulation and surface elevation back in time. However, ice core data are inherently point-measurements and are thus spatially limited. The introduction of radio-echo sounding (RES) in glaciology provides a method for linking independent ice core chronologies between drill sites by using the internal reflectors observed in the RES data. Here we apply the ice core chronology from the NorthGRIP drill site in combination with RES data (acquired by the Center for Remote Sensing of Ice Sheets) to map the extent and depth of Holocene ice in North Greenland. We make use of the fact that the transition from the last glacial to the warm Bølling-Allerød interstadial (at 14.7kyr b2k) is clearly visible in the majority of the RES data from central Greenland. The depths and extent of the transition are influenced by past surface accumulation, basal properties as well as temporal and spatial changes in ice flow dynamics. This provides not only a basis for directly mapping the existing pre-Holocene ice in the Greenland Ice Sheet but also a valuable tool for obtaining information on past mass balance and ice flow. Results show that the transition is located in the upper 30%-50% of the ice column in the central part of the ice sheet indicating that a substantial amount of ice pre-dating the Holocene is present in the central part of North Greenland. At the margins the transition is located significantly deeper which is most likely due to high velocity areas dragging the layers down. However, this effect varies between different areas and may be related to the geometry and ice flow dynamics of the particular region and/or the timing of the initialization of the ice stream. Modelling studies of the Greenland Ice Sheet may incorporate this dataset to answer questions related to large scale dynamics of the ice sheet such as the extent of the ice during

  9. Serendipity, International Cooperation and Navigational Aids: A History of Radio Echo Sounding (RES) Technologies, 1958-1979

    NASA Astrophysics Data System (ADS)

    Turchetti, S.; Dean, K.; Naylor, S.; Siegert, M. J.

    2006-12-01

    This paper explores the history of RES and examines major technological advances that fostered the use of this technique in the sub-glacial exploration of Antarctica. The paper will especially focus on three themes: the role played by accidental discoveries in the origins of RES; the importance of international collaboration in its technological development; and the need of establishing new technological networks in the deployment of RES apparatus during Antarctic missions. The origins of RES can be traced back to two important -albeit accidental- findings. First, during post-war US military operations in the Antarctic radio altimeters produced gross errors in height indication. Furthermore, during the IGY ionospheric research and sounding was hampered by interference due to bottom echoes. These serendipitous events helped to figure out that the Antarctic ice was transparent to certain frequencies, and therefore new radio technologies could be used to sound what lay beneath it. The establishment of the Scientific Committee on Antarctic Research (SCAR) and the Antarctic Treaty (AT) provided a new international framework vital to the development of RES technologies. This allowed researchers from different countries to come together and discuss important technological features for the first time. At a technical level, the setting up of international experiments (such as those of 1963 and 1964 in Greenland) gave an opportunity for experts from different countries to compare the performance of new RES apparatus. At a political level, the parallel debate within the AT community on the allocation of Antarctic radio frequencies helped radio engineers to work out ways to circumvent interference with radio communications. Finally, the deployment of RES equipment in Antarctic exploration relied upon a number of technological aids to improve the potential and accuracy of geophysical sounding. The use of new aircrafts, guidance systems, and computers proved vital in many

  10. Plasma Density and Radio Echoes in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1995-01-01

    This project provided a opportunity to study a variety of interesting topics related to radio sounding in the magnetosphere. The results of this study are reported in two papers which have been submitted for publication in the Journal of Geophysical Research and Radio Science, and various aspects of this study were also reported at meetings of the American Geophysical Union (AGU) at Baltimore, Maryland and the International Scientific Radio Union (URSI) at Boulder, Colorado. The major results of this study were also summarized during a one-day symposium on this topic sponsored by Marshall Space Flight Center in December 1994. The purpose of the study was to examine the density structure of the plasmasphere and determine the relevant mechanisms for producing radio echoes which can be detected by a radio sounder in the magnetosphere. Under this study we have examined density irregularities, biteouts, and outliers of the plasmasphere, studied focusing, specular reflection, ducting, and scattering by the density structures expected to occur in the magnetosphere, and predicted the echoes which can be detected by a magnetospheric radio sounder.

  11. Refractive acoustic devices for airborne sound.

    PubMed

    Cervera, F; Sanchis, L; Sánchez-Pérez, J V; Martínez-Sala, R; Rubio, C; Meseguer, F; López, C; Caballero, D; Sánchez-Dehesa, J

    2002-01-14

    We show that a sonic crystal made of periodic distributions of rigid cylinders in air acts as a new material which allows the construction of refractive acoustic devices for airborne sound. It is demonstrated that, in the long-wave regime, the crystal has low impedance and the sound is transmitted at subsonic velocities. Here, the fabrication and characterization of a convergent lens are presented. Also, an example of a Fabry-Perot interferometer based on this crystal is analyzed. It is concluded that refractive devices based on sonic crystals behave in a manner similar to that of optical systems. PMID:11801014

  12. Automated mapping of near bed radio-echo layer disruptions in the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Panton, Christian; Karlsson, Nanna B.

    2015-12-01

    One of the key processes for modulating ice flow is the interaction between the ice and the bed, but direct observations of the subglacial environment are sparse and difficult to obtain. In this study we use information from an extensive radio-echo sounding dataset to identify areas of the Greenland Ice Sheet where internal layers have been influenced by near-bed processes. Based on an automatic algorithm for calculating the slope of the internal radio-echo layers, we identify areas with disrupted layer stratigraphy. We find that large parts of the northern portion of the ice sheet are influenced by locally confined mechanisms that produce up-warping or folds in the layer stratigraphy inconsistent with the surface and bed topography. This is particularly evident at the onset of ice streams, although less dynamic areas close to the ice divide also contain imprints of layer disturbances. Our results show that the disturbances are found in many different flow and thermal regimes, and underscore the need to understand the mechanisms responsible for creating them.

  13. Disturbed basal ice seen in radio echo images coincide with zones of big interlocking ice crystals.

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, Dorthe; Gogineni, Sivaprasad; Panton, Christian

    2014-05-01

    Improvement of the depth sounding radio echo sounding (RES) over Antarctica and Greenland Ice Sheet has made it possible to map the near basal layers that have not been 'seen' earlier due to the very high demand of attenuation needed to reach through more than 3000m of ice. The RES internal reflectors show that the near basal ice at many locations has disturbed layering. At the locations where ice cores reach the bedrock both in Greenland and Antarctica studies of the ice crystal size and orientation show that the near basal ice has big and interlocking ice crystals which suggests the ice is not actively deforming. These observations challenge the often used constitutive equations like Glens flow law in ice sheet modelling. A discussion of the impact of the RES findings on ice sheet modeling and the quest to find the oldest ice in Antarctic based on the anisotropy of the basal ice will follow.

  14. Sensitivity of a tucuxi (Sotalia fluviatilis guianensis) to airborne sound

    NASA Astrophysics Data System (ADS)

    Liebschner, Alexander; Hanke, Wolf; Miersch, Lars; Dehnhardt, Guido; Sauerland, Matthias

    2005-01-01

    Auditory systems of cetaceans are considered highly specialized for underwater sound processing, whereas the extent of their hearing capacity in air is still a point of issue. In this study, the sensitivity to airborne sound in a male tucuxi (Sotalia fluviatilis guianensis) was tested by means of a go/no go response paradigm. Auditory thresholds were obtained from 2 to 31.5 kHz. Compared to the hearing thresholds of other dolphins as well as of amphibian mammals, the sensitivity to airborne sound of the test subject is low from 2 to 8 kHz, with the highest threshold at 4 kHz. Thresholds at 16 and 31.5 kHz reveal a sharp increase in hearing sensitivity. Thus, although not obtained in this study, the upper aerial hearing limit is in the ultrasonic range. A comparison of the present data with the underwater audiogram of the same test subject referred to sound intensity indicates that the sensitivity of Sotalia to underwater sound is generally better than to airborne sound. .

  15. Characterizing Englacial and Subglacial Temperature Structure Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Seroussi, H. L.

    2015-12-01

    The temperature structure of ice sheet and glaciers is a fundamental control on ice flow, rheology, and stability. However, it is difficult to observationally constrain temperature structures at the catchment to ice-sheet scale. The englacial attenuation of radar sounding data is strongly dependent on the temperature structure of the ice sheets. Therefore, echo strength profiles from airborne radar sounding observation do contain temperature information. However, direct interpretation of englacial attenuation rates from radar sounding profiles is often difficult or impossible due to the ambiguous contribution the geometric and material properties of the bed to echo strength variations. To overcome this challenge, we presents techniques that treat radar sounding echo strength and ice thickness profiles as continuous signals, taking advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of englacial attenuation and basal reflectivity. We then apply these techniques to an airborne radar sounding survey in order to characterize the englacial and subglacial temperature structure of the Thwaites Glacier catchment in West Antarctic. We then interpreted this structure in context of local ice sheet velocity, advection, force balance, and bed conditions using the ISSM ice sheet model.

  16. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  17. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario. PMID:25234870

  18. Probing Shallow Aquifers in Northern Kuwait Using Airborne Sounding Radars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Fadlelmawla, A.; Farr, T. G.; Al-Rashed, M.

    2011-12-01

    Most of the global warming observations, scientific interest and data analyses have concentrated on the earth Polar Regions and forested areas, as they provide direct measurable impacts of large scale environmental changes. Unfortunately, the arid environments, which represent ~20% of the earth surface, have remained poorly studied. Yet water rarity and freshness, drastic changes in rainfall, flash floods, high rates of aquifer discharge and an accelerated large-scale desertification process are all alarming signs that suggest a substantial large-scale climatic variation in those areas that can be correlated to the global change that is affecting the volatile dynamic in arid zones. Unfortunately the correlations, forcings and feedbacks between the relevant processes (precipitation, surface fresh water, aquifer discharge, sea water rise and desertification) in these zones remain poorly observed, modeled, let alone understood. Currently, local studies are often oriented toward understanding small-scale or regional water resources and neither benefit from nor feedback to the global monitoring of water vapor, precipitation and soil moisture in arid and semi-arid areas. Furthermore techniques to explore deep subsurface water on a large scale in desertic environments remain poorly developed making current understanding of earth paleo-environment, water assessment and exploration efforts poorly productive and out-phased with current and future needs to quantitatively understand the evolution of earth water balance. To address those deficiencies we performed a comprehensive test mapping of shallow subsurface hydro-geological structures in the western Arabic peninsula in Kuwait, using airborne low frequency sounding radars with the main objectives to characterize shallow fossil aquifers in term of depth, sizes and water freshness. In May 2011, an experimental airborne radar sounder operating at 50 MHz was deployed in Kuwait and demonstrated an ability to penetrate down to

  19. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  20. Characterizing Subglacial Interfaces With Airborne Radar Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.

    2004-12-01

    Ice sheets are sensitive indicators of global change including sea-level rise. An ice sheet's subglacial interface is an important factor controlling its dynamic behavior. In particular, the grounding zones of ice streams and subglacial lakes are complex systems involving the interaction of the moving ice mass with underlying materials such as liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. Imaging and characterizing the subglacial environment of ice sheets is fundamental to understanding these complex systems. Airborne radar sounding is a powerful and well-known technique for studying ice sheets and glaciers and their contiguous underlying environments. We present results from data acquired in 2001 over the ice stream C grounding zone in West Antarctica, as well as over a hypothesized subglacial lake near the South Pole. These data were acquired using a uniquely configured coherent airborne radar system. Our focus has been to characterize the subglacial interface through radar echo analysis based on reflection and scattering theory. The radar system uses a programmable signal source linked to a 10 kW transmitter and a dual-channel coherent down-conversion receiver. The radar operates in chirped pulse mode at 60 MHz with 15 MHz bandwidth. High and low-gain channels allow for recording a wide dynamic range of echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and synthetic aperture radar (SAR) processing were components of data analysis. Subglacial echoes are influenced by the physical properties of the interface such as the composition and roughness of the materials at the interface. Other important factors include dielectric losses and volumetric scattering losses from propagation through the ice as well as transmission and refraction at the air-ice interface. Unfocussed SAR narrows the along

  1. The airborne sound insulations of metal-framed partitions

    NASA Astrophysics Data System (ADS)

    Plumb, G. D.

    The sound insulation performances of several lightweight, metal-framed partitions were measured. The aim was to produce a design for a new type of partition which was cheaper than the 'Camden', which is currently used throughout the British Broadcasting Corporation (BBC), while maintaining a comparable sound insulation. As a result of the studies, a partition is recommended for use as an alternative to the Camden. It is provisionally named the 'Warren'. It is much cheaper to build than the Camden and should be more tolerant of poor building practices. It has comparable overall sound insulation properties to that of Camden, but its sound insulation curve is much smoother. Mineral wool in the cavities of the leaves of single or double leaf partitions appreciably increases the sound insulation properties. Adding extra layers of plaster board to single or double Warrens increases the mean sound insulation by an amount that is approximately equal to the increase that would be expected from the increase in mass. Adding mineral wool to these increased mass partitions had only a small effect on their sound insulation.

  2. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    PubMed

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds. PMID:19739735

  3. Aeromagnetic and radio echo ice-sounding measurements over the Dufek intrusion, Antarctica.

    USGS Publications Warehouse

    Behrendt, John C.; Drewry, D.J.; Jankowski, E.; Grim, M.S.

    1981-01-01

    Comparisons of the magnetic and subglacial topographic profiles illustrate the usefulness of this combination of methods in studying bedrock geology beneath ice-covered areas. Rocks are exposed in only 3% of the inferred area of the intrusion.-from Authors

  4. Evaluating airborne sound insulation in terms of speech intelligibility.

    PubMed

    Park, H K; Bradley, J S; Gover, B N

    2008-03-01

    This paper reports on an evaluation of ratings of the sound insulation of simulated walls in terms of the intelligibility of speech transmitted through the walls. Subjects listened to speech modified to simulate transmission through 20 different walls with a wide range of sound insulation ratings, with constant ambient noise. The subjects' mean speech intelligibility scores were compared with various physical measures to test the success of the measures as sound insulation ratings. The standard Sound Transmission Class (STC) and Weighted Sound Reduction Index ratings were only moderately successful predictors of intelligibility scores, and eliminating the 8 dB rule from STC led to very modest improvements. Various previously established speech intelligibility measures (e.g., Articulation Index or Speech Intelligibility Index) and measures derived from them, such as the Articulation Class, were all relatively strongly related to speech intelligibility scores. In general, measures that involved arithmetic averages or summations of decibel values over frequency bands important for speech were most strongly related to intelligibility scores. The two most accurate predictors of the intelligibility of transmitted speech were an arithmetic average transmission loss over the frequencies from 200 to 2.5 kHz and the addition of a new spectrum weighting term to R(w) that included frequencies from 400 to 2.5 kHz. PMID:18345835

  5. Aerogel as a Soft Acoustic Metamaterial for Airborne Sound

    NASA Astrophysics Data System (ADS)

    Guild, Matthew D.; García-Chocano, Victor M.; Sánchez-Dehesa, José; Martin, Theodore P.; Calvo, David C.; Orris, Gregory J.

    2016-03-01

    Soft acoustic metamaterials utilizing mesoporous structures have been proposed recently as a means for tuning the overall effective properties of the metamaterial and providing better coupling to the surrounding air. In this paper, the use of silica aerogel is examined theoretically and experimentally as part of a compact soft acoustic metamaterial structure, which enables a wide range of exotic effective macroscopic properties to be demonstrated, including negative density, density near zero, and nonresonant broadband slow-sound propagation. Experimental data are obtained on the effective density and sound speed using an air-filled acoustic impedance tube for flexural metamaterial elements, which have been investigated previously only indirectly due to the large contrast in acoustic impedance compared to that of air. Experimental results are presented for silica aerogel arranged in parallel with either one or two acoustic ports and are in very good agreement with the theoretical model.

  6. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings.

    PubMed

    Park, H K; Bradley, J S

    2009-07-01

    This paper reports the results of an evaluation of the merits of standard airborne sound insulation measures with respect to subjective ratings of the annoyance and loudness of transmitted sounds. Subjects listened to speech and music sounds modified to represent transmission through 20 different walls with sound transmission class (STC) ratings from 34 to 58. A number of variations in the standard measures were also considered. These included variations in the 8-dB rule for the maximum allowed deficiency in the STC measure as well as variations in the standard 32-dB total allowed deficiency. Several spectrum adaptation terms were considered in combination with weighted sound reduction index (R(w)) values as well as modifications to the range of included frequencies in the standard rating contour. A STC measure without an 8-dB rule and an R(w) rating with a new spectrum adaptation term were better predictors of annoyance and loudness ratings of speech sounds. R(w) ratings with one of two modified C(tr) spectrum adaptation terms were better predictors of annoyance and loudness ratings of transmitted music sounds. Although some measures were much better predictors of responses to one type of sound than were the standard STC and R(w) values, no measure was remarkably improved for predicting annoyance and loudness ratings of both music and speech sounds. PMID:19603878

  7. Recent Airborne Radar Depth Sounding of Recovery Glacier

    NASA Astrophysics Data System (ADS)

    Li, Jilu; Gogineni, Sivaprasad; Yan, Stephen; Mahmood, Ali; Awasthi, Abhishek; Rodriguez-Morales, Fernando

    2015-04-01

    Recovery Glacier in East Antarctica drains a large volume of ice into Filchner Ice Shelf towards Weddell Sea. The existence of several subglacial lakes beneath the channel has been speculated based on satellite observations of elevation changes on the ice surface. Because of its important role in East Antarctic ice mass balance and its unique function in the ice-flow dynamics of Recovery Ice Stream, two NASA Operation IceBridge (OIB) missions have been flown over Recovery Glacier, the first in October 2012 and the second in October 2014. The airborne radar depth sounder (RDS) data collected during these two missions by the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-channel Coherent Radar Depth Sounder/Imager (MCoRDS/I) have revealed both the presence of a very deep channel and its complex shape, data that contribute to the study of the ice-flow dynamics of the glacier and estimations of its mass balance. In this paper, we will report the results of measurements collected during the 2014 Antarctica DC-8 mission for OIB. Data were collected using an improved version of the CReSIS MCoRDS/I. We increased transmit power to each element of the transmit-array from about 200 W to 1000 W and increased the chirp bandwidth to 50 MHz, compared to 9.5 MHz used in earlier OIB missions. These improvements have led to a more complete mapping of the deepest part of the channel, which is more than 3.7 km deep, and fine-resolution mapping of internal layers. Our preliminary analysis of radar echoes does not indicate the presence of water or a wet surface in subglacier lakes. This paper presents an overview of the radar system, results from our recent measurements, and analysis of these results.

  8. On the suitability of ISO 16717-1 reference spectra for rating airborne sound insulation.

    PubMed

    Mašović, Draško B; Pavlović, Dragana S Šumarac; Mijić, Miomir M

    2013-11-01

    A standard proposal for rating airborne sound insulation in buildings [ISO 16717-1 (2012)] defines the reference noise spectra. Since their shapes influence the calculated values of single-number descriptors, reference spectra should approximate well typical noise spectra in buildings. There is, however, very little data in the existing literature on a typical noise spectrum in dwellings. A spectral analysis of common noise sources in dwellings is presented in this paper, as a result of an extensive monitoring of various noisy household activities. Apart from music with strong bass content, the proposed "living" reference spectrum overestimates noise levels at low frequencies. PMID:24181985

  9. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings

    NASA Astrophysics Data System (ADS)

    Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad

    2014-03-01

    Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution

  10. Mechanism and calculation of the niche effect in airborne sound transmission.

    PubMed

    Vinokur, Roman

    2006-04-01

    The goal is to interpret and calculate the "niche effect" for the airborne sound transmission through a specimen mounted inside an aperture in the wall between the source and receiving reverberation rooms. The low-frequency sound insulation is known to be worse for the specimen placed at the center than for the specimen mounted at either edge of the aperture. As shown, the aperture with a tested specimen can be simulated at low frequencies as a triple partition where the middle element is the specimen and the role of the edge leaves is played by the air masses entrained at the aperture edges. With a centrally located specimen, such a triple system is symmetric and has two main natural frequencies close together. In this case, the resonant transmission is higher than for the edge arrangement simulated as a double system with one natural frequency. Analogous resonant phenomena are known to reduce the low-frequency transmission loss for symmetric triple windows or solid walls with identical air gaps and lightweight boards on both sides. The theoretical results obtained for the mechanical and acoustical models are in a good agreement with the experimental data. PMID:16642835

  11. Airborne Radar Sounding and Ice Thickness Measurements over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.; Holt, J. W.; Kempf, S. D.; Richter, T. G.; Falola, B.; Oliason, S.

    2002-05-01

    Lake Vostok was discovered using airborne ice-sounding radar in East Antarctica during the mid 1970's, but interest in this largest known subglacial lake has increased in recent years. Frozen microbial discoveries from ice cores taken just above Lake Vostok suggest its potential for being an isolated biological ecosystem. Also, the lake's unique combination of glaciologic, hydrologic and geological processes make it a possible terrestrial analogue for sub-ice water on other planetary bodies. Satellite radar has mapped the spatial extent of the lake from surface topography, and Russian ground traverses have gathered radar and seismic data along select profiles, but the full subglacial environment has remained uncharted. In response to a proposal by R.E. Bell and M. Studinger at Lamont Doherty Earth Observatory, the University of Texas Institute for Geophysics (UTIG) conducted an airborne geophysical survey over Lake Vostok and its surroundings during the 2000/01 field season. The survey included 21,000 line-km of geophysical observations with a line spacing of 7.5 km and a tie-line spacing of 11.25 or 22.5 km. The instrument suite included incoherent ice-sounding radar, laser altimetry, and precise GPS positioning and navigation, as well as airborne gravity and magnetics measurements. The radar system consisted of a 60 MHz, 8000 watt peak power transmitter operating in pulsed continuous-wave mode at 12.5 kHz (with 250 ns pulse width), a log-detection incoherent receiver (with 80 dB dynamic range), and a signal digitizer with a unique capability to average signals rapidly. Incoherent radar observations constructed from 2048 averaged transmissions occurred roughly every 12 m along-track. Ice thicknesses in excess of 4000 m were routinely sounded over Lake Vostok using this system. In addition to the incoherent radar, a new acquisition system was developed on an experimental basis to coherently integrate radar signals utilizing synthetic aperture radar techniques

  12. Surface Clutter Removal in Airborne Radar Sounding Data from the Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Morse, D. L.; Peters, M. E.; Kempf, S. D.

    2005-01-01

    We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.

  13. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  14. Draft Environmental Statement For Physics and Astronomy Sounding Rocket, Balloon, and Airborne Research Programs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This document is a draft of an environmental impact statement, evaluating the effect on the environment of the use of sounding rockets, balloons and air borne research programs in studying the atmosphere.

  15. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  16. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits

    SciTech Connect

    Tang, Kun; Qiu, Chunyin Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2015-01-14

    Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.

  17. European methodology for testing the airborne sound insulation characteristics of noise barriers in situ: experimental verification and comparison with laboratory data

    PubMed

    Garai; Guidorzi

    2000-09-01

    In the frame of the 1994-1997 Standard, Measurement and Testing program, the European Commission funded a research project, named Adrienne, to define new test methods for measuring the intrinsic characteristics of road traffic noise reducing devices in situ. The research team produced innovative methods for testing the sound reflection/absorption and the airborne sound insulation characteristics of noise barriers. These methods are now under consideration at CEN (European Committee for Standardization), to become European standards. The present work reports a detailed verification of the test method for airborne sound insulation over a selection of 17 noise barriers, representative of the Italian and European production. The samples were tested both outdoors, using the new Adrienne method, and in laboratory, following the European standard EN 1793-2. In both cases the single number rating for airborne sound insulation recommended by the European standard was calculated. The new method proved to be easy to use and reliable for all kinds of barriers. It has been found sensitive to quality of mounting, presence of seals, and other details typical of outdoor installations. The comparison between field and laboratory results shows a good correlation, while existing differences can be explained with the different sound fields and mounting conditions between the outdoor and laboratory tests. It is concluded that the Adrienne method is adequate for its intended use. PMID:11008808

  18. An upward looking airborne millimeter wave radiometer for atmospheric water vapor sounding and rain detection

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Platt, R. H.

    1985-01-01

    A 90/180 GHz multichannel radiometer is currently under development for NASA's 1985 Hurricane Mission onboard the Convair 990 research aircraft. The radiometer will be a fixed beam instrument with dual corrugated horns and a common lens antenna designed to operate simultaneously at 90 and 180 GHz. The all solid state front-end will contain three double side band data channels at 90 + or - 3 GHz, 180 + or - 3 GHz, and 180 + or - 7 GHz. The airborne radiometer will mount in a window port on the CV-990 and will maintain a fixed beam view approximately 14 degrees off zenith. The radiometer design is a Dicke chopper arrangement selected to achieve maximum absolute temperature accuracy and minimum brightness temperature sensitivity. Analog outputs of the three data channels will be calibrated dc voltages representing the observed radiometric brightness temperatures over the selected integration time.

  19. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory. PMID:23039562

  20. Characterisation of an airborne sound source for use in a virtual acoustic prototype

    NASA Astrophysics Data System (ADS)

    Moorhouse, A. T.; Seiffert, G.

    2006-09-01

    An approach is outlined suitable for constructing 'virtual acoustic prototypes' of machines. Here, the machine is 'sub-structured' into: active components (vibro-acoustic sources), and frame (the remaining passive parts of the machine). The approach is validated using the illustrative example of an electric motor installed in a machine frame. The motor is characterised by a line of four monopoles on its axis, the complex source strengths for which are obtained from the measured anechoic sound field around the motor using an inverse method. A singular value decomposition is carried out both to aid the solution and to shed light on the dominant mechanisms. A set of compatible transfer functions of a machine frame is then measured using a reciprocal technique. The sound power of the assembled machine is then predicted using a 'virtual prototype' approach of combining motor and frame data in the computer. Reasonable agreement is obtained with measurements made on a real prototype, although the agreement was limited at least in part by difficulties in repeating the same operating conditions for the motor. A simplified characterisation, using a single monopole, and with improved motor control produced excellent agreement.

  1. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies

  2. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  3. Sound

    NASA Astrophysics Data System (ADS)

    Capstick, J. W.

    2013-01-01

    1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.

  4. Challenges to Airborne and Orbital Radar Sounding in the Presence of Surface Clutter: Lessons Learned (so far) from the Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Blankenship, D. D.

    2005-12-01

    The search for life and in-situ resources for exploration on Mars targets both liquid and solid water, whether distributed or in reservoirs. Massive surface ice may cover potential habitats or other features of great interest. Ice-rich layering in the high latitudes holds clues to the climatic history of the planet. Multiple geophysical methods will clearly be necessary to fully characterize these various states of water (and other forms of ice), but radar sounding will be a critical component of the effort. Orbital radar sounders are already being employed and plans for surface-based and suborbital, above-surface radar sounders are being discussed. The difficulties in interpreting data from each type of platform are quite different. Given the lack of existing orbital radar sounding data from any planetary body, the analysis of airborne radar sounding data is quite useful for assessing the advantages and disadvantages of above-surface radar sounding on Mars. In addition to over 300,000 line-km of data collected over the Antarctic ice sheet by airborne radar sounding, we have recently analyzed data from the Dry Valleys of Antarctica where conditions and features emulate Mars in several respects. These airborne radar sounding data were collected over an ice-free area of Taylor Valley, ice-covered lakes, Taylor Glacier, and Beacon Valley. The pulsed radar (52.5 - 67.5 MHz chirp) was coherently recorded. Pulse compression and unfocused SAR processing were applied. One of the most challenging aspects of above-surface radar sounding is the determination of echo sources. This can, of course, be problematic for surface-based radar sounders given possible subsurface scattering geometries, but it is most severe for above-surface sounders because echoes from cross-track surface topography (surface clutter) can have similar time delays to those from the subsurface. We have developed two techniques to accomplish the identification of this surface clutter in single-pass airborne

  5. Echo Source Discrimination in Airborne Radar Sounding Data From the Dry Valleys, Antarctica, for Mars Analog Studies

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Williams, B. J.

    2003-12-01

    The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars. We have collected roughly 1,000 line-km of airborne radar sounding data in the Dry Valleys for Mars analog studies. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of surrounding topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. Using a Twin Otter airborne platform, data were collected in three separate flights during the austral summers of 1999-2000 and 2001-2002 using multiple systems, including a chirped 52.5 - 67.5 MHz coherent radar operating at 750 W and 8 kW peak power (with multiple receivers) and 1 - 2 microsecond pulse width, and a 60 MHz pulsed, incoherent radar operating at 8 kW peak power with 60 ns and 250 ns pulse width. The chirped, coherent data are suitable for the implementation of advanced pulse compression algorithms and SAR focusing. Flight elevation was nominally 500 m above the surface. Targets included permafrost, subsurface ice bodies, rock/ice glaciers, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valleys. A laser altimeter (fixed relative to the aircraft frame) was also used during both

  6. Determination of sound types and source levels of airborne vocalizations by California sea lions, Zalophus californianus, in rehabilitation at the Marine Mammal Center in Sausalito, California

    NASA Astrophysics Data System (ADS)

    Schwalm, Afton Leigh

    California sea lions (Zalophus californianus) are a highly popular and easily recognized marine mammal in zoos, aquariums, circuses, and often seen by ocean visitors. They are highly vocal and gregarious on land. Surprisingly, little research has been performed on the vocalization types, source levels, acoustic properties, and functions of airborne sounds used by California sea lions. This research on airborne vocalizations of California sea lions will advance the understanding of this aspect of California sea lions communication, as well as examine the relationship between health condition and acoustic behavior. Using a PhillipsRTM digital recorder with attached microphone and a calibrated RadioShackRTM sound pressure level meter, acoustical data were recorded opportunistically on California sea lions during rehabilitation at The Marine Mammal Center in Sausalito, CA. Vocalizations were analyzed using frequency, time, and amplitude variables with Raven Pro: Interactive Sound Analysis Software Version 1.4 (The Cornell Lab of Ornithology, Ithaca, NY). Five frequency, three time, and four amplitude variables were analyzed for each vocalization. Differences in frequency, time, and amplitude variables were not significant by sex. The older California sea lion group produced vocalizations that were significantly lower in four frequency variables, significantly longer in two time variables, significantly higher in calibrated maximum and minimum amplitude variables, and significantly lower in frequency at maximum and minimum amplitude compared with pups. Six call types were identified: bark, goat, growl/grumble, bark/grumble, bark/growl, and grumble/moan. The growl/grumble call was higher in dominant beginning, ending, and minimum frequency, as well as in the frequency at maximum amplitude compared with the bark, goat, bark/grumble calls in the first versus last vocalization sample. The goat call was significantly higher in first harmonic interval than any other call type

  7. Airborne and ground based measurements in McMurdo Sound, Antarctica, for the validation of satellite derived ice thickness

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman

    2014-05-01

    Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.

  8. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  9. The use of airborne radar reflectometry to characterize near-surface snow/firn stratigraphy on Devon Ice Cap, Canadian Arctic: A path to identifying refrozen melt layers

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2015-12-01

    Under present warming conditions, summer surface melt has been observed to intensify and shift towards higher elevations in the accumulation zones of Canadian Arctic ice caps. Consequently, more meltwater percolates into the near surface snow and firn, and refreezes as ice layers. This process can lead to a significant increase in firn densification rates. Knowledge of spatiotemporal variations of the near-surface firn density, especially the distribution of ice layer formation is of great importance when assessing mass change estimates from repeat altimetry measurements. Here, we present an approach for characterizing the near-surface firn stratigraphy and determining the spatial distribution of refrozen melt layers on Devon Ice Cap, using the surface echo from airborne radio-echo sounding (RES) measurements. The RES surface echo is affected by the upper few meters of snow/firn/ice and thus contains information about the near-surface properties. More specifically, the radar surface return is a combination of a coherent (Pc) and a scattering signal component (Pn). Pc is related to the dielectric constant of the probed surface, whereas Pn is related to the near surface roughness. Hence, different near-surface snow/firn properties can be investigated by analyzing the signal components Pc and Pn and their spatial variability. The Radar Statistical Reconnaissance (RSR) methodology [1] allows the extraction of Pc and Pn from the surface radar return, which then can be used to compute near-surface roughness and firn density estimates. We apply the RSR method to RES data collected on Devon Ice Cap and determine Pc and Pn values. We then compare the results to ground based RES measurements and shallow firn cores (~11 m deep) collected along the airborne RES flight lines. This comparison shows that variations in the scattering coefficient Pn correlate to changes in the pattern of near-surface firn stratigraphy revealed by the ground based RES data and firn cores. Based on

  10. Abdominal sounds

    MedlinePlus

    ... sounds by listening to the abdomen with a stethoscope ( auscultation ). Most bowel sounds are normal. However, there ... sounds can sometimes be heard even without a stethoscope. Hyperactive bowel sounds mean there is an increase ...

  11. The Imagery of Sound

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Automated Analysis Corporation's COMET is a suite of acoustic analysis software for advanced noise prediction. It analyzes the origin, radiation, and scattering of noise, and supplies information on how to achieve noise reduction and improve sound characteristics. COMET's Structural Acoustic Foam Engineering (SAFE) module extends the sound field analysis capability of foam and other materials. SAFE shows how noise travels while airborne, how it travels within a structure, and how these media interact to affect other aspects of the transmission of noise. The COMET software reduces design time and expense while optimizing a final product's acoustical performance. COMET was developed through SBIR funding and Langley Research Center for Automated Analysis Corporation.

  12. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  13. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  14. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  15. Sound and structural vibration - A review

    NASA Astrophysics Data System (ADS)

    Fahy, F. J.

    The fundamental principles of fluid-structure interaction are reviewed. Modern fields of application are discussed with attention given to sound radiation from vibrating structures, fluid loading of vibrating structures, airborne sound transmission through structural partitions, and acoustically induced response of structures. Theoretical and experimental techniques are outined with particular emphasis on recent developments.

  16. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  17. Sound Symbolism.

    ERIC Educational Resources Information Center

    Hinton, Leanne, Ed.; And Others

    Sound symbolism is the study of the relationship between the sound of an utterance and its meaning. In this interdisciplinary collection of new studies, 24 leading scholars discuss the role of sound symbolism in a theory of language. Contributions and authors include the following: "Sound-Symbolic Processes" (Leanne Hinton, Johanna Nichols, John…

  18. Loudness evaluation of sounds transmitted through walls—basic experiment with artificial sounds

    NASA Astrophysics Data System (ADS)

    Tachibana, H.; Hamada, Y.; Sato, F.

    1988-12-01

    A basic psycho-acoustic experiment was performed in order to establish a reliable method for evaluating insulation properties of building walls against airborne sound. Eleven models were used to represent actual sound insulation characteristics and three models used for incident noises on walls. Results of a four-step hearing test were arranged according to five well-known measures for noise assessment, and Perceived Level ( PL) was found to be the best among them for assessing the loudness of the sound transmitted through walls. In addition, arithmetic mean values of the sound pressure levels in octave bands from 63 Hz or 125 Hz to 4 kHz were examined. It was found that such simple measures have an unexpectedly high correlation with the loudness, surpassing even the PL. This suggests that the arithmetic mean value of the sound transmission losses in octave bands is a good single-number measure for rating the airborne sound insulation performance of walls.

  19. Abdominal sounds

    MedlinePlus

    ... during sleep. They also occur normally for a short time after the use of certain medicines and after abdominal surgery. Decreased or absent bowel sounds often indicate constipation. Increased ( hyperactive ) bowel sounds ...

  20. Airborne source localization in shallow water

    NASA Astrophysics Data System (ADS)

    Peng, Zhaohui; Wang, Guangxu

    2012-11-01

    Owing to the great difference of acoustic characteristic impedance between air and water, the sound transmission loss from an airborne source into water is very high. So, it is very difficult to do experimental research on air-to-water sound propagation. An experiment was conducted for air-to-water sound propagation in the South China Sea in 2010. A HLA placed on the sea bottom was used to receive signals sent by a high-power loudspeaker hung on a research ship floating 1km to 4km away from the HLA. The locations of airborne sources are estimated from the signals measured by the HLA. The estimated DOA and ranges are in agreement with the GPS records.

  1. Making sound vortices by metasurfaces

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Tang, Kun; Jia, Han; Ke, Manzhu; Peng, Shasha; Liu, Zhengyou

    2016-08-01

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  2. Sound beam manipulation based on temperature gradients

    SciTech Connect

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  3. Sound beam manipulation based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-10-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  4. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  5. Breath sounds

    MedlinePlus

    ... Rales can be further described as moist, dry, fine, and coarse. Rhonchi. Sounds that resemble snoring. They ... notice them. The following tests may be done: Analysis of a sputum sample ( sputum culture , sputum Gram ...

  6. Results of forward-scatter radio echo observations in 2000

    NASA Astrophysics Data System (ADS)

    Ueda, Masayoshi; Maegawa, Kimio

    2001-11-01

    We had been performing a forward scatter radio observation of meteor since 1996. The transmitting station was at Fukui (Japan), and the frequency is 53.750 MHz and the power is 50W. The receiving station is Osaka (Japan) and base line has 160 km distance and NE-SW direction. 504,588 meteor echoes have been observed from January to December 2000. Total of radio observation was 8,238 hours. We made the activities of these showers (June), δ Aquarids (July), Perseids (August), Leonids (November), Geminids (December) and Ursids (December). Moreover, we reported the daily variation of mean meteor rates and the annual variation of mean meteor rates.

  7. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  8. Sound Guard

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lubrication technology originally developed for a series of NASA satellites has produced a commercial product for protecting the sound fidelity of phonograph records. Called Sound Guard, the preservative is a spray-on fluid that deposits a microscopically thin protective coating which reduces friction and prevents the hard diamond stylus from wearing away the softer vinyl material of the disc. It is marketed by the Consumer Products Division of Ball Corporation, Muncie, Indiana. The lubricant technology on which Sound Guard is based originated with NASA's Orbiting Solar Observatory (OSO), an Earth-orbiting satellite designed and built by Ball Brothers Research Corporation, Boulder, Colorado, also a division of Ball Corporation. Ball Brothers engineers found a problem early in the OSO program: known lubricants were unsuitable for use on satellite moving parts that would be exposed to the vacuum of space for several months. So the company conducted research on the properties of materials needed for long life in space and developed new lubricants. They worked successfully on seven OSO flights and attracted considerable attention among other aerospace contractors. Ball Brothers now supplies its "Vac Kote" lubricants and coatings to both aerospace and non-aerospace industries and the company has produced several hundred variations of the original technology. Ball Corporation expanded its product line to include consumer products, of which Sound Guard is one of the most recent. In addition to protecting record grooves, Sound Guard's anti-static quality also retards particle accumulation on the stylus. During comparison study by a leading U.S. electronic laboratory, a record not treated by Sound Guard had to be cleaned after 50 plays and the stylus had collected a considerable number of small vinyl particles. The Sound Guard-treated disc was still clean after 100 plays, as was its stylus.

  9. Parametric uncertainty quantification of sound insulation values.

    PubMed

    Reynders, Edwin

    2014-04-01

    A probabilistic framework is developed for quantifying the combined effect of uncertain parameters in sound insulation measurements, such as test sample dimensions, room properties, and loudspeaker positions, on the sound insulation values. The joint probability distribution of the uncertain parameters is constructed from the available information by means of a maximum entropy approach. The resulting sound insulation predictions are fully compatible with the available information but otherwise maximally conservative, so that the robustness of the predictions is guaranteed. Fundamental insight in the inherent uncertainty of the measurement procedure for airborne sound insulation is obtained by combining the method with detailed numerical simulations of the measurement procedure for single and double walls. The resulting uncertainty levels are very large, especially in the lowest frequency bands, and agree with experimental results. Furthermore, the probability distribution of the band-averaged sound reduction index of modally sparse walls can be of bimodal form. PMID:25234989

  10. Sound Solutions

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    Poor classroom acoustics are impairing students' hearing and their ability to learn. However, technology has come up with a solution: tools that focus voices in a way that minimizes intrusive ambient noise and gets to the intended receiver--not merely amplifying the sound, but also clarifying and directing it. One provider of classroom audio…

  11. Sterilizing Effects of High-Intensity Airborne Sonic and Ultrasonic Waves

    PubMed Central

    Pisano, Michael A.; Boucher, Raymond M. G.; Alcamo, I. Edward

    1966-01-01

    The lethal effects of high-intensity airborne sonic (9.9 kc/sec) and ultrasonic waves (30.4 kc/sec) on spores of Bacillus subtilis var. niger ATCC 9372 were determined. The spores, which were deposited on filter-paper strips, were exposed to sound waves for periods varying from 1 to 8 hr, at a temperature of 40 C and a relative humidity of 40%. Significant reductions in the viable counts of spores exposed to airborne sonic or ultrasonic irradiations were obtained. The antibacterial activity of airborne sound waves varied with the sound intensity level, the period of irradiation, and the distance of the sample from the sound source. At similar intensity levels, the amplitude of motion of the sound waves appeared to be a factor in acoustic sterilization. Images Fig. 1 PMID:4961527

  12. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  13. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  14. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  15. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  16. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  17. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  18. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  19. Korotkoff Sounds.

    PubMed

    Shennan; Halligan

    1996-12-01

    We were interested in the historical perspective that Arabidze et al. [1] brought to the subject of Korotkoff's auscultatory method of measuring blood pressure. The original description by the Reverend Stephen Hales performing the very first blood pressure measurement (which was actually published in 1733) does not make reference to a column of water as the authors suggest [2]. Hales wrote: 'Then untying the Ligature on the Artery, the Blood rose in the Tube eight Feet three Inches.'. He goes on to state that, 'When it was at its full Height, it would rise and fall at and after each Pulse two, three, or four Inches, and sometimes it would fall twelve or fourteen Inches, and have there for a time the same vibrations up and down at and after each Pulse, as it had, when it was at its full Height; to which it would rise again, after forty or fifty Pulses'. We believe this fall of '12 or 14 in' to have been the first description of blood pressure variability, which has wrongly been attributed to respirations by subsequent authors [3]. The mare's pulse rate was described to be about 50 beats per minute; therefore an unanaesthetized horse would not be likely to have a respiration rate of once per minute. One further important point of error concerning the Korotkoff sounds is their reproducibility. We have demonstrated recently that phase IV is reproduced or identified poorly, both in adults and even during pregnancy, when it has been recommended to be used in favour of phase V. We have also demonstrated that phase I (systolic blood pressure) is perceived to be significantly clearer than phase V [4]. PMID:10226281

  20. Retrievals with the Infrared Atmospheric Sounding Interferometer

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.

    2007-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.

  1. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  2. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  3. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  4. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  5. Making Sound Connections

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  6. The Sound of Science

    ERIC Educational Resources Information Center

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  7. Sounds Exaggerate Visual Shape

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  8. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  9. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  10. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  11. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  12. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  13. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  14. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  15. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  16. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  17. Relationship between sound radiation from sound-induced and force-excited vibration: Analysis using an infinite elastic plate model.

    PubMed

    Yairi, Motoki; Sakagami, Kimihiro; Nishibara, Kosuke; Okuzono, Takeshi

    2016-07-01

    Although sound radiation from sound-induced vibration and from force-excited vibration of solid structures are similar phenomena in terms of radiating from vibrating structures, the general relationship between them has not been explicitly studied to date. In particular, airborne sound transmission through walls and sound radiation from structurally vibrating surfaces in buildings are treated as different issues in architectural acoustics. In this paper, a fundamental relationship is elucidated through the use of a simple model. The transmission coefficient for random-incidence sound and the radiated sound power under point force excitation of an infinite elastic plate are both analyzed. Exact and approximate solutions are derived for the two problems, and the relationship between them is theoretically discussed. A conversion function that relates the transmission coefficient and radiated sound power is obtained in a simple closed form through the approximate solutions. The exact solutions are also related by the same conversion function. It is composed of the specific impedance and the wavenumber, and is independent of any elastic plate parameters. The sound radiation due to random-incidence sound and point force excitation are similar phenomena, and the only difference is the gradient of those characteristics with respect to the frequency. PMID:27475169

  18. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  19. Sound wave transmission (image)

    MedlinePlus

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  20. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  1. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  2. VAS sounding data evaluation

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.

    1984-01-01

    The VAS soundings derived by NOAA personnel and NASA personnel and rawinsonde soundings are compared: (1) directly by plotting on Skew t-log p diagrams; (2) by pairing rawinsonde soundings with the closest satellite soundings and calculating the mean and standard deviations of differences between the two data sets; and (3) by constructing synoptic and subsynoptic scale analyses with rawinsonde and satellite data. Differences for various parameters are discussed.

  3. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  4. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  5. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  6. Enlarge Your Sound Repertory

    ERIC Educational Resources Information Center

    Carle, Irmgard Lehrer; Martin, Isaiah

    1975-01-01

    Authors served up a variety of techniques for investigating sound sources and sound patterns. Have you considered creating a composition from breathing sounds? Or constructing a conversation in percussion? These ideas are included along with step-by-step directions for making nine percussion instruments. (Editor)

  7. The Sounds of Mandarin.

    ERIC Educational Resources Information Center

    Yen, Isabella Y.

    This phonology workbook on the sounds of Mandarin Chinese accompanies a 3-volume set of textbooks for the language. The workbook provides illustrations of the articulation of the sounds and offers exercises and drills for practicing each sound. For related documents in this series, see FL 002 773, FL 002 774, FL 002 776, and FL 002 777. (VM)

  8. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  9. High-resolution Profiling of the Lower Troposphere from Airborne GPS Radio Occultation

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Murphy, B.; Xie, F.; Haase, J. S.; Muradyan, P.; Wang, K.; Garrison, J. L.

    2013-12-01

    The Airborne GPS radio occultation (RO) technique offers dense sounding measurements over a target region in all-weather conditions that is very attractive for regional atmospheric process studies. During the PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign in 2010, numerous airborne RO soundings were collected by Global Navigation Satellite Systems (GNSS) Instrument System for Multistatic and Occultation Sensing (GISMOS) aboard the NCAR Gulfstream-V aircraft. The atmospheric refractivity and bending angle profiles have been successfully retrieved with a geometric optics (GO) method. However, the multipath phenomena caused by the large variation of water vapor in the lower troposphere limits the application of GO method and stresses the need for radio-holographic methods. In this study, the full-spectrum-inversion (FSI) method that is widely used for spaceborne RO retrieval is adapted to account for the airborne RO geometry with an RO receiver inside the atmosphere. A sensitivity analysis of the FSI method based on simulated airborne RO signals will be shown. Preliminary results of the FSI bending angle and refractivity retrieval from the PREDICT airborne RO measurements will also be presented and compared with the GO retrieval as well as the near-coincident model analysis and in-situ balloon soundings.

  10. Priming Gestures with Sounds

    PubMed Central

    Lemaitre, Guillaume; Heller, Laurie M.; Navolio, Nicole; Zúñiga-Peñaranda, Nicolas

    2015-01-01

    We report a series of experiments about a little-studied type of compatibility effect between a stimulus and a response: the priming of manual gestures via sounds associated with these gestures. The goal was to investigate the plasticity of the gesture-sound associations mediating this type of priming. Five experiments used a primed choice-reaction task. Participants were cued by a stimulus to perform response gestures that produced response sounds; those sounds were also used as primes before the response cues. We compared arbitrary associations between gestures and sounds (key lifts and pure tones) created during the experiment (i.e. no pre-existing knowledge) with ecological associations corresponding to the structure of the world (tapping gestures and sounds, scraping gestures and sounds) learned through the entire life of the participant (thus existing prior to the experiment). Two results were found. First, the priming effect exists for ecological as well as arbitrary associations between gestures and sounds. Second, the priming effect is greatly reduced for ecologically existing associations and is eliminated for arbitrary associations when the response gesture stops producing the associated sounds. These results provide evidence that auditory-motor priming is mainly created by rapid learning of the association between sounds and the gestures that produce them. Auditory-motor priming is therefore mediated by short-term associations between gestures and sounds that can be readily reconfigured regardless of prior knowledge. PMID:26544884

  11. Electrophonic sounds in meteors

    NASA Astrophysics Data System (ADS)

    Wu, Guangjie

    2003-06-01

    Recordings about the sounds of meteors existed in ancient Chinese literature before Christ. During recent two hundreds years, especially, recent twenty years, reports and investigations about Electrophonic meteors and Electrophonic sounds have been developed largely. Electrophonic sounds are defined as sounds produced by direct conversion of electromagnetic radiation into audible sounds. It is thought that Electrophonic sounds may be induced in events of bolide, very bright auroral display, nearby strong lightning, earthquake and nuclear explosion. However, on account of its unusually rare chance and its particular physical course, no matter in observations or in theoretical study, there are many difficult and unresolved problems. The historical and present situations about Electrophonic sounds are summarized in this paper.

  12. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  13. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  14. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  15. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  16. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  17. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  18. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  19. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  20. The sound of distance.

    PubMed

    Rabaglia, Cristina D; Maglio, Sam J; Krehm, Madelaine; Seok, Jin H; Trope, Yaacov

    2016-07-01

    Human languages may be more than completely arbitrary symbolic systems. A growing literature supports sound symbolism, or the existence of consistent, intuitive relationships between speech sounds and specific concepts. Prior work establishes that these sound-to-meaning mappings can shape language-related judgments and decisions, but do their effects generalize beyond merely the linguistic and truly color how we navigate our environment? We examine this possibility, relating a predominant sound symbolic distinction (vowel frontness) to a novel associate (spatial proximity) in five studies. We show that changing one vowel in a label can influence estimations of distance, impacting judgment, perception, and action. The results (1) provide the first experimental support for a relationship between vowels and spatial distance and (2) demonstrate that sound-to-meaning mappings have outcomes that extend beyond just language and can - through a single sound - influence how we perceive and behave toward objects in the world. PMID:27062226

  1. Early sound symbolism for vowel sounds

    PubMed Central

    Spector, Ferrinne; Maurer, Daphne

    2013-01-01

    Children and adults consistently match some words (e.g., kiki) to jagged shapes and other words (e.g., bouba) to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat) and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko) rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba). Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01). The results suggest that there may be naturally biased correspondences between vowel sound and shape. PMID:24349684

  2. Location of the Rhine plume front by airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Ruddick, K. G.; Lahousse, L.; Donnay, E.

    1994-04-01

    The aim of this study was to determine the feasibility of using airborne remote sensing to locate the Rhine plume front. Interest in fronts arises from the desire to predict the fate of pollutants and biological nutrients discharged from rivers into the open sea. Observations were made during flights over the Dutch coastal waters using a vertically-mounted video camera and a side-looking airborne radar (SLAR) designed for oil slick detection. Comparison of radar images with visual observations of the sea colour discontinuity and foam line establish that fronts can indeed be detected by SLAR because of high radar backscatter along the convergence line, where the fresh water jet impinges on saltier water. This provides a sound basis for future investigations using Synthetic Aperture Radar as mounted on ERS-1. An estimation of errors is given, identifying priorities for improvement of the technique. The accuracy achieved is considered sufficient for the validation of hydrodynamic models.

  3. Sound insulation and energy harvesting based on acoustic metamaterial plate

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  4. The Sound and the Fury: Adding Sound to Your PC.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1996-01-01

    Addresses the concept of adding sound to existing personal computers. Describes hardware and software options and explores uses of computers equipped with sound. Sidebars summarize the development of stereo sound in multimedia products and describe the two major forms of computer sound: Musical Instrument Digital Interface and digital sound waves.…

  5. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  6. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  7. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  8. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  9. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  10. Categorization of Sounds

    ERIC Educational Resources Information Center

    Smits, Roel; Sereno, Joan; Jongman, Allard

    2006-01-01

    The authors conducted 4 experiments to test the decision-bound, prototype, and distribution theories for the categorization of sounds. They used as stimuli sounds varying in either resonance frequency or duration. They created different experimental conditions by varying the variance and overlap of 2 stimulus distributions used in a training phase…

  11. Breaking the Sound Barrier

    ERIC Educational Resources Information Center

    Brown, Tom; Boehringer, Kim

    2007-01-01

    Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…

  12. School Sound Level Study.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    California has conducted on-site sound surveys of 36 different schools to determine the degree of noise, and thus disturbance, within the learning environment. This report provides the methodology and results of the survey, including descriptive charts and graphs illustrating typical desirable and undesirable sound levels. Results are presented…

  13. The Bosstown Sound.

    ERIC Educational Resources Information Center

    Burns, Gary

    Based on the argument that (contrary to critical opinion) the musicians in the various bands associated with Bosstown Sound were indeed talented, cohesive individuals and that the bands' lack of renown was partially a result of ill-treatment by record companies and the press, this paper traces the development of the Bosstown Sound from its…

  14. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  15. Ultrasonic airborne insertion loss measurements at normal incidence (L).

    PubMed

    Farley, Jayrin; Anderson, Brian E

    2010-12-01

    Transmission loss and insertion loss measurements of building materials at audible frequencies are commonly made using plane wave tubes or as a panel between reverberant rooms. These measurements provide information for noise isolation control in architectural acoustics and in product development. Airborne ultrasonic sound transmission through common building materials has not been fully explored. Technologies and products that utilize ultrasonic frequencies are becoming increasingly more common, hence the need to conduct such measurements. This letter presents preliminary measurements of the ultrasonic insertion loss levels for common building materials over a frequency range of 28-90 kHz using continuous-wave excitation. PMID:21218864

  16. Sound-Imitation Word Recognition for Environmental Sounds

    NASA Astrophysics Data System (ADS)

    Ishihara, Kazushi; Komatani, Kazunori; Ogata, Tetsuya; Okuno, Hiroshi G.

    Environmental sounds are very helpful in understanding environmental situations and in telling the approach of danger, and sound-imitation words (sound-related onomatopoeia) are important expressions to inform such sounds in human communication, especially in Japanese language. In this paper, we design a method to recognize sound-imitation words (SIWs) for environmental sounds. Critical issues in recognizing SIW are how to divide an environmental sound into recognition units and how to resolve representation ambiguity of the sounds. To solve these problems, we designed three-stage procedure that transforms environmental sounds into sound-imitation words, and phoneme group expressions that can represent ambiguous sounds. The three-stage procedure is as follows: (1) a whole waveform is divided into some chunks, (2) the chunks are transformed into sound-imitation syllables by phoneme recognition, (3) a sound-imitation word is constructed from sound-imitation syllables according to the requirements of the Japanese language. Ambiguity problem is that an environmental sound is often recognized differently by different listeners even under the same situation. Phoneme group expressions are new phonemes for environmental sounds, and they can express multiple sound-imitation words by one word. We designed two sets of phoneme groups: ``a set of basic phoneme group'' and ``a set of articulation-based phoneme group'' to absorb the ambiguity. Based on subjective experiments, the set of basic phoneme groups proved more appropriate to represent environmental sounds than the articulation-based one or a set of normal Japaneses phonemes.

  17. The sound manifesto

    NASA Astrophysics Data System (ADS)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  18. Heart murmurs and other sounds

    MedlinePlus

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... classified ("graded") depending on how loud the murmur sounds with a stethoscope. The grading is on a ...

  19. Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.

    1996-01-01

    Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.

  20. Sound as artifact

    NASA Astrophysics Data System (ADS)

    Benjamin, Jeffrey L.

    A distinguishing feature of the discipline of archaeology is its reliance upon sensory dependant investigation. As perceived by all of the senses, the felt environment is a unique area of archaeological knowledge. It is generally accepted that the emergence of industrial processes in the recent past has been accompanied by unprecedented sonic extremes. The work of environmental historians has provided ample evidence that the introduction of much of this unwanted sound, or "noise" was an area of contestation. More recent research in the history of sound has called for more nuanced distinctions than the noisy/quiet dichotomy. Acoustic archaeology tends to focus upon a reconstruction of sound producing instruments and spaces with a primary goal of ascertaining intentionality. Most archaeoacoustic research is focused on learning more about the sonic world of people within prehistoric timeframes while some research has been done on historic sites. In this thesis, by way of a meditation on industrial sound and the physical remains of the Quincy Mining Company blacksmith shop (Hancock, MI) in particular, I argue for an acceptance and inclusion of sound as artifact in and of itself. I am introducing the concept of an individual sound-form, or sonifact , as a reproducible, repeatable, representable physical entity, created by tangible, perhaps even visible, host-artifacts. A sonifact is a sound that endures through time, with negligible variability. Through the piecing together of historical and archaeological evidence, in this thesis I present a plausible sonifactual assemblage at the blacksmith shop in April 1916 as it may have been experienced by an individual traversing the vicinity on foot: an 'historic soundwalk.' The sensory apprehension of abandoned industrial sites is multi-faceted. In this thesis I hope to make the case for an acceptance of sound as a primary heritage value when thinking about the industrial past, and also for an increased awareness and acceptance

  1. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  2. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  3. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  4. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1979-01-01

    The second part of a three-part series, this article describes sound measurement, effects, and indoor learning activities. Thirty elementary school activities are described with appropriate grade levels specified. (Author/CS)

  5. The sound of activism.

    PubMed

    Sandstrom, B; Vetter, C

    2001-01-01

    ABSTRACT A longtime advocate for female empowerment and equality, Boden Sandstrom has worked for political change in many arenas. In the 1960s, she began a career as a librarian, but soon made activism her full-time job, working for feminist, leftist and socialist causes. In the 1970s, she found a way to turn her lifelong passion for music into a career as a sound engineer. Once established in that profession, she began donating her services to political events, marches, demonstrations, and rallies. After thirteen years of running her own company, called Woman Sound,Inc. (later City Sound Productions,Inc.), she turned to the study of ethnomusicology. She is now Program Manager and Lecturer for the Ethnomusicology Program at the University of Maryland, where she is also working on her doctorate in that subject. She continues to freelance as a sound engineer and serve as a technical producer for major events. PMID:24802836

  6. Sound Visualization and Holography

    ERIC Educational Resources Information Center

    Kock, Winston E.

    1975-01-01

    Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)

  7. Velocity of Sound

    ERIC Educational Resources Information Center

    Gillespie, A.

    1975-01-01

    Describes a method for the determination of the velocity of sound using a dual oscilloscope on which is displayed the sinusoidal input into a loudspeaker and the signal picked up by a microphone. (GS)

  8. Hyper-spectral Atmospheric Sounding. Appendixes 1

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Revercomb, H. E.; Huang, H. L.; Antonelli, P.; Mango, S. A.

    2002-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) is the first hyper-spectral remote sounding system to be orbited aboard a geosynchronous satellite. The GETS is designed to obtain revolutionary observations of the four dimensional atmospheric temperature, moisture, and wind structure as well as the distribution of the atmospheric trace gases, CO and O3. Although GIFTS will not be orbited until 2006-2008, a glimpse at the its measurement capabilities has been obtained by analyzing data from the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Test-bed-Interferometer (NAST-I) and Aqua satellite Atmospheric Infrared Sounder (AIRS). In this paper we review the GIFTS experiment and empirically assess measurement expectations based on meteorological profiles retrieved from the NAST aircraft and Aqua satellite AIRS spectral radiances.

  9. The Sounds of Sentences: Differentiating the Influence of Physical Sound, Sound Imagery, and Linguistically Implied Sounds on Physical Sound Processing.

    PubMed

    Dudschig, Carolin; Mackenzie, Ian Grant; Strozyk, Jessica; Kaup, Barbara; Leuthold, Hartmut

    2016-10-01

    Both the imagery literature and grounded models of language comprehension emphasize the tight coupling of high-level cognitive processes, such as forming a mental image of something or language understanding, and low-level sensorimotor processes in the brain. In an electrophysiological study, imagery and language processes were directly compared and the sensory associations of processing linguistically implied sounds or imagined sounds were investigated. Participants read sentences describing auditory events (e.g., "The dog barks"), heard a physical (environmental) sound, or had to imagine such a sound. We examined the influence of the 3 sound conditions (linguistic, physical, imagery) on subsequent physical sound processing. Event-related potential (ERP) difference waveforms indicated that in all 3 conditions, prime compatibility influenced physical sound processing. The earliest compatibility effect was observed in the physical condition, starting in the 80-110 ms time interval with a negative maximum over occipital electrode sites. In contrast, the linguistic and the imagery condition elicited compatibility effects starting in the 180-220 ms time window with a maximum over central electrode sites. In line with the ERPs, the analysis of the oscillatory activity showed that compatibility influenced early theta and alpha band power changes in the physical, but not in the linguistic and imagery, condition. These dissociations were further confirmed by dipole localization results showing a clear separation between the source of the compatibility effect in the physical sound condition (superior temporal area) and the source of the compatibility effect triggered by the linguistically implied sounds or the imagined sounds (inferior temporal area). Implications for grounded models of language understanding are discussed. PMID:27473463

  10. Ecological sounds affect breath duration more than artificial sounds.

    PubMed

    Murgia, Mauro; Santoro, Ilaria; Tamburini, Giorgia; Prpic, Valter; Sors, Fabrizio; Galmonte, Alessandra; Agostini, Tiziano

    2016-01-01

    Previous research has demonstrated that auditory rhythms affect both movement and physiological functions. We hypothesized that the ecological sounds of human breathing can affect breathing more than artificial sounds of breathing, varying in tones for inspiration and expiration. To address this question, we monitored the breath duration of participants exposed to three conditions: (a) ecological sounds of breathing, (b) artificial sounds of breathing having equal temporal features as the ecological sounds, (c) no sounds (control). We found that participants' breath duration variability was reduced in the ecological sound condition, more than in the artificial sound condition. We suggest that ecological sounds captured the timing of breathing better than artificial sounds, guiding as a consequence participants' breathing. We interpreted our results according to the Theory of Event Coding, providing further support to its validity, and suggesting its possible extension in the domain of physiological functions which are both consciously and unconsciously controlled. PMID:25637249

  11. Sounds and vibrations in the frozen Beaufort Sea during gravel island construction.

    PubMed

    Greene, Charles R; Blackwell, Susanna B; McLennan, Miles Wm

    2008-02-01

    Underwater and airborne sounds and ice-borne vibrations were recorded from sea-ice near an artificial gravel island during its initial construction in the Beaufort Sea near Prudhoe Bay, Alaska. Such measurements are needed for characterizing the properties of island construction sounds to assess their possible impacts on wildlife. Recordings were made in February-May 2000 when BP Exploration (Alaska) began constructing Northstar Island about 5 km offshore, at 12 m depth. Activities recorded included ice augering, pumping sea water to flood the ice and build an ice road, a bulldozer plowing snow, a Ditchwitch cutting ice, trucks hauling gravel over an ice road to the island site, a backhoe trenching the sea bottom for a pipeline, and both vibratory and impact sheet pile driving. For all but one sound source (underwater measurements of pumping) the strongest one-third octave band was under 300 Hz. Vibratory and impact pile driving created the strongest sounds. Received levels of sound and vibration, as measured in the strongest one-third octave band for different construction activities, reached median background levels <7.5 km away for underwater sounds, <3 km away for airborne sounds, and <10 km away for in-ice vibrations. PMID:18247873

  12. Interpretation of Ice Sheet Stratigraphy: a Radio - Sounding Study of the Dyer Plateau, Antarctica.

    NASA Astrophysics Data System (ADS)

    Weertman, Bruce Randall

    Determining the flow history of ice sheets is an issue central to glaciology. Stratigraphic ice horizons provide the only known natural markers for inferring velocity at depth. Stratigraphy can be detected by radio-echo sounding (RES, also called radar) and dated by coring, which together determine the age field in the ice. In this thesis it is shown for the first time how ice flow can be deduced from stratigraphy. As a first step a method is given for the deduction of the spatial pattern of accumulation from shallow dated stratigraphy. The effects of densification and horizontal divergence are determined. It is then shown how, and when, internal motion can be deduced from dated stratigraphy. A theory is developed to deduce streamlines assuming steady-state flow and mass conservation. The theory does not require rheological assumptions or a spatial accumulation rate pattern. The theory can be used to determine internal deformation rates, accumulation rate history and whether or not observed stratigraphy is consistent with steady-state flow. As part of a collaborative program involving the British Antarctic Survey, the Byrd Polar Research Center, the Polar Ice Coring Office and the University of Washington, the author has used a newly devised RES system to measure the geometry of internal stratigraphy and ice thickness on the Dyer Plateau Ice Sheet, Antarctic Peninsula. RES -determined stratigraphy was dated by comparison to ice core stratigraphy. A prominent shallow RES horizon probably associated with the eruption of Tambora (1815) was used for estimating the spatial accumulation rate pattern. The estimated pattern is consistent with the pattern measured from burial markers indicating that the new method is accurate and that the recent accumulation rate pattern is not different from the 175 year average. An analysis of ice core stratigraphy indicates that over the past 500 years the accumulation rate has varied and over the past 50 years has had an increasing

  13. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  14. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  15. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. Sound modes in holographic superfluids

    SciTech Connect

    Herzog, Christopher P.; Yarom, Amos

    2009-11-15

    Superfluids support many different types of sound waves. We investigate the relation between the sound waves in a relativistic and a nonrelativistic superfluid by using hydrodynamics to calculate the various sound speeds. Then, using a particular holographic scalar gravity realization of a strongly interacting superfluid, we compute first, second, and fourth sound speeds as a function of the temperature. The relativistic low temperature results for second sound differ from Landau's well known prediction for the nonrelativistic, incompressible case.

  18. Development of an airborne laser bathymeter

    NASA Technical Reports Server (NTRS)

    Kim, H., H.; Cervenka, P. O.; Lankford, C. B.

    1975-01-01

    An airborne laser depth sounding system was built and taken through a complete series of field tests. Two green laser sources were tried: a pulsed neon laser at 540 nm and a frequency-doubled Nd:YAG transmitter at 532 nm. To obtain a depth resolution of better than 20 cm, the pulses had a duration of 5 to 7 nanoseconds and could be fired up to at rates of 50 pulses per second. In the receiver, the signal was detected by a photomultiplier tube connected to a 28 cm diameter Cassegrainian telescope that was aimed vertically downward. Oscilloscopic traces of the signal reflected from the sea surface and the ocean floor could either be recorded by a movie camera on 35 mm film or digitized into 500 discrete channels of information and stored on magnetic tape, from which depth information could be extracted. An aerial color movie camera recorded the geographic footprint while a boat crew of oceanographers measured depth and other relevant water parameters. About two hundred hours of flight time on the NASA C-54 airplane in the area of Chincoteague, Virginia, the Chesapeake Bay, and in Key West, Florida, have yielded information on the actual operating conditions of such a system and helped to optimize the design. One can predict the maximum depth attainable in a mission by measuring the effective attenuation coefficient in flight. This quantity is four times smaller than the usual narrow beam attenuation coefficient. Several square miles of a varied underwater landscape were also mapped.

  19. On categorizing sounds

    NASA Astrophysics Data System (ADS)

    Lockhead, Gregory R.

    1991-08-01

    Context is important when people judge sounds, or attributes of sounds, or other stimuli. It is shown how judgments depend on what sounds recently occurred (sequence effects), on how those sounds differ from one another (range effects), on the distribution of those differences (set effects), on what subjects are told about the situation (task effects), and on what subjects are told about their performance (feedback effects). Each of these factors determines the overall mean and variability of response times and response choices, which are the standard measures, when people judge attribute amounts. Trial-by-trial analysis of the data show these factors also determine performance on individual trials. Moreover, these momentary data cannot be predicted from the overall data. The opposite is not true; the averaged data can be predicted from the momentary details. These results are consistent with a model having two simple assumptions: successive sounds (not just their attributes) assimilate toward one another in memory, and judgments are based on comparisons of these remembered events. It is suggested that relations between attributes, rather than the magnitudes of the attributes themselves, are the basis for judgment.

  20. Meteor fireball sounds identified

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1992-01-01

    Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.

  1. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  2. Atmospheric sound propagation

    NASA Technical Reports Server (NTRS)

    Cook, R. K.

    1969-01-01

    The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.

  3. Monaural Sound Localization Revisited

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Kistler, Doris J.

    1997-01-01

    Research reported during the past few decades has revealed the importance for human sound localization of the so-called 'monaural spectral cues.' These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.

  4. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    . A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.

  5. The heart sound preprocessor

    NASA Technical Reports Server (NTRS)

    Chen, W. T.

    1972-01-01

    Technology developed for signal and data processing was applied to diagnostic techniques in the area of phonocardiography (pcg), the graphic recording of the sounds of the heart generated by the functioning of the aortic and ventricular valves. The relatively broad bandwidth of the PCG signal (20 to 2000 Hz) was reduced to less than 100 Hz by the use of a heart sound envelope. The process involves full-wave rectification of the PCG signal, envelope detection of the rectified wave, and low pass filtering of the resultant envelope.

  6. Sounding rockets in Antarctica

    NASA Technical Reports Server (NTRS)

    Alford, G. C.; Cooper, G. W.; Peterson, N. E.

    1982-01-01

    Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.

  7. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  8. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  9. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  10. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  11. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  12. Sounds of the Desert.

    ERIC Educational Resources Information Center

    McCullough-Brabson, Ellen; Achilles, Elayne; Ashcraft, Joan

    1997-01-01

    Discusses the program called "Sounds of the Desert" that celebrates the Southwest indigenous culture and focuses on understanding music in relation to history and culture. Emphasizes the study of Mariachi music that is being taught alongside band, orchestra, and chorus from the third grade to senior high in many Tucson (Arizona) schools. (CMK)

  13. Sunny Norton Sound

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A clear day over Norton Sound in the Bering Sea allowed SeaWiFS to capture this image of the phytoplankton bloom off the coast of Alaska. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  14. Sound level measurements

    NASA Astrophysics Data System (ADS)

    1981-07-01

    This report describes procedures for measuring the sound levels of developmental and production materiel as a means of evaluating personnel safety, recognition and community annoyance (by a drive-by test). It covers tests for steady-state noise from military vehicles and general equipment, and impulse noise from weapon systems and explosive ordnance material.

  15. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  16. Creative Sound Dramatics

    ERIC Educational Resources Information Center

    Hendrix, Rebecca; Eick, Charles

    2014-01-01

    Sound propagation is not easy for children to understand because of its abstract nature, often best represented by models such as wave drawings and particle dots. Teachers Rebecca Hendrix and Charles Eick wondered how science inquiry, when combined with an unlikely discipline like drama, could produce a better understanding among their…

  17. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1980-01-01

    This article is the last of a three-part series dealing with sound measurement, effects, pollution, and indoor/door learning activities. This section focuses on outdoor activities and equipment that students can make to assist them in data collection. (Author/SA)

  18. Sounds Like Fun.

    ERIC Educational Resources Information Center

    Lucas, Linda M.

    1991-01-01

    Presents hands-on science activities that help students learn the concepts of hearing and sound while allowing students to practice science process skills. Students investigate the use of alternative phonograph speakers and needles and apply the knowledge learned to the construction of one-string banjos. (MDH)

  19. Sound transmission into a laminated composite cylindrical shell

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a laminated composite circular cylindrical shell. Numerical results are obtained for geometry typical of a narrow-bodied jet transport. Results indicate that from the viewpoint of noise attenuation on laminated composite shell does not appear to offer any significant advantage over an aluminum shell. However, the transmission loss of a laminated composite shell is sensitive to the orientation of the fibers and this suggests the possibility of using a laminated composite shell to tailor the noise attenuation characteristics to meet a specific need.

  20. Sounds of Space

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.

    2005-12-01

    Starting in the early 1960s, spacecraft-borne plasma wave instruments revealed that space is filled with an astonishing variety of radio and plasma wave sounds, which have come to be called "sounds of space." For over forty years these sounds have been collected and played to a wide variety of audiences, often as the result of press conferences or press releases involving various NASA projects for which the University of Iowa has provided plasma wave instruments. This activity has led to many interviews on local and national radio programs, and occasionally on programs haviang world-wide coverage, such as the BBC. As a result of this media coverage, we have been approached many times by composers requesting copies of our space sounds for use in their various projects, many of which involve electronic synthesis of music. One of these collaborations led to "Sun Rings," which is a musical event produced by the Kronos Quartet that has played to large audiences all over the world. With the availability of modern computer graphic techniques we have recently been attempting to integrate some of these sound of space into an educational audio/video web site that illustrates the scientific principles involved in the origin of space plasma waves. Typically I try to emphasize that a substantial gas pressure exists everywhere in space in the form of an ionized gas called a plasma, and that this plasma can lead to a wide variety of wave phenomenon. Examples of some of this audio/video material will be presented.

  1. Radiometric sounding system

    SciTech Connect

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Shaw, W.J.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making such measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.

  2. The role of large particles in the formation of the radio echo

    NASA Technical Reports Server (NTRS)

    Salman, Y. M.

    1975-01-01

    The contribution to the total reflectivity of separate parts of a particle spectrum described by a gamma distribution is estimated. It is shown that the largest individual particles, whose percent concentration is 0.1 - 1, originate approximately 60 - 70% of the total reflectivity of the spectrum. Explanations are given of a number of effects which confirm the dominant role of large particles in the formation of the echo.

  3. Toughening up DELORES: the evolution of the British Antarctic Survey DEep LOok Radio Echo Sounder

    NASA Astrophysics Data System (ADS)

    King, Edward

    2014-05-01

    DELORES is a ground-based radar designed to map the bed and internal structure of thick ice sheets. It is a monopulse radar driven by a ± 2 kV transmitter and using resistively-loaded wire dipole antennae. The recording system is based on a DC-powered digital oscilloscope. All the electronics are housed in weatherproof boxes mounted on sledges and the whole system is towed behind a snowmobile. In the 2013/14 Antarctic field season alone DELORES systems collected over 4000 km of radargrams over ice up to 2.5 km thick. The main operating area has been West Antarctica where surface conditions have varied from deep, soft snow to iron-hard sastrugi. The majority of deployments have been with two-person field teams at locations over 1000 km from support facilities. Therefore the principle design criteria has been 'tough and simple', i.e. make the system robust enough not to break and simple enough to fix with basic tools if it does. Here we describe how the engineering design has evolved over the past eight years and what future developments are planned to achieve greater reliability and versatility.

  4. Meteor observations of forward-scattered FM-radio echo in Busan (Korea)

    NASA Astrophysics Data System (ADS)

    Kim, K.-M.; Cho, M.; Kim, T.; Hong, J.; Kang, Y.-W.; Ahn, S.-H.; Lee, S. H.; Song, I.-O.

    2015-01-01

    The detection system of forward-scattered FM-radio signals has been newly set up in Korea Science Academy of KAIST in Busan, Korea. The meteor observations using a 2.5m-long Yagi antenna have been carried out since May, 2015. The radio station we use is the NHK broadcasting station (85.20MHz) located in Hokkaido, Japan which is approximately 1,400 km away from Busan and is well below the local horizon. The detection is successfully running, and we examine the observed data reliability by simply checking long-lasting echoes. An additional observing station is being installed in the nearby city of Ulsan to make a cross-check. We analyze the results to find the diurnal and daily variation of the meteor rates. We are planning to pursue long-term observations in order to educate students.

  5. Heart murmurs and other sounds

    MedlinePlus

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has four chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...

  6. Modeling the Transmission of Sound.

    ERIC Educational Resources Information Center

    Palmer, David H.

    2003-01-01

    Introduces a functional model of sound transmission through solids and gases. Describes procedures of an activity to model how sound travels faster through solid materials than gases. Use dominoes to represent the particles of solids and gases. (KHR)

  7. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Heitman, K.; Bernhard, R. J.

    1983-01-01

    The plausibility of using the two microphone sound intensity technique to study noise transmission into light aircraft was investigated. In addition, a simple model to predict the interior sound pressure level of the cabin was constructed.

  8. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  9. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  10. THE SOUND PATTERN OF ENGLISH.

    ERIC Educational Resources Information Center

    CHOMSKY, NOAM; HALLE, MORRIS

    "THE SOUND PATTERN OF ENGLISH" PRESENTS A THEORY OF SOUND STRUCTURE AND A DETAILED ANALYSIS OF THE SOUND STRUCTURE OF ENGLISH WITHIN THE FRAMEWORK OF GENERATIVE GRAMMAR. IN THE PREFACE TO THIS BOOK THE AUTHORS STATE THAT THEIR "WORK IN THIS AREA HAS REACHED A POINT WHERE THE GENERAL OUTLINES AND MAJOR THEORETICAL PRINCIPLES ARE FAIRLY CLEAR" AND…

  11. Data sonification and sound visualization.

    SciTech Connect

    Kaper, H. G.; Tipei, S.; Wiebel, E.; Mathematics and Computer Science; Univ. of Illinois

    1999-07-01

    Sound can help us explore and analyze complex data sets in scientific computing. The authors describe a digital instrument for additive sound synthesis (Diass) and a program to visualize sounds in a virtual reality environment (M4Cave). Both are part of a comprehensive music composition environment that includes additional software for computer-assisted composition and automatic music notation.

  12. Just How Does Sound Wave?

    ERIC Educational Resources Information Center

    Shipman, Bob

    2006-01-01

    When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…

  13. Sounds Alive: A Noise Workbook.

    ERIC Educational Resources Information Center

    Dickman, Donna McCord

    Sarah Screech, Danny Decibel, Sweetie Sound and Neil Noisy describe their experiences in the world of sound and noise to elementary students. Presented are their reports, games and charts which address sound measurement, the effects of noise on people, methods of noise control, and related areas. The workbook is intended to stimulate students'…

  14. Deviant sounds yield distraction irrespective of the sounds' informational value.

    PubMed

    Parmentier, Fabrice B R

    2016-06-01

    Oddball studies show that rare and unexpected changes in an otherwise repetitive or structured sequence of task-irrelevant sounds (deviant sounds among standard sounds) ineluctably break through attentional filters and yield longer response times in an ongoing task. Although this deviance distraction effect has generally been thought of as an involuntary and adaptive phenomenon, recent studies questioned this view by reporting that deviance distraction is observed when sounds predict the occurrence of a target stimulus (informative sounds) but that it disappears when sounds do not convey this information (uninformative sounds). Here, I challenge this conclusion and suggest that the apparent absence of deviance distraction with uninformative sounds results in fact from 2 opposite effects: deviance distraction when the previous trial involved a target and required responding, and a speeding up of responses by deviant sound following trials involving no target and requiring the withholding of responses. Data from a new experiment, new analyses of the data from 3 earlier studies, and the modeling of these data all converge in suggesting the existence of deviance distraction impervious to the sounds' informational value. These results undermine the proposition of a late top-down control mechanism gating behavioral distraction as a function of the sounds' informative value. (PsycINFO Database Record PMID:26727016

  15. Environmentally sound manufacturing

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  16. Environmentally sound manufacturing

    NASA Astrophysics Data System (ADS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  17. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  18. The Sounds of Space

    NASA Astrophysics Data System (ADS)

    Gurnett, Donald

    2009-11-01

    The popular concept of space is that it is a vacuum, with nothing of interest between the stars, planets, moons and other astronomical objects. In fact most of space is permeated by plasma, sometimes quite dense, as in the solar corona and planetary ionospheres, and sometimes quite tenuous, as is in planetary radiation belts. Even less well known is that these space plasmas support and produce an astonishing large variety of waves, the ``sounds of space.'' In this talk I will give you a tour of these space sounds, starting with the very early discovery of ``whistlers'' nearly a century ago, and proceeding through my nearly fifty years of research on space plasma waves using spacecraft-borne instrumentation. In addition to being of scientific interest, some of these sounds can even be described as ``musical,'' and have served as the basis for various musical compositions, including a production called ``Sun Rings,'' written by the well-known composer Terry Riley, that has been performed by the Kronos Quartet to audiences all around the world.

  19. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  20. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  1. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  2. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  3. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  4. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block...

  5. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block...

  6. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block...

  7. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block...

  8. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block...

  9. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.

    PubMed

    Yost, William A; Zhong, Xuan; Najam, Anbar

    2015-11-01

    In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process. PMID:26627802

  10. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  11. Characteristic sounds facilitate visual search.

    PubMed

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds. PMID:18567253

  12. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  13. Plastic Foam Porosity Characterization by Air-Borne Ultrasound

    NASA Astrophysics Data System (ADS)

    Hoffrén, H.; Karppinen, T.; Hæggström, E.

    2006-03-01

    We continue to develop an ultrasonic burst-reflection method for estimating porosity and tortuosity of solid materials. As a first step we report on method design considerations and measurements on polyurethane foams (Sylomer® vibration dampener) with well-defined porosity. The ultrasonic method is experimentally tested by measuring 235 kHz and 600 kHz air-borne ultrasound reflection from a foam surface at two incidence angles. The reflected sound wave from different foam samples (32% - 64% porosity) was compared to a wave that had traveled from the transmitter to the detector without reflection. The ultrasonically estimated sample porosities coincided within 8% with the porosity estimates obtained by a gravimetric reference method. This parallels the uncertainty of the gravimetric method, 8%. The repeatability of the ultrasonic porosity measurements was better than 5%.

  14. Adding Sound and Video to Web Pages.

    ERIC Educational Resources Information Center

    Duval, Beverly K.; Main, Linda

    1997-01-01

    Explains how to incorporate sound and video into Web pages with special software and HTML tags. Topics include creating sound files; sound formats; video technology; video formats; referencing sound and video files in HTML pages; embedding sounds and videos; players, plug-ins, and viewers; sound and video files from the Web; and streaming. (LRW)

  15. Drexhage's Experiment for Sound

    NASA Astrophysics Data System (ADS)

    Langguth, Lutz; Fleury, Romain; Alò, Andrea; Koenderink, A. Femius

    2016-06-01

    Drexhage's seminal observation that spontaneous emission rates of fluorophores vary with distance from a mirror uncovered the fundamental notion that a source's environment determines radiative linewidths and shifts. Further, this observation established a powerful tool to determine fluorescence quantum yields. We present the direct analogue for sound. We demonstrate that a Chinese gong at a hard wall experiences radiative corrections to linewidth and line shift, and extract its intrinsic radiation efficiency. Beyond acoustics, our experiment opens new ideas to extend the Drexhage experiment to metamaterials, nanoantennas, and multipolar transitions.

  16. Drexhage's Experiment for Sound.

    PubMed

    Langguth, Lutz; Fleury, Romain; Alù, Andrea; Koenderink, A Femius

    2016-06-01

    Drexhage's seminal observation that spontaneous emission rates of fluorophores vary with distance from a mirror uncovered the fundamental notion that a source's environment determines radiative linewidths and shifts. Further, this observation established a powerful tool to determine fluorescence quantum yields. We present the direct analogue for sound. We demonstrate that a Chinese gong at a hard wall experiences radiative corrections to linewidth and line shift, and extract its intrinsic radiation efficiency. Beyond acoustics, our experiment opens new ideas to extend the Drexhage experiment to metamaterials, nanoantennas, and multipolar transitions. PMID:27314719

  17. Békésy’s contributions to our present understanding of sound conduction to the inner ear

    PubMed Central

    Puria, S; Rosowski, JJ

    2012-01-01

    In our daily life we hear airborne sounds that travel primarily through the external and the middle ear to the cochlear sensory epithelium. We also hear sounds that travel to the cochlea via a second sound conduction route, bone conduction. This second pathway is excited by vibrations of the head and body that result from substrate vibrations, direct application of vibrational stimuli to the head or body, or vibrations induced by airborne sound. The sensation of bone-conducted sound is affected by the presence of the external and middle ear but not completely dependent on their function. Measurements of the differential sensitivity of patients to airborne sound and direct vibration of the head are part of the routine battery of clinical tests used to separate conductive and sensorineural hearing losses. George von Békésy designed a careful set of experiments and pioneered many measurement techniques on human cadaver temporal bones, in physical models, and in human subjects to elucidate the basic mechanisms or air and bone conducted sound. Looking back one marvels at the sheer number of experiments he performed on sound conduction, mostly by himself without the aid of students or research associates. Békésy’s work had a profound impact on the field of middle ear mechanics and bone conduction fifty years ago when he received his Nobel Prize. Today many of Békésy’s ideas continue to be investigated and extended, some have been supported by new evidence, some have been refuted, while others remain to be tested. PMID:22617841

  18. Békésy's contributions to our present understanding of sound conduction to the inner ear.

    PubMed

    Puria, Sunil; Rosowski, John J

    2012-11-01

    In our daily lives we hear airborne sounds that travel primarily through the external and middle ear to the cochlear sensory epithelium. We also hear sounds that travel to the cochlea via a second sound-conduction route, bone conduction. This second pathway is excited by vibrations of the head and body that result from substrate vibrations, direct application of vibrational stimuli to the head or body, or vibrations induced by airborne sound. The sensation of bone-conducted sound is affected by the presence of the external and middle ear, but is not completely dependent upon their function. Measurements of the differential sensitivity of patients to airborne sound and direct vibration of the head are part of the routine battery of clinical tests used to separate conductive and sensorineural hearing losses. Georg von Békésy designed a careful set of experiments and pioneered many measurement techniques on human cadaver temporal bones, in physical models, and in human subjects to elucidate the basic mechanisms of air- and bone-conducted sound. Looking back one marvels at the sheer number of experiments he performed on sound conduction, mostly by himself without the aid of students or research associates. Békésy's work had a profound impact on the field of middle-ear mechanics and bone conduction fifty years ago when he received his Nobel Prize. Today many of Békésy's ideas continue to be investigated and extended, some have been supported by new evidence, some have been refuted, while others remain to be tested. PMID:22617841

  19. Sounds in the Sea

    NASA Astrophysics Data System (ADS)

    Medwin, Herman

    2005-07-01

    Underwater acousticians and acoustical oceanographers use sound as the premier tool to determine the detailed characteristics of physical and biological bodies and processes at sea. Sounds in the Sea is a comprehensive and accessible textbook on ocean acoustics and acoustical oceanography. Chapters 1 9 provide the basic tools of ocean acoustics. The following fifteen chapters are written by many of the world's most successful ocean researchers. These chapters describe modern developments, and are divided into four sections: Studies of the Near Surface Ocean; Bioacoustical Studies; Studies of Ocean Dynamics; Studies of the Ocean Bottom. This is an invaluable textbook for any course in ocean acoustics for the physical and biological ocean sciences, and engineering. It will also serve as a reference for researchers and professionals in ocean acoustics, and an excellent introduction to the topic for scientists from related fields. Will become THE advanced but accessible textbook on all aspects of ocean acoustics for students in oceanography, engineering, and physics, and will also serve as a reference for researchers and professionals Contains fifteen chapters by many of the world's most successful ocean researchers, describing modern research developments Main author Medwin is world-renowned in ocean acoustics

  20. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    The GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was designed for dense sampling of meteorological targets using the airborne radio occultation (RO) technique. Airborne RO refers to an atmospheric limb sounding technique in which Global Positioning System (GPS) signals are recorded at a receiver onboard an aircraft as the satellites descend beyond the limb of the Earth. The GPS signals, that are unaffected by clouds and precipitation, experience refractive bending as well as a delay in the travel time through the atmosphere. Bending can be used to retrieve information about atmospheric refractivity, which depends on atmospheric moisture and temperature. The new system has the potential for improving numerical weather prediction (NWP) forecasts through assimilation of many high-resolution atmospheric profiles in an area of interest, compared to spaceborne RO, which samples sparsely around the globe. In February 2008, GISMOS was deployed on the National Science Foundation Gulfstream-V aircraft to make atmospheric observations in the Gulf of Mexico coastal region with an objective to test the performance of the profiling system. Recordings from this flight campaign made with the conventional phase lock loop GPS receivers descend from flight level to 5 km altitude. However, below that level strong refractivity gradients, especially those associated with the boundary layer, cause rapid phase accelerations resulting in loss of lock in the receiver. To extend the RO profiles deeper in the atmosphere, the GISMOS system was also equipped with a GPS Recording System (GRS) that records the raw RF signals. Post-processing this dataset in open-loop (OL) tracking mode enables reliable atmospheric profiling at lower altitudes. We present a comprehensive analysis of the performance of the airborne system OL tracking algorithm during a 5 hour flight on 15 February 2008. Excess phase and amplitude profiles for 5 setting and 5 rising occultations were

  1. Sounds like Team Spirit

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward

    2002-01-01

    I recently accompanied my son Dan to one of his guitar lessons. As I sat in a separate room, I focused on the music he was playing and the beautiful, robust sound that comes from a well-played guitar. Later that night, I woke up around 3 am. I tend to have my best thoughts at this hour. The trouble is I usually roll over and fall back asleep. This time I was still awake an hour later, so I got up and jotted some notes down in my study. I was thinking about the pure, honest sound of a well-played instrument. From there my mind wandered into the realm of high-performance teams and successful projects. (I know this sounds weird, but this is the sort of thing I think about at 3 am. Maybe you have your own weird thoughts around that time.) Consider a team in relation to music. It seems to me that a crack team can achieve a beautiful, perfect unity in the same way that a band of brilliant musicians can when they're in harmony with one another. With more than a little satisfaction I have to admit, I started to think about the great work performed for you by the Knowledge Sharing team, including this magazine you are reading. Over the past two years I personally have received some of my greatest pleasures as the APPL Director from the Knowledge Sharing activities - the Masters Forums, NASA Center visits, ASK Magazine. The Knowledge Sharing team expresses such passion for their work, just like great musicians convey their passion in the music they play. In the case of Knowledge Sharing, there are many factors that have made this so enjoyable (and hopefully worthwhile for NASA). Three ingredients come to mind -- ingredients that have produced a signature sound. First, through the crazy, passionate playing of Alex Laufer, Michelle Collins, Denise Lee, and Todd Post, I always know that something startling and original is going to come out of their activities. This team has consistently done things that are unique and innovative. For me, best of all is that they are always

  2. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  3. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  4. High sensitive airborne radioiodine monitor.

    PubMed

    Ogata, Yoshimune; Yamasaki, Tadashi; Hanafusa, Ryuji

    2013-11-01

    Airborne radioiodine monitoring includes a problem in that commercial radioactive gas monitors have inadequate sensitivity. To solve this problem, we designed a highly sensitive monitoring system. The higher counting efficiency and lower background made it possible to perform the low-level monitoring. The characteristics of the system were investigated using gaseous (125)I. The minimum detectable activity concentration was 1 × 10(-4)Bq cm(-3) for 1 min counting, which is one tenth of the legal limit for the radiation controlled areas in Japan. PMID:23602709

  5. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  6. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  7. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  8. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  9. Source localization results for airborne acoustic platforms in the 2010 Yuma Proving Ground test

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Collier, Sandra L.; Reiff, Christian G.; Cheinet, Sylvain; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, William C.

    2013-05-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors offer a distinct advantage over ground sensors. Among other factors, the performance of airborne sensors is affected by refraction of sound signals due to vertical gradients in temperature and wind velocity. A comprehensive experiment in source localization with an aerostat-mounted acoustic system was conducted in summer of 2010 at Yuma Proving Ground (YPG). Acoustic sources on the ground consisted of one-pound TNT denotations and small arms firings. The height of the aerostat was approximately 1 km above the ground. In this paper, horizontal, azimuthal, and elevation errors in source localization and their statistics are studied in detail. Initially, straight-line propagation is assumed; then refraction corrections are introduced to improve source localization and decrease the errors. The corrections are based on a recently developed theory [Ostashev, et. al, JASA 2008] which accounts for sound refraction due to vertical profiles of temperature and wind velocity. During the 2010 YPG field test, the vertical profiles were measured only up to a height of approximately 100 m. Therefore, the European Center for Medium-range Weather Forecasts (ECMWF) is used to generate the profiles for July of 2010.

  10. Spatial Information of Sound Fields

    NASA Astrophysics Data System (ADS)

    Oikawa, Yasuhiro

    The nature of a sound field can only be fully understood when we have spatial information about it. Being able to visualize a sound field is a very useful way of understanding it. This section describes how to estimate many direction of arrivals (DOAs) by using two microphones, how to get spatial information by using four closely located microphones, and how to visualize and measure sound fields by using a laser Doppler vibrometer (LVB).

  11. Overall loudness of steady sounds

    NASA Technical Reports Server (NTRS)

    Howes, W. L.; Canright, V. R.

    1980-01-01

    Loudness (in sones) and loudness level (in phons) of any sound that is steady for tenths of second can be calculated using computer program derived from new operational theory of loudness. Theory is constructed from psychoacoustic and physiological data on mammalian (monkey) auditory systems. Computer program permits prediction of loudness of any steady sound including, for example, transportation noises, machinery noises, and other environmental noises, with possible additional applications to broadcasting, sound reproduction, establishment and enforcement of noise laws.

  12. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  13. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  14. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  15. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  16. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  17. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  18. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  19. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  20. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  1. Characterization of shallow ocean sediments using the airborne electromagnetic method

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Smits, K.

    1986-01-01

    Experimental airborne electromagnetic (AEM) survey data collected in Cape Cod Bay are used to derive continuous profiles of water depth, electrical depth, water conductivity, and bottom sediment conductivity. Through a few well-known empirical relationships, the conductivities are used, in turn, to derive density, porosity, sound speed, and acoustic reflectivity of the ocean bottom. A commercially available Dighem III AEM system was used for the survey without any significant modification. The helicopter-borne system operated at 385 and 7200 Hz; both were in a horizontal coplanar configuration. The interpreted profiles show good agreement with available ground truth data. Where no such data are available, the results appear to be very reasonable. Compared with the shipborne electrode array method, the AEM method can determine the necessary parameters at a much higher speed with a better lateral resolution over a wide range of water depths from 0 to perhaps 100 m. The bottom sediment conductivity that can be measured by the AEM method is closely related to physical properties of sediments, such as porosity, density, sound speed, and, indirectly, sediment types that might carry broad implications for various offshore activities.

  2. Sounding out science

    SciTech Connect

    Holloway, M.

    1996-10-01

    The Exxon Valdez catastrophe, which soiled Alaska`s Prince William Sound in 1989, was the most studied oil spill in history. But because of how they framed their inquiries, investigators have learned less than they could about how nature heals itself. The studies of Exxon and the state of Alaska - including the departments of Fish and Game and of Environmental Conservation - conducted to prove their respective points, were kept largely secret untill legal settlements were reached. This secrecy reduced most of the pillars of science to rubble: out went scientific dialog, data sharing, and for some parties, peer view. Millions of dollars were shelled out in duplicate studies that reached opposite conclusions. Beyond the quality of science lies the public interpretation of science. Even though NOAA has shown that cleaning up can do more harm than good, demands to clean up persist. 7 figs.

  3. Sounds Clear Enough

    NASA Technical Reports Server (NTRS)

    Zak, Alan

    2004-01-01

    I'm a vice president at Line6, where we produce electronics for musical instruments. My company recently developed a guitar that can be programmed to sound like twenty-five different classic guitars - everything from a 1928 National 'Tricone' to a 1970 Martin. It is quite an amazing piece of technology. The guitar started as a research project because we needed to know if the technology was going to be viable and if the guitar design was going to be practical. I've been in this business for about twenty years now, and I still enjoy starting up projects whenever the opportunity presents itself. During the research phase, I headed up the project myself. Once we completed our preliminary research and made the decision to move into development, that's when I handed the project off - and that's where this story really begins.

  4. The Sounds of Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Flying board Voyagers 1 and 2 are identical 'golden' records, carrying the story of Earth far into deep space. The 12 inch gold-plated copper discs contain greetings in 60 languages, samples of music from different cultures and eras, and natural and man-made sounds from Earth. They also contain electronic information that an advanced technological civilization could convert into diagrams and photographs. The cover of each gold plated aluminum jacket, designed to protect the record from micrometeorite bombardment, also serves a double purpose in providing the finder a key to playing the record. The explanatory diagram appears on both the inner and outer surfaces of the cover, as the outer diagram will be eroded in time. Currently, both Voyager probes are sailing adrift in the black sea of interplanetary space, having left our solar system years ago.

  5. The sounds of science

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    As scientists carefully study some aspects of the ocean environment, are they unintentionally distressing others? That is a question to be answered by Robert Benson and his colleagues in the Center for Bioacoustics at Texas A&M University.With help from a 3-year, $316,000 grant from the U.S. Office of Naval Research, Benson will study how underwater noise produced by naval operations and other sources may affect marine mammals. In Benson's study, researchers will generate random sequences of low-frequency, high-intensity (180-decibel) sounds in the Gulf of Mexico, working at an approximate distance of 1 km from sperm whale herds. Using an array of hydrophones, the scientists will listen to the characteristic clicks and whistles of the sperm whales to detect changes in the animals' direction, speed, and depth, as derived from fluctuations in their calls.

  6. Sound and computer information presentation

    SciTech Connect

    Bly, S

    1982-03-01

    This thesis examines the use of sound to present data. Computer graphics currently offers a vast array of techniques for communicating data to analysts. Graphics is limited, however, by the number of dimensions that can be perceived at one time, by the types of data that lend themselves to visual representation, and by the necessary eye focus on the output. Sound offers an enhancement and an alternative to graphic tools. Multivariate, logarithmic, and time-varying data provide examples for aural representation. For each of these three types of data, the thesis suggests a method of encoding the information into sound and presents various applications. Data values were mapped to sound characteristics such as pitch and volume so that information was presented as sets or sequences of notes. In all cases, the resulting sounds conveyed information in a manner consistent with prior knowledge of the data. Experiments showed that sound does convey information accurately and that sound can enhance graphic presentations. Subjects were tested on their ability to distinguish between two sources of test items. In the first phase of the experiments, subjects discriminated between two 6-dimensional data sets represented in sound. In the second phase of the experiment, 75 subjects were selected and assigned to one of three groups. The first group of 25 heard test items, the second group saw test items, and the third group both heard and saw the test items. The average percentage correct was 64.5% for the sound-only group, 62% for the graphics-only group, and 69% for the sound and graphics group. In the third phase, additional experiments focused on the mapping between data values and sound characteristics and on the training methods.

  7. Active localization of virtual sounds

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.

    1991-06-01

    We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.

  8. Sound Standards for Schools "Unsound."

    ERIC Educational Resources Information Center

    Davis, Don

    2002-01-01

    Criticizes new classroom sound standard proposed by the American National Standards Institute that sets maximum background sound level at 35 decibels (described as "a whisper at 2 meters"). Argues that new standard is too costly for schools to implement, is not recommended by the medical community, and cannot be achieved by construction industry.…

  9. Applications of Sound Spectrum Analysis

    ERIC Educational Resources Information Center

    Moran, Timothy

    2007-01-01

    The physics of sound is often studied in introductory physics class experiments involving a tube of resonating air. In typical setups, pistons control the length of a cylindrical space or a microphone is moved within a tube. While these activities are useful and can be made very quantitative, they don't directly demonstrate the sounds that are…

  10. Active localization of virtual sounds

    NASA Technical Reports Server (NTRS)

    Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.

    1991-01-01

    We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.

  11. The natural history of sound localization in mammals – a story of neuronal inhibition

    PubMed Central

    Grothe, Benedikt; Pecka, Michael

    2014-01-01

    Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds) and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems. Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds. PMID:25324726

  12. Offshore Dredger Sounds: Source Levels, Sound Maps, and Risk Assessment.

    PubMed

    de Jong, Christ A F; Ainslie, Michael A; Heinis, Floor; Janmaat, Jeroen

    2016-01-01

    The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels of the dredgers, estimated source levels of other shipping, and time-dependent position data from a vessel-tracking system were used as input for a propagation model to generate dynamic sound maps. Various scenarios were studied to assess the risk of possible effects of the sound from dredging activities on marine fauna, specifically on porpoises, seals, and fish. PMID:26610959

  13. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  14. Airborne imaging spectrometer development tasks

    NASA Astrophysics Data System (ADS)

    Bolten, John

    The tasks that must be completed to design and build an airborne imaging spectrometer are listed. The manpower and resources required to do these tasks must be estimated by the people responsible for that work. The tasks are broken down by instrument subsystem or discipline. The instrument performance can be assessed at various stages during the development. The initial assessment should be done with the preliminary computer model. The instrument calibration facilities should be designed, but no calibration facilities are needed. The intermediate assessment can be done when the front end has been assembled. The preliminary instrument calibration facility should be available at this stage. The final assessment can only be done when the instrument is complete and ready for flight. For this, the final instrument calibration facility and the flight qualification facilities must be ready. The final assessment is discussed in each discipline under the section on integration and test.

  15. Research on MLS airborne antenna

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1976-01-01

    Numerical solutions for the radiation patterns of antennas mounted on aircraft are developed. The airborne antenna problems associated with the Microwave Landing System (MLS) are emphasized. Based on the requirements of the MLS, volumetric pattern solutions are essential. Previous attempts at solving for the volumetric patterns were found to be far too complex and very inefficient. However as a result of previous efforts, it is possible to combine the elevation and roll plane pattern solutions to give the complete volumetric pattern. This combination is described as well as the aircraft simulation models used in the analysis. A numerical technique is presented to aid in the simulation of the aircraft studied. Finally, a description of the input data used in the computer code is given.

  16. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. PMID:23962732

  17. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  18. The influence of finite cavities on the sound insulation of double-plate structures.

    PubMed

    Brunskog, Jonas

    2005-06-01

    Lightweight walls are often designed as frameworks of studs with plates on each side--a double-plate structure. The studs constitute boundaries for the cavities, thereby both affecting the sound transmission directly by short-circuiting the plates, and indirectly by disturbing the sound field between the plates. The paper presents a deterministic prediction model for airborne sound insulation including both effects of the studs. A spatial transform technique is used, taking advantage of the periodicity. The acoustic field inside the cavities is expanded by means of cosine-series. The transmission coefficient (angle-dependent and diffuse) and transmission loss are studied. Numerical examples are presented and comparisons with measurement are performed. The result indicates that a reasonably good agreement between theory and measurement can be achieved. PMID:16018476

  19. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement. PMID:22978877

  20. Pitch features of environmental sounds

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kang, Jian

    2016-07-01

    A number of soundscape studies have suggested the need for suitable parameters for soundscape measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch features that are often used in music analysis and their algorithms to environmental sounds. Based on the existing alternative pitch algorithms for simulating the perception of the auditory system and simplified algorithms for practical applications in the areas of music and speech, the applicable algorithms have been determined, considering common types of sound in everyday soundscapes. Considering a number of pitch parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values and a relatively wide range of pitch strengths.

  1. Propagation of sound in the vicinity of rigid porous interfaces

    NASA Astrophysics Data System (ADS)

    Tao, Hongdan

    Propagation of sound in the vicinity of rigid porous interfaces is investigated systematically to facilitate the acoustical characterization of sound absorption materials for noise reduction applications. Various rigid porous interfaces are considered: (1) a semi-infinite porous layer; (2) a porous hard-backed surface; and (3) a porous impedance-backed layer. A closed-form solution and numerical methods are derived with respect to each rigid porous interface condition. A modified saddle-point method is exploited to investigate the sound field emanating from a monopole source above and below a rigid porous interface. The solutions can be expressed in a form that resembles the classical Weyl-Van der Pol formula. A heuristic method is then proposed to remove the singularity within the asymptotic solution via application of the double saddle-point method. Its relative simplicity and accuracy demonstrates the advantage of the double saddle-point method whenever the approximation is valid. Following this, the sound field within a hard-backed rigid porous medium due to an airborne source is examined. The accuracy of the proposed asymptotic solutions has been confirmed by comparison with benchmark numerical solutions and through indoor sound propagation experiments. Measurement data and theoretical predictions suggest that when the receiver is positioned near the top surface of the hard-backed layer, the ground reflection of the refracted wave contributes greatly to the total sound field. Taking into account source characteristics, an asymptotic formula is derived for predicting the sound field from a dipole source above and below an extended reaction ground. The directional effect of the dipole source on each term within the asymptotic solutions is interpreted. Further analysis shows that an accurate asymptotic solution can provide a good starter field for the Parabolic Equation--Finite Element Method (PE/FEM). The PE/FEM marching schemes are derived based on linear and

  2. Subglacial Lake Vostok characteristics from Russian ground-based geophysical studies

    NASA Astrophysics Data System (ADS)

    Masolov, V. N.; Lukin, V. V.; Sheremetiev, A. N.; Popkov, A. M.; Popov, S. V.; Kudravtsev, G. A.; Filina, I. J.

    2002-05-01

    Soviet seismic studies (1959, 1964), British airborne radio-echo sounding (1971-1975) of the subglacial relief of Central Antarctica and satellite altimetry of the ice sheet surface (1993) have revealed an extensive water body in the Russian Antarctic station Vostok vicinity. It was called Lake Vostok. Uniqueness of this sub-ice relief feature and its fundamental significance for different Earth's sciences necessitated investigation of this natural water body by geophysical methods. To define the lake coastline, thickness of the ice sheet, water column and sediments, a special Project was undertaken during the 1995-2002 austral summer field seasons in the framework of RAE. The PMGRE conducted reflection seismic soundings, radio-echo sounding and vertical seismic profiling in a deep ice borehole. During the study period, extensive data on the lake dimension and configuration, overlying ice sheet thickness, acoustic and radio-wave ice stratification of ice, sub-glacial shore relief, bathymetry and sediments were collected. A total of 200 seismic soundings and 2050 km of radio-echo profiles were made. A new methodology of seismic soundings from a snow-firn ice surface was devised significantly increasing efficiency of work. Seismic studies of lake parameters were conducted by profiling along and across the lake. The most representative results in terms of geological interpretation were obtained at a sub-latitudinal and at a sub-meridional profiles. Based on the data obtained, the southern lake area presents a deepwater basin more than 1200 m thick, and the northern part is shallow up to several tens of meters. The sediment thickness is not more than 300 m. The lake coastline was defined by a radio-echo sounding method. Profiling was conducted over a system of routes predominantly across the grounding line. Due to available satellite altimetry data, it was possible at the first stage of studies to refuse from a survey over a regular route network and apply a controlled

  3. Neural processing of natural sounds.

    PubMed

    Theunissen, Frédéric E; Elie, Julie E

    2014-06-01

    We might be forced to listen to a high-frequency tone at our audiologist's office or we might enjoy falling asleep with a white-noise machine, but the sounds that really matter to us are the voices of our companions or music from our favourite radio station. The auditory system has evolved to process behaviourally relevant natural sounds. Research has shown not only that our brain is optimized for natural hearing tasks but also that using natural sounds to probe the auditory system is the best way to understand the neural computations that enable us to comprehend speech or appreciate music. PMID:24840800

  4. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  5. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  6. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  7. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  8. Velocity of Sound in Solids.

    ERIC Educational Resources Information Center

    Frank, Michael T.; Kluk, Edward

    1991-01-01

    Presents experiments to measure the velocity of sound through metals and other amorphous materials. Describes the equipment used to make the measurements and the possibility of interfacing with a microcomputer. (MDH)

  9. Wind turbine sound power measurements.

    PubMed

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides experimental validation of the sound power level data obtained from manufacturers for the ten wind turbine models examined in Health Canada's Community Noise and Health Study (CNHS). Within measurement uncertainty, the wind turbine sound power levels measured using IEC 61400-11 [(2002). (International Electrotechnical Commission, Geneva)] were consistent with the sound power level data provided by manufacturers. Based on measurements, the sound power level data were also extended to 16 Hz for calculation of C-weighted levels. The C-weighted levels were 11.5 dB higher than the A-weighted levels (standard deviation 1.7 dB). The simple relationship between A- and C- weighted levels suggests that there is unlikely to be any statistically significant difference between analysis based on either C- or A-weighted data. PMID:27036281

  10. Resolution enhanced sound detecting apparatus

    NASA Technical Reports Server (NTRS)

    Kendall, J. M. (Inventor)

    1979-01-01

    An apparatus is described for enhancing the resolution of a sound detector of the type which includes an acoustic mirror for focusing sound from an object onto a microphone to enable the determination of the location from which the sound arises. The enhancement apparatus includes an enclosure which surrounds the space between the mirror and microphone, and contains a gas heavier than air, such as Freon, through which sound moves slower and therefore with a shorter wavelength than in air, so that a mirror of given size has greater resolving power. An acoustically transparent front wall of the enclosure which lies forward of the mirror, can include a pair of thin sheets with pressured air between them, to form an end of the region of heavy gas into a concave shape.

  11. Virtual sound for virtual reality

    SciTech Connect

    Blattner, M.M. ||; Papp, A.L. III |

    1993-02-01

    The computational limitations of real-time interactive computing do not meet our requirements for producing realistic images for virtual reality in a convincing manner. Regardless of the real-time restrictions on virtual reality interfaces, the representations can be no better than the graphics. Computer graphics is still limited in its ability to generate complex objects such as landscapes and humans. Nevertheless, useful and convincing visualizations are made through a variety of techniques. The central theme of this article is that a similar situation is true with sound for virtual reality. It is beyond our abilityto create interactive soundscapes that create a faithful reproduction of real world sounds, however, by choosing one`s application carefully and using sound to enhance a display rather than only mimic real-world scenes, a very effective use of sound can be made.

  12. Virtual sound for virtual reality

    SciTech Connect

    Blattner, M.M. Cancer Center, Houston, TX . Dept. of Biomathematics Lawrence Livermore National Lab., CA California Univ., Davis, CA ); Papp, A.L. III Lawrence Livermore National Lab., CA )

    1993-02-01

    The computational limitations of real-time interactive computing do not meet our requirements for producing realistic images for virtual reality in a convincing manner. Regardless of the real-time restrictions on virtual reality interfaces, the representations can be no better than the graphics. Computer graphics is still limited in its ability to generate complex objects such as landscapes and humans. Nevertheless, useful and convincing visualizations are made through a variety of techniques. The central theme of this article is that a similar situation is true with sound for virtual reality. It is beyond our abilityto create interactive soundscapes that create a faithful reproduction of real world sounds, however, by choosing one's application carefully and using sound to enhance a display rather than only mimic real-world scenes, a very effective use of sound can be made.

  13. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  14. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  15. Acoustoelasticity. [sound-structure interaction

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1977-01-01

    Sound or pressure variations inside bounded enclosures are investigated. Mathematical models are given for determining: (1) the interaction between the sound pressure field and the flexible wall of a Helmholtz resonator; (2) coupled fluid-structural motion of an acoustic cavity with a flexible and/or absorbing wall; (3) acoustic natural modes in multiple connected cavities; and (4) the forced response of a cavity with a flexible and/or absorbing wall. Numerical results are discussed.

  16. Moth hearing and sound communication.

    PubMed

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie

    2015-01-01

    Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced by comparable hearing physiology with best sensitivity in the bat echolocation range, 20-60 kHz, across moths in spite of diverse ear morphology. Some eared moths subsequently developed sound-producing organs to warn/startle/jam attacking bats and/or to communicate intraspecifically with sound. Not only the sounds for interaction with bats, but also mating signals are within the frequency range where bats echolocate, indicating that sound communication developed after hearing by "sensory exploitation". Recent findings on moth sound communication reveal that close-range (~ a few cm) communication with low-intensity ultrasounds "whispered" by males during courtship is not uncommon, contrary to the general notion of moths predominantly being silent. Sexual sound communication in moths may apply to many eared moths, perhaps even a majority. The low intensities and high frequencies explain that this was overlooked, revealing a bias towards what humans can sense, when studying (acoustic) communication in animals. PMID:25261361

  17. Statistics of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction. PMID:25285658

  18. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  19. Temperate Ice Depth-Sounding Radar

    NASA Astrophysics Data System (ADS)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    Glaciers in several parts of the world are reported to be retreating and thinning rapidly over the last decade. Radar instruments can be used to provide a wealth of information regarding the internal and basal conditions of large and small ice masses. These instruments typically operate in the VHF and UHF regions of the electromagnetic spectrum. For temperate-ice sounding, however, the high water content produces scattering and attenuation in propagating radar waves at VHF and UHF frequencies, which significantly reduce the penetration depths. Radars operating in the HF band are better suited for systematic surveys of the thickness and sub-glacial topography of temperate-ice regions. We are developing a dual-frequency Temperate-Ice-Depth Sounding Radar (TIDSoR) that can penetrate through water pockets, thus providing more accurate measurements of temperate ice properties such as thickness and basal conditions. The radar is a light-weight, low power consumption portable system for surface-based observations in mountainous terrain or aerial surveys. TIDSoR operates at two different center frequencies: 7.7 MHz and 14 MHz, with a maximum output peak power of 20 W. The transmit waveform is a digitally generated linear frequency-modulated chirp with 1 MHz bandwidth. The radar can be installed on aircrafts such as the CReSIS UAV [1], DCH-6 (Twin Otter), or P-3 Orion for aerial surveys, where it could be supported by the airplane power system. For surface based experiments, TIDSoR can operate in a backpack configuration powered by a compact battery system. The system can also be installed on a sled towed by a motorized vehicle, in which case the power supply can be replaced by a diesel generator. The radar consists of three functional blocks: the digital section, the radio-frequency (RF) section, and the antenna, and is designed to weigh less than 2 kg, excluding the power supply. The digital section generates the transmit waveforms as well as timing and control signals

  20. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign

  1. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  2. Pulsed Doppler lidar airborne scanner

    NASA Astrophysics Data System (ADS)

    Dimarzio, C. A.; McVicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-10-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  3. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  4. Medicinal smoke reduces airborne bacteria.

    PubMed

    Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

    2007-12-01

    This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

  5. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  6. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  7. Sound Symbolism Facilitates Early Verb Learning

    ERIC Educational Resources Information Center

    Imai, Mutsumi; Kita, Sotaro; Nagumo, Miho; Okada, Hiroyuki

    2008-01-01

    Some words are sound-symbolic in that they involve a non-arbitrary relationship between sound and meaning. Here, we report that 25-month-old children are sensitive to cross-linguistically valid sound-symbolic matches in the domain of action and that this sound symbolism facilitates verb learning in young children. We constructed a set of novel…

  8. 27 CFR 9.151 - Puget Sound.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Puget Sound. 9.151 Section... Sound. (a) Name. The name of the viticultural area described in this section is “Puget Sound.” (b) Approved maps. The appropriate maps for determining the boundary of the Puget Sound viticultural area...

  9. 27 CFR 9.151 - Puget Sound.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Puget Sound. 9.151 Section... Sound. (a) Name. The name of the viticultural area described in this section is “Puget Sound.” (b) Approved maps. The appropriate maps for determining the boundary of the Puget Sound viticultural area...

  10. 27 CFR 9.151 - Puget Sound.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Puget Sound. 9.151 Section... Sound. (a) Name. The name of the viticultural area described in this section is “Puget Sound.” (b) Approved maps. The appropriate maps for determining the boundary of the Puget Sound viticultural area...

  11. Sound Symbolic Word Learning in Written Context

    ERIC Educational Resources Information Center

    Parault, Susan J.

    2006-01-01

    Sound symbolism is the notion that the relation between word sounds and word meaning is not arbitrary for all words, but rather there is a subset of words in the world's languages for which sounds and their symbols have some degree of correspondence. This research investigates sound symbolism as a possible means of gaining semantic knowledge of…

  12. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness...

  13. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness...

  14. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness...

  15. Tracheal Sounds Acquisition Using Smartphones

    PubMed Central

    Reyes, Bersain A.; Reljin, Natasa; Chon, Ki H.

    2014-01-01

    Tracheal sounds have received a lot of attention for estimating ventilation parameters in a non-invasive way. The aim of this work was to examine the feasibility of extracting accurate airflow, and automating the detection of breath-phase onset and respiratory rates all directly from tracheal sounds acquired from an acoustic microphone connected to a smartphone. We employed the Samsung Galaxy S4 and iPhone 4s smartphones to acquire tracheal sounds from N = 9 healthy volunteers at airflows ranging from 0.5 to 2.5 L/s. We found that the amplitude of the smartphone-acquired sounds was highly correlated with the airflow from a spirometer, and similar to previously-published studies, we found that the increasing tracheal sounds' amplitude as flow increases follows a power law relationship. Acquired tracheal sounds were used for breath-phase onset detection and their onsets differed by only 52 ± 51 ms (mean ± SD) for Galaxy S4, and 51 ± 48 ms for iPhone 4s, when compared to those detected from the reference signal via the spirometer. Moreover, it was found that accurate respiratory rates (RR) can be obtained from tracheal sounds. The correlation index, bias and limits of agreement were r2 = 0.9693, 0.11 (−1.41 to 1.63) breaths-per-minute (bpm) for Galaxy S4, and r2 = 0.9672, 0.097 (–1.38 to 1.57) bpm for iPhone 4s, when compared to RR estimated from spirometry. Both smartphone devices performed similarly, as no statistically-significant differences were found. PMID:25196108

  16. Tracheal sounds acquisition using smartphones.

    PubMed

    Reyes, Bersain A; Reljin, Natasa; Chon, Ki H

    2014-01-01

    Tracheal sounds have received a lot of attention for estimating ventilation parameters in a non-invasive way. The aim of this work was to examine the feasibility of extracting accurate airflow, and automating the detection of breath-phase onset and respiratory rates all directly from tracheal sounds acquired from an acoustic microphone connected to a smartphone. We employed the Samsung Galaxy S4 and iPhone 4s smartphones to acquire tracheal sounds from N = 9 healthy volunteers at airflows ranging from 0.5 to 2.5 L/s. We found that the amplitude of the smartphone-acquired sounds was highly correlated with the airflow from a spirometer, and similar to previously-published studies, we found that the increasing tracheal sounds' amplitude as flow increases follows a power law relationship. Acquired tracheal sounds were used for breath-phase onset detection and their onsets differed by only 52 ± 51 ms (mean ± SD) for Galaxy S4, and 51 ± 48 ms for iPhone 4s, when compared to those detected from the reference signal via the spirometer. Moreover, it was found that accurate respiratory rates (RR) can be obtained from tracheal sounds. The correlation index, bias and limits of agreement were r² = 0.9693, 0.11 (-1.41 to 1.63) breaths-per-minute (bpm) for Galaxy S4, and r² = 0.9672, 0.097 (-1.38 to 1.57) bpm for iPhone 4s, when compared to RR estimated from spirometry. Both smartphone devices performed similarly, as no statistically-significant differences were found. PMID:25196108

  17. NASA's Coastal and Ocean Airborne Science Testbed

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Hooker, S.; Myers, J.; Kudela, R. M.; Dunagan, S.; Soulage, M.; Ellis, T.; Clinton, N. E.; Lobitz, B.; Martin, K.; Zell, P.; Berthold, R. W.; Smith, C.; Andrew, D.; Gore, W.; Torres, J.

    2011-12-01

    The Coastal and Ocean Airborne Science Testbed (COAST) Project is a NASA Earth-science flight mission that will advance coastal ecosystems research by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. Teaming NASA Ames scientists and engineers with Biospherical Instruments, Inc. (San Diego) and UC Santa Cruz, the airborne COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data will be accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Based on optical detectors called microradiometers, the NASA Ocean Biology and Biogeochemistry Calibration and Validation (cal/val) Office team has deployed advanced commercial off-the-shelf instrumentation that provides in situ measurements of the apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems (e.g., lakes, estuaries, coral reefs). A complimentary microradiometer instrument package (Biospherical Instruments, Inc.), optimized for use above water, will be flown for the first time with the airborne instrument suite. Details of the October 2011 COAST airborne mission over Monterey Bay demonstrating this new airborne instrument suite capability will be presented, with associated preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  18. Sounds of a Star

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  19. Sounds of silence: How to animate virtual worlds with sound

    NASA Technical Reports Server (NTRS)

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  20. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  1. Influence of sound source width on human sound localization.

    PubMed

    Greene, Nathaniel T; Paige, Gary D

    2012-01-01

    Free-field sound localization experiments generally assume that a loudspeaker can be approximated by a point-source; however, a large loudspeaker may extend beyond the width that two sources can be discriminated. Humans can accurately discriminate sound source locations within a few degrees, thus one might expect localization precision to decrease as a function of sound source diameter, much as precision is lower for localizing the center of a wide, blurry light source. In order to test the degree to which humans differentially localize small and large sound sources, auditory targets were presented using a single 25.4 cm by 10.2 cm elliptical loudspeaker with the primary axis oriented both horizontally and vertically in different sessions. Subjects were seated with their heads fixed by a bite bar in a darkened, echo-attenuating room facing a cylindrical, acoustically transparent screen at a distance of 2 meters. Auditory targets consisted of repeating bursts (5 Hz) of low frequency band-pass noise (0.2 - 1 kHz, 75 dB SPL). Subjects were instructed to quickly and accurately guide a laser pointer mounted on a cylindrical joystick towards targets, presented randomly within a field ± 40° in azimuth by ± 10° in elevation, with oversampled points located every ten degrees along the primary meridians. Localization accuracy and precision (mean and standard deviation of localization error at oversampled locations) were not significantly different between speaker orientations, and were comparable to baseline measurements recorded using a 7.6 cm circular speaker. We conclude that low frequency sound localization performance is not dependent upon the size of the sound source as predicted theoretically, and is well approximated by a point source. PMID:23367407

  2. Sound source tracking device for telematic spatial sound field reproduction

    NASA Astrophysics Data System (ADS)

    Cardenas, Bruno

    This research describes an algorithm that localizes sound sources for use in telematic applications. The localization algorithm is based on amplitude differences between various channels of a microphone array of directional shotgun microphones. The amplitude differences will be used to locate multiple performers and reproduce their voices, which were recorded at close distance with lavalier microphones, spatially corrected using a loudspeaker rendering system. In order to track multiple sound sources in parallel the information gained from the lavalier microphones will be utilized to estimate the signal-to-noise ratio between each performer and the concurrent performers.

  3. Application of Lidar Data in the Assessment of Observed and Model Output Temperature Soundings During the Pacific 2001 Field Study.

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.; Snyder, B. J.

    2002-12-01

    Surface and airborne lidar, along with upper air soundings and model derived soundings were examined over the course of the Pacific 2001 Air Quality Field Study. The general region of interest in this report is the Georgia Basin with a focus on the Lower Fraser Valley of British Columbia. Data included the following: RASCAL (Rapid Acquisition SCanning Aerosol Lidar), a surface-based scanning lidar facility at the Langley Lochiel site, operating close to 16 hours each day; AERIAL (AERosol Imaging Airborne Lidar), a simultaneous upward/downward airborne lidar system providing 9 flights during the field study; radiosondes, released 4 times daily from the Langley Poppy site; and once-daily 3.3 km resolution MC2 (Mesoscale Compressible Community weather prediction) model output. Methods of diagnosing mixing heights amongst the various datasets are outlined. The higher resolution lidar data provides a means of calibrating mixing heights from radiosondes and also allows a means of evaluating model derived soundings. Results show that in most cases there is good agreement amongst the various sources of data. This data is then used to demonstrate the variation of mixing height with sea breeze activity over the Lower Fraser Valley.

  4. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  5. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  6. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  7. Airborne Gravimetry and Downward Continuation (Invited)

    NASA Astrophysics Data System (ADS)

    Jekeli, C.; Yang, H.; Kwon, J.

    2009-12-01

    Measuring the Earth’s gravity field using airborne instrumentation is fully operational and has been widely practiced for nearly three decades since its official debut in the early 1980s (S. Hammer: “Airborne Gravity is Here!”) coinciding with the precision kinematic positioning capability of GPS. Airborne gravimetry is undertaken for both efficient geophysical exploration purposes, as well as the determination of the regional geoid to aid in the modernization of height systems. Especially for the latter application, downward continuation of the data and combination with existing terrestrial gravimetry pose theoretical as well as practical challenges, which, on the other hand, create multiple processing possibilities. Downward continuation may be approached in various ways from the viewpoint of potential theory and the boundary-value problem to using gradients either estimated locally or computed from existing models. Logistical constraints imposed by the airborne survey, instrumental noise, and the intrinsic numerical instability of downward continuation all conspire to impact the final product in terms of achievable resolution and accuracy. In this paper, we review the theory of airborne gravimetry and the methodology of downward continuation, and provide a numerical comparison of possible schemes and their impact on geoid determination.

  8. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    NASA Astrophysics Data System (ADS)

    Kogut, Tomasz; Niemeyer, Joachim; Bujakiewicz, Aleksandra

    2016-06-01

    Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project `Investigation on the use of airborne laser bathymetry in hydrographic surveying'. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  9. Comparison of three airborne laser bathymetry data sets for monitoring the German Baltic Sea Coast

    NASA Astrophysics Data System (ADS)

    Song, Yujin; Niemeyer, Joachim; Ellmer, Wilfried; Soergel, Uwe; Heipke, Christian

    2015-10-01

    Airborne laser bathymetry (ALB) can be used for hydrographic surveying with relative high resolution in shallow water. In this paper, we examine the applicability of this technique based on three flight campaigns. These were conducted between 2012 and 2014 close to the island of Poel in the German Baltic Sea. The first data set was acquired by a Riegl VQ-820-G sensor in November 2012. The second and third data sets were acquired by a Chiroptera sensor of Airborne Hydrography AB in September 2013 and May 2014, respectively. We examine the 3D points classified as seabed under different conditions during data acquisition, e.g. the turbidity level of the water and the flight altitude. The analysis comprises the point distribution, point density, and the area coverage in several depth levels. In addition, we determine the vertical accuracy of the 3D seabed points by computing differences to echo sounding data. Finally, the results of the three flight campaigns are compared to each other and analyzed with respect to the different conditions during data acquisition. For each campaign only small differences in elevation between the laser and the echo sounding data set are observed. The ALB results satisfy the requirements of IHO Standards for Hydrographic Surveys (S-44) Order 1b for several depth intervals.

  10. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  11. Sound localization in the alligator.

    PubMed

    Bierman, Hilary S; Carr, Catherine E

    2015-11-01

    In early tetrapods, it is assumed that the tympana were acoustically coupled through the pharynx and therefore inherently directional, acting as pressure difference receivers. The later closure of the middle ear cavity in turtles, archosaurs, and mammals is a derived condition, and would have changed the ear by decoupling the tympana. Isolation of the middle ears would then have led to selection for structural and neural strategies to compute sound source localization in both archosaurs and mammalian ancestors. In the archosaurs (birds and crocodilians) the presence of air spaces in the skull provided connections between the ears that have been exploited to improve directional hearing, while neural circuits mediating sound localization are well developed. In this review, we will focus primarily on directional hearing in crocodilians, where vocalization and sound localization are thought to be ecologically important, and indicate important issues still awaiting resolution. PMID:26048335

  12. Sound propagation in choked ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Liu, C. Y.

    1976-01-01

    The linearized equations describing the propagation of sound in variable area ducts containing flow are shown to be singular when the duct mean flow is sonic. The singularity is removed when previously ignored nonlinear terms are retained. The results of a numerical study, for the case of plane waves propagating in a one-dimensional converging-diverging duct, show that the sound field is adequately described by the linearized equations only when the axial mean flow Mach number at the duct throat M sub th 0.6. For M sub th 0.6, the numerical results showed that acoustic energy flux was not conserved. An attempt was made to extend the study to include the nonlinear behavior of the sound field. Meaningful results were not obtained due, primarily, to numerical difficulties.

  13. Probing Topological Matter with Sound

    NASA Astrophysics Data System (ADS)

    Schmeltzer, David

    We introduce a microscopic formulation to identify the stress in a quantum fluid to compute the stress viscosity with sound waves. The viscosity stress tensor is used to determine, e.g. the ultrasound attenuation in superconductors. When an Abrikosov lattice is formed on the surface of a Topological Insulator in a external magnetic field, Majorana modes form dispersive bands. We show that the ultrasound attenuation is modified by the Majorana modes offering a novel method to identify Topological Superconductors. Moreover we compute the stress tunneling which uses Majorana modes and represent the sound analogue of the Andreev crossed reflection. We check the violation of the sound momentum conservation of systems which only exists on the boundary of a higher dimensional system,e.g. a 1 D chiral fermion which can exist at the boundary of a 2 D Quantum Hall system. Doe-Los Alamos National Laboratory.

  14. Review of sound card photogates

    NASA Astrophysics Data System (ADS)

    Gingl, Zoltán; Mingesz, Róbert; Makra, Péter; Mellár, János

    2011-07-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card--an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  15. A perceived low-frequency sound in Taos, New Mexico

    SciTech Connect

    Mullins, J.H. ); Poteet, H. )

    1994-11-01

    Persistent complaints of an annoying low-frequency sound in Northern New Mexico, particularly in the vicinity of Taos, led to a request by members of the Congressional delegation of NM for an investigation. During the summer of 1993, in Taos, extensive simultaneous measurements were carried out of acoustic, seismic, electric, magnetic, and electromagnetic signals by a team from Sandia and Los Alamos National Laboratories, the Air Force Phillips Laboratory, and the University of New Mexico. Since anecdotal evidence and signal matching tests by the hearers implicated the frequencies between 30 to 100 Hz, special attention was given to that range. However, no signals were found matching the description, and in particular no airborne audio signals in this range were found other than background, even though the acoustical detector was capable of measuring signals less than [minus]50 dB SPL. Subsequent complaints of similar sounds from widely distributed areas in the U.S., and a long history of these in the U.K. [R. N. Vasudevan and C. G. Gordon, Appl. Acoust. [bold 10], 57--69 (1977)] have focused attention on human hearing in the 20--100 Hz range. New instruments are being developed and controlled clinical tests are planned with hearers and nonhearers in the Taos area.

  16. From Airborne EM to Geology, some examples

    NASA Astrophysics Data System (ADS)

    Gunnink, Jan

    2014-05-01

    Introduction Airborne Electro Magnetics (AEM) provide a model of the 3-dimensional distribution of resistivity of the subsurface. These resistivity models were used for delineating geological structures (e.g. Buried Valleys and salt domes) and for geohydrological modeling of aquifers (sandy sediments) and aquitards (clayey sediments). Most of the interpretation of the AEM has been carried out manually, by interpretation of 2 and 3-dimensional resistivity models into geological units by a skilled geologists / geophysicist. The manual interpretation is tiresome, takes a long time and is prone to subjective choices of the interpreter. Therefore, semi-automatic interpretation of AEM resistivity models into geological units is a recent research topic. Two examples are presented that show how resistivity, as obtained from AEM, can be "converted" to useful geological / geohydrolocal models. Statistical relation between borehole data and resistivity In the northeastern part of the Netherlands, the 3D distribution of clay deposits - formed in a glacio-lacustrine environment with buried glacial valleys - was modelled. Boreholes with description of lithology, were linked to AEM resistivity. First, 1D AEM resistivity models from each individual sounding were interpolated to cover the entire study area, resulting in a 3-dimensional model of resistivity. For each interval of clay and sand in the boreholes, the corresponding resistivity was extracted from the 3D resistivity model. Linear regression was used to link the clay and non-clay proportion in each borehole interval to the Ln(resistivity). This regression is then used to "convert" the 3D resistivity model into proportion of clay for the entire study area. This so-called "soft information" is combined with the "hard data" (boreholes) to model the proportion of clay for the entire study area using geostatistical simulation techniques (Sequential Indicator Simulation with collocated co-kriging). 100 realizations of the 3

  17. Fast-flowing outlet glaciers on Svalbard ice caps

    SciTech Connect

    Dowdeswell, J.A. ); Collin, R.L. )

    1990-08-01

    Four well-defined outlet glaciers are present on the 2510 km{sup 2} cap of Vestfonna in Nordaustlandet, Svalbard. Airborne radio echo sounding and aerial-photograph and satellite-image analysis methods are used to analyze the morphology and dynamics of the ice cap and its component outlet glaciers. The heavily crevassed outlets form linear depressions in the ice-cap surface and flow an order of magnitude faster than the ridges of uncrevassed ice between them. Ice flow on the ridges is accounted for by internal deformation alone, whereas rates of outlet glacier flow require basal motion. One outlet has recently switched into and out of a faster mode of flow. Rapid terminal advance, a change from longitudinal compression to tension, and thinning in the upper basin indicate surge behavior. Observed outlet glacier discharge is significantly greater than current inputs of mass of the ice cap, indicating that present rates of flow cannot be sustained under the contemporary climate.

  18. Extreme wind-ice interaction over Recovery Ice Stream, East Antarctica

    NASA Astrophysics Data System (ADS)

    Das, Indrani; Scambos, Ted A.; Koenig, Lora S.; Broeke, Michiel R.; Lenaerts, Jan T. M.

    2015-10-01

    Surface snow accumulation over East Antarctica is an important climate indicator but a difficult parameter to constrain. Surface mass ablation dominates over persistent wind-scour zones as near-surface katabatic winds accelerate over locally steeper ice surface topography, and sublimate and redistribute snow. Here we quantify ablation rates and downwind redeposition of snow over wind-scour zones in the upper Recovery Ice Stream catchment. Airborne radio echo-soundings show a gradual ablation of ~16-18 m of firn, corresponding to ~200 years of accumulation, over these zones and ablation rates of ~54 kg m-2 a-1 (54 mm water equivalent a-1). We conclude that mass loss is dominated by sublimation and mass is transported downwind as water vapor, because snow redeposition downslope of the wind-scour zones constitutes only a small fraction (<10%) of the cumulative mass loss.

  19. Deformation Studies of NEEM, Greenland Basal Folded Ice

    NASA Astrophysics Data System (ADS)

    Keegan, K.; Dahl-Jensen, D.; Montagnat, M.; Weikusat, I.

    2015-12-01

    Deep Greenland ice cores and airborne radio echo sounding (RES) images have recently revealed that basal ice flow of the Greenland Ice Sheet is very unstable. In many locations, a basal layer of disturbed ice is observed. At the NEEM, Greenland site this folding occurs at the boundary between the Eemian and glacial ice regimes, indicating that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy and ice suggests that impurity content controls grain evolution and therefore deformation. We hypothesize that the differences in ice flow seen deep in the NEEM ice core are controlled by differences in the impurity content of the ice layers. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  20. Deformation of Eemian and Glacial ice at NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Keegan, Kaitlin; Dahl-Jensen, Dorthe; Montagnat, Maurine; Weikusat, Ilka; Kipfstuhl, Sepp

    2015-04-01

    New findings from deep Greenland ice cores and airborne radio echo sounding (RES) images show that basal ice flow is very unstable, and a basal layer of disturbed ice is often observed. At NEEM, Greenland this folding occurs at the boundary between the Eemian and glacial ice regimes, suggesting that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy (Burke, 1957) and ice (Hammer et al., 1978; Langway et al., 1988; Dahl-Jensen et al., 1997), suggests that impurity content controls grain evolution, and therefore deformation, which we hypothesize to be analogous to the differences in ice flow seen deep in the NEEM ice core. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  1. Patterns of fish sound production

    NASA Astrophysics Data System (ADS)

    Mann, David A.

    2003-04-01

    While vocalization and chorusing behavior has been intensively studied in frogs and birds, little has been done with fishes. This paper presents patterns of sound production in damselfish, toadfish, and spotted seatrout on seasonal, daily, and subdaily time scales. Chorus behavior ranges from highly coordinated behavior between neighboring toadfish to uncoordinated behavior in spotted seatrout. Differences in coordination of sound production (i.e., the degree of overlap in calls) can be related to differences in territoriality and modes of reproduction. Toadfish and damselfish are territorial fishes in which males guard benthic eggs laid in nests. Sciaenids (croakers and drums) spawn planktonic eggs, and form temporary aggregations of calling males.

  2. Sound radiation from Caribbean steelpans

    NASA Astrophysics Data System (ADS)

    Copeland, Brian; Morrison, Andrew; Rossing, Thomas D.

    2005-01-01

    Besides radiating sound from the note area being struck, a steelpan radiates from neighboring note areas that vibrate sympathetically, from the areas between notes, and from the skirt [Rossing et al., Phys. Today 49(3), 24-29 (1996)]. Measurements were taken in an anechoic chamber using a four-microphone intensity probe to visualize the acoustic radiation from selected notes on a double second and a low tenor steelpan. Swept sinusoidal excitation was effected using an electromagnet. Sound intensity maps were drawn for the first three harmonics. .

  3. Save Our Sounds: America's Recorded Sound Heritage Project.

    ERIC Educational Resources Information Center

    Marian, Beth Ann, Ed.; Rosenberg, Jessica, Ed.

    2002-01-01

    The Fall 2002 Idea Book contains suggestions for enriched learning. "Save Our History; Save Our Sounds,""Eureka!" and "Lindbergh Flies Again" involve two or more disciplines of study and would work well for team-teaching projects . Lesson materials from the Arts and Entertainment Network teacher's guide are: "Biography 15: Eureka!"; "Pocahontas";…

  4. The Multisensory Sound Lab: Sounds You Can See and Feel.

    ERIC Educational Resources Information Center

    Lederman, Norman; Hendricks, Paula

    1994-01-01

    A multisensory sound lab has been developed at the Model Secondary School for the Deaf (District of Columbia). A special floor allows vibrations to be felt, and a spectrum analyzer displays frequencies and harmonics visually. The lab is used for science education, auditory training, speech therapy, music and dance instruction, and relaxation…

  5. Airborne Microalgae: Insights, Opportunities, and Challenges.

    PubMed

    Tesson, Sylvie V M; Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-04-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  6. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. PMID:26803684

  7. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  8. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  9. Sound preferences in urban open public spaces

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Yang, Wei

    2003-10-01

    This paper studies people's perception of sound, based on an intensive questionnaire survey in fourteen urban open public spaces of five European countries. The questionnaire includes identification of recognized sounds, classification of sound preference, and indication of wanted and unwanted sounds. The results indicate three facets to people's sound preferences. First, people generally prefer natural and culture-related sounds rather than artificial sounds. Vehicle sounds and construction sounds are regarded as the most unpopular, whereas sounds from human activities are normally rated as neutral. Second, cultural background and long-term environmental experience play an important role in people's judgment of sound preference. People from a similar environment may show a similar tendency on their sound preferences, which can be defined as macro-preference. Third, personal differences, such as age and gender, further influence people's sound preference, which can be defined as micro-preference. For example, with increasing age, a higher percentage of people are favorable to, or tolerate, sounds relating to nature, culture or human activities. Male and female exhibit only slight differences. [Work supported by the European Commission.

  10. UAV-based Radar Sounding of Antarctic Ice

    NASA Astrophysics Data System (ADS)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of

  11. Approaches to detection of airborne biological agents

    NASA Astrophysics Data System (ADS)

    Chang, An-Cheng; Tabacco, Mary Beth

    2009-05-01

    Three approaches to detection of biological agents based on biological processes will be presented. The first example demonstrates the use of dendrimers to deliver a membrane-impermeable fluorescent dye into live bacteria, similar to viral infection and delivery of DNA/RNA into a bacterial cell. The second example mimics collection and capture of airborne biological particles by the respiratory mucosa through the use of a hygroscopic sensing membrane. The third example is based on the use of multiple fluorescent probes with diverse functionalities to detect airborne biological agents in a manner similar to the olfactory receptors in the nasal tract.

  12. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  13. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  14. Generation of sound in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1983-01-01

    An alternative to the Lighthill acoustic analogy for jet noise is discussed. It involves calculating the unsteady flow that produces the sound along with its resulting sound field starting from a prescribed upstream state that, ideally, is specified just ahead of the region where the sound generation takes place. Sound generation by turbulence interacting with solid obstacles is considered. It is shown that the process can be described by linear theory. Sound generated by turbulence interacting with itself is discussed. The processes are nonlinear and the theory is incomplete. Theories of sound generation are compared with experiment and the inadequacies of each are indicated. Additional mechanisms that appear at supersonic speeds are discussed.

  15. [Dysphagia. Are swallowing sounds diagnostically useful?].

    PubMed

    Kley, C; Biniek, R

    2005-12-01

    The origin and importance of swallowing sounds in dysphagia have been discussed in previous research. Those studies report a general similarity in the sound patterns of different swallowing actions. The current paper confirms this. In addition, the origin of swallowing sound patterns is examined more closely. Finally, we simultaneously analyzed the swallowing sounds of healthy voluntary subjects and patients with swallowing disorders using X-ray cinematography. Videoendoscopy was also done. As expected, we found a variety of sound sequences differing from those of healthy subjects. Patients with tracheal tubes or cannulae constitute a special group whose swallowing sounds give additional information about the act of swallowing. PMID:16133430

  16. NASA Airborne Lidar 1982-1984 Flights Data and Information

    Atmospheric Science Data Center

    2014-08-06

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  17. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  18. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  20. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  1. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  2. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  3. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  4. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  5. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  6. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  7. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  8. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  9. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  11. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  12. Sounding Off and Lighting Up

    ERIC Educational Resources Information Center

    Lawrence, Ian

    2008-01-01

    Teaching about light and sound is to teach about the processes of hearing and seeing. In considering the kinds of leading questions that we might ask in teaching, I suggest that a rethinking of how we consider the contribution of the energetic descriptions to this area will probably help to make these questions more fruitful. A subtly changed…

  13. Rocket ozone sounding network data

    NASA Technical Reports Server (NTRS)

    Wright, D. U.; Krueger, A. J.; Foster, G. M.

    1978-01-01

    During the period December 1976 through February 1977, three regular monthly ozone profiles were measured at Wallops Flight Center, two special soundings were taken at Antigua, West Indies, and at the Churchill Research Range, monthly activities were initiated to establish stratospheric ozone climatology. This report presents the data results and flight profiles for the period covered.

  14. Indonesian: Sounds of Indonesian Speech.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    The sounds of Standard Indonesian, or Bahasa Indonesian, used in official government and private communication, are presented here. The place and manner of articulation and the distinctive features of consonants, vowels, diphthongs, and vocalic combinations are thoroughly explained through text, illustrations, and charts. Variants of…

  15. Making Sounds with Rubber Bands.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This physical science activity module was designed to facilitate developing concepts related to sound. It is intended for use primarily in elementary grades but may be useful at higher grades. It provides students with hands-on experience and observational skill development. The package provides: (1) a teacher background sheet; (2) an activity…

  16. NORTHERN PUGET SOUND MARINE MAMMALS

    EPA Science Inventory

    A baseline study of the marine mammals of northern Puget Sound and the Strait of Juan de Fuca was undertaken from November 1977 to September 1979 emphasizing certain aspects of the biology of the harbor seal, which is the most abundant marine mammal in this area. The local abunda...

  17. Attentive Tracking of Sound Sources.

    PubMed

    Woods, Kevin J P; McDermott, Josh H

    2015-08-31

    Auditory scenes often contain concurrent sound sources, but listeners are typically interested in just one of these and must somehow select it for further processing. One challenge is that real-world sounds such as speech vary over time and as a consequence often cannot be separated or selected based on particular values of their features (e.g., high pitch). Here we show that human listeners can circumvent this challenge by tracking sounds with a movable focus of attention. We synthesized pairs of voices that changed in pitch and timbre over random, intertwined trajectories, lacking distinguishing features or linguistic information. Listeners were cued beforehand to attend to one of the voices. We measured their ability to extract this cued voice from the mixture by subsequently presenting the ending portion of one voice and asking whether it came from the cued voice. We found that listeners could perform this task but that performance was mediated by attention-listeners who performed best were also more sensitive to perturbations in the cued voice than in the uncued voice. Moreover, the task was impossible if the source trajectories did not maintain sufficient separation in feature space. The results suggest a locus of attention that can follow a sound's trajectory through a feature space, likely aiding selection and segregation amid similar distractors. PMID:26279234

  18. Sound Naming in Neurodegenerative Disease

    ERIC Educational Resources Information Center

    Chow, Maggie L.; Brambati, Simona M.; Gorno-Tempini, Maria Luisa; Miller, Bruce L.; Johnson, Julene K.

    2010-01-01

    Modern cognitive neuroscientific theories and empirical evidence suggest that brain structures involved in movement may be related to action-related semantic knowledge. To test this hypothesis, we examined the naming of environmental sounds in patients with corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), two…

  19. Review of Sound Card Photogates

    ERIC Educational Resources Information Center

    Gingl, Zoltan; Mingesz, Robert; Makra, Peter; Mellar, Janos

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card--an interface for analogue…

  20. Sound, Noise, and Vibration Control.

    ERIC Educational Resources Information Center

    Yerges, Lyle F.

    This working guide on the principles and techniques of controlling acoustical environment is discussed in the light of human, environmental and building needs. The nature of sound and its variables are defined. The acoustical environment and its many materials, spaces and functional requirements are described, with specific methods for planning,…

  1. Optical Measurement Of Sound Pressure

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Gaspar, Mark; Leung, Emily W.

    1989-01-01

    Noninvasive technique does not disturb field it measures. Sound field deflects laser beam proportionally to its amplitude. Knife edge intercepts undeflected beam, allowing only deflected beam to reach photodetector. Apparatus calibrated by comparing output of photodetector with that of microphone. Optical technique valuable where necessary to measure in remote, inaccessible, or hostile environment or to avoid perturbation of measured region.

  2. Newborn Infants Orient to Sounds.

    ERIC Educational Resources Information Center

    Muir, Darwin; Field, Jeffrey

    1979-01-01

    In two experiments, the majority of 21 newborn infants who were maintained in an alert state consistently turned their heads toward a continuous sound source presented 90 degrees from midline. For most infants, this orientation response was rather slow, taking median latencies of 2.5 seconds to begin and 5.5 seconds to end. (JMB)

  3. Sound Stories for General Music

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2013-01-01

    Language and music literacy share a similar process of understanding that progresses from sensory experience to symbolic representation. The author identifies Bruner’s modes of understanding as they relate to using narrative in the music classroom to enhance music reading at iconic and symbolic levels. Two sound stories are included for…

  4. Geometric Constraints on Human Speech Sound Inventories.

    PubMed

    Dunbar, Ewan; Dupoux, Emmanuel

    2016-01-01

    We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry. PMID:27462296

  5. Geometric Constraints on Human Speech Sound Inventories

    PubMed Central

    Dunbar, Ewan; Dupoux, Emmanuel

    2016-01-01

    We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry. PMID:27462296

  6. Calibration of sound velocimeter in pure water

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Zhang, Baofeng; Li, Tao; Zhu, Junchao; Xie, Ziming

    2016-01-01

    Accurate measurement of sound speed is important to calibrate a sound velocity profiler which provides real-time sound velocity to the sonar equipment in oceanographic survey. The sound velocity profiler calculates the sound speed by measuring the time-of-flight of a 1 MHz single acoustic pulse to travel over about 300 mm path. A standard sound velocimeter instrument was invited to calibrate the sound velocity profiler in pure water at temperatures of 278,283, 288, 293, 298, 303 and 308K in a thermostatic vessel at one atmosphere. The sound velocity profiler was deployed in the thermostatic vessel alongside the standard sound velocimeter instrument and two platinum resistance thermometers (PRT) which were calibrated to 0.002k by comparison with a standard PRT. Time of flight circuit board was used to measure the time-of-flight to 22 picosecond precision. The sound speed which was measured by the sound velocity profiler was compared to the standard sound speed calculated by UNESCO to give the laboratory calibration coefficients and was demonstrated agreement with CTD-derived sound speed using Del Grosso's seawater equation after removing a bias.

  7. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  8. Toolsets for Airborne Data Beta Release

    Atmospheric Science Data Center

    2014-09-17

    ... for Airborne Data (TAD), developed at the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center (LaRC) to promote ... and Houston, and DC3 will be added shortly. Early next year we plan to add DISCOVER-AQ Colorado and SEAC4RS to the TAD database. We ...

  9. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  10. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  11. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  12. Airborne sensor integration for quick reaction programs

    NASA Astrophysics Data System (ADS)

    Gosian, Gregory; Mason, Kenneth; Servoss, Thomas; Brower, Bernard; Pellechia, Matthew

    2010-04-01

    In this paper we present an approach to integrate sensors to meet the demanding requirements of Quick Reaction Capability (QRC) airborne programs. Traditional airborne sensors are generally highly integrated and incorporate custom sensor technologies and interfaces. Custom solutions and new technologies often require significant engineering to achieve a high technology readiness level (TRL) and to meet the overall mission objective. Our approach differs from traditional approaches in that we strive to achieve an integrated solution through regular review, assessment, and identification of relevant industry "best athlete" technologies. Attention is focused on solution providers that adhere to standard interfaces and formats, incorporate non-proprietary techniques, are deemed highly-reliable/repeatable, and enable assembly production. Processes and engineering tools/methods have traditionally been applied to dozens of longer-acquisition space-based ISR programs over 50 years. We have recently leveraged these techniques to solve airborne Intelligence, Surveillance and Reconnaissance (ISR) mission challenges. This presentation describes and illustrates key aspects and examples of these techniques, solving real-world airborne mission needs.

  13. Airborne hyperspectral detection of small changes.

    PubMed

    Eismann, Michael T; Meola, Joseph; Stocker, Alan D; Beaven, Scott G; Schaum, Alan P

    2008-10-01

    Hyperspectral change detection offers a promising approach to detect objects and features of remotely sensed areas that are too difficult to find in single images, such as slight changes in land cover and the insertion, deletion, or movement of small objects, by exploiting subtle differences in the imagery over time. Methods for performing such change detection, however, must effectively maintain invariance to typically larger image-to-image changes in illumination and environmental conditions, as well as misregistration and viewing differences between image observations, while remaining sensitive to small differences in scene content. Previous research has established predictive algorithms to overcome such natural changes between images, and these approaches have recently been extended to deal with space-varying changes. The challenges to effective change detection, however, are often exacerbated in an airborne imaging geometry because of the limitations in control over flight conditions and geometry, and some of the recent change detection algorithms have not been demonstrated in an airborne setting. We describe the airborne implementation and relative performance of such methods. We specifically attempt to characterize the effects of spatial misregistration on change detection performance, the efficacy of class-conditional predictors in an airborne setting, and extensions to the change detection approach, including physically motivated shadow transition classifiers and matched change filtering based on in-scene atmospheric normalization. PMID:18830283

  14. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  15. Toolsets for Airborne Data Beta Release

    Atmospheric Science Data Center

    2014-09-17

    ... use, is now available. This beta-release is an intuitive user interface for variable selection across different airborne field studies ... we plan to add DISCOVER-AQ Colorado and SEAC4RS to the TAD database. We are currently focused on the in situ measurements and we want to ...

  16. Materiel requirements for airborne minefield detection system

    NASA Astrophysics Data System (ADS)

    Bertsche, Karl A.; Huegle, Helmut

    1997-07-01

    Within the concept study, Material Requirements for an airborne minefield detection systems (AMiDS) the following topics were investigated: (i) concept concerning airborne minefield detection technique sand equipment, (ii) verification analysis of the AMiDS requirements using simulation models and (iii) application concept of AMiDS with regard o tactics and military operations. In a first approach the problems concerning unmanned airborne minefield detection techniques within a well-defined area were considered. The complexity of unmanned airborne minefield detection is a result of the following parameters: mine types, mine deployment methods, tactical requirements, topography, weather conditions, and the size of the area to be searched. In order to perform the analysis, a simulation model was developed to analyze the usability of the proposed remote controlled air carriers. The basic flight patterns for the proposed air carriers, as well as the preparation efforts of military operations and benefits of such a system during combat support missions were investigated. The results of the conceptual study showed that a proposed remote controlled helicopter drone could meet the stated German MOD scanning requirements of mine barriers. Fixed wing air carriers were at a definite disadvantage because of their inherently large turning loops. By implementing a mine detection system like AMiDS minefields can be reconnoitered before an attack. It is therefore possible either to plan, how the minefields can be circumvented or where precisely breaching lanes through the mine barriers are to be cleared for the advancing force.

  17. Airborne UV Lidar for Forest Parameter Retrievals

    NASA Astrophysics Data System (ADS)

    Shang, Xiaoxia; Chazette, Patrick; Totems, Julien

    2016-06-01

    A full-waveform UV lidar performed airborne measurements over several temperate and tropical forests sites. The structural and ecological parameters (canopy height, quadratic mean canopy height and apparent foliage) were extracted from lidar backscattered profiles. The aboveground carbon and leaf area index are also evaluated from lidar measurements.

  18. Hyperacusis: An Increased Sensitivity to Everyday Sounds

    MedlinePlus

    ... hyperacusis, withdrawal, social isolation, and depression are common. Hearing Loss Hearing tests usually indicate normal hearing sensitivity and ... problem in the way the brain processes sound. Hearing loss coupled with low tolerance to sound is another ...

  19. Educationally Sound Due Process in Academic Affairs.

    ERIC Educational Resources Information Center

    La Morte, Michael W.; Meadows, Robert B.

    1979-01-01

    This article examines the concept of educationally sound due process in higher education academic affairs in the light of the existing case law and the responsibility of public school officials to provide an educationally sound school program. (Author/IRT)

  20. 7 CFR 29.3056 - Sound.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sound. 29.3056 Section 29.3056 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sound. Free of damage....

  1. 7 CFR 29.3056 - Sound.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sound. 29.3056 Section 29.3056 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sound. Free of damage....

  2. 7 CFR 29.3056 - Sound.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sound. 29.3056 Section 29.3056 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sound. Free of damage....

  3. 7 CFR 29.3056 - Sound.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sound. 29.3056 Section 29.3056 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sound. Free of damage....

  4. 7 CFR 29.3056 - Sound.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sound. 29.3056 Section 29.3056 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sound. Free of damage....

  5. Speech Sound Disorders: Articulation and Phonological Processes

    MedlinePlus

    ... How Does Your Child Hear and Talk ? and Literacy and Communication: Expectations From Kindergarten Through Fifth Grade . ... sounds. Some speech sound errors can result from physical problems, such as: developmental disorders (e.g.,autism) ...

  6. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  7. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  8. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator.

    PubMed

    Fleury, Romain; Sounas, Dimitrios L; Sieck, Caleb F; Haberman, Michael R; Alù, Andrea

    2014-01-31

    Acoustic isolation and nonreciprocal sound transmission are highly desirable in many practical scenarios. They may be realized with nonlinear or magneto-acoustic effects, but only at the price of high power levels and impractically large volumes. In contrast, nonreciprocal electromagnetic propagation is commonly achieved based on the Zeeman effect, or modal splitting in ferromagnetic atoms induced by a magnetic bias. Here, we introduce the acoustic analog of this phenomenon in a subwavelength meta-atom consisting of a resonant ring cavity biased by a circulating fluid. The resulting angular momentum bias splits the ring's azimuthal resonant modes, producing giant acoustic nonreciprocity in a compact device. We applied this concept to build a linear, magnetic-free circulator for airborne sound waves, observing up to 40-decibel nonreciprocal isolation at audible frequencies. PMID:24482477

  9. MegaSound: Sound in Irish megalithic buildings

    NASA Astrophysics Data System (ADS)

    Reijs, Victor

    2002-11-01

    Stimulated by the studies done by Paul Deveraux and Robert Jahn, research has been conducted on the sound properties of two megalithic chambers is Ireland: Dowth South and Fourknocks I. As reference measurements two normal rooms (bed- and bathroom) have been studied. The following aspects will be covered in the presentation: some theoretical background on acoustical modes (within a passage, a chamber, and a combination of them: Helmholtz resonator); tips for doing sound experiments inside megalithic chambers (like: equipment, measurement software, power provisioning and calibrating); frequency response measurements (between 20 and 200 Hz) for the surveyed chambers/rooms; comparison of the results with other researchers' results; background on the pitch of the human (male, female, and child) voices in neolithic times and recommendations for future research. The presentation also provides insight in the aeralization (simulation) of sound in a megalithic chamber, covering: software that can do these simulations; issues in finding the basic information, e.g., acoustic absorption coefficients and provide examples of the results. I would like to thank all the people who have provided constructive feedback on my work (http://www.iol.ie/approxgeniet/eng/megasound.htm).

  10. Sound localization by echolocating bats

    NASA Astrophysics Data System (ADS)

    Aytekin, Murat

    Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies

  11. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  12. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  13. A Lexical Analysis of Environmental Sound Categories

    ERIC Educational Resources Information Center

    Houix, Olivier; Lemaitre, Guillaume; Misdariis, Nicolas; Susini, Patrick; Urdapilleta, Isabel

    2012-01-01

    In this article we report on listener categorization of meaningful environmental sounds. A starting point for this study was the phenomenological taxonomy proposed by Gaver (1993b). In the first experimental study, 15 participants classified 60 environmental sounds and indicated the properties shared by the sounds in each class. In a second…

  14. 47 CFR 74.603 - Sound channels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Sound channels. 74.603 Section 74.603... Stations § 74.603 Sound channels. (a) The frequencies listed in § 74.602(a) may be used for the simultaneous transmission of the picture and sound portions of TV broadcast programs and for cue and...

  15. 47 CFR 74.603 - Sound channels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Sound channels. 74.603 Section 74.603... Stations § 74.603 Sound channels. (a) The frequencies listed in § 74.602(a) may be used for the simultaneous transmission of the picture and sound portions of TV broadcast programs and for cue and...

  16. 47 CFR 74.603 - Sound channels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Sound channels. 74.603 Section 74.603... Stations § 74.603 Sound channels. (a) The frequencies listed in § 74.602(a) may be used for the simultaneous transmission of the picture and sound portions of TV broadcast programs and for cue and...

  17. 47 CFR 74.603 - Sound channels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Sound channels. 74.603 Section 74.603... Stations § 74.603 Sound channels. (a) The frequencies listed in § 74.602(a) may be used for the simultaneous transmission of the picture and sound portions of TV broadcast programs and for cue and...

  18. 47 CFR 74.603 - Sound channels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Sound channels. 74.603 Section 74.603... Stations § 74.603 Sound channels. (a) The frequencies listed in § 74.602(a) may be used for the simultaneous transmission of the picture and sound portions of TV broadcast programs and for cue and...

  19. Evaluating Warning Sound Urgency with Reaction Times

    ERIC Educational Resources Information Center

    Suied, Clara; Susini, Patrick; McAdams, Stephen

    2008-01-01

    It is well-established that subjective judgments of perceived urgency of alarm sounds can be affected by acoustic parameters. In this study, the authors investigated an objective measurement, the reaction time (RT), to test the effectiveness of temporal parameters of sounds in the context of warning sounds. Three experiments were performed using a…

  20. The United States sounding rocket program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The United States sounding rocket program is discussed. The program is concerned with the fields of solar physics, galactic astronomy, fields and particles, ionospheric physics, aeronomy, and meteorology. Sounding rockets are described with respect to propulsion systems, gross weight, and capabilities. Instruments used to conduct ionospheric probing missions are examined. Results of previously conducted sounding rocket missions are included.

  1. The Early Years: Becoming Attuned to Sound

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2014-01-01

    Exploration of making and changing sounds is part of the first-grade performance expectation 1-PS4-1, "Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate" (NGSS Lead States 2013, p. 10; see Internet Resource). Early learning experiences build toward…

  2. Bubbles That Change the Speed of Sound

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Etkina, Eugenia

    2012-01-01

    The influence of bubbles on sound has long attracted the attention of physicists. In his 1920 book Sir William Bragg described sound absorption caused by foam in a glass of beer tapped by a spoon. Frank S. Crawford described and analyzed the change in the pitch of sound in a similar experiment and named the phenomenon the "hot chocolate effect."…

  3. Newborns' Head Orientation toward Sounds Within Hemifields.

    ERIC Educational Resources Information Center

    Fenwick, Kimberley; And Others

    This experiment examined the accuracy with which newborn infants orient their heads toward a sound positioned off midline within hemifields. The study also evaluated newborns' ability to update the angle of their head turn to match a change in localization of an ongoing sound. Alert newborns were held in a supine position and presented a sound at…

  4. Listener Expertise and Sound Identification Influence the Categorization of Environmental Sounds

    ERIC Educational Resources Information Center

    Lemaitre, Guillaume; Houix, Olivier; Misdariis, Nicolas; Susini, Patrick

    2010-01-01

    The influence of listener's expertise and sound identification on the categorization of environmental sounds is reported in three studies. In Study 1, the causal uncertainty of 96 sounds was measured by counting the different causes described by 29 participants. In Study 2, 15 experts and 15 nonexperts classified a selection of 60 sounds and…

  5. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William...

  6. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William...

  7. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William...

  8. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William...

  9. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William...

  10. Sound attenuation in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Resa, P.; Montero de Espinosa, F.

    2013-02-01

    In this work, the attenuation of ultrasonic elastic waves propagating through magnetorheological (MR) fluids is analysed as a function of the particle volume fraction and the magnetic field intensity. Non-commercial MR fluids made with iron ferromagnetic particles and two different solvents (an olive oil based solution and an Araldite-epoxy) were used. Particle volume fractions of up to 0.25 were analysed. It is shown that the attenuation of sound depends strongly on the solvent used and the volume fraction. The influence of a magnetic field up to 212 mT was studied and it was found that the sound attenuation increases with the magnetic intensity until saturation is reached. A hysteretic effect is evident once the magnetic field is removed.

  11. Temporal weighting in sound localizationa

    PubMed Central

    Stecker, G. Christopher; Hafter, Ervin R.

    2010-01-01

    The dynamics of sound localization were studied using a free-field direct localization task (pointing to sound sources) and an observer-weighting analysis that assessed the relative influence of each click in a click-train stimulus. In agreement with previous studies of the precedence effect and binaural adaptation, weighting functions showed increased influence of the onset click when the interclick interval (ICI) was short (<5 ms). For longer ICIs, all clicks in a train contributed roughly the same amount to listeners’ localization responses. Finally, when a short gap was introduced in the middle of a train, the influence of the click immediately following the gap increased, in agreement with the “restarting” results obtained by Hafter and Buell PMID:12243153

  12. Sound can suppress visual perception.

    PubMed

    Hidaka, Souta; Ide, Masakazu

    2015-01-01

    In a single modality, the percept of an input (e.g., voices of neighbors) is often suppressed by another (e.g., the sound of a car horn nearby) due to close interactions of neural responses to these inputs. Recent studies have also suggested that close interactions of neural responses could occur even across sensory modalities, especially for audio-visual interactions. However, direct behavioral evidence regarding the audio-visual perceptual suppression effect has not been reported in a study with humans. Here, we investigated whether sound could have a suppressive effect on visual perception. We found that white noise bursts presented through headphones degraded visual orientation discrimination performance. This auditory suppression effect on visual perception frequently occurred when these inputs were presented in a spatially and temporally consistent manner. These results indicate that the perceptual suppression effect could occur across auditory and visual modalities based on close and direct neural interactions among those sensory inputs. PMID:26023877

  13. The coronal-sounding experiment

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Asmar, S. W.; Brenkle, J. P.; Edenhofer, P.; Paetzold, M.; Volland, H.

    1992-01-01

    The main science objective of the Ulysses Solar Corona Experiment is to derive the plasma parameters of the solar atmosphere using established coronal-sounding techniques. Applying appropriate model assumptions, the 3D electron density distribution will be determined from dual-frequency ranging and Doppler measurements recorded at the NASA Deep Space Network during the solar conjunctions. Multi-station observations will be used to derive the plasma bulk velocity at solar distances where the solar wind is expected to undergo its greatest acceleration. As a secondary objective profiting from the favorable geometry during Jupiter encounter, radio-sounding measurements will yield a unique cross-scan of the electron density in the Io Plasma Torus.

  14. Mississippi Sound remote sensing study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1972-01-01

    Remote sensing techniques are being developed to study near shore marine waters in the Mississippi Sound. Specific elements of the investigation include: (1) evaluation of existing techniques and instrument capabilities for remote measurement of parameters which characterize near shore water; (2) integration of these parameters into a system which will make possible the definition of circulation characteristics; (3) conduct of applications experiments; and (4) definition of hardware development requirements and/or system specifications. Efforts have emphasized: (1) development of a satisfactory system of gathering ground truth over the entire area of Mississippi Sound to aid in evaluating remotely sensed data; (2) conduct of two data acquisition experiments; (3) analysis of individual sensor data from completed flights; and (4) pursuit of methods which will allow interrelations between data from individual sensors in order to add another dimension to the study.

  15. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  16. AIDA - from Airborne Data Inversion to In-Depth Analysis

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Goetze, H.; Schroeder, M.; Boerner, R.; Tezkan, B.; Winsemann, J.; Siemon, B.; Alvers, M.; Stoll, J. B.

    2011-12-01

    The rising competition in land use especially between water economy, agriculture, forestry, building material economy and other industries often leads to irreversible deterioration in the water and soil system (as salinization and degradation) which results in a long term damage of natural resources. A sustainable exploitation of the near subsurface by industry, economy and private households is a fundamental demand of a modern society. To fulfill this demand, a sound and comprehensive knowledge on structures and processes of the near subsurface is an important prerequisite. A spatial survey of the usable underground by aerogeophysical means and a subsequent ground geophysics survey targeted at special locations will deliver essential contributions within short time that make it possible to gain the needed additional knowledge. The complementary use of airborne and ground geophysics as well as the validation, assimilation and improvement of current findings by geological and hydrogeological investigations and plausibility tests leads to the following key questions: a) Which new and/or improved automatic algorithms (joint inversion, data assimilation and such) are useful to describe the structural setting of the usable subsurface by user specific characteristics as i.e. water volume, layer thicknesses, porosities etc.? b) What are the physical relations of the measured parameters (as electrical conductivities, magnetic susceptibilities, densities, etc.)? c) How can we deduce characteristics or parameters from the observations which describe near subsurface structures as ground water systems, their charge, discharge and recharge, vulnerabilities and other quantities? d) How plausible and realistic are the numerically obtained results in relation to user specific questions and parameters? e) Is it possible to compile material flux balances that describe spatial and time dependent impacts of environmental changes on aquifers and soils by repeated airborne surveys? In

  17. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls.

    PubMed

    Davy, John L

    2010-02-01

    This paper presents a revised theory for predicting the sound insulation of double leaf cavity walls that removes an approximation, which is usually made when deriving the sound insulation of a double leaf cavity wall above the critical frequencies of the wall leaves due to the airborne transmission across the wall cavity. This revised theory is also used as a correction below the critical frequencies of the wall leaves instead of a correction due to Sewell [(1970). J. Sound Vib. 12, 21-32]. It is found necessary to include the "stud" borne transmission of the window frames when modeling wide air gap double glazed windows. A minimum value of stud transmission is introduced for use with resilient connections such as steel studs. Empirical equations are derived for predicting the effective sound absorption coefficient of wall cavities without sound absorbing material. The theory is compared with experimental results for double glazed windows and gypsum plasterboard cavity walls with and without sound absorbing material in their cavities. The overall mean, standard deviation, maximum, and minimum of the differences between experiment and theory are -0.6 dB, 3.1 dB, 10.9 dB at 1250 Hz, and -14.9 dB at 160 Hz, respectively. PMID:20136207

  18. Sparse Spectrotemporal Coding of Sounds

    NASA Astrophysics Data System (ADS)

    Klein, David J.; König, Peter; Körding, Konrad P.

    2003-12-01

    Recent studies of biological auditory processing have revealed that sophisticated spectrotemporal analyses are performed by central auditory systems of various animals. The analysis is typically well matched with the statistics of relevant natural sounds, suggesting that it produces an optimal representation of the animal's acoustic biotope. We address this topic using simulated neurons that learn an optimal representation of a speech corpus. As input, the neurons receive a spectrographic representation of sound produced by a peripheral auditory model. The output representation is deemed optimal when the responses of the neurons are maximally sparse. Following optimization, the simulated neurons are similar to real neurons in many respects. Most notably, a given neuron only analyzes the input over a localized region of time and frequency. In addition, multiple subregions either excite or inhibit the neuron, together producing selectivity to spectral and temporal modulation patterns. This suggests that the brain's solution is particularly well suited for coding natural sound; therefore, it may prove useful in the design of new computational methods for processing speech.

  19. Sound radiation from railway sleepers

    NASA Astrophysics Data System (ADS)

    Zhang, Xianying; Thompson, David J.; Squicciarini, Giacomo

    2016-05-01

    The sleepers supporting the rails of a railway track are an important source of noise at low frequencies. The sound radiation from the sleepers has been calculated using a three-dimensional boundary element model including the effect of both reflective and partially absorptive ground. When the sleeper flexibility and support stiffness are taken into account, it is found that the radiation ratio of the sleeper can be approximated by that of a rigid half-sleeper. When multiple sleepers are excited through the rail, their sound radiation is increased. This effect has been calculated for cases where the sleeper is embedded in a rigid or partially absorptive ground. It is shown that it is sufficient to consider only three sleepers in determining their radiation ratio when installed in track. At low frequencies the vibration of the track is localised to the three sleepers nearest the excitation point whereas at higher frequencies the distance between the sleepers is large enough for them to be treated independently. Consequently the sound radiation increases by up to 5 dB below 100 Hz compared with the result for a single sleeper whereas above 300 Hz the result can be approximated by that for a single sleeper. Measurements on a 1/5 scale model railway track are used to verify the numerical predictions with good agreement being found for all configurations.

  20. Circulation of Prince William Sound

    NASA Technical Reports Server (NTRS)

    Muench, R. D. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Visual examination of the available ERTS-1 and NASA NP-3 aircraft imagery has suggested that sediment-laden plumes from rivers may be useful in tracking surface circulation over the regions where these plumes retain their visible identities. Plumes of ice derived from tidewater glaciers are highly visible on the ERTS-1 imagery, but are generally of too small an areal extent to be useful in tracing surface circulation. Shore-fast ice is also highly visible on the ERTS-1 data. Practical scientific results include a corroboration of the westward flow just offshore in the Gulf of Alaska with inflow through Hinchinbrook Entrance into Prince William Sound. The tracer in this case was the Copper River Plume, which originates at the mouth of the Copper River east of Prince William Sound. A single partial image of Port Valdez, in northeastern Prince William Sound, suggests by the visible suspended sediment distribution that surface circulation there was cyclonic, as deduced previously from oceanographic baseline data. Surf along the shoreline of the Gulf of Alaska is highly visible on ERTS-1 imagery.

  1. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  2. Analysis and Synthesis of Musical Instrument Sounds

    NASA Astrophysics Data System (ADS)

    Beauchamp, James W.

    For synthesizing a wide variety of musical sounds, it is important to understand which acoustic properties of musical instrument sounds are related to specific perceptual features. Some properties are obvious: Amplitude and fundamental frequency easily control loudness and pitch. Other perceptual features are related to sound spectra and how they vary with time. For example, tonal "brightness" is strongly connected to the centroid or tilt of a spectrum. "Attack impact" (sometimes called "bite" or "attack sharpness") is strongly connected to spectral features during the first 20-100 ms of sound, as well as the rise time of the sound. Tonal "warmth" is connected to spectral features such as "incoherence" or "inharmonicity."

  3. Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. I - Algorithm description

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, Michael; Brown, Derek W.; Woodfield, Alan A.

    1991-01-01

    Since 1981 the Royal Signals and Radar Establishment and the Royal Aircraft Establishment, United Kindom, have made vertical and horizontal sounding measurements of aerosol backscatter coefficients at 10.6 microns, using an airborne continuous-wave-focused CO2 Doppler lidar, the Laser True Airspeed System (LATAS). In this paper, the heterodyne signal from the LATAS detector is spectrally analyzed. Then, in conjunction with aircraft flight parameters, the data are processed in a six-stage computer algorithm: set search window, search for peak signal, test peak signal, measure total signal, calculate signal-to-noise ratio, and calculate backscatter coefficient.

  4. Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers

    NASA Astrophysics Data System (ADS)

    Qamoshi, Khadijeh; Rasuli, Reza

    2016-09-01

    We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.

  5. Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Haynes, M.

    2015-12-01

    The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.

  6. Sound production by singing humpback whales.

    PubMed

    Mercado, Eduardo; Schneider, Jennifer N; Pack, Adam A; Herman, Louis M

    2010-04-01

    Sounds from humpback whale songs were analyzed to evaluate possible mechanisms of sound production. Song sounds fell along a continuum with trains of discrete pulses at one end and continuous tonal signals at the other. This graded vocal repertoire is comparable to that seen in false killer whales [Murray et al. (1998). J. Acoust. Soc. Am. 104, 1679-1688] and human singers, indicating that all three species generate sounds by varying the tension of pneumatically driven, vibrating membranes. Patterns in the spectral content of sounds and in nonlinear sound features show that resonating air chambers may also contribute to humpback whale sound production. Collectively, these findings suggest that categorizing individual units within songs into discrete types may obscure how singers modulate song features and illustrate how production-based characterizations of vocalizations can provide new insights into how humpback whales sing. PMID:20370048

  7. Material sound source localization through headphones

    NASA Astrophysics Data System (ADS)

    Dunai, Larisa; Peris-Fajarnes, Guillermo; Lengua, Ismael Lengua; Montaña, Ignacio Tortajada

    2012-09-01

    In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.

  8. Investigation of Passive Atmospheric Sounding Using Millimeter- and Submillimeter- Wavelength Channels

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1996-01-01

    This report summarizes progress made during the period from July 1, 1994 through June 30, 1996 on the development of satellite-based observational techniques for high resolution imaging of precipitation and sounding of atmospheric ice and water vapor using passive microwave radiometers in the millimeter (MMW)- and submillimeter (SMMW)-wavelength. This is being achieved by radiative transfer modeling a millimeter and submillimeter wave frequencies and by the development and operation of an airborne millimeter wave imaging radiometer (MIR). The MIR has been used in both airborne and ground-based experiments. Its primary application is to provide calibrated radiometric imagery to verify MMW and SMMW radiative transfer models in clear air, cloud, and precipitation and to develop retrieval techniques using MMW and SMMW channels. The MIR imagery over convective storm cells has been used to illustrate the potentially useful cloud and water vapor sensing and storm-cell mapping capabilities of SMMW channels. The radiometric data has also been used to analyze radiative transfer model discrepancies caused by water vapor errors in radiosondes. The MMW and SMMW channels can be used to extend the altitude that water vapor sounding can be performed up into the lower stratosphere. Together, the use of both SMMW and MMW channels are expected to provide additional observational degrees of freedom related to cloud ice particle size.

  9. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  10. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. The Callaway Plant's airborne tritium sampling cart

    SciTech Connect

    Graham, C.C.; Roselius, R.R. )

    1986-07-01

    The water vapor condensation method for sampling airborne tritium offers significant advantages over other methods, including minimal sample preparation, high sensitivity, and independence from collection efficiency and sample flow rate. However, it does have disadvantages that must be overcome in the design of a sampler. This article describes a cart-mounted, portable airborne tritium sampler used at the Callaway Nuclear Plant that incorporates the advantages of the condensation technique while minimizing its shortcomings. The key elements in the design of the sampler are the use of a refrigerated bath to cool a series of three water vapor collection traps and the use of an optical condensation dew point hygrometer to measure the moisture content of the sample. Design considerations for the proper operation of dew point hygrometers are presented, and the method used to convert due point readings to water vapor content is described.

  12. Satellite orbit determination from an airborne platform

    NASA Astrophysics Data System (ADS)

    Shepard, M. M.; Foshee, J. J.

    This paper describes the requirements, approach, and problems associated with autonomous satellite orbit determination from an airborne platform. The ability to perform orbit determination from an airborne platform removes the reliance on ground control facilities. Aircraft orbit determination offers a more robust system in that it is less susceptible to direct attack, sabotage, or nuclear disaster. Ranging on a satellite and the processing of range/range-rate data along with INS inputs to produce a set of orbital parameters to be transmitted to user terminals are discussed. Several algorithms that could be utilized by the user terminal to recover the satellite position/velocity data from the transmitted message are presented. The ability to compress the ephemeris message to a small size while remaining autonomous for a long period of time, as would be needed in future military communication satellites, is discussed.

  13. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  14. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  15. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  16. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  17. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  18. A new tool for sampling airborne isocyanates

    SciTech Connect

    Sesana, G.; Nano, G.; Baj, A. )

    1991-05-01

    A new sampling system is presented that uses solid sorbent media contained in a tube for the determination of airborne isocyanates (2.4-2.6 toluene diisocyanate, hexamethylene diisocyanate, and 4.4' diaminodiphenylmethane diisocyanate). The method is compared with the National Institute for Occupational Safety and Health (NIOSH) Method P CAM 5505 (Revision {number sign}1). Experimental tests yielded results that were highly concordant with the NIOSH method.

  19. First airborne pathogen direct analysis system.

    PubMed

    Liu, Qi; Zhang, Yuxiao; Jing, Wenwen; Liu, Sixiu; Zhang, Dawei; Sui, Guodong

    2016-03-01

    We report a portable "sample to answer" system for the rapid detection of airborne pathogens for the first time. The system contains a key microfluidic chip which fulfills both pathogen enrichment and biological identification functions. The system realizes simple operation and less human intervention as well as minimum reagent contamination. The operation is user-friendly and suitable for field and point-of-care applications. The system is capable of handling detection of different pathogens by changing the primers. PMID:26854120

  20. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1988-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  1. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  2. The Caltech airborne submillimeter SIS receiver

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas; Carlstrom, J.; Miller, D.; Ugras, N. G.

    1995-01-01

    We have constructed a sensitive submillimeter receiver for the NASA Kuiper Airborne Observatory (KAO) which at present operates in the 500-750 GHz band. The DSB receiver noise temperature is about 5 h nu/k(sub B) over the 500-700 GHz range. This receiver has been used to detect H2O(18)O, HCl, and CH in interstellar molecular clouds, and also to search for C(+) emission from the highly redshifted galaxy (z = 2.3) IRAS 10214.

  3. Airborne electronics for automated flight systems

    NASA Technical Reports Server (NTRS)

    Graves, G. B., Jr.

    1975-01-01

    The increasing importance of airborne electronics for use in automated flight systems is briefly reviewed with attention to both basic aircraft control functions and flight management systems for operational use. The requirements for high levels of systems reliability are recognized. Design techniques are discussed and the areas of control systems, computing and communications are considered in terms of key technical problems and trends for their solution.

  4. Airborne Chemical Sensing with Mobile Robots

    PubMed Central

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  5. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  6. Signal analysis and radioholographic methods for airborne radio occultations

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Nung

    Global Positioning System (GPS) radio occultation (RO) is an atmospheric sounding technique utilizing the change in propagation direction and delay of the GPS signal to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellite missions. Nevertheless, when observing localized transient events, such as tropical storms, current LEO satellite systems cannot provide sufficiently high temporal and spatial resolution soundings. An airborne RO (ARO) system has therefore been developed for localized GPS-RO campaigns. The open-loop (OL) tracking in post-processing is used to cross-correlates the received Global Navigation Satellite System (GNSS) signal with an internally generated local carrier signal predicted from a Doppler model and extract the atmospheric refractivity information. OL tracking also allows robust processing of rising GPS signals using backward tracking, which will double the observed occultation event numbers. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading, however. The negative bias caused by low signal-to-noise ratio (SNR) and multipath ray propagation limits the depth of tracking in the atmosphere. Therefore, we developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking, and its applicability to airborne data is demonstrated. We then apply this model to set a threshold on refractivity retrieval, based upon the cumulative unwrapping error bias, to determine the altitude limit for reliable signal tracking. To enhance the SNR and decrease the unwrapping error rate, the CIRA-Q climatological model and signal residual phase pre-filtering are utilized to process the ARO residual phase. This more accurately modeled phase and less noisy received signal are shown to greatly reduce the bias caused by unwrapping error at lower

  7. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  8. Methods for sampling of airborne viruses.

    PubMed

    Verreault, Daniel; Moineau, Sylvain; Duchaine, Caroline

    2008-09-01

    To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses. PMID:18772283

  9. Cryospheric Applications of Modern Airborne Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nolan, M.

    2014-12-01

    Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider. The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.

  10. Airborne electromagnetic hydrocarbon mapping in Mozambique

    NASA Astrophysics Data System (ADS)

    Pfaffhuber, Andreas A.; Monstad, Ståle; Rudd, Jonathan

    2009-09-01

    The Inhaminga hydrocarbon exploration licence in central Mozambique sets the location for a multi-method airborne geophysical survey. The size of the Inhaminga block, spanning some 16500km2 from Beira to the Zambezi, limited available data and a tight exploration schedule made an airborne survey attractive for the exploration portfolio. The aim of the survey was to map hydrocarbon seepage zones based on the evidence that seepage may create resistivity, radiometric and sometimes magnetic anomalies. The survey involved a helicopter-borne time domain electromagnetic induction system (AEM) and a fixed wing magnetic gradiometer and radiometer. Our data analysis highlights an anomaly extending some tens of kilometres through the survey area along the eastern margin of the Urema Graben. The area is imaged by AEM as a shallow resistive unit below a strong surface conductor and shows high Uranium and low Potassium concentrations (normalised to mean Thorium ratios). A seismic dimming zone on a 2D seismic line crossing the area coincides with the resistivity and radiometric anomaly. The geological exploration model expects seepage to be linked to the graben fault systems and an active seep has been sampled close to the anomaly. We thus interpret this anomaly to be associated with a gas seepage zone. Further geological ground work and seismic investigations are planned to assess this lead. Airborne data has further improved the general understanding of the regional geology allowing spatial mapping of faults and other features from 2D seismic lines crossing the survey area.

  11. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  12. Methods for Sampling of Airborne Viruses

    PubMed Central

    Verreault, Daniel; Moineau, Sylvain; Duchaine, Caroline

    2008-01-01

    Summary: To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses. PMID:18772283

  13. MITAS: multisensor imaging technology for airborne surveillance

    NASA Astrophysics Data System (ADS)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  14. Optical Communications Link to Airborne Transceiver

    NASA Technical Reports Server (NTRS)

    Regehr, Martin W.; Kovalik, Joseph M.; Biswas, Abhijit

    2011-01-01

    An optical link from Earth to an aircraft demonstrates the ability to establish a link from a ground platform to a transceiver moving overhead. An airplane has a challenging disturbance environment including airframe vibrations and occasional abrupt changes in attitude during flight. These disturbances make it difficult to maintain pointing lock in an optical transceiver in an airplane. Acquisition can also be challenging. In the case of the aircraft link, the ground station initially has no precise knowledge of the aircraft s location. An airborne pointing system has been designed, built, and demonstrated using direct-drive brushless DC motors for passive isolation of pointing disturbances and for high-bandwidth control feedback. The airborne transceiver uses a GPS-INS system to determine the aircraft s position and attitude, and to then illuminate the ground station initially for acquisition. The ground transceiver participates in link-pointing acquisition by first using a wide-field camera to detect initial illumination from the airborne beacon, and to perform coarse pointing. It then transfers control to a high-precision pointing detector. Using this scheme, live video was successfully streamed from the ground to the aircraft at 270 Mb/s while simultaneously downlinking a 50 kb/s data stream from the aircraft to the ground.

  15. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  16. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  17. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  18. Temperate Ice Depth Sounding Radar (TIDSoR)

    NASA Astrophysics Data System (ADS)

    Jara, V.; Player, K.; Gogineni, S.; Rodriguez, F.; Thompson, L.

    2007-12-01

    Glaciers in several parts of the world are reported to be retreating and thinning rapidly over the last few years. A key variable in the study of glacier dynamics is ice thickness. A few attempts have been made to develop airborne sounding radars for temperate-ice thickness measurements [Arcone et al., 2000]. There is an urgent need for compact radar for routine ice thickness measurements from ground-based and airborne platforms. Radars (Radio Detection and Ranging) have been widely used to measure ice thickness in Greenland and Antarctica. However, the radars used in these areas operate in the VHF and UHF part of the electromagnetic spectrum. Due to the composition of temperate ice, the attenuation and back-scatter from large pockets of water makes UHF and VHF ineffective in sounding of its thickness. Radars operating in lower part of the HF spectrum are required for sounding temperate ice. We are designing and developing a Temperate Ice Depth-Sounding Radar (TIDSoR) that can penetrate through the water pockets and provide a more accurate measurement of the ice thickness. TIDSoR is a light-weight system for ground-based operations in mountainous terrain or aerial surveys in which weight is an important factor, such as in an UAV. TIDSoR operates on two channels in the HF spectrum using two-linear, frequency-modulated chirp waveforms. The two chirp frequency ranges are 7 to 8 MHz and 13.5 to 14.5 MHz. The radar will operate from a 12-V battery and is designed to weigh less than 2 kg, excluding the battery. The radar consists of three main sections: Digital, RF and antenna. The digital-section generates the transmitter waveforms, timing and control signals, and digitizes processes and stores the received signal. The RF-section consists of a transmitter with a 20-W peak-power amplifier, band-pass filters, and a switching system for a shared antenna. The receiver consists of a blanking switch, a limiter, a low-noise amplifier, a band-pass filter and a data acquisition

  19. Enhanced awakening probability of repetitive impulse sounds.

    PubMed

    Vos, Joos; Houben, Mark M J

    2013-09-01

    In the present study relations between the level of impulse sounds and the observed proportion of behaviorally confirmed awakening reactions were determined. The sounds (shooting sounds, bangs produced by door slamming or by container transshipment, aircraft landings) were presented by means of loudspeakers in the bedrooms of 50 volunteers. The fragments for the impulse sounds consisted of single or multiple events. The sounds were presented during a 6-h period that started 75 min after the subjects wanted to sleep. In order to take account of habituation, each subject participated during 18 nights. At equal indoor A-weighted sound exposure levels, the proportion of awakening for the single impulse sounds was equal to that for the aircraft sounds. The proportion of awakening induced by the multiple impulse sounds, however, was significantly higher. For obtaining the same rate of awakening, the sound level of each of the successive impulses in a fragment had to be about 15-25 dB lower than the level of one single impulse. This level difference was largely independent of the degree of habituation. Various explanations for the enhanced awakening probability are discussed. PMID:23967934

  20. Performance of Airborne Precision Spacing Under Realistic Wind Conditions

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration s (FAA s) Next Generation Air Transportation System (NextGen), as well as Eurocontrol s Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than is possible today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, is one way to achieve this goal by providing greater runway delivery accuracy that produces a concomitant increase in system-wide performance. The research described herein focuses on a specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when an ADS-B signal is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS un-der these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  1. Western Rainier Seismic Zone Airborne Laser Swath Mapping

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir

    2003-01-01

    Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.

  2. Water depth measurement using an airborne pulsed neon laser system

    SciTech Connect

    Hoge, F.E.; Swift, R.N.; Frederick, E.B.

    1980-03-15

    Initial base-line field test performance results of the National Aeronautics and Space Administration's airborne oceanographic lidar (AOL) in the bathymetry mode are presented. Flight tests over the Atlantic Ocean yielded water depth measurements to 10 m. Water depths to 4.6 m were measured in the more turbid Chesapeake Bay. Water-truth measurements of depth and beam attenuation coefficients by boat were taken at the same time as the air craft overflights to aid in determining the system's operational performance. Beam attenuation coefficient and depth d product d was established early in the program as the performance criterion index. A performance product of 6 was determined to be the goal. This performance goal was successfully met or exceeded in the large number of field tests executed. Included are selected data from nadir-angle tests conducted at 0, 5, 10, and 15. Field-of-view data chosen from the 2-, 5-, 10-, and 20-mrad tests are also presented. Depth measurements obtained to altitudes of 456 m are given for additional comparison. This laser bathymetry system represents a significant improvement over prior models in that (1) the complete surface-to-bottom pulse waveform is digitally recorded on magnetic tape at a rate of 400 pulse waveforms/sec, and (2) wide-swath mapping data may be routinely acquired using the 30 full-angle conical scanner. Space does not allow all the 5,000,000 laser soundings to be included. Qualified interested users may obtain complete data sets for their own in-depth analysis. 15 references, 9 figures, 1 table.

  3. Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B. 13Lawrie, Ken C.

    2012-07-01

    The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.

  4. Atom Interferometry on Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Seidel, S. T.; Lachmann, M. D.; Becker, D.; Grosse, J.; Popp, M. A.; Wang, J. B.; Wendrich, T.; Rasel, E. M.; Quantus Collaboration

    2015-09-01

    Atom interferometry in microgravity offers the possibility to perform high precision measurements of inertial forces complementary to experiments based on classical test masses. The ultimate goal is to perform these quantum measurements in space on board dedicated satellite missions. To reach this, a series of pathfinder microgravity experiments with cold atoms were build. The latest installment of these are conducted on sounding rockets. Here we give a short motivation of atom interferometry in space, an overview of the techniques used, and an introduction of the current mission MAIUS- 1.

  5. Rudolph Koenig's workshop of sound

    NASA Astrophysics Data System (ADS)

    Pantalony, David A.

    2001-05-01

    Rudolph Koenig's workshop was a busy meeting place for instruments, ideas, experiments, demonstrations, craft traditions, and business. Starting around 1860 it was also the place in Paris where people discovered the new science of sound emerging from the studies of Hermann von Helmholtz in Germany. Koenig built Helmholtz's ideas into apparatus, created new instruments, and spread them throughout the scientific and musical world. Through his own research, he also became Helmholtz's strongest critic. This paper looks at the activities of this unique space, and, in particular, how it contributed to the protracted disputes over an elusive acoustical phenomenon called the combination tone. Many of these instruments became standard teaching and demonstration apparatus.

  6. Kepler on Light and Sound

    NASA Astrophysics Data System (ADS)

    Duncan, Alistair

    The works by Johannes Kepler on light ("Paralipomena ad Vitelionem" and "Dioptrice") and sound ("Harmonices Mundi") are reviewed. The author underlines that the "Harmonices Mundi" represents a dissertation on musical theory. Kepler assumed, that the human soul got pleasure from musical harmonies received through the ear, and indeed a succession of notes at melodic intervals, because the human mind perceived the ordained mathematically harmonic relationships between the notes. The contribution of Kepler in the understanding of the phenomenon of resonance is pointed out. Some mistakes by Kepler are also examined.

  7. Airborne Raman Lidar and its Applications for Atmospheric Process Studies

    NASA Astrophysics Data System (ADS)

    Wang, Zhien; Wechsler, Perry J.; Mahon, Nick; Wu, Decheng; Liu, Bo; Burkhart, Matthew; Glover, Brent; Kuestner, William; Welch, Wayne; Thomson, Andrew

    2016-06-01

    Although ground-base Raman lidars are widely used for atmospheric observations, the capabilities of airborne Raman lidar is not fully explored. Here we presented two recently developed airborne Raman lidar systems for the studies of atmospheric boundary layer process, aerosols, and clouds. The systems are briefly introduced. Observation examples are presented to illustrate the unique observational capabilities of airborne Raman lidar and their applications for atmospheric process studies.

  8. First Results from an Airborne Ka-band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Hensley, Scott

    2012-01-01

    NASA/JPL has developed SweepSAR technique that breaks typical Synthetic Aperture Radar (SAR) trade space using time-dependent multi-beam DBF on receive. Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept. Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz). Validated calibration and antenna pattern data sufficient for beam forming in elevation. (1) Provides validation evidence that the proposed Deformation Ecosystem Structure Dynamics of Ice (DESDynI) SAR architecture is sound. (2) Functions well even with large variations in receiver gain / phase. Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

  9. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  10. Classification of the forest cover of Tver oblast using hyperspectral airborne imagery

    NASA Astrophysics Data System (ADS)

    Dmitriev, E. V.

    2014-12-01

    Recent research efforts have been focused on building a system of hyperspectral aerial sounding of forest vegetation on regional scales. The components of this system are developed using data obtained in the course of measurement campaigns in Tver forestry test sites. Hyperspectral airborne surveys are conducted using a Russian video spectrometer produced by the NPO Lepton company. The technique for recognizing ground-based objects is based on Bayesian classification principles with the feature space optimization. The choice of the most informative spectral channels is based on the step-up method. We propose an approach allowing the choice of channels to be more stable. We compare the classification of timber stands on the basis of hyperspectral imagery with ground-based data to demonstrate the consistency of the system developed.

  11. Representing actions through their sound.

    PubMed

    Aglioti, Salvatore M; Pazzaglia, Mariella

    2010-10-01

    Since the discovery of 'mirror neurons' in the monkey premotor and parietal cortex, an increasing body of evidence in animals and humans alike has supported the notion of the inextricable link between action execution and action perception. Although research originally focused on the relationship between performed and viewed actions, more recent studies highlight the importance of representing the actions of others through audition. In the first part of this article, we discuss animal studies, which provide direct evidence that action is inherently linked to multi-sensory cues, as well as the studies carried out on healthy subjects by using state-of-the-art cognitive neuroscience techniques such as functional magnetic resonance imaging (fMRI), event-related potentials (ERP), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS). In the second section, we review the lesion analysis studies in brain-damaged patients demonstrating the link between 'resonant' fronto-parieto-temporal networks and the ability to represent an action by hearing its sound. Moreover, we examine the evidence in favour of somatotopy as a possible representational rule underlying the auditory mapping of actions and consider the links between language and audio-motor action mapping. We conclude with a discussion of some outstanding questions for future research on the link between actions and the sounds they produce. PMID:20602092

  12. Musical Sounds, Motor Resonance, and Detectable Agency

    PubMed Central

    LAUNAY, JACQUES

    2016-01-01

    This paper discusses the paradox that while human music making evolved and spread in an environment where it could only occur in groups, it is now often apparently an enjoyable asocial phenomenon. Here I argue that music is, by definition, sound that we believe has been in some way organized by a human agent, meaning that listening to any musical sounds can be a social experience. There are a number of distinct mechanisms by which we might associate musical sound with agency. While some of these mechanisms involve learning motor associations with that sound, it is also possible to have a more direct relationship from musical sound to agency, and the relative importance of these potentially independent mechanisms should be further explored. Overall, I conclude that the apparent paradox of solipsistic musical engagement is in fact unproblematic, because the way that we perceive and experience musical sounds is inherently social. PMID:27122999

  13. Anomalous Cherenkov spin-orbit sound

    SciTech Connect

    Smirnov, Sergey

    2011-02-15

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  14. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  15. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  16. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  17. Offutt Air Force Base, Looking Glass Airborne Command Post, Blast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  18. Offutt Air Force Base, Looking Glass Airborne Command Post, Operational ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  19. Zero sound in dipolar Fermi gases

    SciTech Connect

    Ronen, Shai; Bohn, John L.

    2010-03-15

    We study the propagation of sound in a homogeneous dipolar gas at zero temperature, which is known as zero sound. We find that undamped zero sound propagation is possible only in a range of solid angles around the direction of polarization of the dipoles. Above a critical dipole moment, we find an unstable mode, by which the gas collapses locally perpendicular to the dipoles' direction.

  20. Ejectable underwater sound source recovery assembly

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1974-01-01

    An underwater sound source is described that may be ejectably mounted on any mobile device that travels over water, to facilitate in the location and recovery of the device when submerged. A length of flexible line maintains a connection between the mobile device and the sound source. During recovery, the sound source is located be particularly useful in the recovery of spent rocket motors that bury in the ocean floor upon impact.

  1. Evaluation of eelgrass beds mapping using a high-resolution airborne multispectral scanner

    USGS Publications Warehouse

    Su, H.; Karna, D.; Fraim, E.; Fitzgerald, M.; Dominguez, R.; Myers, J.S.; Coffland, B.; Handley, L.R.; Mace, T.

    2006-01-01

    Eelgrass (Zostera marina) can provide vital ecological functions in stabilizing sediments, influencing current dynamics, and contributing significant amounts of biomass to numerous food webs in coastal ecosystems. Mapping eelgrass beds is important for coastal water and nearshore estuarine monitoring, management, and planning. This study demonstrated the possible use of high spatial (approximately 5 m) and temporal (maximum low tide) resolution airborne multispectral scanner on mapping eelgrass beds in Northern Puget Sound, Washington. A combination of supervised and unsupervised classification approaches were performed on the multispectral scanner imagery. A normalized difference vegetation index (NDVI) derived from the red and near-infrared bands and ancillary spatial information, were used to extract and mask eelgrass beds and other submerged aquatic vegetation (SAV) in the study area. We evaluated the resulting thematic map (geocoded, classified image) against a conventional aerial photograph interpretation using 260 point locations randomly stratified over five defined classes from the thematic map. We achieved an overall accuracy of 92 percent with 0.92 Kappa Coefficient in the study area. This study demonstrates that the airborne multispectral scanner can be useful for mapping eelgrass beds in a local or regional scale, especially in regions for which optical remote sensing from space is constrained by climatic and tidal conditions. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  2. Interaction of airborne and structureborne noise radiated by plates. Volume 1: Analytical study

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The interaction of airborne and structureborne noise radiated by aircraft materials was examined. The theory and results of several computer simulations of the noise radiated by thin, isotropic, rectangular aluminum plates due to fully coherent combined acoustic and vibrational inputs is presented. The most significant finding was the extremely large influence that the relative phase between inputs has on the combined noise radiation of the plates. Phase dependent effects manifest themselves as cross terms in both the dynamic and acoustic portions of the analysis. Computer simulations show that these cross terms can radically alter the combined sound power radiated by plates constructed of aircraft-type materials. The results suggest that airborne-structureborne interactive effects could be responsible for a significant portion of the overall noise radiated by aircraft-type structures in the low frequency regime. This implies that previous analytical and experimental studies may have neglected an important physical phenomenon in the analayses of the interior noise of propeller dirven aircraft.

  3. Detectability levels for central induction transient soundings

    USGS Publications Warehouse

    Fitterman, David V.

    1989-01-01

    Using sounding curves based upon geologic models for a survey site, the latest measurement time for central induction transient soundings can be estimated for a given transmitter moment. Detectability limits are plotted on the apparent resistivity-time plots. Sounding points at earlier times than the limit are detectable, while those at later times are not. This procedure can be used during survey design to determine if features of the sounding necessary to the resolution of the geologic problem are detectable. Field measurements have shown that the method adequately predicts the latest measurement time.

  4. Physical measures of sound and noise

    NASA Astrophysics Data System (ADS)

    1984-07-01

    The physical measurement of sound is examined through basic definitions and measuring techniques. The terminology of acoustics is presented with noise characterization, graphs, and mathematical formulas included.

  5. Physical measures of sound and noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical measurement of sound is examined through basic definitions and measuring techniques. The terminology of acoustics is presented with noise characterization, graphs, and mathematical formulas included.

  6. NASA Sounding Rockets and Hi-C

    NASA Video Gallery

    The Sounding Rockets Program Office (SRPO), located at NASA Goddard Space Flight Center's Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations sup...

  7. Aeroacoustics of unvoiced human speech sound production

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel; Krane, Michael

    2007-11-01

    Measurements of airflow and sound were performed in an idealized model of the human vocal tract in order to determine the aeroacoustic sources which give rise to unvoiced consonant speech sounds. The turbulent jet formed at a narrow constriction interacts with another constriction further downstream. The unsteady aerodynamic forces on these constrictions produce broadband sound, which is modulated by the acoustic response of the vocal tract. Sound source characteristics are determined by estimating the force on the constrictions, and how the temporal behavior of these forces correlates to the spatial and temporal structure of the jet. (Supported by NIH grant 5R01 DC00564245.)

  8. HF sounding of the auroral magnetosphere

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Babichenko, A. M.; Karashtin, A. N.; Rapoport, V. O.

    1992-06-01

    Results are presented from incoherent scatter radar measurements in the magnetosphere, using the Radiophysical Research Institute 'Sura' heating facility operated in the frequency range 4.5-9 MHz. The first magnetosphere sounding experiments were carried out on February 21, 1989; a frequency of 9.310 MHz was used for the sounding, while the effective radiated power was about 30 MW. The results of analyses of the scattered signal spectra showed that, in the auroral region of the polar magnetosphere, ion acoustic oscillations are excited and that the HF sounding technique used in this study was an effective method for magnetosphere sounding.

  9. Broad band sound from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.; Grosveld, F. W.

    1981-01-01

    Brief descriptions are given of the various types of large wind turbines and their sound characteristics. Candidate sources of broadband sound are identified and are rank ordered for a large upwind configuration wind turbine generator for which data are available. The rotor is noted to be the main source of broadband sound which arises from inflow turbulence and from the interactions of the turbulent boundary layer on the blade with its trailing edge. Sound is radiated about equally in all directions but the refraction effects of the wind produce an elongated contour pattern in the downwind direction.

  10. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  11. Physics and Psychophysics of High-Fidelity Sound. Part 1: Perception of Sound and Music.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.

    1979-01-01

    Presents the first of a series of articles that discuss the perception of sound and music. This series of articles is intended to provide an introduction to the broad subject of high-fidelity sound recording and reproduction. (HM)

  12. Is Sound Exposure Level a Convenient Metric to Characterize Fatiguing Sounds? A Study in Beluga Whales.

    PubMed

    Supin, Alexander; Popov, Vladimir; Nechaev, Dmitry; Sysueva, Evgenia; Rozhnov, Viatcheslav

    2016-01-01

    Both the level and duration of fatiguing sounds influence temporary threshold shifts (TTSs) in odontocetes. These two parameters were combined into a sound exposure level (SEL). In the beluga whale Delphinapterus leucas, TTSs were investigated at various sound pressure level (SPL)-to-duration ratios at a specific SEL. At low SPL-to-duration ratios, the dependence was positive: shorter high-level sounds produced greater TTSs than long low-level sounds of the same SEL. At high SPL-to-duration ratios, the dependence was negative: long low-level sounds produced greater TTSs than short high-level sounds of the same SEL. Thus, the validity of SEL as a metric for fatiguing sound efficiency is limited. PMID:26611076

  13. Airborne Astronomy Symposium. A symposium commemorating the tenth anniversary of operations of the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr. (Editor); Erickson, E. F. (Editor)

    1984-01-01

    Airborne infrared astronomy is discussed with respect to observations of the solar system, stars, star formation, and the interstellar medium. Far infrared characteristics of the Milky Way, its center, and other galaxies are considered. The instrumentation associated with IR astronomy is addressed.

  14. Localization of airborne pure tones by pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.; Schusterman, Ronald J.; Southall, Brandon L.; Kastak, David

    2001-05-01

    Although all pinnipeds communicate acoustically in air, most previous research on sound localization has been done under water. We have recently shown that several pinniped species localize aerial broadband signals as well as some terrestrial carnivores [Holt et al., J. Acoust. Soc. Am. 113 (2003)]. However, it is unclear which frequencies are particularly important for localization in these animals. In this study, we tested a harbor seal (Phoca vitulina) and a California sea lion (Zalophus californianus) in a hemianechoic chamber at frequencies ranging between 0.8 and 20 kHz. A left/right procedure was used to measure minimum audible angles (MAAs) corresponding to 75%-correct discrimination. MAAs ranged from approximately 4 to 13 deg in both subjects, with the largest MAAs or poorest acuity measured at the intermediate frequencies tested. These results are consistent with the duplex theory of sound localization in that low-frequency sounds appear to be localized on the basis of interaural time differences, while high-frequency sounds appear to be localized on the basis of interaural intensity differences. Testing with a northern elephant seal (Mirounga angustirostris) will provide further insight on the use of binaural cues and head-size effects with respect to localization in pinnipeds.

  15. Responses of the ear to low frequency sounds, infrasound and wind turbines.

    PubMed

    Salt, Alec N; Hullar, Timothy E

    2010-09-01

    Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the

  16. Airborne Arctic Stratospheric Expedition 2: An Overview

    NASA Technical Reports Server (NTRS)

    Anderson, James G.; Toon, Owen B.

    1993-01-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O. In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NO(x) and to some degree NO(y) were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, Cl0 was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of Cl0 and its dimer ClOOCl. This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? and (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30 deg N in the winter/spring northern hemisphere reported in satellite observations?

  17. Airborne Arctic Stratospheric Expedition 2: An overview

    NASA Technical Reports Server (NTRS)

    Anderson, James G.; Toon, Owen B.

    1993-01-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), stages from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromide radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O. In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-1), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NO(x) and to some degree NO(y) were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl. This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-2): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30 deg N in the winter/spring northern hemisphere reported in satellite observations?

  18. Laser links for mobile airborne nodes

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Knapek, Markus; Horwath, Joachim

    2015-05-01

    Remotely Piloted Aircrafts (RPA's) and especially Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE) are currently operated over long distances, often across several continents. This is only made possible by maintaining Beyond Line Of Side (BLOS) radio links between ground control stations and unmanned vehicles via geostationary (GEO) satellites. The radio links are usually operated in the Ku-frequency band and used for both, vehicle command & control (C2) - it also refers to Command and Non-Payload Communication (CNPC) - as well as transmission of intelligence data - the associated communication stream also refers to Payload Link (PL). Even though this scheme of communication is common practice today, various other issues are raised thereby. The paper shows that the current existing problems can be solved by using the latest technologies combined with altered intuitive communication strategies. In this context laser communication is discussed as a promising technology for airborne applications. It is clearly seen that for tactical reasons, as for instance RPA cooperative flying, Air-to-Air communications (A2A) is more advantageous than GEO satellite communications (SatCom). Hence, together with in-flight test results the paper presents a design for a lightweight airborne laser terminal, suitable for use onboard manned or unmanned airborne nodes. The advantages of LaserCom in combination with Intelligence, Surveillance and Reconnaissance (ISR) technologies particularly for Persistent Wide Area Surveillance (PWAS) are highlighted. Technical challenges for flying LaserCom terminals aboard RPA's are outlined. The paper leads to the conclusion that by combining both, LaserCom and ISR, a new quality for an overall system arises which is more than just the sum of two separate key technologies.

  19. Even Shallower Exploration with Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  20. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.