Science.gov

Sample records for airborne radioactivity monitoring

  1. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  2. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    SciTech Connect

    Frazier, T.P.

    1995-12-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports.

  3. Experience with a prototype of the Test Ban Treaty monitoring system for air-borne radioactivity

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Ho, Ernest C. Y.

    2004-01-01

    Monitoring of air-borne radioactivity has been tested on behalf of the Comprehensive Test Ban Treaty Organization. A prototype system was installed at the University of British Columbia, Vancouver, BC in April 1996 and has been operating successfully since then. The air is drawn through a glass-fibre filter for a period of 24 h. A cooling period eliminates products of 222Rn in the uranium series. A germanium detector then counts the γ-rays. Several anthropogenic nuclides such as 123I and 99mTc have been observed from local medical facilities. In addition many natural nuclides have been detected and the most abundant are the products of thoron viz 220Rn, which is in the thorium series. The 239 keV γ-ray from 212Pb has been studied to investigate the reason for significant fluctuations in its intensity. It was found that rain, wind, low temperature and maritime air all decrease the observed activity. A model was created which mimics the variation reasonably well.

  4. Ambient monitoring of airborne radioactivity near a former thorium processing plant.

    PubMed

    Jensen, L; Regan, G; Goranson, S; Bolka, B

    1984-05-01

    Twenty-four hour sampling for airborne radioactivity near a former thorium and rare-earth extraction facility was conducted for approx. 2 months with high-volume and dichotomous air samplers. Thoron ( 220Rn ) daughters were identified in the air and confirmed to be originating from the waste storage site. High-volume samplers near the facility measured average 212Pb concentrations of 177, 43, and 237 pCi/m3 with corresponding ranges of (1.9-1351), (1.5-301) and (0.73-2201)pCi/m3. Simultaneous measurements with dichotomous samplers at the same sites measured average 212Pb concentrations on coarse particulates (2.5-15 microns dia.) of 14, 4 and 10 pCi/m3 and on fine particulates (less than 2.5 microns dia.) of 94, 9 and 214 pCi/m3, respectively. Corresponding ranges were (0.2-109), (0.1-63) and (0.1-94) pCi/m3 for coarse particulates and (0.7-1094), (0.4-101) and (0.5-2685) pCi/m3 for fine particulates. Uranium, thorium and radium radionuclides were not identified as being present in significant concentrations in the particulate samples. PMID:6327571

  5. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-10-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.

  6. High sensitive airborne radioiodine monitor.

    PubMed

    Ogata, Yoshimune; Yamasaki, Tadashi; Hanafusa, Ryuji

    2013-11-01

    Airborne radioiodine monitoring includes a problem in that commercial radioactive gas monitors have inadequate sensitivity. To solve this problem, we designed a highly sensitive monitoring system. The higher counting efficiency and lower background made it possible to perform the low-level monitoring. The characteristics of the system were investigated using gaseous (125)I. The minimum detectable activity concentration was 1 × 10(-4)Bq cm(-3) for 1 min counting, which is one tenth of the legal limit for the radiation controlled areas in Japan. PMID:23602709

  7. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  8. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  9. Utilization of airborne gamma ray spectrometric data for geological mapping, radioactive mineral exploration and environmental monitoring of southeastern Aswan city, South Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed A. S.; Elkhodary, Shadia T.

    2013-12-01

    The present work utilizes airborne gamma ray spectrometric data in a trial to refine surface geology of igneous, metamorphic and sedimentary rocks, detect any radioactive mineralization and monitor environment at southeastern Aswan city, South Eastern Desert, Egypt. This area is mainly covered with igneous rocks (younger granites, older granites, metasediments, metavolcanics, metagabbro, Tertiary basalt and ring complex), metamorphic rocks as well as sedimentary rocks (Um Barmil Formation, Timsah Formation, Abu Aggag Formation and wadi sediments). Airborne gamma ray spectrometry can be very helpful in mapping surface geology. This provides estimates of the apparent surface concentrations of the most common naturally occurring radioactive elements, such as potassium (K), equivalent uranium (eU) and equivalent thorium (eTh). This is based on the assumption that, the absolute and relative concentrations of these radioelements vary measurably and significantly with lithology. The composite image technique is used to display simultaneously three parameters of the three radioelement concentrations and their three binary ratios on one image. The technique offers much in terms of lithological discrimination, based on colour differences and showed efficiency in defining areas, where different lithofacies occur within areas mapped as one continuous lithology. The integration between surface geological information and geophysical data led to detailing the surface geology and the contacts between different rock units. Significant locations or favourable areas for uranium exploration are defined, where the measurements exceed (X + 2S), taking X as the arithmetic mean of eU, eU/eTh and eU/K measurements and S as the standard deviation corresponding to each variables. The study area shows the presence of four relatively high uraniferous zones. These zones cannot be ignored and need further ground follow-up. In addition, the trend analysis based on the three radioelement maps and

  10. Automatic Searching Radioactive Sources by Airborne Radioactive Survey Using Multicopter

    NASA Astrophysics Data System (ADS)

    Rim, H.; Eun, S. B.; Kim, K.; Park, S.; Jung, H. K.

    2015-12-01

    In order to prepare emergency situation lost a dangerous radioelement source in advance and to search a radioactive source automatically, we develop airborne radioelement survey system by multicopter. This multicopter radioelement survey system consists of a small portable customized BGO (Bismuth Germanate Oxide) detector, video recording part, wireless connecting part to ground pilot, GPS, and several equipments for automatic flight. This system is possible to search flight by preprogramed lines. This radioactive detecting system are tested to find intentional hidden source, The performance of detecting a source is well proved with very low flight altitude in spite of depending on the magnitude of radioelement sources. The advantage of multicopter system, one of UAV (Unmanned Aerial Vehicle), is to avoid the potential of close access to a dangerous radioactive source by using fully automatic searching capability. In this paper, we introduce our multicopter system for detecting radioactive source and synthetic case history for demonstrating this system.

  11. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  12. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  13. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1953-01-01

    Airborne radioactivity surveys totalling 5,600 traverse miles were made in ten areas in Florida, which were thought to be geologically favorable for the occurrence of uraniferous phosphate deposits. Abnormal radioactivity was recorded in eight of the ten areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; samples of the river pebble contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphate rock containing as much as 0.016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported to occur.

  14. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Vance, L.M.

    1993-07-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  15. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  16. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  17. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  18. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  19. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  20. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  1. Method for radioactivity monitoring

    DOEpatents

    Umbarger, C. John; Cowder, Leo R.

    1976-10-26

    The disclosure relates to a method for analyzing uranium and/or thorium contents of liquid effluents preferably utilizing a sample containing counting chamber. Basically, 185.7-keV gamma rays following .sup.235 U alpha decay to .sup.231 Th which indicate .sup.235 U content and a 63-keV gamma ray doublet found in the nucleus of .sup.234 Pa, a granddaughter of .sup.238 U, are monitored and the ratio thereof taken to derive uranium content and isotopic enrichment .sup.235 U/.sup.235 U + .sup.238 U) in the liquid effluent. Thorium content is determined by monitoring the intensity of 238-keV gamma rays from the nucleus of .sup.212 Bi in the decay chain of .sup.232 Th.

  2. Field investigation of airborne radioactivity anomalies in Marquette County, Michigan

    USGS Publications Warehouse

    James, Harold L.

    1950-01-01

    The broad radioactivity anomalies recorded by the airborne detector in the vicinity of Republic, Marquette County, Michigan, coincide rather closely with parts of a granitic complex chiefly of Archean age. Ground examination of the rock in these areas of high radioactivity shows that the granitic rock typically yields two to four times the normal background activity. Fissures, shear zones, veins, and pegmatites were tested carefully. None exhibited activity higher than that of the adjacent granitic rock. It is significant that the zones of more-than-average radio-activity are related to the larger elements of the geology - in fact, the information will be of considerable value in reconsideration of some of the regional problems.

  3. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  4. Identification of airborne radioactive spatial patterns in Europe - Feasibility study using Beryllium-7.

    PubMed

    Hernández-Ceballos, M A; Cinelli, G; Tollefsen, T; Marín-Ferrer, M

    2016-05-01

    The present study proposes a methodology to identify spatial patterns in airborne radioactive particles in Europe. The methodology is based on transforming the activity concentrations in the set of stations for each month (monthly index), due to the tightly spaced sampling intervals (daily to monthly), in combination with hierarchical and non-hierarchical clustering approaches, due to the lack of a priori knowledge of the number of clusters to be created. Three different hierarchical cluster methodologies are explored to set the optimal number of clusters necessary to initialize the non-hierarchical one (k-means). To evaluate this methodology, cosmogenic beryllium-7 ((7)Be) data, collected between 2007 and 2010 at 19 sampling stations in European Union (EU) countries and stored in the Radioactivity Environmental Monitoring (REM) database, are used. This methodology yields a solution with three distinguishable clusters (south, central and north), each with a different evolution of the (7)Be monthly index. Clear differences between monthly indices are shown in both intensity and time trends, following a latitudinal distribution of the sampling stations. This cluster result is evaluated performing ANOVA analysis, considering the original (7)Be activity concentrations grouped in each cluster. The statistical results (among clusters and sampling stations within clusters) confirm the spatial distribution of (7)Be in Europe, and, hence, reinforce the use of this methodology. Finally, the impact of tropopause height on this grouping is successfully tested, suggesting its influence on the spatial distribution of (7)Be in Europe. For airborne radioactive particles the analysis gave valuable results that improve knowledge of these atmospheric compounds in Europe. Hence, this work addresses a methodology to a grouping of airborne sampling stations, 1) allowing a better understanding of the distribution of (7)Be activity concentrations in the EU, and 2) serving as a basis for

  5. AIRBORNE MONITORING OF COOLING TOWER EFFLUENTS. VOLUME I. TECHNICAL SUMMARY

    EPA Science Inventory

    MRI conducted an airborne plume monitoring program as part of the Chalk Point Cooling Tower Project. Plume measurement included: temperature, dew point, visibility, turbulence, droplet size distribution and concentration, liquid water content, sodium chloride concentration (NaCl)...

  6. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  7. Single Scattering Albedo Monitor for Airborne Particulates

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Massoli, Paola; Kebabian, Paul; Hills, Frank; Bacon, Fred; Freedman, Andrew

    2015-04-01

    We describe a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. With an appropriate change in mirrors and light source, measurements have been made at wavelengths ranging from 450 to 780 nm. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using a integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement. Measurements using ammonium sulfate particles of various sizes indicate that the response of the scattering channel with respect to measured extinction is linear to within 1% up to 1000 Mm-1 and can be extended further (4000 Mm-1) with additional corrections. The precision in both measurement channels is less than 1 Mm-1 (1s, 1σ). The truncation effect in the scattering channel, caused by light lost at extreme forward/backward scattering angles, was measured as a function of particle size using monodisperse polystyrene latex particles (n=1.59). The results were successfully fit using a simple geometric model allowing for reasonable extrapolation to a given wavelength, particle index of refraction and particle size distribution, assuming spherical particles. For sub-micron sized particles, the truncation corrections are comparable to those reported for commercial nephelometers. Measurements of the optical properties of ambient aerosol indicate that the values of the SSA of these particles measured with this instrument (0.91±0.03) using scattering and extinction agreed within experimental uncertainty with those determined using extinction measured by this instrument and absorption measured using a Multi-Angle Absorption Spectrometer (0.89±0.03) where the

  8. Airborne radioactivity survey in the vicinity of Grants, McKinley and Valencia Counties, New Mexico

    USGS Publications Warehouse

    Stead, Frank W.

    1951-01-01

    An airborne radioactivity survey in the vicinity of Grants, New Mexico, was made on May 28. 1951; aeromagnetic measurements were made concurrently with the radioactivity measurements. Several radioactivity anomalies were noted in conjunction with negative magnetic anomalies; this association is unusual and may reflect a genetic relationship between the uranium mineralization and the geologic structure causing the negative magnetic effect. Further investigation of the vicinity of the anomalies near the Haystack area, including ground magnetometer survey, seems warranted.

  9. Airborne radioactivity surveys in the Mojave Desert region, Kern, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Moxham, Robert M.

    1952-01-01

    Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.

  10. Drilling of airborne radioactivity anomalies in Florida, Georgia, and South Carolina, 1954

    USGS Publications Warehouse

    Cathcart, J.B.

    1954-01-01

    From April 22 to May 19, 1953, airborne radioactivity surveys totalling 5,600 traverse miles were made in 10 areas in Florida (Moxham, 1954).  Abnormal radioactivity was recorded in Bradford, Clay, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties, Florida.  Additional airborne surveys were made in the Spring of 1954 in Hardee and Manatee Counties, Florida, on the drainage of the Altamaha River in Georgia, and in the area of the old phosphate workings in and around Charleston County, South Carolina.

  11. Airborne radioactivity survey of the Miller Hill area, Carbon county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 65 square miles northwest of Miller Hill, Carbon county, Wyoming. The survey was made by the U.S. Geological Survey as part of a cooperative program with the U.S. Atomic Energy Commission. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomalies shown on the accompanying map cannot be interpreted in terms of either the radioactive content or the extent of the source materials. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to uranium, or to thorium, or to a combination of uranium and thorium. The radioactivity that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the surrounding area. Any particular anomaly

  12. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  13. A Computer Code to Estimate Environmental Concentration and Dose Due to Airborne Release of Radioactive Material.

    1991-03-15

    Version 00 ORION-II was developed to estimate environmental concentration and dose due to airborne release of radioactive material from multiple sources of the nuclear fuel cycle facilities. ORION-II is an updated version of ORION and is applicable to the sensitivity study of dose assessment at nuclear fuel cycle facilities.

  14. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    SciTech Connect

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  15. Airborne radioactivity Survey of part of Saratoga NW quadrangle, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 133 square miles of Saratoga NW quadrangle, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  16. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    Under the European Union Water Framework Directive, Member States are required to assess water quality across both surface water and groundwater bodies. Subsurface pollution plumes, originating from a variety of sources, pose a significant direct risk to water quality. The monitoring and characterisation of groundwater contaminant plumes is generally invasive, time consuming and expensive. In particular, adequately capturing the contaminant plume with monitoring installations, when the extent of the feature is unknown and the presence of contamination is only evident from indirect observations, can be prohibitively expensive. This research aims to identify the extent and nature of subsurface contaminant plumes using airborne geophysical survey data. This data was collected across parts of the island of Ireland within the scope of the original Tellus and subsequent Tellus Border projects. The rapid assessment of the airborne electro-magnetic (AEM) data allowed the identification of several sites containing possible contaminant plumes. These AEM anomalies were assessed through the analysis of existing site data and field site inspections, with areas of interest being examined for metallic structures that could affect the AEM data. Electrical resistivity tomography (ERT), ground penetrating radar (GPR) and ground-based electro-magnetic (EM) surveys were performed to ground-truth existing airborne data and to confirm the extent and nature of the affected area identified using the airborne data. Groundwater and surface water quality were assessed using existing field site information. Initial results collected from a landfill site underlain by basalt have indicated that the AEM data, coupled with ERT and GPR, can successfully be used to locate possible plumes and help delineate their extent. The analysis of a range of case study sites exhibiting different geological and environmental settings will allow for the development of a consistent methodology for examining the

  17. Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida

    USGS Publications Warehouse

    Moxham, R.M.; Johnson, R.W.

    1953-01-01

    The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more

  18. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  19. Monitoring of viable airborne SARS virus in ambient air

    NASA Astrophysics Data System (ADS)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  20. Airborne radioactivity survey of parts of the Atlantic Ocean beach, North and South Carolina

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.; Bortner, T.E.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey along the Atlantic Ocean beach between Edisto Island, South Carolina and Cape Fear, North Carolina. The survey was made May 20, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the nominal 500 foot flight altitude varies with areal extent and intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1400 feet. The accompanying maps show the approximate locations of the areas of greater-than-average radioactivity (at left) and the location of the traverse flown (at right). The abnormal radioactivity is apparently caused by radioactive minerals associated with "black sand" deposits which occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given in the accompanying map showing the localities of greater-than-average radioactivity therefore, suggests areas in which uranium and thorium deposits are more likely to occur.

  1. Airborne radioactivity survey of the Gulf of Mexico beach between Sanibel Island and Caladesi Island, Florida

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.; Bortner, T.E.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey along the Gulf of Mexico beach between Sanibel Island and Caladesi Island in Florida. This survey was made May 4, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude , parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the nominal 500 foot flight altitude varies with the areal extent and intensity of the radioactivity the width of the zone may be as much as 1400 feet. The accompanying map and index map show the approximate locations of the areas of greater-than-average radioactivity and the location of the traverse flown. The abnormal radioactivity is apparently caused by radioactive minerals associated with "black sand" deposits which occur locally along the beach in the region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given in the accompanying map showing the localities of greater-than-average radioactivity therefore, suggests area in which uranium or thorium deposits are more likely to occur.

  2. Evaluation of three portable samplers for monitoring airborne fungi

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Airborne fungi were monitored at five sample sites with the Burkard portable, the RCS Plus, and the SAS Super 90 air samplers; the Andersen 2-stage impactor was used for comparison. All samplers were calibrated before being used simultaneously to collect 100-liter samples at each site. The Andersen and Burkard samplers retrieved equivalent volumes of airborne fungi; the SAS Super 90 and RCS Plus measurements did not differ from each other but were significantly lower than those obtained with the Andersen or Burkard samplers. Total fungal counts correlated linearly with Cladosporium and Penicillium counts. Alternaria species, although present at all sites, did not correlate with total count or with amounts of any other fungal genera. Sampler and location significantly influenced fungal counts, but no interactions between samplers and locations were found.

  3. Deepwater Horizon oil spill monitoring using airborne multispectral infrared imagery

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Lewis, Paul E.

    2011-06-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil spill disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 85 missions that included over 325 hours of flight operation. This paper describes several advanced analysis capabilities specifically developed for the Deepwater Horizon mission to correctly locate, identify, characterize, and quantify surface oil using ASPECT's multispectral infrared data. The data products produced using these advanced analysis capabilities provided the Deepwater Horizon Incident Command with a capability that significantly increased the effectiveness of skimmer vessel oil recovery efforts directed by the U.S. Coast Guard, and were considered by the Incident Command as key situational awareness information.

  4. New Methods for Personal Exposure Monitoring for Airborne Particles.

    PubMed

    Koehler, Kirsten A; Peters, Thomas M

    2015-12-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual's exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-h monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  5. New Methods for Personal Exposure Monitoring for Airborne Particles

    PubMed Central

    Koehler, Kirsten A.; Peters, Thomas

    2016-01-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  6. Monitoring human and vehicle activities using airborne video

    NASA Astrophysics Data System (ADS)

    Cutler, Ross; Shekhar, Chandra S.; Burns, B.; Chellappa, Rama; Bolles, Robert C.; Davis, Larry S.

    2000-05-01

    Ongoing work in Activity Monitoring (AM) for the Airborne Video Surveillance (AVS) project is described. The goal for AM is to recognize activities of interest involving humans and vehicles using airborne video. AM consists of three major components: (1) moving object detection, tracking, and classification; (2) image to site-model registration; (3) activity recognition. Detecting and tracking humans and vehicles form airborne video is a challenging problem due to image noise, low GSD, poor contrast, motion parallax, motion blur, and camera blur, and camera jitter. We use frame-to- frame affine-warping stabilization and temporally integrated intensity differences to detect independent motion. Moving objects are initially tracked using nearest-neighbor correspondence, followed by a greedy method that favors long track lengths and assumes locally constant velocity. Object classification is based on object size, velocity, and periodicity of motion. Site-model registration uses GPS information and camera/airplane orientations to provide an initial geolocation with +/- 100m accuracy at an elevation of 1000m. A semi-automatic procedure is utilized to improve the accuracy to +/- 5m. The activity recognition component uses the geolocated tracked objects and the site-model to detect pre-specified activities, such as people entering a forbidden area and a group of vehicles leaving a staging area.

  7. Airborne radioactivity surveys of parts of Savery SW and Savery SE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 222 square miles of Savery SW and Savery SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  8. Airborne radioactivity survey of parts of Savery NW and Savery NE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 266 square miles of Savery NW and Savery NE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  9. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well. PMID:10461761

  10. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  11. Airborne radioactivity survey of the West Lonetree area, Uinta county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey in an area of 154 square miles in Uinta county, Wyoming. The survey was made by the U.S. Geological Survey, October 23, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the surrounding area

  12. Airborne radioactivity survey of the Tabernacle Buttes area, Sublette and Fremont counties, Wyoming

    USGS Publications Warehouse

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey in an area of 670 square miles in Sublette and Fremont counties, Wyoming. The survey was made by the U.S. Geological Survey, October 20, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the

  13. Airborne radioactivity survey of the Aspen Mountain area, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 700 square miles in the Aspen Mountain area, Sweetwater county, Wyoming. The survey was made by the U.S. Geological Survey, October 22, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils

  14. Airborne radioactivity survey of the Devils Tower area, Crook county, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 45 square miles northwest of Devils Tower, Crook County, Wyoming. The survey was made by the U.S. Geological Survey on September 4, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the

  15. Airborne radioactivity of portions of the Defiance Uplift and Carrizo Mountains, Apache county, Arizona

    USGS Publications Warehouse

    Johnson, R.W.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 940 square miles in Apache county, Arizona. The survey was made by the U.S. Geological Survey from September 8 to October 3, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the

  16. Evaluation of portable air samplers for monitoring airborne culturable bacteria

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Bell-Robinson, D. M.; Groves, T. O.; Stetzenbach, L. D.; Pierson, D. L.

    2000-01-01

    Airborne culturable bacteria were monitored at five locations (three in an office/laboratory building and two in a private residence) in a series of experiments designed to compare the efficiency of four air samplers: the Andersen two-stage, Burkard portable, RCS Plus, and SAS Super 90 samplers. A total of 280 samples was collected. The four samplers were operated simultaneously, each sampling 100 L of air with collection on trypticase soy agar. The data were corrected by applying positive hole conversion factors for the Burkard portable, Andersen two-stage, and SAS Super 90 air samplers, and were expressed as log10 values prior to statistical analysis by analysis of variance. The Burkard portable air sampler retrieved the highest number of airborne culturable bacteria at four of the five sampling sites, followed by the SAS Super 90 and the Andersen two-stage impactor. The number of bacteria retrieved by the RCS Plus was significantly less than those retrieved by the other samplers. Among the predominant bacterial genera retrieved by all samplers were Staphylococcus, Bacillus, Corynebacterium, Micrococcus, and Streptococcus.

  17. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  18. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  19. Remote monitoring of molten radioactive glass

    SciTech Connect

    Schumacher, R.F. ); Li, Kang-Wen K. . Nuclear Engineering Program); Schneider, A. . Dept. of Nuclear Engineering)

    1991-01-01

    An on-line method is described for the near-continuous monitoring of the composition of a molten radioactive waste glass or, alternatively, for signaling a deviation from the target composition of a waste glass. The principle of this method, proposed by A. Schneider in 1986, is founded on the relation between two specific physical properties and composition in a ternary system. Most glasses currently considered as waste forms can be represented as pseudo-ternary system. The pairs of properties especially suited for this purpose are viscosity/density and viscosity/electrical conductivity. A novel viscometry method was developed which uses the remotely determined rise velocity of carefully metered gas bubbles. The monitoring method was tested successfully with simulated Savannah River waste glasses. An integrated probe was conceived for a Joule-heated melter for the on-line determination of viscosity, temperature, density, and liquid level. A computer program calculates the glass composition from the measured data, using information from a previously developed data base.

  20. Remote monitoring of molten radioactive glass

    SciTech Connect

    Schumacher, R.F.; Li, Kang-Wen K.; Schneider, A.

    1991-12-31

    An on-line method is described for the near-continuous monitoring of the composition of a molten radioactive waste glass or, alternatively, for signaling a deviation from the target composition of a waste glass. The principle of this method, proposed by A. Schneider in 1986, is founded on the relation between two specific physical properties and composition in a ternary system. Most glasses currently considered as waste forms can be represented as pseudo-ternary system. The pairs of properties especially suited for this purpose are viscosity/density and viscosity/electrical conductivity. A novel viscometry method was developed which uses the remotely determined rise velocity of carefully metered gas bubbles. The monitoring method was tested successfully with simulated Savannah River waste glasses. An integrated probe was conceived for a Joule-heated melter for the on-line determination of viscosity, temperature, density, and liquid level. A computer program calculates the glass composition from the measured data, using information from a previously developed data base.

  1. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-01

    Radioactive fission product 131I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, 134Cs and 137Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m-3 in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of 134Cs and 137Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m-3) variation of stable cesium (133Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  2. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  3. HIERARCHIAL BAYESIAN CALIBRATION: AN APPLICATION TO AIRBORNE PARTICULATE MATTER MONITORING DATA

    EPA Science Inventory

    In studies of the relationship between airborne fine particulate matter (PM2.5) and health, researchers frequently use monitoring data with the most extensive temporal coverage. Such data may come from a monitor that is not a federal reference monitor (FRM), a monitor that is d...

  4. Monitoring of space weather and radioactivity using small airborne platforms

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Lidgard, Jeffrey; Aplin, Karen L.; Nicoll, Keri A.

    2013-04-01

    Space Weather is increasingly considered as a hazard to society's technological systems, but the effects of energetic particles within the atmosphere - with a potential implication for climate - also present an area in which new scientific knowledge needs to be developed. Routine measurements of energetic particle fluxes made above the surface have been made by the Lebedev Institute, undertaking continuous balloon-carried measurements since 1957. An underexploited measurement opportunity is presented by the conventional weather balloons (radiosondes) launched regularly globally by meteorological services, which could potentially provide a cost-effective alternative to custom balloon flights, as well as the ability to make measurements of particle fluxes at a wide range of latitudes. This work describes the development of a small disposable ionisation sensor, exploiting the well-known response of inexpensive semiconductor devices (e.g. PIN photodiodes) to ionising radiation. Such a Photodiode Radiation Detector (PRD) is particularly suitable for balloon use, as, unlike previous Geiger tube detector systems, only low bias voltages are required, which simplifies the circuitry required, reduces power consumption and entirely removes any high voltage hazard. In addition to providing count rate information, basic energy spectrum information is in principle available from pulse amplitudes generated. We discuss the evaluation and deployment considerations for the use of a PRD on a standard radiosonde platform, to operate within and alongside the existing operational meteorological requirements.

  5. Various consequences regarding hypothetical dispersion of airborne radioactivity in a city center.

    PubMed

    Jonsson, Lage; Plamboeck, Agneta H; Johansson, Erik; Waldenvik, Mattias

    2013-02-01

    In case of dispersion of airborne radioactive material in a city center a number of questions will prompt for an answer. While many questions can get their answers in due course of time based on results of tests and sampling, a good understanding of the quantitative effect of dispersion will be very helpful to rescue staff, in particular in the early stage. In the following dose and dose rate estimates are presented for three scenarios including dispersion of radioactivity in a city center. In one case the activity is released in an open place, in another from a roof and in the third case from a source on a street where the wind is blowing along the street. In each case, at specific positions, estimates are made of dose from inhalation, and dose rates for contamination on skin as well as from radioactive particles deposited onto ground, walls and roofs (external exposure) in the city center. It should be noted that the deposition pattern in urban areas varies greatly which means that the consequences are difficult to predict. The dispersion is influenced by recirculation behind tall buildings and diverted flow close to street-ends, which have significant effects on the deposit pattern. Regarding the relative importance of contributions to total dose it is found that inhalation could play a major role for long term effects while dose to skin might dominate acute effects. PMID:23103582

  6. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect

    Burris, S.A.; Thomas, S.P.

    1994-02-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  7. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    NASA Astrophysics Data System (ADS)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  8. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.

    PubMed

    Alrefae, Tareq

    2014-11-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring airborne radioactivity collected on filter paper, was based on Monte Carlo simulations using the toolkit GEANT4. Experimentally, the efficiency values of an HPGe detector were calculated for a multi-gamma disk source. These efficiency values were compared to their counterparts produced by a computer code that simulated experimental conditions. Such comparison revealed biases of 24, 10, 1, 3, 7, and 3% for the radionuclides (photon energies in keV) of Ce (166), Sn (392), Cs (662), Co (1,173), Co (1,333), and Y (1,836), respectively. The output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:25271933

  9. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect

    Barnett, J. Matthew

    2011-11-04

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  10. Laser sensor for monitoring radioactive contamination

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, V. V.; Grishkanich, A. S.; Bespalov, V. G.; Vasiev, S. K.; Zhevlakov, A. P.

    2014-11-01

    Remote laser spectroscopy availability for airborne search of radionuclides polution has been examined. Experiments were carried out under the CARS circuit. The method of remote detection a radionuclide in atmosphere from container burial places and in places of recycling the fuel waste of the atomic power station is elaborated. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 1012÷1013 cm-3 on a safe distance from the infected object.

  11. Development of a calibration system for airborne (131)I monitoring devices.

    PubMed

    Zhao, C; Tang, F; He, L; Xu, Y; Lu, X

    2016-03-01

    A prototype calibration system for airborne (131)I monitoring devices was developed at the Shanghai Institute of Measurement and Testing Technology (SIMT). This system consists of a gaseous (131)I2 generator, an airborne storage chamber, an airborne iodine sampler, and an HPGe spectrometer. With this system, (131)I reference samples in the form of charcoal filters and charcoal cartridges, with activities ranging from 100 to 10,000Bq, were produced with overall relative standard uncertainties of 2.8% (for filter samples) and 3.5% (for cartridge samples); the activities range could be extended according to need. PMID:26682896

  12. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  13. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Boom, R.J.

    1995-12-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.

  14. Airborne radioactivity survey of parts of Sand Creek SW and Sand Creek SE quadrangles, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 125 square miles of Sand Creek SW and Sand Creek SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of nine radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The

  15. Airborne radioactivity survey of parts of Baggs SW and Baggs SE quadrangles, Carbon and Sweetwater counties, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 151 square miles of Baggs SW and Baggs SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of twelve radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The radioactivity

  16. Natural Radioactivity in Monitoring Waste Disposals

    NASA Astrophysics Data System (ADS)

    de Meijer, R. J.; Limburg, J.; Venema, L. B.

    Monitoring large (underwater) surfaces, with strongly varying composition, requires a sampling density, exceeding the capabilities of standard techniques. These techniques involve sample collection and a number of treatments and measurements in laboratory; both steps are laborious, tedious and costly. This paper shows that a trailing detector system of natural γ-rays provides quantitative information on the dynamics at and around a waste disposal site. In this paper the technique is applied to monitor dumpsites of gold mines from an aircraft and the dispersal of dredge spoil from Rotterdam harbour dumped at the North Sea by vessel. The sea-floor monitoring has been conducted in detail, including the derivation of sediment composition and assessing by means of a mass-balance equation the transport directions and quantities in time.

  17. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data.

    PubMed

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2014-11-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. PMID:25011074

  18. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  19. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  20. Optimizing the spatial pattern of networks for monitoring radioactive releases

    NASA Astrophysics Data System (ADS)

    Melles, S. J.; Heuvelink, G. B. M.; Twenhöfel, C. J. W.; van Dijk, A.; Hiemstra, P. H.; Baume, O.; Stöhlker, U.

    2011-03-01

    This study presents a method to optimize the sampling design of environmental monitoring networks in a multi-objective setting. We optimize the permanent network of radiation monitoring stations in the Netherlands and parts of Germany as an example. The optimization method proposed combines minimization of prediction error under routine conditions with maximizing calamity detection capability in emergency cases. To calculate calamity detection capability, an atmospheric dispersion model was used to simulate potentially harmful radioactive releases. For each candidate monitoring network, we determined if the releases were detected within one, two and three hours. Four types of accidents were simulated: small and large nuclear power plant accidents, deliberate radioactive releases using explosive devices, and accidents involving the transport of radioactive materials. Spatial simulated annealing (SSA) was used to search for the optimal monitoring design. SSA was implemented by iteratively moving stations around and accepting all designs that improved a weighted sum of average spatial prediction error and calamity detection capability. Designs that worsened the multi-objective criterion were accepted with a certain probability, which decreased to zero as iterations proceeded. Results were promising and the method should prove useful for assessing the efficacy of environmental monitoring networks designed to monitor both routine and emergency conditions in other applications as well.

  1. Radioactive-waste container with leak monitor

    SciTech Connect

    Janberg, K.G.; Methling, D.

    1985-01-22

    A container has a massive metallic vessel whose interior is adapted to receive radioactive waste and whose mouth is formed with inner and outer spaced generally planar and annular vessel shoulders and formed there-between with a nonplanar intermediate annular vessel surface. A massive metallic cover formed with a plug fits in the mouth and has respective inner and outer plug shoulders closely juxtaposed with the vessel shoulders and a nonplanar intermediate annular plug surface complementary to the intermediate vessel surface. An inner ring seal engages snugly between the inner shoulders. A pair of generally concentric and spaced outer ring seals engage snugly between the outer shoulders and forming an annular outer chamber therebetween. An intermediate ring seal engages snugly between the intermediate surfaces and forms therebetween and with the inner ring seal an annular inner chamber and therebetween and with the outer ring seals an intermediate chamber. The cover is formed with respective inner, intermediate, and outer passages each having one end opening into the respective chamber and another end. Valves are provided on the cover at the other ends of the passages for sampling gases therein and in the respective chambers.

  2. Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours.

    PubMed

    GRIERSON

    1998-11-01

    / Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent's Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.KEY WORDS: Airborne video; Thermal imagery; Global positioning; Oil-spill monitoring; Tracking beacon PMID:9732519

  3. Application of multimode airborne digital camera system in Wenchuan earthquake disaster monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Li, Qingting; Fang, Junyong; Tong, Qingxi; Zheng, Lanfen

    2009-06-01

    Remote sensing, especially airborne remote sensing, can be an invaluable technique for quick response to natural disasters. Timely acquired images by airborne remote sensing can provide very important information for the headquarters and decision makers to be aware of the disaster situation, and make effective relief arrangements. The image acquisition and processing of Multi-mode Airborne Digital Camera System (MADC) and its application in Wenchuan earthquake disaster monitoring are presented in this paper. MADC system is a novel airborne digital camera developed by Institute of Remote Sensing Applications, Chinese Academy of Sciences. This camera system can acquire high quality images in three modes, namely wide field, multi-spectral (hyper-spectral) and stereo conformation. The basic components and technical parameters of MADC are also presented in this paper. MADC system played a very important role in the disaster monitoring of Wenchuan earthquake. In particular, the map of dammed lakes in Jianjiang river area was produced and provided to the front line headquarters. Analytical methods and information extraction techniques of MADC are introduced. Some typical analytical and imaging results are given too. Suggestions for the design and configuration of the airborne sensors are discussed at the end of this paper.

  4. Monitoring land use and degradation using satellite and airborne data

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Thomas G.; Blom, Ronald G.; Crippen, Robert E.

    1993-01-01

    In July 1990 AVIRIS and AIRSAR data were collected over the Manix Basin Area of the Mojave Desert to study land degradation in an arid area where centerpivot irrigation had been in use. The Manix Basin is located NE of Barstow, California, along Interstate-15 at 34 deg 57 min N 116 deg 35 min W. This region was covered by a series of lakes during the Late Pleistocence and Early Holocene. Beginning in the 1960's, areas were cleared of the native creosote bush-dominated plant community to be used for agricultural purposes. Starting in 1972 fields have been abandoned due to the increased cost of electricity needed to pump the irrigation water, with some fields abandoned as recently as 1988 and 1992. These circumstances provide a time series of abandoned fields which provide the possibility of studying the processes which act on agricultural fields in arid regions when they are abandoned. Ray et al. reported that polarimetric SAR (AIRSAR) could detect that the concentric circular planting furrows plowed on these fields persists for a few years after abandonment and then disappear over time and that wind ripples which form on these fields over time due to wind erosion can be detected with polarimetric radar. Ray et al. used Landsat Thematic Mapper (TM) bandpasses to generate NDVI images of the Manix Basin which showed that the fields abandoned for only a few years had higher NDVI's than the undisturbed desert while the fields abandoned for a longer time had NDVI levels lower than that of the undisturbed desert. The purpose of this study is to use a fusion of a time series of satellite data with airborne data to provide a context for the airborne data. The satellite data time series will additionally help to validate the observation and analysis of time-dependent processes observed in the single AVIRIS image of fields abandoned for different periods of time.

  5. Sensitivities of five alpha continuous air monitors for detection of airborne sup 239 Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  6. Sensitivities of five alpha continuous air monitors for detection of airborne {sup 239}Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  7. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  8. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  9. Ambient monitoring of airborne asbestos in non-occupational environments in Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Kakooei, Hossein; Meshkani, Mohsen; Azam, Kamal

    2013-12-01

    Airborne asbestos fiber concentrations were monitored in the urban areas of Tehran, Iran during the period of 23 August to 21 September 2012. The airborne fiber concentrations of 110 air samples collected from 15 different sites in five regions of Tehran. The monitoring sites were located 2.5 m above ground nearby the main street and heavy traffic jam. The ambient air samples were analyzed using scanning electron microscopy (SEM), with energy-dispersive X-ray analysis and phase-contrast optical microscopy (PCM). The geometric means of the airborne asbestos fiber concentrations in the outdoor living areas was 1.6 × 10-2 SEM f ml-1 (1.18 × 10-3 PCM f ml-1). This criteria is considerably higher than those reported for the levels of asbestos in outdoor living areas in the Europe and the non-occupational environment of the Korea. No clear correlation was found between asbestos fiber concentration and the relative humidity and temperature. The SEM and PLM analysis revealed that all samples examined contained only chrysotile asbestos. It can be concluded that several factor such as heavy traffic, cement sheet and pipe consumption of asbestos, and geographical conditions play an important role for the high airborne asbestos levels in the non-occupational environments.

  10. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  11. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours

    SciTech Connect

    Grierson, I.T.

    1998-11-01

    Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent`s Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.

  12. Monitoring technologies for ocean disposal of radioactive waste

    SciTech Connect

    Triplett, M.B.; Solomon, K.A.; Bishop, C.B.; Tyce, R.C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  13. Alien plant monitoring with ultralight airborne imaging spectroscopy.

    PubMed

    Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio

    2014-01-01

    Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380-1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5-8 pixels/m(2) at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user's and producer's accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m(2) (50% of pixels 0.5 × 0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management. PMID:25010601

  14. Alien Plant Monitoring with Ultralight Airborne Imaging Spectroscopy

    PubMed Central

    Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio

    2014-01-01

    Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380–1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5–8 pixels/m2 at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user’s and producer’s accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m2 (50% of pixels 0.5×0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management. PMID:25010601

  15. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  16. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    SciTech Connect

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-02

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

  17. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    SciTech Connect

    WESTCOTT, J.L.

    2006-11-15

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

  18. Evaluation of radioactive environmental hazards in Area-3, Northern Palmyrides, Central Syria using airborne spectrometric gamma technique.

    PubMed

    Asfahani, J; Aissa, M; Al-Hent, R

    2016-01-01

    Airborne spectrometric gamma data are used in this paper to estimate the degree of radioactive hazard on humanity in Area-3, Northern Palmyrides, Central Syria. Exposure Rate (ER), Absorbed Dose Rate (ADR), Annual Effective Dose Rate (AEDR), and Heat Production (HP) of the eleven radiometric units included in the established lithological scored map in the study area have been computed to evaluate the radiation background influence in humans. The results obtained indicate that a human body in Area-3 is subjected to radiation hazards in the acceptable limits for long duration exposure. The highest radiogenetic heat production values in Area-3 correspond to the phosphatic locations characterized by relatively high values of uranium and thorium. PMID:26569554

  19. Honeybees as monitors of low levels of radioactivity

    SciTech Connect

    Simmons, M.A. ); Bromenshenk, J.J.; Gudatis, J.L. . Dept. of Zoology)

    1990-07-01

    Large-scale environmental monitoring programs rely on sampling many media -- air, water, food, et cetera -- from a large network of sampling stations. For describing the total region possibly impacted by contaminants, the most efficient sampler would be one that covered a large region and simultaneously sampled many different media, such as water, air, soil, and vegetation. Honeybees have been shown to be useful monitors of the environment in this context for detecting both radionuclides and heavy metals. This study sought to determine the effectiveness of honeybees as monitors of low levels of radioactivity in the form of tritium and gamma-emitting radionuclides. For the study, approximately 50 honeybee colonies were placed on the Hanford Site and along the Columbia River in areas downwind of the site. The mini-hive colonies were sampled after 1 month and tested for tritium and for gamma-emitting radionuclides. From this and other studies, it is known that honeybees can be used to detect radionuclides present in the environment. Their mobility and their ability to integrate all exposure pathways could expand and add another level of confidence to the present monitoring program. 6 refs., 1 fig., 2 tabs.

  20. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety.

    PubMed

    Peters, Thomas M; Elzey, Sherrie; Johnson, Ronald; Park, Heaweon; Grassian, Vicki H; Maher, Tabitha; O'Shaughnessy, Patrick

    2009-02-01

    Two methods were used to distinguish airborne engineered nanomaterials from other airborne particles in a facility that produces nano-structured lithium titanate metal oxide powder. The first method involved off-line analysis of filter samples collected with conventional respirable samplers at each of seven locations (six near production processes and one outdoors). Throughout most of the facility and outdoors, respirable mass concentrations were low (<0.050 mg/m(3)) and were attributed to particles other than the nanomaterial (<10% by mass titanium determined with inductively coupled plasma atomic emission spectrometry). In contrast, in a single area with extensive material handling, mass concentrations were greatest (0.118 mg m(-3)) and contained up to 39% +/- 11% lithium titanium, indicating the presence of airborne nanomaterial. Analysis of the filter samples collected in this area by transmission electron microscope and scanning electron microscope revealed that the airborne nanomaterial was associated only with spherical aggregates (clusters of fused 10-80 nm nanoparticles) that were larger than 200 nm. This analysis also showed that nanoparticles in this area were the smallest particles of a larger distribution of submicrometer chain agglomerates likely from welding in an adjacent area of the facility. The second method used two, hand-held, direct-reading, battery-operated instruments to obtain a time series of very fine particle number (<300 nm), respirable mass, and total mass concentration, which were then related to activities within the area of extensive material handling. This activity-based monitoring showed that very fine particle number concentrations (<300 nm) had no apparent correlation to worker activities, but that sharp peaks in the respirable and total mass concentration coincided with loading a hopper and replacing nanomaterial collection bags. These findings were consistent with those from the filter-based method in that they demonstrate

  1. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety

    PubMed Central

    Peters, TM; Elzey, S; Johnson, R; Park, H; Grassian, VH; Maher, T; O'Shaughnessy, P

    2016-01-01

    Two methods were used to distinguish airborne engineered nanomaterials from other airborne particles in a facility that produces nano-structured lithium titanate metal oxide powder. The first method involved off-line analysis of filter samples collected with conventional respirable samplers at each of seven locations (six near production processes and one outdoors). Throughout most of the facility and outdoors, respirable mass concentrations were low (<0.050 mg m−3) and were attributed to particles other than the nanomaterial (<10% by mass titanium determined with inductively coupled plasma atomic emission spectrometry). In contrast, in a single area with extensive material handling, mass concentrations were greatest (0.118 mg m−3) and contained up to 39% +/− 11% lithium titanium, indicating the presence of airborne nanomaterial. Analysis of the filter samples collected in this area by transmission electron microscope and scanning electron microscope revealed that the airborne nanomaterial was associated only with spherical aggregates (clusters of fused 10–80 nm nanoparticles) that were larger than 200 nm. This analysis also showed that nanoparticles in this area were the smallest particles of a larger distribution of submicrometer chain agglomerates likely from welding in an adjacent area of the facility. The second method used two, hand-held, direct-reading, battery-operated instruments to obtain a time series of very fine particle number (<300 nm), respirable mass, and total mass concentration, which were then related to activities within the area of extensive material handling. This activity-based monitoring showed that very fine particle number concentrations (<300 nm) had no apparent correlation to worker activities, but that sharp peaks in the respirable and total mass concentration coincided with loading a hopper and replacing nanomaterial collection bags. These findings were consistent with those from the filter-based method in that they

  2. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings.

    PubMed

    Hong, Pei-Ying; Li, Xiangzhen; Yang, Xufei; Shinkai, Takumi; Zhang, Yuanhui; Wang, Xinlei; Mackie, Roderick I

    2012-06-01

    Given the growing concerns over human and animal health issues related to confined animal feeding operations, an in-depth examination is required to monitor for airborne bacteria and associated antibiotic resistance genes. Our 16S rRNA-based pyrosequencing revealed that the airborne microbial community skewed towards a higher abundance of Firmicutes (> 59.2%) and Bacteroidetes (4.2-31.4%) within the confinement buildings, while the office environment was predominated by Proteobacteria (55.2%). Furthermore, bioaerosols in the confinement buildings were sporadically associated with genera of potential pathogens, and these genera were more frequently observed in the bioaerosols of pig and layer hen confinement than the turkey confinement buildings and office environment. High abundances of tetracycline resistance genes (9.55 × 10(2) to 1.69 × 10(6) copies ng(-1) DNA) were also detected in the bioaerosols sampled from confinement buildings. Bacterial lineages present in the poultry bioaerosols clustered apart from those present in the pig bioaerosols and among the different phases of pig production, suggesting that different livestock as well as production phase were associated with a distinct airborne microbial community. By understanding the diversity of biotic contaminants associated with the different confinement buildings, this study facilitates the implementation of better management strategies to minimize potential health impacts on both livestock and humans working in this environment. PMID:22414212

  3. The Efficient Method for Simultaneous Monitoring of the Culturable as Well as Nonculturable Airborne Microorganisms

    PubMed Central

    Hubad, Barbara; Lapanje, Aleš

    2013-01-01

    Cultivation-based microbiological methods are a gold standard for monitoring of airborne micro-organisms to determine the occupational exposure levels or transmission paths of a particular infectious agent. Some highly contagious microorganisms are not easily culturable but it is becoming evident that cultivation and molecular methods are complementary and in these cases highly relevant. We report a simple and efficient method for sampling and analyzing airborne bacteria with an impactor-type high-flow-rate portable air sampler, currently used for monitoring culturable bacteria or fungi. A method is reported for extraction of nucleic acids from impacted cells without prior cultivation and using agarose as a sampling matrix. The DNA extraction efficiency was determined in spiked samples and, samples taken from a wastewater treatment plant and an alpine area. The abundance, diversity and quantity of total bacteria were analysed by a quantitative polymerase chain reaction, and by construction and analysis of clone libraries. The method does not interfere with downstream PCR analysis and can cover the gap between traditional culture and molecular techniques of bioaerosol monitoring. PMID:24376520

  4. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.

    PubMed

    Mahaffee, Walter F; Stoll, Rob

    2016-05-01

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between. PMID:27003505

  5. Novel method for estimation of the indoor-to-outdoor airborne radioactivity ratio following the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tan, Yanliang; Ishikawa, Tetsuo; Janik, Miroslaw; Tokonami, Shinji; Hosoda, Masahiro; Sorimachi, Atsuyuki; Kearfott, Kimberlee

    2015-12-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan resulted in significant releases of fission products. While substantial data exist concerning outdoor air radioactivity following the accident, the resulting indoor radioactivity remains pure speculation without a proper method for estimating the ratio of the indoor to outdoor airborne radioactivity, termed the airborne sheltering factor (ASF). Lacking a meaningful value of the ASF, it is difficult to assess the inhalation doses to residents and evacuees even when outdoor radionuclide concentrations are available. A simple model was developed and the key parameters needed to estimate the ASF were obtained through data fitting of selected indoor and outdoor airborne radioactivity measurement data obtained following the accident at a single location. Using the new model with values of the air exchange rate, interior air volume, and the inner surface area of the dwellings, the ASF can be estimated for a variety of dwelling types. Assessment of the inhalation dose to individuals readily follows from the value of the ASF, the person's indoor occupancy factor, and the measured outdoor radioactivity concentration. PMID:26188529

  6. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  7. Environmental monitoring of low-level radioactive waste disposal facility

    SciTech Connect

    Shum, E.Y.; Starmer, R.J.; Young, M.H.

    1989-12-01

    This branch technical position (BTP) paper on the environmental monitoring program for a low-level radioactive waste disposal facility provides general guidance on what is required by Section 61.53 of Title 10 of the Code of Federal Regulations (10 CFR) of applicants submitting a license application for such a facility. In general, the environmental monitoring program consists of three phases: preoperational, operational, and postoperational. Each phase of the monitoring program should be designed to fulfill the specific objectives defined in the BTP paper. During the preoperational phase, the objectives of the program are to provide site characterization information, to demonstrate site suitability and acceptability, to obtain background or baseline information, and to provide a record for public information. During the operational phase, the emphasis on measurement shifts. Monitoring data are obtained to provide early warning of releases and to document compliance with regulations, the dose limits of 10 CFR Part 61, or applicable standards of the US Environmental Protection Agency. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational environmental monitoring program emphasizes measurements to demonstrate compliance with the site-closure requirements and continued compliance with the performance objective in regard to the release of radionuclides to the environment. The data are used to support evaluation of long-term effects on the general public and for public information. Guidance is also provided in the BTP paper on the choice of which constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance.

  8. Computerized Mathematical Models of Spray Washout of Airborne Contaminants (Radioactivity) in Containment Vessels.

    2003-05-23

    Version 01 Distribution is restricted to the United States Only. SPIRT predicts the washout of airborne contaminants in containment vessels under postulated loss-of-coolant accident (LOCA) conditions. SPIRT calculates iodine removal constants (lambdas) for post-LOCA containment spray systems. It evaluates the effect of the spectrum of drop sizes emitted by the spray nozzles, the effect of drop coalescence, and the precise solution of the time-dependent diffusion equation. STEAM-67 routines are included for calculating the properties ofmore » steam and water according to the 1967 ASME Steam Tables.« less

  9. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  10. On-line remote monitoring of radioactive waste repositories

    NASA Astrophysics Data System (ADS)

    Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria

    2014-12-01

    A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.

  11. Potential Application of Airborne Passive Microwave Observations for Monitoring Inland Flooding Caused by Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.

    2008-01-01

    Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.

  12. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... excess of the limits specified in Table I of appendix B to 10 CFR part 20. The limits given in Table I... average concentration in excess of the limits specified in Table II of Appendix B to 10 CFR part 20. For... radioactive material. 50-204.22 Section 50-204.22 Public Contracts and Property Management Other...

  13. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... excess of the limits specified in Table I of Appendix B to 10 CFR Part 20. The limits given in Table I... average concentration in excess of the limits specified in Table II of Appendix B to 10 CFR Part 20. For... radioactive material. 50-204.22 Section 50-204.22 Public Contracts and Property Management Other...

  14. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... excess of the limits specified in Table I of appendix B to 10 CFR part 20. The limits given in Table I... average concentration in excess of the limits specified in Table II of appendix B to 10 CFR part 20. For... radioactive material. 50-204.22 Section 50-204.22 Public Contracts and Property Management Other...

  15. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... excess of the limits specified in Table I of Appendix B to 10 CFR Part 20. The limits given in Table I... average concentration in excess of the limits specified in Table II of Appendix B to 10 CFR Part 20. For... radioactive material. 50-204.22 Section 50-204.22 Public Contracts and Property Management Other...

  16. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... excess of the limits specified in Table I of Appendix B to 10 CFR Part 20. The limits given in Table I... average concentration in excess of the limits specified in Table II of Appendix B to 10 CFR Part 20. For... radioactive material. 50-204.22 Section 50-204.22 Public Contracts and Property Management Other...

  17. Reduction of airborne radioactive dust by means of a charged water spray.

    PubMed

    Bigu, J; Grenier, M G

    1989-07-01

    An electrostatic precipitator based on charged water spray technology has been used in an underground uranium mine to control long-lived radioactive dust and short-lived aerosol concentration in a mine gallery where dust from a rock breaking/ore transportation operation was discharged. Two main sampling stations were established: one upstream of the dust precipitator and one downstream. In addition, dust samplers were placed at different locations between the dust discharge and the end of the mine gallery. Long-lived radioactive dust was measured using cascade impactors and nylon cyclone dust samplers, and measurement of the radioactivity on the samples was carried out by conventional methods. Radon and thoron progeny were estimated using standard techniques. Experiments were conducted under a variety of airflow conditions. A maximum radioactive dust reduction of about 40% (approximately 20% caused by gravitational settling) at a ventilation rate of 0.61 m3/sec was obtained as a result of the combined action of water scrubbing and electrostatic precipitation by the charged water spray electrostatic precipitator. This represents the optimum efficiency attained within the range of ventilation rates investigated. The dust reduction efficiency of the charged water spray decreased with increasing ventilation rate, i.e., decreasing air residence time, and hence, reduced dust cloud/charged water droplets mixing time. PMID:2756864

  18. Simultaneous sampling of indoor and outdoor airborne radioactivity after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Arae, Hideki; Sahoo, Sarata Kumar; Janik, Miroslaw; Hosoda, Masahiro; Tokonami, Shinji

    2014-02-18

    Several studies have estimated inhalation doses for the public because of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Most of them were based on measurement of radioactivity in outdoor air and included the assumption that people stayed outdoors all day. Although this assumption gives a conservative estimate, it is not realistic. The "air decontamination factor" (ratio of indoor to outdoor air radionuclide concentrations) was estimated from simultaneous sampling of radioactivity in both inside and outside air of one building. The building was a workplace and located at the National Institute of Radiological Sciences (NIRS) in Chiba Prefecture, Japan. Aerosol-associated radioactive materials in air were collected onto filters, and the filters were analyzed by γ spectrometry at NIRS. The filter sampling was started on March 15, 2011 and was continued for more than 1 year. Several radionuclides, such as (131)I, (134)Cs, and (137)Cs were found by measuring the filters with a germanium detector. The air decontamination factor was around 0.64 for particulate (131)I and 0.58 for (137)Cs. These values could give implications for the ratio of indoor to outdoor radionuclide concentrations after the FDNPP accident for a similar type of building. PMID:24450729

  19. Compact mid-infrared DIAL lidar for ground-based and airborne pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Degtiarev, Egor V.; Geiger, Allen R.; Richmond, Richard D.

    2003-04-01

    We report the progress in the development of a compact mid-infrared differential absorption lidar (DIAL) for ground-based and airborne monitoring of leaks in natural gas pipeline systems. This sensor, named Lidar II, weighs approximately 30 kg (70 lbs) and occupies a volume of 0.08 m3 (3.5 ft3). Lidar II can be used on the ground in a topographic mode or in a look-down mode from a helicopter platform. The 10-Hz pulse repetition rate and burst-mode averaging currently limit the airborne inspection speed to 30 km/h. The Lidar II laser transmitter employs an intracavity optical parametric oscillator. Wavelength tuning is accomplished through two mechanisms: a servo-controlled crystal rotation for slow and broad-band tuning and a fast piezo-activated wavelength shifter for on-line/off-line switching in less than 10 ms. The sensor operates in the 3.2-3.5-μm band with the primary focus on hydrocarbons and volatile organics. In the pipeline inspection work, the two main targets are methane and ethane, the latter chemical being important in preventing false positives. Initial results of Lidar II testing on actual pipeline leaks are reported. To supplement the mapping capabilities of Lidar II with range-resolved information, a short-range (less than 300 m) aerosol backscatter lidar is currently under development.

  20. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  1. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  2. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  3. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  4. The use of an experimental room for monitoring of airborne concentrations of microorganisms, glass fibers, and total particles

    SciTech Connect

    Buttner, M.P.; Stetzenbach, L.D.

    1996-12-31

    An experimental room was used as a microcosm for studies of airborne particles and microorganisms in indoor environments. The interior of the room measures 4 by 4 by 2.2 m high and has a hardwood floor and the walls and ceiling are sheetrocked and coated with interior latex paint. Exterior walls are 11.4-cm thick plywood panels consisting of two outer sections of plywood insulated with fiber glass batts. The ceiling is of similar construction with 17.1-cm thick panels. Attached to the room entrance is an anteroom equipped with a HEPA-filtered air shower to reduce mixing of air resulting from entering and exiting during experiments. The room is equipped with a computer-controlled heating, ventilation, and cooling system. Temperature, relative humidity, air flow, and room pressure can be continuously monitored by probes located in the room and air handling system components. Several research projects have been conducted using this room including monitoring the potential for airborne glass fibers released from rigid fibrous ductboard, comparisons of commercially available samplers for monitoring of airborne fungal spores, and a study on the efficacy of vacuum bags to minimize dispersal of particles, including fungal spores from fungal-contaminated carpet. During studies designed to monitor airborne fiberglass, air samples were taken in the room serviced by new rigid fibrous glass ductwork, and the results were compared to those obtained in the room with bare metal ductwork installed. Monitoring of airborne fungal spores using the Andersen six-stage sampler, the high flow Spiral Biotech sampler, the Biotest RCS Plus sampler, and the Burkard spore trap sampler was performed following the release of Penicillium spores into the room through the supply register. Dispersal of carpet-associated particles and fungal spores was measured after vacuuming using conventional cellulose vacuum bags in comparison to recently developed bags.

  5. 2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Bechtel Nevada

    2006-02-01

    This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

  6. Airborne imaging sensors for environmental monitoring & surveillance in support of oil spills & recovery efforts

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Jones, James; Frystacky, Heather; Coppin, Gaelle; Leavaux, Florian; Neyt, Xavier

    2011-11-01

    Collection of pushbroom sensor imagery from a mobile platform requires corrections using inertial measurement units (IMU's) and DGPS in order to create useable imagery for environmental monitoring and surveillance of shorelines in freshwater systems, coastal littoral zones and harbor areas. This paper describes a suite of imaging systems used during collection of hyperspectral imagery in northern Florida panhandle and Gulf of Mexico airborne missions to detect weathered oil in coastal littoral zones. Underlying concepts of pushbroom imagery, the needed corrections for directional changes using DGPS and corrections for platform yaw, pitch, and roll using IMU data is described as well as the development and application of optimal band and spectral regions associated with weathered oil. Pushbroom sensor and frame camera data collected in response to the recent Gulf of Mexico oil spill disaster is presented as the scenario documenting environmental monitoring and surveillance techniques using mobile sensing platforms. Data was acquired during the months of February, March, April and May of 2011. The low altitude airborne systems include a temperature stabilized hyperspectral imaging system capable of up to 1024 spectral channels and 1376 spatial across track pixels flown from 3,000 to 4,500 feet altitudes. The hyperspectral imaging system is collocated with a full resolution high definition video recorder for simultaneous HD video imagery, a 12.3 megapixel digital, a mapping camera using 9 inch film types that yields scanned aerial imagery with approximately 22,200 by 22,200 pixel multispectral imagery (~255 megapixel RGB multispectral images in order to conduct for spectral-spatial sharpening of fused multispectral, hyperspectral imagery. Two high spectral (252 channels) and radiometric sensitivity solid state spectrographs are used for collecting upwelling radiance (sub-meter pixels) with downwelling irradiance fiber optic attachment. These sensors are utilized for

  7. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    SciTech Connect

    Chen, DI-WEN

    2001-11-21

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information

  8. Borehole-to-tunnel seismic measurements for monitoring radioactive waste

    NASA Astrophysics Data System (ADS)

    Manukyan, Edgar; Maurer, Hansruedi; Marelli, Stefano; Greenhalgh, Stewart A.; Green, Alan A.

    2010-05-01

    Countries worldwide are seeking solutions for the permanent removal of high-level radioactive waste (HLRW) from the environment. A critical aspect of the disposal process is the need to be confident that the deposited waste is safely isolated from the biosphere. Seismic monitoring represents a potentially powerful option for non-intrusive monitoring. We conducted a series of seismic experiments in the Mont Terri underground rock laboratory, where a 1-m-diameter microtunnel simulates a HLRW repository downsized by a factor of ~2.5. The host rock at the laboratory is Opalinus clay. We had access to two water-filled boreholes, each approximately 25 m long (diameter 85 mm), with one inclined upwards and the other downwards. Both were oriented perpendicular to the microtunnel axis. Seismic signals were generated in the down-dipping borehole with a high frequency P-wave sparker source every 25 cm and received every 25 cm in the upward-dipping borehole on a multi-channel hydrophone chain. Additionally, the seismic waves were recorded on eight (100 Hz natural frequency) vertical-component geophones, mounted and distributed around the circumference of the microtunnel wall within the plane of the boreholes. The experiment was repeated with different material filling the microtunnel and under different physical conditions. So far, six experiments have been performed when the microtunnel was: a. air-filled with a dry excavation damage zone (EDZ), b. dry sand-filled with a dry EDZ, c. 50 % water-saturated sand-filled with partially water-saturated EDZ (experiments were conducted immediately after half water-saturation), d. water-saturated sand-filled with partially water-saturated EDZ (immediately after full water-saturation), e. water-saturated sand-filled with water-saturated EDZ (water was in the microtunnel for about 9.5 months), and f. water-saturated sand-filled and pressurized to 6 bars with water-saturated EDZ. The results of our seismic experiments yield several

  9. Airborne Monitoring of Pollution from Individual Ships in the Framework of the IGPS Project

    NASA Astrophysics Data System (ADS)

    Beecken, Jörg; Mellqvist, Johan; Salo, Kent; Ekholm, Johan

    2013-04-01

    The environmental impact of maritime transport has been recognized by the International Maritime Organization (IMO) which sets limits on fuel quality and emission characteristics of ships. The IGPS project (Identification of Gross-Polluting Ships) is a Swedish project aimed at developing a surveillance system for measuring emissions of SO2, NOx and particulate matter from individual vessels at sea as well as at harbors. Equipped on aircrafts, this system can be used for efficient compliance monitoring of ships at open sea. Additionally plumes can be sampled several times to increase the measurement quality. This operation environment also sets special demands on the instrumentation such as fast response times for example. The presented results cover the measurements of four airborne campaigns which were conducted during 2011 and 2012, covering the western Baltic Sea between Denmark, Sweden and Germany as well as the German Bight and the English Channel regions of the North Sea. As platforms, two different airplanes and a helicopter were used respectively. Emission data of more than 150 different vessels was obtained. From the measured emissions the sulfur content in the fuel and the emitted NOx per main engine speed as reference characteristics were determined for the individual ships. Additionally, measurements on the particle size distributions of ship plumes were studied. Furthermore the conducted measurements also showed that the system is flight functional and works fine independent from the type of aircraft.

  10. Monitoring Ephemeral Streams Using Airborne Very High Resolution Multispectral Remote Sensing in Arid Environments

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; O'Connor, B. L.

    2012-12-01

    Development in arid environments often results in the loss and degradation of the ephemeral streams that provide habitat and critical ecosystem functions such as water delivery, sediment transport, and groundwater recharge. Quantification of these ecosystem functions is challenging because of the episodic nature of runoff events in desert landscapes and the large spatial scale of watersheds that potentially can be impacted by large-scale development. Low-impact development guidelines and regulatory protection of ephemeral streams are often lacking due to the difficulty of accurately mapping and quantifying the critical functions of ephemeral streams at scales larger than individual reaches. Renewable energy development in arid regions has the potential to disturb ephemeral streams at the watershed scale, and it is necessary to develop environmental monitoring applications for ephemeral streams to help inform land management and regulatory actions aimed at protecting and mitigating for impacts related to large-scale land disturbances. This study focuses on developing remote sensing methodologies to identify and monitor impacts on ephemeral streams resulting from the land disturbance associated with utility-scale solar energy development in the desert southwest of the United States. Airborne very high resolution (VHR) multispectral imagery is used to produce stereoscopic, three-dimensional landscape models that can be used to (1) identify and map ephemeral stream channel networks, and (2) support analyses and models of hydrologic and sediment transport processes that pertain to the critical functionality of ephemeral streams. Spectral and statistical analyses are being developed to extract information about ephemeral channel location and extent, micro-topography, riparian vegetation, and soil moisture characteristics. This presentation will demonstrate initial results and provide a framework for future work associated with this project, for developing the necessary

  11. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  12. Development of a real-time monitor for airborne alpha emissions. First quarter report, TTP AL 142003

    SciTech Connect

    Gritzo, R.E.; Fowler, M.M.

    1994-02-01

    This is the first quarterly report for Fiscal Year (FY) 1994 for TTP AL 142003, Development of a Real-Time Monitor for Airborne Alpha Emissions. Los Alamos National Laboratory (LANL) is developing a new technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. While initially developed for incinerators, this new technology may well find other applications in continuous air monitoring, process monitoring, and monitoring during remediation activities. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology responds directly to the need for fast responding, high sensitivity effluent monitoring systems. With DOE EM-50 funding, LANL has fabricated a bench-top proof of concept detector system and is conducting tests to evaluate its performance. A second- generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for FY 95. Accomplishments during the first quarter of FY 94 are chronicled in this report, including budgetary data. A schedule for the remainder of the fiscal year is also provided.

  13. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1981

    SciTech Connect

    Schleimer, G.E.

    1982-06-01

    Results for 1981 of the LBL Environmental Monitoring Program are given. Data include monitoring results for accelerator-produced radiation, airborne and waterborne radionuclides, and nonradioactive pollutants. Population doses resulting from LBL operations are given in terms of accelerator-produced and airborne radioactivities. Trends in the environmental impacts of LBL operations are discussed in terms of accelerator-produced, airborne, and waterborne radionuclides. (ERB)

  14. Comparative study of airborne viable particles assessment methods in microbiological environmental monitoring.

    PubMed

    Temprano, G; Garrido, D; Daquino, M

    2004-01-01

    A comparative study was done among available assessment methods to measure airborne viable particles in controlled rooms. Active methods were compared (sieve/nozzle impactor, slit-to-agar, centrifugal, filtration, and impinger). The comparative study was carried out by means of a two-way (factors: day and method) analysis of variance, after to logarithmical transformation of experimental results in order to fulfill the normality test of the variables. Statistically significant differences were found among the results of the five methods (P < 0.0001). In a post hoc study, by means of Tukey's test, no differences were found among centrifugal, filtration, and impinger methods. Differences were found among all the other methods (P < 0.05). It is concluded that centrifugal, filtration, and impinger methods (in which numerical results were higher than in the others) may be the most suitable methods for microbiological monitoring of a clean room. The mean results among the three selected active methods were compared with results on the settle plate (SP) (the passive method). A relationship was established between results of the passive method (CFU/h/plate 90 mmø) and the results of active methods (CFU/m3 air). By means of a lineal regression study, it was obtained a relation factor of 22.7; (95% CI: 19.7, 25.7). This factor is only valid for values between 3 and 16 in CFU/h/plate 90 mmø, and it is put on record that the experimental study took place in a room that fulfills Class D clean room specifications (WHO standards) in microbiological terms. PMID:15368991

  15. Estimating and interpretation of radioactive heat production using airborne gamma-ray survey data of Gabal Arrubushi area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed A. S.

    2016-02-01

    The present work deals with mapping of radioactive heat production from rocks in the Gabal Arrubushi area in the Central Eastern Desert of Egypt based on airborne spectral gamma-ray survey data. The results show that the radioactive heat production in the areas ranges from 0.01 μWm-3 to 5.2 μWm-3. Granites, muscovite and sericite schists in the western part of Gabal Arrubushi area have abnormally high radioactive heat production values from 2.57 μWm-3 to 4.44 μWm-3. Meanwhile, the higher averages of radioactive heat production of these rock units change from 1.21 μWm-3 to 1.5 μWm-3. The intermediate averages of heat production of felsitic mylonite schist, chlorite schist, felsites, amphibolites and Hammamat sediments are below the crustal average value range, i.e., from 0.8 μWm-3 to 1.2 μWm-3. The lowest averages of heat production values are less than 0.8 μWm-3 and found in the following rock units: Wadi sediments, rhyolites, andesites, gabbro and serpentinites.

  16. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 1999

    SciTech Connect

    DL Edwards; KD Shields; MJ Sula; MY Ballinger

    1999-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP--US Code of Federal Regulations, Title 40 Part 61, Subpart H). In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the US Department of Energy and operated by Pacific Northwest National Laboratory (Pacific Northwest) on the Hanford Site. Two of the facilities evaluated, 325 Building Radiochemical Processing Laboratory, and 331 Building Life Sciences Laboratory met state and federal criteria for continuous sampling of airborne radionuclide emissions. One other building, the 3720 Environmental Sciences Laboratory, was recognized as being in transition with the potential for meeting the continuous sampling criteria.

  17. An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant

    SciTech Connect

    Bartlett, W.T. Environmental Evaluation Group, Albuquerque, NM )

    1993-02-01

    Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years'' the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations.

  18. An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant

    SciTech Connect

    Bartlett, W.T. |

    1993-02-01

    Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years`` the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations.

  19. Application of airborne infrared technology to monitor building heat loss. [Michigan

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Sampson, R. E.

    1977-01-01

    The application of airborne infrared technology to the requirements for energy conservation in buildings was studied. Quantitative airborne data of the City of Ypsilanti, Michigan, were collected and processed to identify roof temperatures. A thermal scanner was flown at an altitude of 1,200 feet with two thermal bands 8.2-9.3 micrometers and 10.4-12.5 micrometers recorded by an analog system. Calibration was achieved by standard hot and cold plates. Using a thermal model to interpret ceiling insulation status, environmental factors were found to influence the relation between roof temperature and insulation. These include interior and sky temperatures, roofing materials, and the pitch and orientation of the roof. A follow-up mail survey established the ability to identify insulated and uninsulated houses from the airborne infrared data.

  20. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  1. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003

    SciTech Connect

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

    2003-12-05

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

  2. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001

    SciTech Connect

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

    2001-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

  3. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

    SciTech Connect

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2011-05-13

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

  4. A rapidly deployable chemical sensing network for the real-time monitoring of toxic airborne contaminant releases in urban environments

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Lloyd, David R.

    2010-04-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders in providing a rapid, reliable on-scene analysis of the dispersion of toxic airborne contaminants following their malicious or accidental release into a rural, urban or industrial environment. We describe the development of a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  5. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007

    SciTech Connect

    Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

    2008-01-01

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP – U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection – Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

  6. Systematic management of environmental monitoring data for radioactive waste repository

    NASA Astrophysics Data System (ADS)

    Rhee, C. G.; Park, S. M.; Lim, Y. S.; Lee, H. J.; Park, J. W.; Kim, C. L.

    2003-04-01

    For the safe management of radwaste repository, data of the site and environment have to be collected and managed systematically. Particularly, for the radwaste repository, which has to be institutionally controlled for a long period after closure, data will be collected and maintained through the monitoring programme. To meet this requirement, a new programme called ``Site Information and Total Environmental data management System (SITES)" is being developed. The scope and function of the SITES programme are issued from the first stage of the SITES development. The hardware composed of a server and clients is constructed within those extents. The software system is developed with database and the three-tier server/client system consisted of a server, the middle-ware and PC client. The server is for the DB/GIS managements, and the PC client offers variable GUI in respect of end-user. A middle-ware is for the system management such as transaction. For this system, ArcSDE(ESRI) is used for unifying the spatial/attribute data to the Relative Database Management System. In the server/client system, the function of spatial illustration and analysis is embodied through ArcGIS. The SITES programme is designed with two modules of the Database Management System and the Monitoring and Assessment. The DBMS module is composed of two sub-modules. One is the Site Information Management System, which manages data on site characterization such as topography, geology, hydrogeology, engineering geology, etc. The other is the ENVironmental Information management System, which manages environmental data required for environmental assessment study. To enhance the effectiveness of SIMS and ENVIS, the objects are itemized through analyzing the end-user's demands reflected from domestic regulatory guidelines. The database is constructed based on Entity Relationship Diagram produced from each item. Also using ArcGIS with the spatial characteristics of the data, it enables groundwater and

  7. Monitoring tritium in air containing other radioactive gases

    SciTech Connect

    Jalbert, R.A.

    1982-09-01

    A brief survey is presented of methods that have been developed for active tritium monitoring that may be applied to measure tritium concentrations in air containing /sup 13/N, /sup 16/N, and /sup 41/Ar produced by D-T neutrons. Included are instruments that employ current subtraction to achieve discriminations and others that selectively remove atmospheric water vapor from stream of activated air.

  8. Monitoring of radioactivity in imported foodstuffs - experience gained and recommendations

    SciTech Connect

    Abdul-Fattah, A.F.; Mamoon, A.M.; Abdul-Majid, S.

    1987-01-01

    Saudi Arabia has had a unique experience in radiation monitoring of imported foodstuffs for possible contamination due to the Chernobyl reactor accident. A considerable amount of various food items is imported by Saudi Arabia and much of it comes from European countries. The quantity of imported food items is greatly increased around the time of the Moslem pilgrimage to Holy Mecca. Furthermore, many additional thousands of live animals (mainly sheep and cows) are imported for sacrificing on a certain day for religious reasons. The radiation monitoring of food items at inlets to the county was not done before and a lot of preparatory work and planning had to be done to initiate the monitoring process. The experience gained in this respect might be of value to other developing countries in a similar position. King Abdulaziz Univ. (KAU) was directed by the government in about mid-June 1986 to carry out radiological inspection of food items reaching the Jeddah, Yanbu, and Jizan seaports as well as food arrivals at King Abdulaziz International Airport at Jeddah. The KAU team has met with some difficulties in carrying out its inspection responsibilities. These difficulties are of a general nature and might occur, in a similar inspection process, in other developing countries. The problems can be classified essentially into the two categories discussed: (1) problems of an administrative and management nature, and (2) problems of a technical nature.

  9. Using airborne multispectral imagery to monitor cotton root rot expansion within a growing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease that affects cotton production in the southwestern United States. Accurate delineation of cotton root rot infestations is important for cost-effective management of the disease. The objective of this study was to use airborne multispectral imagery...

  10. On the use of airborne LiDAR for braided river monitoring and water surface delineation

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Höfle, B.; Pfeifer, N.; Rutzinger, M.; Stötter, J.

    2009-04-01

    Airborne LiDAR is an established technology for Earth surface surveying. With LiDAR data sets it is possible to derive maps with different land use classes, which are important for hydraulic simulations. We present a 3D point cloud based method for automatic water surface delineation using single as well as multitemporal LiDAR data sets. With the developed method it is possible to detect the location of the water surface with high planimetric accuracy. The multitemporal analysis of different LiDAR data sets makes it possible to visualize, monitor and quantify the changes of the flow path of braided rivers as well as derived water surface land use classes. The reflection properties from laser beams (1064 nm wavelength) on water surfaces are characterized by strong absorption or specular reflection resulting in a dominance of low signal amplitude values and a high number of laser shot dropouts (i.e. non-recorded laser echoes). The occurrence of dropouts is driven by (i) the incidence angle, (ii) the surface reflectance and (iii) the roughness of the water body. The input data of the presented delineation method are the modeled dropouts and the point cloud attributes of geometry and signal amplitude. A terrestrial orthophoto is used to explore the point cloud in order to find proper information about the geometry and amplitude attributes that are characteristic for water surfaces. The delineation method is divided into five major steps. (a) We compute calibrated amplitude values by reducing the atmospheric, topographic influences and the scan geometry for each laser echo. (b) Then, the dropouts are modeled by using the information from the time stamps, the pulse repetition frequency, the inertial measurement unit and the GPS information of the laser shots and the airplane. The next step is to calculate the standard deviation of the heights for all reflections and all modeled dropouts (c) in a specific radius around the points. (d) We compute the amplitude ratio

  11. An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores.

    PubMed

    Yung, Pun To; Lester, Elizabeth D; Bearman, Greg; Ponce, Adrian

    2007-11-01

    A fully automated anthrax smoke detector (ASD) has been developed and tested. The ASD is intended to serve as a cost effective front-end monitor for anthrax surveillance systems. The principle of operation is based on measuring airborne endospore concentrations, where a sharp concentration increase signals an anthrax attack. The ASD features an air sampler, a thermal lysis unit, a syringe pump, a time-gated spectrometer, and endospore detection chemistry comprised of dipicolinic acid (DPA)-triggered terbium ion (Tb(3+)) luminescence. Anthrax attacks were simulated using aerosolized Bacillus atrophaeus spores in fumed silica, and corresponding Tb-DPA intensities were monitored as a function of time and correlated to the number of airborne endospores collected. A concentration dependence of 10(2)-10(6) spores/mg of fumed silica yielded a dynamic range of 4 orders of magnitude and a limit of detection of 16 spores/L when 250 L of air were sampled. Simulated attacks were detected in less than 15 min. PMID:17514759

  12. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  13. Calibration of monitors used for surveillance of radioactivity in effluent water from CERN's accelerator installations.

    PubMed

    Vojtyla, P

    2001-07-01

    Water released into the environment from CERN's accelerator installations may contain both long-lived (7Be, 22Na) and short-lived (11C, 13N, 24Na) gamma radioactivity. Each potential release point is equipped with an on-line monitor for short-lived radionuclides, which consists of a scintillation probe immersed in a tank filled with monitored water. Whilst calibration standards are available for long-lived radioactivity, computer simulations are the only feasible way to determine the monitor efficiency for the short-lived radionuclides. The paper describes computer simulations using the Monte Carlo code GEANT 3.21. An excellent agreement between measured and computed efficiencies was obtained for the long-lived radionuclides, validating the computer model. A calibration method is proposed for light positron emitters, which combines an experimental calibration for 7Be and correction factors obtained in the simulations. PMID:11339535

  14. Classification And Monitoring Of Salt Marsh Habitats With Multi-Polarimetric Airborne SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2013-12-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi- frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  15. Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.; Lapado, R. L.

    1977-01-01

    The aim of the program discussed was to develop techniques for remotely measuring crop irrigation needs and predicting crop yields, with emphasis on wheat. Airborne measurements, using an IR line scanner and color IR photography, were made to evaluate the feasibility of measuring minimum and maximum (dawn and afternoon) crop temperatures to compute a parameter, termed 'stress degree day' (SDD) - a valuable indicator of crop water needs, which can be related to irrigation scheduling and yield. Crop canopy temperature measurements by airborne IR techniques revealed the superiority of thermal IR data over color IR photography. Water stress undetected in the latter technique was clearly detected in thermal imagery. Color IR photography, however, is valuable in discerning vegetation. The pseudo-colored temperature-difference images (and pseudo-colored images, reading directly in daily SDD increments) are shown to be well suited for assessing plant water status and, thus, for determining the irrigation needs and crop yield potentials.

  16. Raman Based Process Monitor For Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Schlahta, Stephan N.

    2008-05-27

    ABSTRACT A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval.

  17. Raman Based Process Monitor for Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, S.; Levitskaia, T.; Schlahta, St.

    2008-07-01

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval. (authors)

  18. Airborne particle monitoring with urban closed-circuit television camera networks and a chromatic technique

    NASA Astrophysics Data System (ADS)

    Kolupula, Y. R.; Aceves-Fernandez, M. A.; Jones, G. R.; Deakin, A. G.; Spencer, J. W.

    2010-11-01

    An economic approach for the preliminary assessment of 2-10 µm sized (PM10) airborne particle levels in urban areas is described. It uses existing urban closed-circuit television (CCTV) surveillance camera networks in combination with particle accumulating units and chromatic quantification of polychromatic light scattered by the captured particles. Methods for accommodating extraneous light effects are discussed and test results obtained from real urban sites are presented to illustrate the potential of the approach.

  19. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2008-01-01

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  20. GLORI: a new airborne GNSS reflectometry instrument for land surface monitoring

    NASA Astrophysics Data System (ADS)

    Motte, Erwan; Fanise, Pascal; Zribi, Mehrez

    2015-10-01

    From the beginning of the 1990s, the use of Global Navigation Satellite System (GNSS) reflected signals have been identified as a as source of opportunity for remote sensing applications. In the last two decades, the potential of the technique have been demonstrated for ocean and continental surfaces studies, and several applications have been proposed in the context of high availability of GNSS signals. The GNSS-R technique is generally based on the use of a passive receiver simultaneously acquiring the direct and reflected signals from various GNSS satellites to estimate geophysical parameters from the scattering surface. In the last years, several ground-based [2], [3], airborne [4] and space-borne [5]-[8] experiments have been proposed. The most considered application foreseen for GNSS-R is ocean altimetry for a precise determination of sea-surface heights as well as roughness and wind direction. For continental surfaces, because of direct relationship between surface permittivity and reflected signal, different approaches [6], [9], [10] have been proposed to estimate surface parameters (soil moisture, vegetation biomass, snow). Different observables have been proposed to analyze GNSS signals: the Delay-Doppler Map, the direct and reflected complex waveforms bistatic signal, the ratio between the direct and reflected waveform's peak time series (Interferometric Complex Field). In this context, the airborne instrument GLORI is proposed to demonstrate contribution of GNSS-R to estimate soil moisture over agricultural soils and biomass of forests or annual cultures. A secondary goal is the feasibility of centimeter-precision altimetry above continental water bodies. The second section describes the characteristics of GLORI instrument. The third section presents airborne campaigns realized over the south West of France and fourth sections discusses the first results. Conclusions are gathered in section 5.

  1. Safety monitoring of the FBG sensor in respect of radioactivity and deformation measurement of a silo structure for radioactive waste disposal

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Soo; Cho, Seong-Kyu

    2015-07-01

    The FBG sensor has globally been commercialized in various fields that is actively applied in Korea as well. Especially it is widely used as a structural monitoring sensor in civil engineering and construction structures due to its advantages including electrical stability, chemical stability and multiplexing. This report aims to introduce safety inspection of the FBG sensor in respect of radioactivity which has been applied to a silo structure for radioactive waste disposal as an example.

  2. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  3. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  4. Comparison of three airborne laser bathymetry data sets for monitoring the German Baltic Sea Coast

    NASA Astrophysics Data System (ADS)

    Song, Yujin; Niemeyer, Joachim; Ellmer, Wilfried; Soergel, Uwe; Heipke, Christian

    2015-10-01

    Airborne laser bathymetry (ALB) can be used for hydrographic surveying with relative high resolution in shallow water. In this paper, we examine the applicability of this technique based on three flight campaigns. These were conducted between 2012 and 2014 close to the island of Poel in the German Baltic Sea. The first data set was acquired by a Riegl VQ-820-G sensor in November 2012. The second and third data sets were acquired by a Chiroptera sensor of Airborne Hydrography AB in September 2013 and May 2014, respectively. We examine the 3D points classified as seabed under different conditions during data acquisition, e.g. the turbidity level of the water and the flight altitude. The analysis comprises the point distribution, point density, and the area coverage in several depth levels. In addition, we determine the vertical accuracy of the 3D seabed points by computing differences to echo sounding data. Finally, the results of the three flight campaigns are compared to each other and analyzed with respect to the different conditions during data acquisition. For each campaign only small differences in elevation between the laser and the echo sounding data set are observed. The ALB results satisfy the requirements of IHO Standards for Hydrographic Surveys (S-44) Order 1b for several depth intervals.

  5. Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Goettelman, R. C.; Reginato, R. J.; Idso, S. B.; Lapado, R. L.

    1977-01-01

    Airborne and ground measurements were made on April 1 and 29, 1976, over a USDA test site consisting mostly of wheat in various stages of water stress, but also including alfalfa and bare soil. These measurements were made to evaluate the feasibility of measuring crop temperatures from aircraft so that a parameter termed stress degree day, SDD, could be computed. Ground studies have shown that SDD is a valuable indicator of a crop's water needs, and that it can be related to irrigation scheduling and yield. The aircraft measurement program required predawn and afternoon flights coincident with minimum and maximum crop temperatures. Airborne measurements were made with an infrared line scanner and with color IR photography. The scanner data were registered, subtracted, and color-coded to yield pseudo-colored temperature-difference images. Pseudo-colored images reading directly in daily SDD increments were also produced. These maps enable a user to assess plant water status and thus determine irrigation needs and crop yield potentials.

  6. Evaluation of airborne image data and LIDAR main stem data for monitoring physical resources within the Colorado River ecosystem

    USGS Publications Warehouse

    Davis, Philip A.; Rosiek, Mark R.; Galuszka, Donna M.

    2002-01-01

    This study evaluated near-infrared LIDAR data acquired over the main-stem channel at four long-term monitoring sites within the Colorado River ecosystem (CRE) to determine the ability of these data to provide reliable indications in changes in water elevation over time. Our results indicate that there is a good correlation between the LIDAR water-surface elevations and ground measurements of water-edge elevation, but there are also inherent errors in the LIDAR data. The elevation errors amount to about 50 cm and therefore temporal changes in water-surface elevation that exceed this value by the majority of data at a particular location can be deemed significant or real. This study also evaluated airborne image data for producing photogrammetric elevation data and for automated mapping of sand bars and debris flows within the CRE. The photogrammetric analyses show that spatial resolutions of ≤ 10 cm are required to produce vertical accuracies

  7. A computer code to estimate accidental fire and radioactive airborne releases in nuclear fuel cycle facilities: User's manual for FIRIN

    SciTech Connect

    Chan, M.K.; Ballinger, M.Y.; Owczarski, P.C.

    1989-02-01

    This manual describes the technical bases and use of the computer code FIRIN. This code was developed to estimate the source term release of smoke and radioactive particles from potential fires in nuclear fuel cycle facilities. FIRIN is a product of a broader study, Fuel Cycle Accident Analysis, which Pacific Northwest Laboratory conducted for the US Nuclear Regulatory Commission. The technical bases of FIRIN consist of a nonradioactive fire source term model, compartment effects modeling, and radioactive source term models. These three elements interact with each other in the code affecting the course of the fire. This report also serves as a complete FIRIN user's manual. Included are the FIRIN code description with methods/algorithms of calculation and subroutines, code operating instructions with input requirements, and output descriptions. 40 refs., 5 figs., 31 tabs.

  8. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect

    Yvonne Townsend

    2000-05-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  9. Linking morphology to ecosystem structure using air-borne sensors for monitoring the Earth System

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Giardino, C.; Valentini, E.; Bresciani, M.; Gasperini, L.

    2010-12-01

    Coastal Landscape, and how they change over time, provide the template on which the emerging role of Earth system science (ESS) closely linked with the development of space-borne sensors can stand in the center of a newly emerging science of the Earth's surface, where strong couplings links human dynamics, biology, biochemistry, geochemistry, geomorphology, and fluid dynamics including climate change. Modern views on the behavior of complex systems like the coastal one, allow the interpretation of phenomenological coastal landscape as a stationary landscape-state that correspond to a dynamic equilibrium, and to a self-organized exogenic order of the edge of the chaos. Therefore is essential for a thoroughly understanding of spatiotemporal variations in coastal dynamics and habitat distribution for the source of nonlinearity and complexity in geomorphic system make gathering data appropriate for use in developing and testing models of biological and physical process interacting across a wide range of scale. In this paper a physics based approach was applied to MIVIS (Multi-spectral IR and Visible Imaging Spectrometer) and LiDAR (Light Detection and Ranging) airborne data, simultaneously acquired on 12 May 2009 in order to integrate geomorphological and ecological observations into a detailed macrophytes map of Lake Trasimeno (Italy). Shallow water vegetation, in fact, plays an essential role in determining how coastal morphology and ecosystems dynamics respond to feedbacks between biological and physical processes. An accurate field campaign was carried out during the airborne survey and a collection of different biophysical parameter has been achieved. The purposes of the field observations were twofold. First, field observations allowed identification of biophysical habitats and properties associated both to radiometric and limnological features. Secondly, field reconnaissance allowed identifying significant parameters involved in optical interpretation of the

  10. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  11. New specific indicators for qPCR monitoring of airborne microorganisms emitted by composting plants

    NASA Astrophysics Data System (ADS)

    Le Goff, Olivier; Godon, Jean-Jacques; Steyer, Jean-Philippe; Wéry, Nathalie

    2011-09-01

    Bioaerosols emitted from composting plants are an issue because of their potential harmful impact on public or workers' health. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants and the consequent potential exposure of nearby residents. This inadequate knowledge is partly due to the fact that there is currently no method for specifically tracing these microorganisms in the air. The objective of this study was to validate the use of microbial groups as indicators of composting bioaerosols by comparing their concentration in air samples, whether impacted by composting activity or not. Three potential microbial indicators were chosen among the core species of composting bioaerosols. They belong to the genus Saccharopolyspora, to the Thermoactinomycetaceae and to the fungus Thermomyces. Quantitative PCR systems using TaqMan probes were designed to quantify each of the three phylotypes in air samples collected outdoors in natural environments and at composting plants. Compost-turning operations at industrial plants resulted in an increase in the concentration of the three phylotypes of at least 2 orders of magnitude when compared to the concentration measured in control samples collected upwind, and of at least 1 order of magnitude compared to the background concentration measured in natural environments unaffected by industrial activity. In conclusion, these three thermophilic phylotypes can be used as indicators of airborne microorganisms emitted by industrial composting plants. They may be particularly relevant in studying the dispersal of bioaerosols around composting plants and the exposure of nearby residents. This is the first time that indicators of compost bioaerosols have been validated by comparing their concentrations in impacted samples to their background levels in natural environments.

  12. Mapping and Monitoring Delmarva Fox Squirrel Habitat Using an Airborne LiDAR Profiler

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Ratnaswamy, Mary; Keller, Cherry

    2004-01-01

    Twenty five hundred thirty nine kilometers of airborne laser profiling and videography data were acquired over the state of Delaware during the summer of 2000. The laser ranging measurements and video from approximately one-half of that data set (1304 km) were analyzed to identify and locate forested sites that might potentially support populations of Delmarva fox squirrel (DFS, Sciurus niger cinereus). The DFS is an endangered species previously endemic to tall, dense, mature forests with open understories on the Eastern Shore of the Chesapeake Bay. The airborne LiDAR employed in this study can measure forest canopy height and canopy closure, but cannot measure or infer understory canopy conditions. Hence the LiDAR must be viewed as a tool to map potential, not actual, habitat. Fifty-three potentially suitable DFS sites were identified in the 1304 km of flight transect data. Each of the 53 sites met the following criteria according to the LiDAR and video record: (1 ) at least 120m of contiguous forest; (2) an average canopy height greater than 20m; (3) an average canopy closure of >80%; and (4) no roofs, impervious surface (e.g., asphalt, concrete), and/or open water anywhere along the 120m length of the laser segment. Thirty-two of the 53 sites were visited on the ground and measurements taken for a DFS habitat suitability model. Seventy eight percent of the sites (25 of 32) were judged by the model to be suited to supporting a DFS population. Twenty-eight of the 32 sites visited in the field were in forest cover types (hardwood, mixed wood, conifer, wetlands) according to a land cover GIS map. Of these, 23 (82%) were suited to support DFS. The remaining 4 sites were located in nonforest cover types - agricultural or residential areas. Two of the four, or 50% were suited to the DFS. All of the LiDAR flight data, 2539 km, were analyzed to

  13. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  14. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Hiemstra, Paul H.; Pebesma, Edzer J.; Twenhöfel, Chris J. W.; Heuvelink, Gerard B. M.

    2009-08-01

    Detection of radiological accidents and monitoring the spread of the contamination is of great importance. Following the Chernobyl accident many European countries have installed monitoring networks to perform this task. Real-time availability of automatically interpolated maps showing the spread of radioactivity during and after an accident would improve the capability of decision makers to accurately respond to a radiological accident. The objective of this paper is to present a real-time automatic interpolation system suited for natural background radioactivity. Interpolating natural background radiation allows us to better understand the natural variability, thus improving our ability to detect accidents. A real-time automatic interpolation system suited for natural background radioactivity presents a first step towards a system that can deal with radiological accidents. The interpolated maps are produced using a combination of universal kriging and an automatic variogram fitting procedure. The system provides a map of (1) the kriging prediction, (2) the kriging standard error and (3) the position of approximate prediction intervals relative to a threshold. The maps are presented through a Web Map Service (WMS) to ensure interoperability with existing Geographic Information Systems (GIS).

  15. 2003 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site, Nevada Test Site

    SciTech Connect

    Bechtel Nevada

    2004-02-01

    This report is a compilation of the calendar year 2003 groundwater sampling results from the Area 5 Radioactive Waste Management Site, Nevada Test Site. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semi-annually for the required analytes: pH, specific conductance, total organic carbon (TOC), total organic halides (TOX), tritium, and major cations/anions. Results from all samples collected in 2003 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 Radioactive Waste Management Site and confirm that any previous detections of TOC and TOX were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevations. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes a Cumulative Chronology for the Area 5 Radioactive Waste Management Site Groundwater Monitoring Program, a brief description of the site hydrogeology, and the current groundwater sampling procedure.

  16. Landslide Investigation by Repeat Airborne LiDAR and Ground Monitoring in the Western Suburb of Sapporo, Japan

    NASA Astrophysics Data System (ADS)

    Kasai, M.; Marutani, T.; Yoshida, H.

    2014-12-01

    This study presents landslide investigation using the combination of airborne LiDAR and ground monitoring data. The study site is located on the Teine Landslide (width: 2 km, Length: 6.5 km) in the western suburb of Sapporo city in Hokkaido Island, Japan, which collapsed more than 50,000 years ago. Since then streams have been developing and incising the landslide mass consisted of rock debris and volcanic deposits, presently causing a series of small deep-seated landslides along the banks. Because Sapporo is the economic center of Hokkaido and the suburb is expanding at the toe of the Teine slide, it is important to understand the behaviors of these active slopes to protect residents and infrastructures from unexpected disasters possibly triggered by an intense storm or earthquake. The LiDAR data for the area was first obtained by a manned helicopter in August 2010, and another survey by an unmanned helicopter is planned in autumn 2014 to estimate their activities from changes in the ground surfaces during the period from 2010 to 2014. Ground water level and landslide mass movements have also been monitored on site by using the coring holes for sampling since 2013. The combination of the data sets can make up the deficits of these methods, e.g., errors created through data processing for LiDAR survey and spatially limited information for ground monitoring, enabling to provide a solid three dimensional view of the slope movements. The notion obtained can be utilized to predict their future behaviors as well as to discover active but hiding landslides nearby. This study also showed that repeat monitoring of sites is a way of utilizing UAVs, particularly in terms of cost and convenience.

  17. Preplanning for D and D: Monitoring the Vadose Zone at Radioactive Waste Trenches

    SciTech Connect

    Wyatt, Douglas

    2008-01-15

    Planning for ultimate Decontamination and Decommissioning (D and D) of a nuclear facility is as much a part of a successful nuclear strategy as is the ultimate disposal of radioactive waste. As facilities, in this case radioactive waste disposal trenches, are closed and abandoned leading to ultimate decommissioning, long term monitoring may be required. However, preplanning by characterizing, modeling, and monitoring the environment around the facility prior to and during operations will allow a performance assessment to be made and future behavior predicted. In the radioactive waste burial grounds of the Savannah River Site new slit trenches were constructed to receive demolition debris associated with site foot print reduction. Some of the construction debris and associated process waste contained small amounts of tritium. Since the trenches were constructed over an existing tritium groundwater plume the monitoring and performance assessment of the trench, particularly with respect to tritium contributions to the vadose zone and groundwater, were important. These disposal trenches vary in length and width but are typically constructed within the upper 7 to 8 meters (21 to 24 feet) of the local sediments. The unconfined aquifer (water table) typically underlies the area at depths varying from 20 to 24 meters (60 to 72 feet), depending on elevation. Therefore, with downward flow and 13 to 16 meters (40 to 48 feet) of unsaturated sediments separating the base of the waste trenches from the unconfined aquifer, there was potential for an environmental impact to the sediments within the vadose zone and to the underlying groundwater. Monitoring and predicting this impact can support ultimate D and D activities and future performance assessment evaluation. From this work several key observations were made that will support long term monitoring and subsequent D and D: - The observed lateral variation of thinly bedded sands and clays may be less than 20 meters particularly

  18. Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: Risk of contamination during sampling, handling and analysis

    NASA Astrophysics Data System (ADS)

    Rasmussen, Pat E.; Wheeler, Amanda J.; Hassan, Nouri M.; Filiatreault, Alain; Lanouette, Monique

    Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM 2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min -1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m 3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.

  19. Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Duncan, Shona M.; Farrell, Roberta L.; Jordan, Neville; Jurgens, Joel A.; Blanchette, Robert A.

    2010-08-01

    Air sampling in the ‘Heroic Era’ historic huts on Ross Island, Antarctica confirmed fungal presence, viability and winter survival. Cultivation and consensus sequence-based identification of Cladosporium cladosporioides, Pseudeurotium desertorum, Geomyces sp. and Antarctomyces psychrotrophicus demonstrated that they dominated the air environment within the huts. Cadophora sp. and Thebolus sp. were also isolated from the air and identified by morphological characteristics. Viable fungal colony forming units generally dropped in winter 2007 samplings from levels recorded in summer 2006 but were still substantial and greater than observed in summer 2008 and summer 2009 sampling at some locations. Comparing interior to exterior sampling, at the Hut Point and Cape Evans sites, there were more fungi recovered from the air in the interiors but at Cape Royds location, more fungi were recovered from the outside environment, possibly due to the impact of large amounts of organic material from the nearby Adélie penguin rookery. This research reveals airborne fungal biodiversity in summer and winter and demonstrates spores are widespread particularly in the interiors of the huts. Completed conservation efforts appear to have reduced fungal blooms and spores, which should reduce future adverse impacts to wood, textiles, paper and other artefacts so that this important polar heritage can be preserved.

  20. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring.

    PubMed

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  1. Apparatus and methods for monitoring the concentrations of hazardous airborne substances, especially lead

    DOEpatents

    Zaromb, Solomon

    2004-07-13

    Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.

  2. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring

    PubMed Central

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  3. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    Y. E. Townsend

    2003-06-01

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  4. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  5. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  6. Development of Wireless Data Transmission System for the Monitoring in Geological Disposal of Radioactive Waste - 12063

    SciTech Connect

    Suzuki, Kei; Eto, Jiro; Tanabe, Hiromi; Esaki, Taichi; Takamura, Hisashi; Suyama, Yasuhiro

    2012-07-01

    The authors have been developing a wireless data transmission system to monitor the performance of a geological disposal system for radioactive waste. The system's concepts, advantages, and a recent development focused on reducing transmitter size to suit narrow spaces such as bentonite buffers and boreholes. A wireless transmitter with a built-in temperature sensor and a connector for external sensors has been developed, measuring 130 mm in length and 50 mm in diameter. The capability of the transmitter was confirmed by transmission tests on the ground and in a bentonite block. (authors)

  7. Monitoring of workers exposure to low levels of airborne monomers in a polystyrene production plant

    SciTech Connect

    Samimi, B.; Falbo, L.

    1982-11-01

    Exposure of workers to sub-ppm levels of airborne monomers, namely ethyl acrylate, methyl methacrylate, n-butyl acrylate, styrene, ..cap alpha..-methylstyrene, and 20 ethylhexyl acrylate, in a polystyrene production plant was measured in the same sample on a single gas chromatographic column. The best separation and sensitivity were obtained with a 3 m x 3.175 mm stainless steel column packed with 10% FFAP on Chromosorb and a temperature programmed from 70/sup 0/C to 110/sup 0/C. A total of 106 air samples were collected on 150 mg charcoal tubes from the breathing zone of workers, from areas near reactors, and from places where monomers were unloaded from trucks and tank cars. Samples were analyzed in a manner similar to the method recommended by NIOSH. The mean TWA concentrations in a worker's breathing zone were 89, 66, 49, 120, 41, 1 ppb for ethyl acrylate, methyl methacrylate, n-butyl acrylate, styrene, ..cap alpha..-methylstyrene, and 2-ethylhexyl acrylate, respectively. The highest TWA breathing zone concentration was 14.8 ppm for styrene, which occurred during unloading and sampling of the monomer for a quality check. The mean TWA concentration of monomers in the air of the workplace were 1.1 ppm, 169,36,54,10, and 30 ppb for the same 6 compounds mentioned above. The highest area TWA concentration was 57 ppm for ethyl acrylate, which occurred outdoors at the truck and tank car unloading site. It was concluded that use of two separate local exhaust ventilating systems in this polymerization process were effecive in maintaining negative pressure within the reactors under all circumstances of use. These engineering controls and care in handling monomers have resulted in a relatively safe working environment.

  8. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    SciTech Connect

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

  9. Accumulation of organic air constituents by plant surfaces. Spruce needles for monitoring airborne chlorinated hydrocarbons

    SciTech Connect

    Reischl, A.; Thoma, H.; Reissinger, M.; Hutzinger, O. )

    1988-10-01

    The needles of the spruce (Picea abies) were used to monitor ambient air for organic trace substances. Analyses of spruce needles in an industrialized area demonstrated that the concentrations of these substances were much higher than those in a nonindustrialized area.

  10. Monitoring Strategies for REDD+: Integrating Field, Airborne, and Satellite Observations of Amazon Forests

    NASA Technical Reports Server (NTRS)

    Morton, Douglas; Souza, Carlos, Jr.; Souza, Carlos, Jr.; Keller, Michael

    2012-01-01

    Large-scale tropical forest monitoring efforts in support of REDD+ (Reducing Emissions from Deforestation and forest Degradation plus enhancing forest carbon stocks) confront a range of challenges. REDD+ activities typically have short reporting time scales, diverse data needs, and low tolerance for uncertainties. Meeting these challenges will require innovative use of remote sensing data, including integrating data at different spatial and temporal resolutions. The global scientific community is engaged in developing, evaluating, and applying new methods for regional to global scale forest monitoring. Pilot REDD+ activities are underway across the tropics with support from a range of national and international groups, including SilvaCarbon, an interagency effort to coordinate US expertise on forest monitoring and resource management. Early actions on REDD+ have exposed some of the inherent tradeoffs that arise from the use of incomplete or inaccurate data to quantify forest area changes and related carbon emissions. Here, we summarize recent advances in forest monitoring to identify and target the main sources of uncertainty in estimates of forest area changes, aboveground carbon stocks, and Amazon forest carbon emissions.

  11. The ebb and flow of airborne pathogens: Monitoring and use in disease management decisions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scoutin...

  12. The ebb and flow of airborne pathogens: monitoring and use in disease management decisions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scoutin...

  13. Testing and assessment of a large BGO detector for beach monitoring of radioactive particles

    NASA Astrophysics Data System (ADS)

    van der Graaf, E. R.; Rigollet, C.; Maleka, P. P.; Jones, D. G.

    2007-06-01

    The Beach Monitoring Steering Group (BMSG) was set up by UKAEA to explore whether improved systems for beach monitoring of radioactive particles are available. The BMSG commissioned the British Geological Survey (BGS) and the Nuclear Geophysics Division of the Kernfysisch Versneller Instituut (KVI/NGD), and other companies, to test their most sensitive system. This paper presents the results of trials in a specially created test facility at UKAEA Harwell with a large BGO detector. The detector's size and weight mean that it would be suitable for vehicle deployment but would be too large and heavy to carry in areas that could not be accessed by a vehicle. However, it would be possible to use the same methodology that is described here with a smaller detector capable of being carried in a backpack, albeit with reduced sensitivity for particle detection. The approach that we present is also applicable, with modifications, to the detection of offshore particles using a towed seabed detector.

  14. 2006 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    David B. Hudson

    2007-02-01

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) for calendar year 2006. Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 were sampled in April and October 2006 for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2006 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  15. 2008 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2009-01-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) including calendar year 2008 results. Each of the three Pilot Wells was sampled on March 11, 2008, and September 10, 2008. These wells were sampled for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2008 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  16. On-line monitoring of airborne bioaerosols released from a composting/green waste site.

    PubMed

    O'Connor, David J; Daly, Shane M; Sodeau, John R

    2015-08-01

    This study is the first to employ the on-line WIBS-4 (Wideband Integrated Bioaerosol Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing "dust" released from a composting/green waste site. The purpose of the research was to provide a "proof of principle" for using WIBS to monitor such a location continually over days and nights in order to construct comparative "bioaerosol site profiles". The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, "shape", site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a "light" workload period, another as a "heavy" workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5-3μm with morphologies ranging from elongated to ellipsoidal/spherical. The real-time number-concentration data provides a long-term "video" record of the site and were consistent with the Andersen sampling protocol performed that provides only a single "snapshot" for bioaerosol release. The number-concentration of fluorescent particles as a proportion of total particle counts amounted, on average, to ∼1% for the "light" workday period, ∼7% for the "heavy" workday period and ∼18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays. PMID:25987290

  17. Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain

    SciTech Connect

    Walker, Randy M; Kopsick, Deborah A; Warren, Tracy A; Abercrombie, Robert K; Sheldon, Frederick T; Hill, David E; Gross, Ian G; Smith, Cyrus M

    2007-01-01

    One of the main components of the Environmental Protection Agency's (EPA) Clean Materials Program is to prevent the loss of radioactive materials through the use of tracking technologies. If a source is inadvertently lost or purposely abandoned or stolen, it is critical that the source be recovered before harm to the public or the environment occurs. Radio frequency identification (RFID) tagging on radioactive sources is a technology that can be operated in the active or passive mode, has a variety of frequencies available allowing for flexibility in use, is able to transmit detailed data and is discreet. The purpose of the joint DOE and EPA Radiological Source Tracking and Monitoring (RadSTraM) project is to evaluate the viability, effectiveness and scalability of RFID technology under a variety of transportation scenarios. The goal of the Phase II was to continue testing integrated RFID tag systems from various vendors for feasibility in tracking radioactive sealed sources which included the following performance objectives: 1. Validate the performance of RFID intelligent systems to monitor express air shipments of medical radioisotopes in the nationwide supply chain, 2. Quantify the reliability of these tracking systems with regards to probability of tag detection and operational reliability, 3. Determine if the implementation of these systems improves manpower effectiveness, and 4. Demonstrate that RFID tracking and monitoring of radioactive materials is ready for large scale deployment at the National level. For purposes of analysis, the test scenario employed in this study utilized the real world commerce supply chain process for radioactive medical isotopes to validate the performance of intelligent RFID tags. Three different RFID systems were assessed from a shipping and packaging perspective, included varied environmental conditions, varied commodities on board vehicles, temporary staging in shipping terminals using various commodities and normal

  18. Measurement of airborne radioactivity and its meteorological application. Part VIII. Annual report, 1 August 1976-31 October 1977

    SciTech Connect

    Reiter, R.; Kanter, H. J.; Sladkovic, R.; Jaeger, H.; Poetzl, K.

    1980-12-01

    Studies of the stratospheric-tropospheric exchange were continued. Continuous data of the concentration of cosmogenic radionuclides /sup 7/Be, /sup 32/P, /sup 33/P, as well as of fallout and daily means of ozone concentrations, measured at 3000 m ASL are presented for the reporting period. Installation of two additional ozone measuring stations at 1800 and 740 m ASL provided the means for getting insight into the balance of the tropospheric ozone. First results of routine monitoring of the stratospheric aerosol with a high resolution lidar are shown. Accuracy of the method is discussed. Control of the stratospheric-tropospheric exchange by solar activity is examined with the aid of the key day method using an 8-year measuring sequence. Relevant literature available on the subject is reviewed.

  19. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    SciTech Connect

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-05-26

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

  20. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  1. Evaluation of airborne thermal-infrared image data for monitoring aquatic habitats and cultural resources within the Grand Canyon

    USGS Publications Warehouse

    Davis, Philip A.

    2002-01-01

    This study examined thermal-infrared (TIR) image data acquired using the airborne Advanced Thematic Mapper (ATM) sensor in the afternoon of July 25th, 2000 over a portion of the Colorado River corridor to determine the capability of these 100-cm resolution data to address some biologic and cultural resource requirements for GCMRC. The requirements investigated included the mapping of warm backwaters that may serve as fish habitats and the detection (and monitoring) of archaeological structures and natural springs that occur on land. This report reviews the procedure for calibration of the airborne TIR data to obtain surface water temperatures and shows the results for various river reaches within the acquired river corridor. With respect to mapping warm backwater areas, our results show that TIR data need to be acquired with a gain setting that optimizes the range of temperatures found within the water to increase sensitivity of the resulting data to a level of 0.1 °C and to reduce scan-line noise. Data acquired within a two-hour window around maximum solar heating (1:30 PM) is recommended to provide maximum solar heating of the water and to minimize cooling effects of late-afternoon shadows. Ground-truth data within the temperature range of the warm backwaters are necessary for calibration of the TIR data. The ground-truth data need to be collected with good locational accuracy. The derived water-temperature data provide the capability for rapid, wide-area mapping of warm-water fish habitats using a threshold temperature for such habitats. The collected daytime TIR data were ineffective in mapping (detecting) both archaeological structures and natural springs (seeps). The inability of the daytime TIR data to detect archaeological structures is attributed to the low thermal sensitivity (0.3 °C) of the collected data. The detection of subtle thermal differences between geologic materials requires sensitivities of at least 0.1 °C, which can be obtained by most TIR

  2. Airborne LiDAR data as a key element of the integrated monitoring of the reservoir shore zone development

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Halina

    2015-04-01

    The research of the transformation of the shore zone of artificial water reservoirs are long-term monitoring studies, often covering the entire length of the shoreline of the tested basin. Extremely valuable sources of data in such studies are variously dated cartographic materials: large-scale maps and surveying plans as well as aerial photographs. In recent years, the materials derived from the airborne laser scanning, i.e. light detection and ranging (LiDAR) which are among the most accurate terrain data, gained importance. The possibility of using data from the airborne laser scanning in the studies of the transformation of the shore zone of a water reservoir will be presented on the example of the Jeziorsko Reservoir on the Warta River (Central Poland). The reservoir was created in the years 1986-1992. It is a typical retention reservoir with large, nearly 5-m, water level changes in a yearly cycle. Its total surface area, depending on the water level, is between 19.6 km2 and 242.3 km2. The total length of the shore is 44.3 km, of which 14.2 km (32.1%) are embanked. Nearly 40% of the non-embanked shore is still active, and its development is the result of the processes of shoreline erosion, mass movements and accumulation. Most problems are caused by the abrasive shores which represent 27% of the non-embanked shoreline. The height of the accompanying cliff varies from a few cm to 12.5 m. In the years 1991-2009 the shoreline of the reservoir retreated by 6.9 to 18.7 m in the northern part of the reservoir (the cliff of 1-12.2 m) and by 9 to 29.6 m in its southern part (the cliff of 2.0-8.5 m). The cliff recession pace with the development of the shore zone significantly decreased; in the northern part of the reservoir the cliff recession dropped from 1.5 m/y in 1991-2004 to 0.5 m/y in 2004-2009, while in the southern part - from 0.7-2.22 m/y in 1991-2004 to 0-1.12 m/y in 2004-2009. The study used the airborne LiDAR data from the years 2009 and 2011 in the ALS

  3. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    SciTech Connect

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  4. Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  5. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    NASA Astrophysics Data System (ADS)

    Nedilko, S.; Hizhnyi, Yu.; Chukova, O.; Nagornyi, P.; Bojko, R.; Boyko, V.

    2009-03-01

    The potential use of luminescent probes for control over the structural state of MTi2(PO4)3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi2(PO4)3 (M = Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and visible light excitations are analyzed. Electronic structure and absorption spectra of NaTi2(PO4)3 crystals are calculated by the full-potential LAPW method. The origin of the self and impurity emission bands of MTi2(PO4)3 materials is defined. It was shown that nitrogen laser with 337.1 nm generation wavelength is the most effective excitation source for remote monitoring of incorporation of various types of waste elements into MTi2(PO4)3 hosts and for control over states of these hosts during storage of radioactive waste.

  6. Application of GIS technologies to monitor secondary radioactive contamination in the Delegen mountain massif

    NASA Astrophysics Data System (ADS)

    Alipbeki, O.; Kabzhanova, G.; Kurmanova, G.; Alipbekova, Ch.

    2016-06-01

    The territory of the Degelen mountain massif is located within territory of the former Semipalatinsk nuclear test site and it is an area of ecological disaster. Currently there is a process of secondary radioactive contamination that is caused by geodynamic processes activated at the Degelen array, violation of underground hydrological cycles and as a consequence, water seepage into the tunnels. One of the methods of monitoring of geodynamic processes is the modern technology of geographic information systems (GIS), methods of satellite radar interferometry and high accuracy satellite navigation system in conjunction with radioecological methods. This paper discusses on the creation of a GIS-project for the Degelen array, facilitated by quality geospatial analysis of the situation and simulation of the phenomena, in order to maximize an objective assessment of the radiation situation in this protected area.

  7. Performance assessment monitoring of low-level radioactive waste disposal facilities

    SciTech Connect

    Garland, S.B. II; Craig, P.M.; Styers, D.R.

    1988-01-01

    To develop a long-range plan for the disposal of the solid low-level radioactive wastes (LLW) generated by these facilities, the Low-Level Waste Disposal Development and Demonstration Program was initiated. A key component of the program is selecting promising disposal technologies to be demonstrated at a scale sufficient to assess performance adequately. One technology selected for demonstration is the aboveground tumulus. The tumulus facility consists of a concrete pad on which the LLW is placed, a synthetic underpad liner, concrete disposal vaults in which the LLW is contained, and a multilayered cap to be constructed after the pad is filled. This paper describes the methodology being used to assess the performance of the tumulus in terms of environmental impacts and worker exposures. This assessment also will assist in determining monitoring needs during routine operations of future full-scale facilities.

  8. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  9. Attenuation of elastic waves in bentonite and monitoring of radioactive waste repositories

    NASA Astrophysics Data System (ADS)

    Biryukov, A.; Tisato, N.; Grasselli, G.

    2016-04-01

    Deep geological repositories, isolated from the geosphere by an engineered bentonite barrier, are currently considered the safest solution for high-level radioactive waste (HLRW) disposal. As the physical conditions and properties of the bentonite barrier are anticipated to change with time, seismic tomography was suggested as a viable technique to monitor the physical state and integrity of the barrier and to timely detect any unforeseen failure. To do so, the seismic monitoring system needs to be optimized, and this can be achieved by conducting numerical simulations of wave propagation in the repository geometry. Previous studies treated bentonite as an elastic medium, whereas recent experimental investigations indicate its pronounced viscoelastic behaviour. The aims of this contribution are (i) to numerically estimate the effective attenuation of bentonite as a function of temperature T and water content Wc, so that synthetic data can accurately reproduce experimental traces and (ii) assess the feasibility and limitation of the HLRW repository monitoring by simulating the propagation of sonic waves in a realistic repository geometry. A finite difference method was utilized to simulate the wave propagation in experimental and repository setups. First, the input of the viscoelastic model was varied to achieve a match between experimental and numerical traces. The routine was repeated for several values of Wc and T, so that quality factors Qp(Wc, T) and Qs(Wc, T) were obtained. Then, the full-scale monitoring procedure was simulated for six scenarios, representing the evolution of bentonite's physical state. The estimated Qp and Qs exhibited a minimum at Wc = 20 per cent and higher sensitivity to Wc, rather than T, suggesting that pronounced inelasticity of the clay has to be taken into account in geophysical modelling and analysis. The repository-model traces confirm that active seismic monitoring is, in principle, capable of depicting physical changes in the

  10. Environmental monitoring for a low-level radioactive waste management facility: Incinerator operations

    SciTech Connect

    Tries, M.A. |; Chabot, G.E.; Ring, J.P.

    1996-09-01

    An environmental monitoring program has been developed for Harvard University, Southborough campus, to access the local environmental concentrations of radionuclides released in incinerator effluents. The campus is host to the University`s low-level radioactive waste management facility, which consists of 6,000 drum capacity decay-storage buildings; a 250 drum capacity decay-storage freezer; and a controlled-air incinerator. Developmental considerations were based on the characteristics and use of the incinerator, which has a capacity of 8 tons per day and is operated at 5% of the time for the volume reduction of Type 0 and Type 4 wastes contaminated with a variety of radionuclides used in biomedical research-some in microsphere form. Monitoring was established for air, leafy vegetation, leaf-litter, and surface soil media. Field sampling was optimized regarding location and time based on the action of atmospheric, terrestrial, and biotic transport mechanisms. Preliminary results indicate transient concentrations of {sup 3}H and {sup 125}I in vegetation directly exposed to the dispersing plume. Measurable particulate depositions have not been observed. 52 refs., 3 figs., 14 tabs.

  11. 1999 data report: Groundwater monitoring program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Yvonne Townsend

    2000-03-01

    This report is a compilation of the annual 1999 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS. Groundwater elevation was monitored quarterly with no major changes noted. There continues to be an extremely small gradient to the northeast with a flow velocity less than one foot per year; however, this is subject to change because the wells have a similar groundwater elevation.

  12. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  13. Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Y. E. Townsend

    2003-02-01

    This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  14. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-01

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams. PMID:22571620

  15. Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project

    SciTech Connect

    Lepel, Elwood A.; Hensley, Walter K.

    2009-12-01

    Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

  16. Application of dig-face monitoring during excavation of a radioactive plume

    SciTech Connect

    Josten, N.E.; Gehrke, R.; Stanley, R.; MacMahan, K.

    1996-11-01

    Dig-face characterization is a concept for improving the safety and efficiency of hazardous waste retrieval. A dig-face characterization system consists of onsite hardware for collecting detailed information on the changing chemical, radiological, and physical conditions in the subsurface during the entire course of a hazardous site excavation. The dig-face characterization concept originated at the Idaho National Engineering Laboratory and has been under development there since 1992. During August 1995, a prototype dig-face system was taken to Mound Laboratory, Ohio, for a first attempt at monitoring a hazardous excavation. Mound Area 7 was the site of historical disposals of {sup 232}Th, {sup 227}Ac, and assorted debris. The dig-face characterization system was used to monitor a 20-ft x 20-ft x 5-ft-deep excavation aimed at removing {sup 227}Ac contaminated soils. Radiological, geophysical, and topographic sensors were scanned across the excavation dig-face at four successive depths as soil was removed in 1-ft to 2-ft lifts. The geophysical and topographic sensors located metallic debris and mapped the dig-face topography in great detail as the excavation advanced. The radiation sensors produced high-fidelity images showing the location of radioactive contaminants and clearly identified and delineated separate {sup 232}Th and {sup 227}Ac plumes. By combining the radiation data from all four levels, a three-dimensional image of the contamination plumes was developed. The radiation sensor data indicated that only a small portion of the excavated soil volume was contaminated. The spatial information produced by the dig-face system was used to direct the excavation activities into the area containing the {sup 227}Ac and to evaluate options for handling the separate {sup 232}Th plume.

  17. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY 2012

    SciTech Connect

    Miller, Julianne J.; Mizell, Steve A.; McCurdy, Greg; Campbell, Scott A.

    2012-09-01

    the study because the aerial survey indicates that a channel mapped on the United States Geological Survey topographic map of the area traverses the south end of the area of surface contamination; this channel lies south of the point marked number 3 in Figure 1, and anecdotal information indicates that sediment has been deposited on the road bordering the southeast boundary of the CAU from an adjacent channel (Traynor, J, personal communication, 2011). Because contamination is particularly close to the boundary of CAU 550, Smoky CA, it is important to know if contaminants are moving, what meteorological conditions result in movement of contaminated soils, and what particle size fractions associated with contamination are involved. Closure plans are being developed for the CAUs on the NNSS. The closure plans may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and post-closure monitoring program.

  18. Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2013-02-11

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  19. Acoustic emission monitoring of cement-based structures immobilising radioactive waste

    SciTech Connect

    Spasova, L.M.; Ojovan, M.I.; Hayes, M.; Godfrey, H.

    2007-07-01

    The long term performance of cementitious structures immobilising radioactive waste can be affected by physical and chemical processes within the encapsulating materials such as formation of new phases (e.g., vaterite, brucite), degradation of cement phases (e.g., CSH gel, portlandite), degradation of some waste components (e.g., organics), corrosion of metallic constituents (aluminium, magnesium), gas emission, further hydration etc. The corrosion of metals in the high pH cementitious environment is of especial concern as it can potentially cause wasteform cracking. One of the perspective non-destructive methods used to monitor and assess the mechanical properties of materials and structures is based on an acoustic emission (AE) technique. In this study an AE non-destructive technique was used to evaluate the mechanical performance of cementitious structures with encapsulated metallic waste such as aluminium. AE signals generated as a result of aluminium corrosion in a small-size blast furnace slag (BFS)/ordinary Portland cement (OPC) sample were detected, recorded and analysed. A procedure for AE data analysis including conventional parameter-based AE approach and signal-based analysis was applied and demonstrated to provide information on the aluminium corrosion process and its impact on the mechanical performance of the encapsulating cement matrix. (authors)

  20. Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2011-01-01

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  1. Radioactive Ion Beam Monitoring System and Simulation of the DRIB's Complex Target - Catcher Unit

    SciTech Connect

    Oganessian, Yu. Ts.; Gulbekian, G. G.; Mitrofanov, S. V.; Denisov, S. V.; Tarasov, O. B.

    2007-05-22

    The Dubna Radioactive Ion Beams accelerator complex (DRIBs) is based on two U-400 and U-400M isochronous cyclotrons, which are equipped with two ECR ion sources. We use to 7Li as primary beam with energy equal to 32 AMeV. The results are showed here was obtained with interaction of 7Li with carbon target for 6He isotope. Productive carbon target and catcher was combined into one unit. The catcher unit located in front of the ECR source and consists of the generating target and gas-vacuum system. In this review the results a number of tests of the DRIBs project are described. During the tests some of defects in catcher unit had been found and have been removed in the new module witch are gave us increasing of secondary beam current. The system of the DRIBs beam monitoring have been improved and completed. Also the new subroutine of the Lise++ simulation toolkit for modeling catchers properties has been designed.

  2. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2010-01-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  3. Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2014-10-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  4. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.

    PubMed

    Khan, A J; Semkow, T M; Beach, S E; Haines, D K; Bradt, C J; Bari, A; Syed, U-F; Torres, M; Marrantino, J; Kitto, M E; Menia, T; Fielman, E

    2014-08-01

    The results are described of an upgrade of the low-background gamma-ray spectrometry laboratory at New York State Department of Health by acquiring sensitivity to low-energy gamma rays. Tuning of the spectrometer and its low-energy response characteristics are described. The spectrometer has been applied to monitor the environment by measuring aerosols and water in New York State contaminated by the 2011 Fukushima accident plume. In addition, the spectrometer has been used to monitor radioactivity in food by performing a study of cesium in Florida milk. PMID:24836905

  5. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2012-02-27

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  6. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    Yvonne Townsend

    2001-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste.

  7. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments.

  8. IN-SITU, LONG-TERM MONITORING SYSTEM FOR RADIOACTIVE CONTAMINANTS

    SciTech Connect

    James S. Durham; Stephen W.S. McKeever; Mark S. Akselrod

    2002-10-01

    This report presents the results of the first phase of the project entitled ''In-situ, Long-term Monitoring System for Radioactive Contaminants.'' Phase one of this effort included four objectives, each with specific success criteria. The first objective was to produce dosimetry grade fibers and rods of aluminum oxide. The success criterion for this milestone was the production of aluminum oxide rods and fibers that have a minimum measurable dose (MMD) of 100 mrem or less. This milestone was completed and the MMD for the rods was measured to be 1.53 mrem. Based on the MMD, the ability of the sensor to measure {sup 137}Cs, {sup 90}Sr/{sup 90}Y, and {sup 99}Tc was evaluated. It was determined that the sensor can measure the release limit of these radionuclides (50 pCi/cm{sup 3}) in 150 h, 200 h, and 54,000 h, respectively. The monitor is adequate for measuring {sup 137}Cs and {sup 90}Sr/{sup 90}Y but is unsuitable for measuring {sup 99}Tc in soil. The second objective was to construct a prototype sensor (dosimeter and fiber optic channel). There were three success criteria for this milestone: (1) Perform measurements with the sensor for both gamma and beta radiation with a standard deviation of 10% or less; (2) Demonstrate the ability of the sensor to discriminate between gamma and beta radiation; and (3) Obtain similar or relatable results for differing lengths of fiber optic cable. These milestones were met. The sensor was able to measure gamma radiation repeatedly with a standard deviation of 3.15% and beta radiation with a standard deviation of 2.85%. Data is presented that demonstrates that an end cap can be used to discriminate between beta plus gamma radiation using beta radiation from a {sup 90}Sr/{sup 90}Y source, and gamma radiation alone. It is shown that some amount of attenuation occurs in longer fiber optic cables, but it is unclear if the attenuation is due to poor alignment of the dosimeter and the cable. This issue will be investigated further when

  9. IN-SITU, LONG-TERM MONITORING SYSTEM FOR RADIOACTIVE CONTAMINANTS

    SciTech Connect

    James S. Durham; Stephen W.S. McKeever; Mark S. Akselrod

    2002-10-01

    This report presents the results of the first phase of the project entitled ''In-situ, Long-term Monitoring System for Radioactive Contaminants.'' Phase one of this effort included four objectives, each with specific success criteria. The first objective was to produce dosimetry grade fibers and rods of aluminum oxide. The success criterion for this milestone was the production of aluminum oxide rods and fibers that have a minimum measureable dose (MMD) of 100 mrem or less. This milestone was completed and the MMD for the rods was measured to be 1.53 mrem. Based on the MMD, the ability of the sensor to measure {sup 137}Cs, {sup 90}Sr/{sup 90}Y, and {sup 99}Tc was evaluated. It was determined that the sensor can measure the release limit of these radionuclides (50 pCi/cm{sup 3}) in 150 h, 200 h, and 54,000 h, respectively. The monitor is adequate for measuring {sup 137}Cs and {sup 90}Sr/{sup 90}Y but is unsuitable for measuring {sup 99}Tc in soil. The second objective was to construct a prototype sensor (dosimeter and fiber optic channel). There were three success criteria for this milestone: (1) Perform measurements with the sensor for both gamma and beta radiation with a standard deviation of 10% or less; (2) Demonstrate the ability of the sensor to discriminate between gamma and beta radiation; and (3) Obtain similar or relatable results for differing lengths of fiber optic cable. These milestones were met. The sensor was able to measure gamma radiation repeatedly with a standard deviation of 3.15% and beta radiation with a standard deviation of 2.85%. Data is presented that demonstrates that an end cap can be used to discriminate between beta plus gamma and gamma radiation. It is shown that some amount of attenuation occurs in longer fiber optic cables, but it is unclear if the attenuation is due to poor alignment of the dosimeter and the cable. This issue will be investigated further when more dosimeters are available so that the dosimeters can be permanently

  10. Monitoring of Pd in airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Atilgan, Semin; Akman, Suleyman; Baysal, Asli; Bakircioglu, Yasemin; Szigeti, Tamás; Óvári, Mihály; Záray, Gyula

    2012-04-01

    An analytical method has been developed for determination of palladium in PM2.5 fractions of urban airborne particulate matter by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. For the optimization of the experimental conditions, a road dust certified reference material (BCR-723) was used. The influence of pyrolysis and atomization temperatures, the amount of sample introduced into the graphite furnace and the addition of acids, surfactants and modifiers on the analytical signal of Pd were investigated. The limit of detection, calculated based on three times the standard deviations of analytical signals obtained during the atomization of 10 blank filter pieces, was 0.07 pg/m3. Since the amount of solid certified reference material introduced into the graphite furnace was about 50-2000 times lower than those required in order to obtain the certified value, the precision was relatively poor. This analytical method was applied for investigation of urban airborne particulate matter collected onto quartz fiber filters by high-volume aerosol samplers in the city center of Istanbul (Turkey) and Budapest (Hungary). The measured Pd concentrations changed in the range of 0.22-0.64 and 0.25-0.86 pg/m3 in Istanbul and Budapest, respectively.

  11. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Hudson, David

    2015-02-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2014 results. Analysis results for leachate contaminants collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included. During 2014, groundwater samples were collected and static water levels were measured at three wells surrounding the Area 5 RWMS. Groundwater samples were collected at wells UE5PW-1, UE5PW-2, and UE5PW-3 on March 11 and August 12, 2014, and static water levels were measured at each of these wells on March 10, June 2, August 11, and October 14, 2014. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. General water chemistry (cations and anions) was also measured. Results from samples collected in 2014 are within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. The data from the shallow aquifer indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS, and there were no significant changes in measured groundwater parameters compared to previous years. Leachate from above the primary liner of Cell 18 drains into a sump and is collected in a tank at the ground surface. Cell 18 began receiving waste in January 2011. Samples were collected from the tank when the leachate volume approached the 3,000-gallon tank capacity. Leachate samples have been collected 16 times since January 2011. During 2014, samples were collected on February 25, March 5, May 20, August 12, September 16, November 11, and December 16. Each leachate sample was

  12. Tillandsia stricta Sol (Bromeliaceae) leaves as monitors of airborne particulate matter-A comparative SEM methods evaluation: Unveiling an accurate and odd HP-SEM method.

    PubMed

    de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa

    2016-09-01

    Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration. PMID:27357408

  13. Comprehensive monitoring of the occurrence of 22 drugs of abuse and transformation products in airborne particulate matter in the city of Barcelona.

    PubMed

    Mastroianni, Nicola; Postigo, Cristina; López de Alda, Miren; Viana, Mar; Rodríguez, Aureli; Alastuey, Andrés; Querol, Xavier; Barceló, Damià

    2015-11-01

    In recent years monitoring the presence of psychotropic compounds in wastewater has been proposed as a tool to estimate community drug use. Measurement of drugs of abuse (DAs) in airborne particulate is currently being explored as an additional tool to evaluate drug use patterns in time and space, and identify potential emission sources. In this study, we comprehensively monitor the occurrence of 22 licit and illicit DAs and transformation products, belonging to 6 different chemical groups, in airborne particulate matter (PM10) in the city of Barcelona. In order to study spatial and temporal variations, samples were collected from 12 different selected locations on one weekday (Wednesday) and one weekend day (Saturday), during five consecutive weeks. A previously developed analytical methodology, based on pressurized liquid extraction (PLE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination, was adapted for analysis of the target compounds with satisfactory performance, ensuring reliability of results. Among the investigated compounds, cannabinol (CBN), cocaine (COC), and methamphetamine (MA) were found to be the most ubiquitous and abundant compounds in PM10 with concentrations ranging from 0.7pg/m(3) (MA) to 6020pg/m(3) (CBN). Significant differences in total DA concentrations in PM10 were observed across sampling days and locations. DA emissions were identified in highly densely populated areas, where popular commercial and nightlife zones are located. Psychoactive effects due to inhalation of measured concentrations are probably negligible; however, potential health effects due to chronic exposure have not been explored yet. PMID:26081737

  14. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    SciTech Connect

    Brown, G. S.; Cashwell, J. W.; Apple, M. L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials.

  15. Soil moisture monitoring results at the radioactive waste management complex of the Idaho National Engineering Laboratory, FY-1993

    SciTech Connect

    McElroy, D.L.

    1993-11-01

    In FY-1993, two tasks were performed for the Radioactive Waste Management Complex (RWMC) Low Level Waste Performance Assessment to estimate net infiltration from rain and snow at the Subsurface Disposal Area (SDA) and provide soil moisture data for hydrologic model calibration. The first task was to calibrate the neutron probe to convert neutron count data to soil moisture contents. A calibration equation was developed and applied to four years of neutron probe monitoring data (November 1986 to November 1990) at W02 and W06 to provide soil moisture estimates for that period. The second task was to monitor the soils at two neutron probe access tubes (W02 and W06) located in the SDA of the RWMC with a neutron probe to estimate soil moisture contents. FY-1993 monitoring indicated net infiltration varied widely across the SDA. Less than 1.2 in. of water drained into the underlying basalts near W02 in 1993. In contrast, an estimated 10.9 in. of water moved through the surficial sediments and into the underlying basalts at neutron probe access tube W06. Net infiltration estimates from the November 1986 to November 1990 neutron probe monitoring data are critical to predictive contaminant transport modeling and should be calculated and compared to the FY-1993 net infiltration estimates. In addition, plans are underway to expand the current neutron probe monitoring system in the SDA to address the variability in net infiltration across the SDA.

  16. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    SciTech Connect

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  17. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  18. Repetitive Immunoassay with a Surface Acoustic Wave Device and a Highly Stable Protein Monolayer for On-Site Monitoring of Airborne Dust Mite Allergens.

    PubMed

    Toma, Koji; Miki, Daisuke; Kishikawa, Chisato; Yoshimura, Naoyuki; Miyajima, Kumiko; Arakawa, Takahiro; Yatsuda, Hiromi; Mitsubayashi, Kohji

    2015-10-20

    This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems. PMID:26378678

  19. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  20. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  1. Monitoring natural and artificial radioactivity enhancement in the Aegean Sea using floating measuring systems.

    PubMed

    Tsabaris, C

    2008-11-01

    In the present work, the enhancement of radioactivity due to rainfall in the Aegean Sea using floating measuring systems was observed and quantified. The data were acquired with a NaI underwater detection system, which was installed on a floating measuring system at a depth of 3m. The results of natural and artificial radioactivity are discussed taking into account the rainfall intensity and wind direction. The activity concentration of (214)Bi increased up to (991+/-102)Bq/m(3) after strong rainfall in the North Aegean Sea in winter (humid period) with east wind direction. On other hand, the maximum activity concentration reached the level of (110+/-10)Bq/m(3) in summer (dry period) during south winds. PMID:18495486

  2. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  3. A prototype of radioactive waste drum monitor by non-destructive assays using gamma spectrometry.

    PubMed

    Thanh, Tran Thien; Trang, Hoang Thi Kieu; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tran, Le Bao; Tam, Hoang Duc; Tao, Chau Van

    2016-03-01

    In this work, segmented gamma scanning and the gamma emission tomography were used to locate unknown sources in a radioactive waste drum. The simulated detector response function and full energy peak efficiency are compared to corresponding experimental data and show about 5.3% difference for an energy ranging from 81keV to 1332.5keV for point sources. Computation of the corresponding activity is in good agreement with the true values. PMID:26717796

  4. Evaluation of HPGe spectrometric devices in monitoring the level of radioactive contamination in metallurgical industry

    NASA Astrophysics Data System (ADS)

    Petrucci, A.; Arnold, D.; Burda, O.; De Felice, P.; Garcia-Toraño, E.; Mejuto, M.; Peyres, V.; Šolc, J.; Vodenik, B.

    2015-10-01

    This paper presents the results of the tests of High Purity Germanium (HPGe) based gamma spectrometers employed for radioactivity control carried out on a daily basis in steel factories. This new application of this type of detector is part of the Joint Research Project (JRP) MetroMETAL supported by the European Metrology Research Programme (EMRP). The final purpose of the project was the improvement and standardisation of the measurement methods and systems for the control of radioactivity of recycled metal scraps at the beginning of the working process and for the certification of the absence of any radioactive contamination above the clearance levels (IAEA-TECDOC-8S5) in final steel products, Clearance levels for radionuclides in solid materials: application of exemption principles). Two prototypes based on HPGe detectors were designed and assembled to suit the needs of steel mills which had been examined previously. The evaluation of the two prototypes, carried out at three steel factories with standard sources of 60Co, 137Cs, 192Ir, 226Ra and 241Am in three different matrices (slag, fume dust and cast steel) and with samples provided on-site by the factories, was successful. The measurements proved the superiority of the prototypes over the scintillation detectors now commonly used regarding energy resolution and multi-nuclide identification capability. The detection limits were assessed and are presented as well.

  5. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    David B. Hudson

    2007-06-30

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of

  6. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  7. Design, calibration, and application of an airborne gamma spectrometer system in Switzerland

    SciTech Connect

    Schwarz, G.F.; Rybach, L.; Klingele, E.E.

    1997-09-01

    Airborne radiometric surveys are finding increasingly wider application in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack-mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma-ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power-plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose-rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Goesgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.

  8. Assessment of Superflux relative to fisheries research and monitoring. [airborne remote sensing of the Chesapeake bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Thomas, J. P.

    1981-01-01

    Some of the findings of the Superflux program relative to fishery research and monitoring are reviewed. The actual and potential influences of the plume on the shelf ecosystem contiguous to the mouth of Chesapeake Bay are described and insights derived from the combined use of in situ and remotely sensed data are presented.

  9. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Hudson, David B

    2014-02-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  10. Multicriteria relocation analysis of an off-site radioactive monitoring network for a nuclear power plant.

    PubMed

    Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang

    2006-08-01

    Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for

  11. Studies concerning the durability of concrete vaults for intermediate level radioactive waste disposal: Electrochemical monitoring and corrosion aspects

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.

    2006-11-01

    The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.

  12. Development and deployment of an underway radioactive cesium monitor off the Japanese coast near Fukushima Dai-ichi.

    PubMed

    Caffrey, J A; Higley, K A; Farsoni, A T; Smith, S; Menn, S

    2012-09-01

    A custom radiation monitoring system was developed by Oregon State University at the request of the Woods Hole Oceanographic Institute to measure radioactive cesium contaminants in the ocean waters near Fukushima Dai-ichi Nuclear Power Plant. The system was to be used on board the R/V Ka'imikai-O-Kanaloa during a 15 d research cruise to provide real-time approximations of radionuclide concentration and alert researchers to the possible occurrence of highly elevated radionuclide concentrations. A NaI(Tl) scintillation detector was coupled to a custom-built compact digital spectroscopy system and suspended within a sealed tank of continuously flowing seawater. A series of counts were acquired within an energy region corresponding to the main photopeak of (137)Cs. The system was calibrated using known quantities of radioactive (134)Cs and (137)Cs in a ratio equating to that present at the reactors' ocean outlet. The response between net count rate and concentration of (137)Cs was then used to generate temporal and geographic plots of (137)Cs concentration throughout the research cruise in Japanese coastal waters. The concentration of (137)Cs was low but detectable, reaching a peak of 3.8 ± 0.2 Bq/L. PMID:22218134

  13. Using TerraSAR-X and hyperspectral airborne data to monitor surface deformation and physical properties of the Barrow permafrost landscape, Alask

    NASA Astrophysics Data System (ADS)

    Haghshenas-Haghighi, M.; Motagh, M.; Heim, B.; Sachs, T.; Kohnert, K.; Streletskiy, D. A.

    2014-12-01

    In this study, we assess seasonal subsidence/heaving due to thawing/freezing of the permafrost in Barrow (71.3 N, 156.5 W) at the northernmost point of Alaska. The topographic relief in this area is low. Thick Permafrost underlies the entire area, with large ice volumes in its upper layer. With a large collection of field measurements during the past decades at the Barrow Environmental Observatory (BEO), it is an ideal site for permafrost investigation. There are long term systematic geocryological investigations within the Global Terrestrial Network (GTN-P) of the Circumpolar Active Layer Monitoring (CALM) programme. We use 28 TerraSAR-X images, acquired between December 2012 and December 2013 and analyze them using the Small BAseline Subset (SBAS) technique to extract time-series of ground surface deformation. We also analyze hyperspectral images acquired by the airborne AISA sensor over Barrow area, within the AIRMETH2013 programme, to assess physical characteristics such as vegetation biomass and density, surface moisture, and water bodies. Finally, we combine the information derived from both InSAR and hyperspectral analysis, with field measurements to investigate the link between physical characteristics of the permafrost and surface displacement.

  14. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  15. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring

    SciTech Connect

    Choi, H.; Perera, F.; Pac, A.; Wang, L.; Flak, E.; Mroz, E.; Jacek, R.; Chai-Onn, T.; Jedrychowski, W.; Masters, E.; Camann, D.; Spengler, J.

    2008-11-15

    Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.

  16. Performance level of an autonomous system of continuous monitoring of radioactivity in seawater.

    PubMed

    van Put, P; Debauche, A; De Lellis, C; Adam, V

    2004-01-01

    Following the recognition of their usefulness by the authorities and the scientific community, automatic water monitoring networks were developed again to be able to measure seawater. For that purpose, they had to be fully autonomous, with low power consumption (solar panel power supply), wireless communicating (satellite, GSM, radio) and very sensitive (a few Bq/m3). PMID:15162870

  17. Environmental monitoring at the Barnwell low level radioactive waste disposal site

    SciTech Connect

    Ragan, F.A.

    1989-11-01

    The Barnwell site has undergone an evolution to achieve the technology which is utilized today. A historical background will be presented along with an overview of present day operations. This paper will emphasize the environmental monitoring program: the types of samples taken, the methods of compiling and analyzing data, modeling, and resulting actions.

  18. Interpretation of the radioactive background observed in the OSO-7 gamma-ray monitor

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Dunphy, P.; Forest, D. J.; Chupp, E. L.

    1975-01-01

    Application of a spallation activation calculation to the OSO-7 gamma-ray monitor background shows that major line features and about 30% of the continuum can be understood as activation of the central detector crystal by trapped protons. Weaker line features arise from activation of materials unshielded by the anticoincidence cup, while the remaining continuum and annihilation line would seem to come largely from electron-photon cascades originating in the spacecraft.

  19. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  20. On monitoring anthropogenic airborne uranium concentrations and (235)U/(238)U isotopic ratio by Lichen - bio-indicator technique.

    PubMed

    Golubev, A V; Golubeva, V N; Krylov, N G; Kuznetsova, V F; Mavrin, S V; Aleinikov, A Yu; Hoppes, W G; Surano, K A

    2005-01-01

    Lichens are widely used to assess the atmospheric pollution by heavy metals and radionuclides. However, few studies are available in publications on using lichens to qualitatively assess the atmospheric pollution levels. The paper presents research results applying epiphytic lichens as bio-monitors of quantitative atmospheric contamination with uranium. The observations were conducted during 2.5 years in the natural environment. Two experimental sites were used: one in the vicinity of a uranium contamination source, the other one - at a sufficient distance away to represent the background conditions. Air and lichens were sampled at both sites monthly. Epiphytic lichens Hypogimnia physodes were used as bio-indicators. Lichen samples were taken from various trees at about 1.5m from the ground. Air was sampled with filters at sampling stations. The uranium content in lichen and air samples as well as isotopic mass ratios (235)U/(238)U were measured by mass-spectrometer technique after uranium pre-extraction. Measured content of uranium were 1.45 mgkg(-1) in lichen at 2.09 E-04 microgm(-3) in air and 0.106 mgkg(-1) in lichen at 1.13 E-05 microgm(-3) in air. The relationship of the uranium content in atmosphere and that in lichens was determined, C(AIR)=exp(1.1 x C(LICHEN)-12). The possibility of separate identification of natural and man-made uranium in lichens was demonstrated in principle. PMID:16083999

  1. Temporal multiparameter airborne DLR E-SAR images for crop monitoring: summary of the CLEOPATRA campaign 1992

    NASA Astrophysics Data System (ADS)

    Schmullius, Christiane C.; Nithack, Juergen

    1997-01-01

    From May 11 to July 31, 1992 the Cloud Experiment OberPfaffenhofen And Transports took place as a field experimental contribution to the global energy and water cycle experiment. The DLR Institute of Radio Frequency Technology participated with its experimental SAR system E- SAR. Multitemporal X-, C- and L-band data from 8 dates and three ERS-1 images between May 20 and July 30, 1992 are analyzed in regard to the influence of changing plant backscatter constituents and to investigate the impact of increasing ground cover in the different wavelength on soil moisture mapping. Backscatter curves of four crops are shown, which indicate the possibility for crop monitoring and preferred times for crop classification. Detection of soil moisture changes is only possible with L-band and only under grain crops. Maximum likelihood and isocluster classifications were applied on several single- and multifrequency, mono- and multitemporal channel combinations. The overall classification accuracies were higher than with supervised methods. Maximum likelihood classification allowed identification of ten crop types with accuracies of up to 84 percent, when a temporal multifrequency data set was used.

  2. Observation of radioactive background in the OSO-7 gamma ray monitor

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Dyer, C. S.

    1975-01-01

    The counting rate as measured by the gamma ray monitor on the OSO-7 satellite, covering the energy range 0.3-10 MeV, during a sixteen month period (October 1971-December 1972) was considerably higher than expected from balloon data previously reported. Dyer et al. (1971) have shown the importance of activation in satellites for diffuse gamma flux measurements. The OSO-7 spectra exhibit strong, complex line structure, especially between 400 keV and 900 keV, and several identifications can be made consistent with the model of Dyer et al. The spectral structure and time variations are presented which must be explained by any activation model.

  3. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  4. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  5. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  6. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  7. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  8. Dig-face monitoring during excavation of a radioactive plume at Mound Laboratory, Ohio

    SciTech Connect

    Josten, N.E.; Gehrke, R.J.; Carpenter, M.V.

    1995-12-01

    A dig-face monitoring system consists of onsite hardware for collecting information on changing chemical, radiological, and physical conditions in the subsurface soil during the hazardous site excavation. A prototype dig-face system was take to Mount Laboratory for a first trial. Mound Area 7 was the site of historical disposals of {sup 232}Th, {sup 227}Ac, and assorted debris. The system was used to monitor a deep excavation aimed at removing {sup 227}Ac-contaminated soils. Radiological, geophysical, and topographic sensors were used to scan across the excavation dig-face at four successive depths as soil was removed. A 3-D image of the contamination plumes was developed; the radiation sensor data indicated that only a small portion of the excavated soil volume was contaminated. The spatial information produced by the dig-face system was used to direct the excavation activities into the area containing the {sup 227}Ac and to evaluate options for handling the separate {sup 232}Th plume.

  9. Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident

    SciTech Connect

    Yamamoto, T.; Suzuki, M.; Ando, Y.

    2012-07-01

    After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

  10. Geotrupine beetles (Coleoptera: Scarabaeoidea) as bio-monitors of man-made radioactivity.

    PubMed

    Mietelski, Jerzy W; Szwałko, Przemysław; Tomankiewicz, Ewa; Gaca, Paweł; Grabowska, Sylwia

    2003-04-01

    Adults of the geotrupine beetle Anoplotrupes stercorosus (Coleoptera, Geotrupidae), a common European forest insect species, were used in the role of bio-monitors for mainly man-made radionuclides in a forest environment. Activities of 137Cs, 40K, 238Pu, (239+240)Pu, 90Sr and 241Am were studied. Samples originated from four areas in Poland, two from the north-east and two from the south of the country. The north-eastern areas were previously recognized as the places where hot particle fallout from Chernobyl took place. Results confirmed the differences in the activities between north-eastern and southern locations. Significant correlations were found between activities of 40K and 137Cs, and between activities of plutonium and americium isotopes. An additional study of the concentration of radionuclides within the bodies of beetles showed a general pattern of distribution of radioisotopes in the insect body. PMID:12729271

  11. A radioactive waste excavation at Mound Area 7 using INEL dig-face monitoring technology

    SciTech Connect

    Carpenter, M.V.; Josten, N.E.

    1996-12-31

    Dig-face characterization is a method to improve the safety and efficiency during hazardous waste retrieval. A dig-face characterization system consists of on-site hardware for collecting detailed information on the changing chemical, radiological, and physical conditions in the subsurface throughout a hazardous site excavation. The dig-face characterization concept originated at the Idaho National Engineering Laboratory where it has been under development since 1992. In August 1995, a prototype dig-face system was taken to Mound Laboratory, Ohio, to monitor a hazardous waste site excavation. Mound Area 7 was the site of previous disposal of {sup 232}Th, {sup 227}Ac, and other waste. The dig-face characterization system was used to monitor a 20-ft x 20-ft x 5-ft-deep excavation intended to remove the {sup 227}Ac contaminated soils. Radiological, geophysical, and topographical sensors were scanned across each of four successive excavated soil levels, each 1-ft to 2-ft thick. The radiation sensors produced highly detailed images showing the location of the contaminants {sup 232}Th and {sup 227}Ac, and the clear delineation between them. When combined into a single data set, the four levels of collected data produced a three dimensional image of the contamination. The radiation sensor data indicated that only a small portion of the excavated soil was actually contaminated. The information produced by the dig-face system was used to direct precise excavation activities in the area containing the {sup 227}Ac and to plan subsequent removal of the separate {sup 232}Th plume.

  12. Developing Radioactive Carbon Isotope Tagging for Monitoring, Verification and Accounting in Geological Carbon Storage

    NASA Astrophysics Data System (ADS)

    Ji, Yinghuang

    In the wake of concerns about the long-term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. This Ph.D. project has been part of a larger U.S. Department of Energy (DOE) sponsored research project to demonstrate the feasibility of a system designed to tag CO2 with radiocarbon at a concentration of one part per trillion, which is the ambient concentration of 14C in the modern atmosphere. Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon in the underground from anthropogenic, injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we developed a 14C tagging system suitable for use at the part-per-trillion level. This tagging system uses small containers of tracer fluid of 14C enriched CO2. The content of these containers is transferred into a CO2 stream readied for underground injection in a controlled manner so as to tag it at the part-per-trillion level. These containers because of their shape are referred to in this document as tracer loops. The demonstration of the tracer injection involved three steps. First, a tracer loop filling station was designed and constructed featuring a novel membrane based gas exchanger, which degassed the fluid in the first step and then equilibrated the fluid with CO2 at fixed pressure and fixed temperature. It was demonstrated that this approach could achieve uniform solutions and prevent the formation of bubbles and degassing downstream. The difference between measured and expected results of the CO2 content in the tracer loop was below 1%. Second, a high-pressure flow loop was built for injecting, mixing, and sampling of the fast flowing stream of

  13. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  14. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  15. Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    NSTec Environmental Management

    2011-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than

  16. Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2012-07-31

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm

  17. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    NSTec Radioactive Waste

    2010-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches [in.]) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation

  18. Nevada Test Site 2007 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    NSTec Environmental Management

    2008-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2007 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2007a; 2008; Warren and Grossman, 2008). Direct radiation monitoring data indicate exposure levels at the RWMSs are at background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. A single gamma spectroscopy measurement for cesium was slightly above the minimum detectable concentration, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. The measured levels of radionuclides in air particulates are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 136.8 millimeters (mm) (5.39 inches [in.]) of precipitation at the Area 3 RWMS during 2007 is 13 percent below the average of 158.1 mm (6.22 in.), and the 123.8 mm (4.87 in.) of precipitation at the Area 5 RWMS during 2007 is 6 percent below the average of 130.7 mm (5.15 in.). Soil-gas tritium monitoring at borehole GCD-05U continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward movement percolation of precipitation more effectively

  19. Precise measurement of the 222Rn half-life: A probe to monitor the stability of radioactivity

    NASA Astrophysics Data System (ADS)

    Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R.

    2015-04-01

    We give the results of a study on the 222Rn decay we performed in the Gran Sasso Laboratory (LNGS) by detecting the gamma rays from the radon progeny. The motivation was to monitor the stability of radioactivity measuring several times per year the half-life of a short lifetime (days) source instead of measuring over a long period the activity of a long lifetime (tens or hundreds of years) source. In particular, we give a possible reason of the large periodical fluctuations in the count rate of the gamma rays due to radon inside a closed canister which has been described in literature and which has been attributed to a possible influence of a component in the solar irradiation affecting the nuclear decay rates. We then provide the result of four half-life measurements we performed underground at LNGS in the period from May 2014 to January 2015 with radon diffused into olive oil. Briefly, we did not measure any change of the 222Rn half-life with a 8 ṡ10-5 precision. Finally, we provide the most precise value for the 222Rn half-life: 3.82146(16)stat(4)syst days.

  20. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  1. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect

    Hudson, D. B.

    2014-08-19

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents

  2. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect

    Hudson, David B.

    2013-09-10

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents

  3. Correlation between predicted and observed levels of airborne tritium at Lawrence Livermore Laboratory site boundary

    SciTech Connect

    Lindeken, C.L.; Silver, W.J.; Toy, A.J.; White, J.H.

    1980-02-19

    At the Lawrence Livermore Laboratory, a computer code based on the Gaussian plume model is used to estimate radiation doses from routine or accidental release of airborne radioactive material. Routine releases of tritium have been used as a test of the overall uncertainty associated with these estimates. The ration of concentration to release rate at distances from the two principal release points to each of six site boundary sampling locations has been calcuated using local meteorological data. The concentration of airborne tritiated water vapor is continuously measured at the six sampling stations as part of the Laboratory's environmental monitoring program. Comparison of predicted with observed annual tritiated water concentrations in 1978 showed an average ratio of 2.6 with a range of from 0.97 to 5.8.

  4. Acquisition, calibration, and performance of airborne high-resolution ADS40 SH52 sensor data for monitoring the Colorado River below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Cagney, L. E.; Kohl, K. A.; Gushue, T. M.; Fritzinger, C.; Bennett, G. E.; Hamill, J. F.; Melis, T. S.

    2010-12-01

    Periodically, the Grand Canyon Monitoring and Research Center of the U.S. Geological Survey collects and interprets high-resolution (20-cm), airborne multispectral imagery and digital surface models (DSMs) to monitor the effects of Glen Canyon Dam operations on natural and cultural resources of the Colorado River in Grand Canyon. We previously employed the first generation of the ADS40 in 2000 and the Zeiss-Imaging Digital Mapping Camera (DMC) in 2005. Data from both sensors displayed band-image misregistration owing to multiple sensor optics and image smearing along abrupt scarps due to errors in image rectification software, both of which increased post-processing time, cost, and errors from image classification. Also, the near-infrared gain on the early, 8-bit ADS40 was not properly set and its signal was saturated for the more chlorophyll-rich vegetation, which limited our vegetation mapping. Both sensors had stereo panchromatic capability for generating a DSM. The ADS40 performed to specifications; the DMC failed. In 2009, we employed the new ADS40 SH52 to acquire 11-bit multispectral data with a single lens (20-cm positional accuracy), as well as stereo panchromatic data that provided a 1-m cell DSM (40-cm root-mean-square vertical error at one sigma). Analyses of the multispectral data showed near-perfect registration of its four band images at our 20-cm resolution, a linear response to ground reflectance, and a large dynamic range and good sensitivity (except for the blue band). Data were acquired over a 10-day period for the 450-km-long river corridor in which acquisition time and atmospheric conditions varied considerably during inclement weather. We received 266 orthorectified flightlines for the corridor, choosing to calibrate and mosaic the data ourselves to ensure a flawless mosaic with consistent, realistic spectral information. A linear least-squares cross-calibration of overlapping flightlines for the corridor showed that the dominate factors in

  5. An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

    SciTech Connect

    Hylton, T.D.

    2000-09-06

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites, such as Hanford, Savannah River, and Oak Ridge. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the underground tanks, transferred to treatment facilities (or other storage location), and processed to a stable waste form. Each sludge waste will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the supernatant to create a slurry that can be transferred by pipeline to the desired destination. Depending on the DOE site, such slurries may be transferred up to six miles. Since these wastes are radioactive, it is critically important that the transfers be conducted safely and successfully. The transport properties of a given slurry must be within the appropriate design limits to prevent the formation of a pipeline plug. The consequences of a plugged pipeline with radioactive material are unacceptable from the perspectives of safety, cost, and schedule. If a pipeline plug occurs and conventional methods (e.g., water flushing) are not successful, either the entire pipeline must be replaced (and the plugged pipeline remediated at a later date) or the plugged sections must be located, excised, and replaced. Either option would expose workers to radiation fields, and the cost of the project could escalate and result in a severe delay of the project schedule. Even if a pipeline plug were successfully removed by conventional methods, the project would experience some delay and additional costs. For example, flushing a plugged pipeline would require a shutdown of operations until the situation could be resolved; and such action would lead to the generation of additional liquid waste, which would also require treatment. To reduce the risk of plugging a pipeline, the relevant

  6. 1982 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Millard, G.C.; Gray, C.E.; Simmons, T.N.; O'Neal, B.L.

    1983-04-01

    Because radionuclides are potentially released from its research activities, SNL has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitter, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1982. The Albuquerque population received an estimated 0.170 person-rem from airborne radioactive releases, whereas it received greater than 50,400 person-rem from naturally occurring radionuclides.

  7. Radiation protection, radioactive waste management and site monitoring at the nuclear scientific experimental and educational centre IRT-Sofia at INRNE-BAS.

    PubMed

    Mladenov, Al; Stankov, D; Nonova, Tz; Krezhov, K

    2014-11-01

    This article identifies important components and describes the safe practices in implementing radiation protection and radioactive waste management programmes, and in their optimisation at the Nuclear Scientific Experimental and Educational Centre with research reactor IRT at INRNE-BAS. It covers the instrumentation and personal protective equipment and organisational issues related to the continuous site monitoring. The reactor is under major reconstruction and the measures applied to radiation monitoring of environment and working area focused on restricting the radiation exposure of the staff as well as compliance with international good practices related to the environmental and public radiation safety requirements are also addressed. PMID:25071246

  8. An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

    SciTech Connect

    Hylton, T.D.

    2000-09-01

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the tanks, transferred to treatment facilities (or other storage locations), and processed to stable waste forms. The sludge wastes will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the respective supernatants to create slurries that can be transferred by pipeline to the desired destination. Depending on the DOE site, these slurries may be transferred up to six miles. Since the wastes are radioactive, it is critically important for the transfers to be made without plugging a pipeline. To reduce such a risk, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis; however, this method is time-consuming, and costly, and it does not provide real-time information. In addition, personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the sample jar for these solid-liquid mixtures. The alternative method for determining the transport properties is in-line analysis. An in-line instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond

  9. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  10. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  11. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  12. Atmospheric Transport Studies Using In-situ Airborne Gas Chromatograph Measurements: An Overview of the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) Contribution.

    NASA Astrophysics Data System (ADS)

    Moore, F.; Dutton, G.; Elkins, J.; Hall, B.; Hurst, D.; Nance, D.; Ray, E.; Romashkin, P.; Thompson, T.; Volk, C. M.

    2005-12-01

    Accurate models of atmospheric transport are crucial to our current understanding of ozone production/loss and its coupling with climate change. Over the last ``20 years'', improvements in the ability to predict ``The Antarctic Ozone Hole and Polar Ozone Loss'' have tracked improvements in transport models. Data taken from the NOAA/CMDL airborne in-situ GC's (ACATS, LACE, PANTHER, and UCATS) have and will continue to play key roles in quantifying many aspects of stratospheric transport. Our data have been used in many of the model assessments to date. We will display an overview of the transport issues studied over the years using our data. They include descent with mixing within and into the polar vortex, entrainment of mid-latitude air across the vortex edge, upwelling and entrainment in the tropical pipe, isentropic transport across the tropopause into the lowermost stratosphere, mean ages of air parcels in the stratosphere, and stratospheric path distributions. ACATS - Airborne Chromatograph for Atmospheric Trace Species LACE - Lightweight Airborne Chromatograph Experiment PANTHER - PAN and Other Trace Hydrohalocarbons ExpeRiment UCATS - Unmanned aerial systems Chromatograph for Atmospheric Trace Species

  13. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  14. Experiences managing radioactive material at the National Ignition Facility.

    PubMed

    Thacker, Rick L

    2013-06-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion and experiments studying high energy density science. Many experiments performed at the National Ignition Facility involve radioactive materials; these may take the form of tritium and small quantities of depleted uranium used in targets, activation products created by neutron-producing fusion experiments, and fission products produced by the fast fissioning of the depleted uranium. While planning for the introduction of radioactive material, it was recognized that some of the standard institutional processes would need to be customized to accommodate aspects of NIF operations, such as surface contamination limits, radiological postings, airborne tritium monitoring protocols, and personnel protective equipment. These customizations were overlaid onto existing work practices to accommodate the new hazard of radioactive materials. This paper will discuss preparations that were made prior to the introduction of radioactive material, the types of radiological work activities performed, and the hazards and controls encountered. Updates to processes based on actual monitoring results are also discussed. PMID:23629067

  15. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. PMID:26773821

  16. Facility effluent monitoring plan for the 324 Facility

    SciTech Connect

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  17. Annual environmental monitoring report, January-December 1983

    SciTech Connect

    Not Available

    1984-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not easily distinguishable from natural environmental sources. During 1983, the maximum approximated neutron dose near the site boundary was 5 mrem. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. We have never found any evidence of radioactivity in ground water in excess of natural background radioactivity from uranium and thorium decay chains and potassium-40. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site-boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard. 8 references, 5 figures, 4 tables.

  18. [RADIATION HYGIENIC MONITORING AT THE AREA OF THE LOCATION OF THE FAR EASTERN CENTER FOR RADIOACTIVE WASTE MANAGEMENT (FEC "DALRAO"--BRANCH OF FSUE "ROSRAO")].

    PubMed

    Kiselev, S M; Shandala, N K; Akhromeev, S V; Gimadova, T I; Seregin, V A; Titov, A V; Biryukova, N G

    2015-01-01

    Intensification ofactivities in the field of spent nuclear fuel (SNF) and radioactive waste (RW) management in the Far East region of Russia assumes an increase of the environmental load on the territories adjacent to the enterprise and settlements. To ensure radiation safety during works on SNF and radioactive waste management in the standard mode of operation and during the rehabilitation works in the contaminated territories, there is need for the optimization of the existing system of radiation-hygienic monitoring, aimed at the implementation of complex dynamic observation of parameters of radiation-hygienic situation and radiation amount of the population living in the vicinity of the Far Eastern Center for Radioactive Waste Management (FEC "DALRAO"). To solve this problem there is required a significant amount of total and enough structured information on the character of the formation of the radiation situation, the potential ways of the spread of man-made pollution to the surrounding area, determining the radiation load on the population living in the vicinity of the object. In this paper there are presented the results of field studies of the radiation situation at the plant FEC "DALRAO", which were obtained during the course of expedition trips in 2009-2012. PMID:26625616

  19. MRS (monitored retrievable storage) systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system

    SciTech Connect

    Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity (in metric tons of uranium (MTU)) required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs.

  20. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  1. Emissions of NOx, SO2 and CO2 From Power Plants: Evaluating Continuous Emissions Monitoring Systems (CEMS) Data Using Airborne Field Measurements.

    NASA Astrophysics Data System (ADS)

    Nicks, D.; Ryerson, T.; Holloway, J.; Trainer, M.; Parrish, D.; Frost, G.; Hubler, G.; Wiedinmyer, C.; Sueper, D.; Fehsenfeld, F.

    2002-12-01

    Airborne studies of power plant emissions were conducted during the Southern Oxidants Study (SOS) in 1999, the Texas Air Quality Study (TexAQS) in 2000 and the Intercontinental Transport and Chemical Transformation (ITCT) study in 2002. Measurements of NOy, CO2 and SO2 were made in near-field transects of power plant plumes aboard the NOAA WP-3D and NCAR L-188 Electra aircraft. Ratios of the primary emissions NOy, SO2 and CO2, and/or fluxes of those gases determined by integration of plume mixing ratios, were compared to data from CEMS equipment installed to directly measure plant emissions from power generation units. This study presents field measurements from over 180 transects of plumes from 20 separate power plants in the Eastern and Western United States and Texas. Estimates of accuracy for the CEMS equipment are presented and probable impacts to annual point source emissions inventories are discussed.

  2. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  3. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  4. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  5. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  6. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  7. Evaluation of two rounds of testing of types of devices for monitoring radioactive sources in loaded vehicles

    NASA Astrophysics Data System (ADS)

    Dryák, P.; Šuráň, J.; Kovář, P.; Kubala, H.

    1999-02-01

    Tests of stationary devices for the detection of radioactive sources in moving trucks were performed by the Czech Metrological Institute - Inspectorate for Ionising Radiation, Prague in December 1996 and September 1997. The different systems were installed at a railway polygon. Each system contained two detection units placed symmetrically at the rail in a distance 2.3 m from the axes of each rail. The train comprising empty and scrap-filled trucks passed along the detection units at a speed of 5-30 km/h. The wide range of radioactive sources with 137Cs (activity ranging from 0.4 MBq to 5 GBq) were located at different positions in the truck. The purpose was to determine a detection limit under different conditions. Sources with 57Co, 60Co, 241Am were also used. The truck passed the polygon more than 1000 times. About 250 passes were free of source. All systems were also tested in a climatic chamber. The main parameters evaluated were the detection limit for an empty truck, detection limit for a truck filled with scrap (density 0.89 t/m 3), percentage of false alarms and stability of response at different temperatures. The other parameters like energy dependence, position dependence, linearity and overload, detection response time, etc., were also evaluated. The tested systems showing a positive result will be used in the field of steel recycling, metallurgy and the supervision of illegal transport.

  8. Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities

    SciTech Connect

    Eberhardt, L.L.; Thomas, J.M.

    1986-07-01

    This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions.

  9. Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site

    DOE Data Explorer

    The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

  10. Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland)

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Wezyk, Piotr; Tompalski, Piotr

    2013-04-01

    The paper presents the results from the study concerning the application of airborne laser scanning (ALS) data and derived raster products like the digital surface model (DSM) and the digital terrain model (DTM) for the assessment of the degree of change of the land use based on the forest succession example. Simultaneously, an automated method of ALS data processing was developed based on the normalized (nDSM) and cadastral GIS information. Besides delivering precise information on forest succession, ALS technology is an excellent tool for time-changes spatial analyses. Usage of the ALS data can support the image interpretation process decreasing the subjectivity of the operator. In parallel, a manual vectorization and object classification (object-based image analysis—OBIA) were performed; both based on aerial orthophoto and ALS data. By using integrated ALS point clouds and digital aerial images, one can obtain fast OBIA processing and the determination of areas where the land cover has changed. The Milicz District (central west part of Poland) was chosen as the test site where ALS was to be performed in 2007, together with the digital aerial photos (Vexcel camera; pixel 0.15 m; CIR). The aerial photos were then processed to a CIR orthophoto. The area of study consisted of 68 private parcels (some of them were abandoned; 68.57 ha; scanned cadastral maps from the local survey office; land use information) in the direct neighbourhood of the State Forest, on which a forest succession could often be observed. The operator vectorized forest (trees and shrubs) succession areas on the 2D CIR orthophoto. They were then compared with the results from the OBIA and GIS analysis, based on the normalized digital surface model. The results showed that areas with high vegetation cover were three times larger than the official land cover database (cadastral maps).

  11. Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland)

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Wezyk, Piotr; Tompalski, Piotr

    2014-06-01

    The paper presents the results from the study concerning the application of airborne laser scanning (ALS) data and derived raster products like the digital surface model (DSM) and the digital terrain model (DTM) for the assessment of the degree of change of the land use based on the forest succession example. Simultaneously, an automated method of ALS data processing was developed based on the normalized (nDSM) and cadastral GIS information. Besides delivering precise information on forest succession, ALS technology is an excellent tool for time-changes spatial analyses. Usage of the ALS data can support the image interpretation process decreasing the subjectivity of the operator. In parallel, a manual vectorization and object classification (object-based image analysis—OBIA) were performed; both based on aerial orthophoto and ALS data. By using integrated ALS point clouds and digital aerial images, one can obtain fast OBIA processing and the determination of areas where the land cover has changed. The Milicz District (central west part of Poland) was chosen as the test site where ALS was to be performed in 2007, together with the digital aerial photos (Vexcel camera; pixel 0.15 m; CIR). The aerial photos were then processed to a CIR orthophoto. The area of study consisted of 68 private parcels (some of them were abandoned; 68.57 ha; scanned cadastral maps from the local survey office; land use information) in the direct neighbourhood of the State Forest, on which a forest succession could often be observed. The operator vectorized forest (trees and shrubs) succession areas on the 2D CIR orthophoto. They were then compared with the results from the OBIA and GIS analysis, based on the normalized digital surface model. The results showed that areas with high vegetation cover were three times larger than the official land cover database (cadastral maps).

  12. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia

    PubMed Central

    Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis

    2013-01-01

    Objectives: The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. Design: A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. Methods: A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. Results: The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Conclusion: Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment. PMID:23526736

  13. Rocketdyne division, environmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1986

    SciTech Connect

    Moore, J. D.

    1987-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on=site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continuously sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limits and to identify processes that may require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources, to local fallout of radioactive debris from the Chernobyl reactor accident, and to residual fallout of radioactive material from past atmospheric testing of nuclear devices.

  14. Investigation of the cross-ship comparison monitoring method of failure detection in the HIMAT RPRV. [digital control techniques using airborne microprocessors

    NASA Technical Reports Server (NTRS)

    Wolf, J. A.

    1978-01-01

    The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.

  15. Airborne digital-image data for monitoring the Colorado River corridor below Glen Canyon Dam, Arizona, 2009 - Image-mosaic production and comparison with 2002 and 2005 image mosaics

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    Airborne digital-image data were collected for the Arizona part of the Colorado River ecosystem below Glen Canyon Dam in 2009. These four-band image data are similar in wavelength band (blue, green, red, and near infrared) and spatial resolution (20 centimeters) to image collections of the river corridor in 2002 and 2005. These periodic image collections are used by the Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey to monitor the effects of Glen Canyon Dam operations on the downstream ecosystem. The 2009 collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits, unlike the image sensors that GCMRC used in 2002 and 2005. This study examined the performance of the SH52 sensor, on the basis of the collected image data, and determined that the SH52 sensor provided superior data relative to the previously employed sensors (that is, an early ADS40 model and Zeiss Imaging's Digital Mapping Camera) in terms of band-image registration, dynamic range, saturation, linearity to ground reflectance, and noise level. The 2009 image data were provided as orthorectified segments of each flightline to constrain the size of the image files; each river segment was covered by 5 to 6 overlapping, linear flightlines. Most flightline images for each river segment had some surface-smear defects and some river segments had cloud shadows, but these two conditions did not generally coincide in the majority of the overlapping flightlines for a particular river segment. Therefore, the final image mosaic for the 450-kilometer (km)-long river corridor required careful selection and editing of numerous flightline segments (a total of 513 segments, each 3.2 km long) to minimize surface defects and cloud shadows. The final image mosaic has a total of only 3 km of surface defects. The final image mosaic for the western end of the corridor has

  16. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. PMID:26803684

  17. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  18. Development and application of Marinelli beaker standards for monitoring radioactivity in Dairy-Products by gamma-ray spectrometry.

    PubMed

    Lavi, N; Alfassi, Z B

    2004-12-01

    Marinelli (reentrant) beakers are recommended for measurement of low-activity radioactive environmental samples, in both liquid and solid phase. The preparation of Marinelli beaker standards of milk powder containing 232ThO2 at secular equilibrium with its daughter radionuclides was studied. Standards were prepared by mixing of known amounts of solid ThO2 and milk powder. The densities of the standards were 0.5-0.7 kg dm(-3). Measurements of calibrated Marinelli beaker standards with HPGe detector showed that the energy dependence of the efficiency is similar to that of a point source, i.e. an almost linear dependence of log-efficiency vs. log-energy in the 200-2000 keV range, however the parabolic correlation fits better. The validity of these standards was checked by comparison with certified standard reference material IAEA-152-Milk powder containing radiocesium and radiopotassium. The results obtained were found to be in a good agreement with the published certified data. The limit of detection for the determination of radiocesium by gamma ray spectrometry under the prevailing experimental conditions is 0.03 Bq (i.e. 0.8 pCi), for samples of dairy products having lower densities of 0.7 kg dm(-1). PMID:15388145

  19. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  20. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  1. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  2. Decadal changes in ozone and precursor emissions in the Los Angeles California region using in-situ airborne and ground-based field observations, roadside monitoring data, and surface network measurements

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Atlas, E. L.; Blake, D. R.; Flynn, J. H.; Frost, G. J.; Grossberg, N.; Harley, R. A.; Holloway, J. S.; Lefer, B. L.; Lueb, R.; Parrish, D. D.; Peischl, J.

    2011-12-01

    In-situ observations from the Photochemical Assessment Monitoring Stations (PAMS) and the California Air Resources Board (CARB) surface network show decreases in ozone (O3), nitrogen oxide (NOx=NO+NO2), carbon monoxide (CO), and select volatile organic compounds (VOCs) in California's South Coast Air Basin (SoCAB). Decreases in CO, NOx, and VOCs reflect changes, such as improved catalytic converters and reformulated fuels etc., that have been implemented in response to increasingly strict emissions standards placed upon on-road vehicles in the state of California. Here, we compare changes in emissions ratios of NOx and VOCs to CO determined from surface network data collected since 1994 to changes in emissions ratios from biennial roadside studies conducted in west Los Angeles since 1999 and airborne and ground-based measurements from three independent field campaigns conducted in California in 2002, 2008, and 2010. Using the more extensive in-situ surface network data set, we show that decreasing ozone is positively correlated with decreasing abundances of NOx and VOCs and with decreasing VOC/NOx ratio over time. The changes observed from 1994 to present suggest that reductions in both NOx and VOCs and the VOC/NOx ratio over the years have been effective in reducing ozone in the SoCAB.

  3. Detection of anthropogenic radionuclides by the CA002 monitoring station for the comprehensive test ban treaty.

    PubMed

    Measday, D F; Stocki, T J; Mason, L R; Williams, D L

    2001-02-01

    A worldwide monitoring system for radioactive aerosols is being implemented for verification of the Comprehensive Test Ban Treaty. These 80 stations will detect airborne radioactivity not only from nuclear explosions but also from other anthropogenic and natural sources. A prototype unit has been in operation since April 1996 in Vancouver, British Columbia, Canada. It is a very sensitive system and reports clear signals for natural radioactivity, including cosmogenic 7Be, and the decay products from soil exhalation of 220Rn (thoron). In addition, there have been frequent detections of anthropogenic nuclides, probably coming from three distinct facilities-a medical isotope production center, a major university hospital, and a particle accelerator laboratory--all between 1 and 2 km away from the monitoring station. This experience is discussed to sensitize health physicists to the potential uses of this publicly available information. PMID:11197459

  4. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  5. Transplanted Lichen Pseudovernia furfuracea as a Multi-Tracer Monitoring Tool Near a Solid Waste Incinerator in Italy: Assessment of Airborne Incinerator-Related Pollutants.

    PubMed

    Protano, Carmela; Owczarek, Malgorzata; Fantozzi, Luca; Guidotti, Maurizio; Vitali, Matteo

    2015-11-01

    The ability of a transplanted lichen, Pseudovernia (P.) furfuracea, to act as a multi-tracer biomonitoring tool for As, Cd, Ni, Pb, 12 PAHs, 17 polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and 27 polychlorinated biphenyls (PCBs) was evaluated at six areas of varying risk (high, medium, negligible) of pollutant fallout from a municipal waste incinerator in central Italy. Transplanted P. furfuracea proved to be an useful tool to biomonitor PCDDs/Fs and PCBs. Concentrations of As, heavy metals, PAHs, PCDDs/Fs resulted similar for all monitored stations. Small differences in total PCBs (4378 and 4631 pg/g dw vs 3298, 4123, 3676 and 4022 pg/g dw) and dioxin-like PCBs (1235 and 1265 pg/g dw vs 794, 1069, 1106 and 1188 pg/g dw) were observed. Air concentrations of monitored compounds appear to be more related to general air pollution than point emissions from the incinerator. PMID:26205231

  6. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  7. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R(2)) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  8. Mussels (Mytilus galloprovincialis) as a bio-indicator species in radioactivity monitoring of Eastern Adriatic coastal waters.

    PubMed

    Krmpotić, Matea; Rožmarić, Martina; Barišić, Delko

    2015-06-01

    Croatian Adriatic coastal waters are systematically monitored within the Mediterranean Mussel Watch Project using mussels (Mytilus galloprovincialis) as a bio-indicator species. The study includes determination of naturally occurring ((7)Be, (40)K, (232)Th, (226)Ra and (238)U), as well as anthropogenic (137)Cs radionuclides. Activity concentrations in dry weight of mussels' soft tissue along the Croatian Adriatic coast are presented, with spatial and seasonal variations given and discussed. Samples were collected in spring and autumn for the period between 2009 and 2013. Radionuclides were determined by gamma-ray spectrometry. Activity concentrations of (7)Be were the highest in spring periods, especially in the areas with significant fresh water discharges. Activity concentrations of (40)K did not vary significantly with season or location. (137)Cs activities were low, while (232)Th, (226)Ra and (238)U activities were mostly below the detection limit of performed gamma-spectrometric measurement. PMID:25794925

  9. Rocketdyne division, envionmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1988

    SciTech Connect

    Moore, J. D.

    1989-05-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 16 km from division sites. Groundwater from Santa Susana Field Laboratories (SSFL) supply water wells and other test wells is periodically sampled to measure radioactivity. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to assure that amounts released to uncontrolled areas are below appropriate limits. These procedures also help identify processes that may require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are measured. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices.

  10. Rocketdyne division, environmental monitoring and facility effluent. Annual Report, De Soto and Santa Susana Field Laboratories Sites 1987

    SciTech Connect

    Moore, J. D.

    1988-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limited and to identify processes that rnay require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices. Work in nuclear energy research and development in what has become the Rocketdyne Division of Rockwell International Corporation began in 1946. In addition to a broad spectrum of conventional programs in rocket propulsion, utilization of space, and national defense, Rocketdyne is working on the design, development, and testing of components and systems for central station nuclear power plants, the decladding of irradiated nuclear fuel, and the decontamination and decommissioning of facilities.

  11. 1983 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Millard, G.C.; Gray, C.E.; O'Neal, B.L.

    1984-04-01

    Sandia National Laboratories (SNL) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released from its research activities, SNL has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1983. The Albuquerque population received an estimated 0.250 person-rem from airborne radioactive releases, whereas it received greater than 49,950 person-rem from naturally occurring radionuclides. 23 references, 6 figures, 15 tables.

  12. A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Brown, Steven S.; Dinesan, Hemanth; Dubé, William P.; Goulette, Marc; Hübler, Gerhard; Orphal, Johannes; Zahn, Andreas

    2016-04-01

    The chemistry of NO3 and N2O5 is important to the regulation of both tropospheric and stratospheric ozone. In situ detection of NO3 and N2O5 in the upper troposphere lower stratosphere (UTLS) represents a new scientific direction as the only previous measurements of these species in this region of the atmosphere has been via remote sensing techniques. Because both the sources and the sinks for NO3 and N2O5 are potentially stratified spatially, their mixing ratios, and their influence on nitrogen oxide and ozone transport and loss at night can show large variability as a function of altitude. Aircraft-based measurements of heterogeneous N2O5 uptake in the lower troposphere have uncovered a surprising degree of variability in the uptake coefficient [1], but there are no corresponding high altitude measurements.The UTLS is routinely sampled by the IAGOS-CARIBIC program (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com), a European infrastructural program with the aim of studying the chemistry and transport across this part of the atmosphere. An airfreight container with 15 different automated instruments from 8 European research partners is utilized on board a commercial Lufthansa airbus 340-600 to monitor ~ 100 atmospheric species (trace gases and aerosol parameters) in the UTLS. The instrumentation in the CARIBIC container is now to be supplemented by a new cavity ring-down device for monitoring nitrogen oxides, jointly developed by researchers from Cork (Ireland), Boulder (USA) and Karlsruhe (Germany). The compact and light-weight instrument is designed to monitor not only NO3 and N2O5, but also NO2 and O3. The detection is based on 4 high-finesse optical cavities (cavity length ~ 44 cm). Two cavities are operated at 662 nm (maximum absorption of NO3), the other two at 405 nm (maximum absorption of NO2). The inlet to one of the (662)-cavities is heated in order to thermally decompose N2O5

  13. ANALYZING WATER QUALITY WITH IMAGES ACQUIRED FROM AIRBORNE SENSORS

    EPA Science Inventory

    Monitoring different parameters of water quality can be a time consuming and expensive activity. However, the use of airborne light-sensitive (optical) instruments may enhance the abilities of resource managers to monitor water quality in rivers in a timely and cost-effective ma...

  14. Design and evaluation of a solid sampler for the monitoring of airborne 1,6-hexamethylene diisocyanate (HDI) and its prepolymers in two-component spray painting.

    PubMed

    Huynh, C K; Vu-Duc, T; Savolainen, H

    1992-03-01

    An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sampler. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X-0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60 micrograms/m3 (3 U.K. TLVs) for total -N=C=O groups. PMID:1642167

  15. Design and evaluation of a solid sampler for the monitoring of airborne 1,6-hexamethylene diisocyanate (HDI) and its prepolymers in two-component spray painting

    SciTech Connect

    Huynh, C.K.; Vu-Duc, T.; Savolainen, H. )

    1992-03-01

    An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sampler. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X-0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60 micrograms/m3 (3 U.K. TLVs) for total -N=C=O groups.

  16. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  17. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  18. Evaluation of the Eberline AMS-3A and AMS-4 Beta continuous air monitors

    SciTech Connect

    Johnson, M.L.; Sisk, D.R.

    1996-03-01

    Eberline AMS-3A-1 and AMS-4 beta continuous air monitors were tested against the criteria set forth in the ANSI Standards N42.18, Specification and Performance of On-site Instrumentation for Continuously Monitoring Radioactivity in Effluents, and ANSI N42.17B, Performance Specification for Health Physics Instrumentation - Occupational Airborne Radioactivity Monitoring Instrumentation. ANSI N42.18 does not, in general, specify testing procedures for demonstrating compliance with the criteria set forth in the standard; therefore, wherever possible, the testing procedures given in ANSI N42.17B were adopted. In all cases, the more restrictive acceptance criteria and/or the more demanding test conditions of the two standards were used.

  19. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  20. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  1. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  2. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  3. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  4. 1982 environmental monitoring report

    SciTech Connect

    Day, L.E.; Naidu, J.R.

    1983-04-01

    The environmental levels of radioactivity and other pollutants found in the vicinity of BNL during 1982 are summarized in this report. As an aid in the interpretation of the data, the amounts of radioactivity and other pollutants released in airborne and liquid effluents from Laboratory facilities to the environment are also indicated. The environmental data include external radiation levels; radioactive air particulates; tritium concentrations; the amounts and concentrations of radioactivity in and the water quality of the stream into which liquid effluents are released; the concentrations of radioactivity in biota from the stream; the concentrations of radioactivity in and the water quality of ground waters underlying the Laboratory; and concentrations of radioactivity in milk samples obtained in the vicinity of the Laboratory. 30 references, 9 figures, 18 tables.

  5. 1981 environmental monitoring report

    SciTech Connect

    Naidu, J.R.; Olmer, L.L.

    1982-04-01

    The environmental levels of radioactivity and other pollutants found in the vicinity of BNL during 1981 are summarized in this report. As an aid in the interpretation of the data, the amounts of radioactivity and other pollutants released in airborne and liquid effluents from Laboratory facilities to the environment are also indicated. The environmental data includes external radiation levels; radioactive air particulates; tritium and iodine concentrations; the amounts and concentrations of radioactivity in and the water quality of the stream into which liquid effluents are released; the concentrations of radioactivity in sediments and biota from the stream; the concentrations of radioactivity in and the water quality of ground waters underlying the Laboratory; and concentrations of radioactivity in milk samples obtained in the vicinity of the Laboratory. 28 references, 9 figures, 20 tables.

  6. 1979 environmental monitoring report

    SciTech Connect

    Naidu, J.R.

    1980-04-01

    The environmental levels of radioactivity and other pollutants found in the vicinity of Brookhaven National Laboratory (BNL) during 1979 are summarized. As an aid in the interpretation of the data, the amounts of radioactivity and other pollutants released in airborne and liquid effluents from Laboratory facilities to the environment are also indicated. The environmental data includes external radiation levels; radioactive air particulates; tritium and iodine concentrations; the amounts and concentrations of radioactivity in and the water quality of the stream into which liquid effluents are released; the concentrations of radioactivity in sediments and biota from the stream; the concentrations of radioactivity in and the water quality of ground waters underlying the Laboratory; and concentrations of radioactivity in milk samples obtained in the vicinity of the Laboratory.

  7. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  8. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  9. Viewer Makes Radioactivity "Visible"

    NASA Technical Reports Server (NTRS)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  10. Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: qualitative results compared to satellite data and validation with in situ measurements

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2014-10-01

    Water temperature is an important parameter of water quality and influences other physical and chemical parameters. It also directly influences the survival and growth of animal and plant species in river ecosystems. In situ measurements do not allow for a total spatial coverage of water bodies and rivers that is necessary for monitoring and research at the Federal Institute of Hydrology (BfG), Germany. Hence, the ability of different remote sensing products to identify and investigate water inflows and water temperatures in Federal waterways is evaluated within the research project 'Remote sensing of water surface temperature'. The research area for a case study is the Upper and Middle Rhine River from the barrage in Iffezheim to Koblenz. Satellite products (e. g. Landsat and ASTER imagery) can only be used for rivers at least twice as wide as the spatial resolution of the satellite images. They can help to identify different water bodies only at tributaries with larger inflow volume (Main and Mosel) or larger temperature differences between the inflow (e. g. from power plants working with high capacity) and the river water. To identify and investigate also smaller water inflows and temperature differences, thermal data with better ground and thermal resolution is required. An aerial survey of the research area was conducted in late October 2013. Data of the surface was acquired with two camera systems, a digital camera with R, G, B, and Near-IR channels, and a thermal imaging camera measuring the brightness temperature in the 8-12 m wavelength region (TIR). The resolution of the TIR camera allowed for a ground resolution of 4 m, covering the whole width of the main stream and larger branches. The RGB and NIR data allowed to eliminate land surface temperatures from the analysis and to identify clouds and shadows present during the data acquisition. By degrading the spatial resolution and adding sensor noise, artificial Landsat ETM+ and TIRS datasets were created

  11. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  12. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  13. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  14. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  15. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  16. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  17. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  18. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  19. Potential airborne release from soil-working operations in a contaminated area

    SciTech Connect

    Sutter, S.L.

    1980-08-01

    Experiments were performed to provide an indication of how much material could be made airborne during soil-working operations in a contaminated area. Approximately 50 kg of contaminated soil were collected, dried, and mixed, and particle size distribution and /sup 137/Cs content were characterized. In four experiments performed in a 2 ft x 2 ft wind tunnel at the Radioactive Aerosol Release Test Facility, soil was pumped into an airstream moving at 3.2, 10.4, 15.2, and 20 mph. These experiments were designed to maximize airborne releases by fluidizing the soil as it was pumped into the wind tunnel. Thus the airborne releases should represent upper limit values for soil-working operations. Airborne concentration and particle size samples were collected and all of the material deposited downstream was collected to calculate a mass balance. The fraction airborne was calculated using these measurements.

  20. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  1. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  2. Radiological environmental monitoring report for Brookhaven National Laboratory 1967--1970

    SciTech Connect

    Meinhold, C.B.; Hull, A.P.

    1998-10-01

    Brookhaven National Laboratory (BNL) was established in 1947 on the former Army Camp Upton site located in central Long Island, New York. From the very beginning, BNL has monitored the environment on and around the Laboratory site to assess the effects of its operations on the environment. This document summarizes the environmental data collected for the years 1967, 1968, 1969, and 1970. Thus, it fills a gap in the series of BNL annual environmental reports beginning in 1962. The data in this document reflect measurements for those four years of concentrations and/or amounts of airborne radioactivity, radioactivity in streams and ground water, and external radiation levels in the vicinity of BNL. Also included are estimates, made at that time, of BNL`s contribution to radioactivity in the environment. Among the major scientific facilities operated at BNL are the High Flux Beam Reactor, Medical Research Reactor, Brookhaven Graphite Research Reactor, Alternating Gradient Synchrotron, and the 60-inch Cyclotron.

  3. Test plan for demonstration of Rapid Transuranic Monitoring Laboratory

    SciTech Connect

    McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

    1993-06-01

    This plan describes tests to demonstrate the capability of the Rapid Transuranic Monitoring Laboratory (RTML) to monitor airborne alpha-emitting radionuclides and analyze soil, smear, and filter samples for alpha- and gamma-emitting radionuclides under field conditions. The RTML will be tested during June 1993 at a site adjacent to the Cold Test Pit at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Measurement systems installed in the RTML that will be demonstrated include two large-area ionization chamber alpha spectrometers, an x-ray/gamma-ray spectrometer, and four alpha continuous air monitors. Test objectives, requirements for data quality, experimental apparatus and procedures, and safety and logistics issues are described.

  4. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  5. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  6. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  7. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  8. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  9. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  10. Radioactive Waste Management information for 1994 and record-to-date

    SciTech Connect

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-07-01

    This document, Radioactive Waste Management Information for 1994 and Record-To-Date, contains computerized radioactive waste data records from the Idaho National Engineering Laboratory (INEL). Data are compiled from information supplied by the US Department of Energy (DOE) contractors. Data listed are on airborne and liquid radioactive effluents and solid radioactive waste that is stored, disposed, and sent to the INEL for reduction. Data are summarized for the years 1952 through 1993. Data are detailed for the calendar year 1994.

  11. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  12. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  13. CHARACTERIZING THE SOURCES OF HUMAN EXPOSURE TO MUTAGENIC AND CARCINOGENIC CHEMICALS IN AIRBORNE FINE PARTICLES

    EPA Science Inventory

    Personal and ambient exposures to airborne fine particles, polycyclic aromatic hydrocarbons (PAH), and genotoxic activity has been studied in populations in the US, Japan, China, and the Czech Republic. Personal exposure monitors used to collect fine particles were extracted f...

  14. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  15. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  16. Radioactivity Calculations

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  17. Simulated Radioactivity

    ERIC Educational Resources Information Center

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  18. Concentrating Radioactivity

    ERIC Educational Resources Information Center

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  19. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  20. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  1. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  2. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  3. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  4. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  5. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  6. Environmental radioactive intercomparison program and radioactive standards program

    SciTech Connect

    Dilbeck, G.

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  7. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  8. Final disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  9. Physico-chemical characteristics of visibility impairment by airborne pollen in an urban area

    NASA Astrophysics Data System (ADS)

    Kim, Kyung W.

    The number of airborne pollen produced from plants is visible as a haze mixed with urban air pollution in an urban area when atmospheric conditions are proper for pollination of pollen from April to May in Korea. The big loading of airborne pollen can cause further visibility degradation in an urban area. In order to investigate physico-chemical characteristics of visibility impairment by airborne pollen, chemical aerosol measurements, optical aerosol monitoring, and scenic monitoring were performed during the intensive monitoring period from April 19 to May 2, 2005 in the urban area of Seoul, Korea. The particles collected on filters were examined with a scanning electron microscope (SEM) interfaced with an energy dispersive X-ray analysis to characterize size, elemental composition, and count of airborne pollen. During the airborne pollen period, the daily averaged number concentrations of airborne pollen; P and P were calculated to be 8.4±6.9 and 113.7±91.1 m -3, respectively. The daily averaged light extinction coefficient ( bext), light scattering coefficient for open path ( bscat), light scattering coefficient for dry particle in the fine regime ( bscat,fine), and light absorption coefficient in the fine regime ( babs,fine) were measured to be 459±267, 357±214, 263±165, and 44±30 Mm -1, respectively. And mass concentration of PM 2.5 and PM 10 were measured to be 46.5±29.1 and 97.0±41.7 μg m -3. The average light absorption coefficient by airborne pollen was estimated to be about 30 M m -1 and the average light scattering coefficient by airborne pollen was estimated to be 67±57 Mm -1. During the airborne pollen period the average contribution of airborne pollen to visibility impairment was roughly estimated to be 19-25%.

  10. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  11. Assessment of Airborne Particles. Fundamentals, Applications, and Implications to Inhalation Toxicity.

    ERIC Educational Resources Information Center

    Mercer, Thomas T., Ed.; And Others

    Concern over chemical and radioactive particulate matter in industry and over rapidly increasing air pollution has stimulated research both on the properties of airborne particles and methods for assessing them and on their biological effects following inhalation. The Third Rochester International Conference on Environmental Toxicity was,…

  12. Peat Depth Assessment Using Airborne Geophysical Data for Carbon Stock Modelling

    NASA Astrophysics Data System (ADS)

    Keaney, Antoinette; McKinley, Jennifer; Ruffell, Alastair; Robinson, Martin; Graham, Conor; Hodgson, Jim; Desissa, Mohammednur

    2013-04-01

    The Kyoto Agreement demands that all signatory countries have an inventory of their carbon stock, plus possible future changes to this store. This is particularly important for Ireland, where some 16% of the surface is covered by peat bog. Estimates of soil carbon stores are a key component of the required annual returns made by the Irish and UK governments to the Intergovernmental Panel on Climate Change. Saturated peat attenuates gamma-radiation from underlying rocks. This effect can be used to estimate the thickness of peat, within certain limits. This project examines this relationship between peat depth and gamma-radiation using airborne geophysical data generated by the Tellus Survey and newly acquired data collected as part of the EU-funded Tellus Border project, together encompassing Northern Ireland and the border area of the Republic of Ireland. Selected peat bog sites are used to ground truth and evaluate the use of airborne geophysical (radiometric and electromagnetic) data and validate modelled estimates of soil carbon, peat volume and depth to bedrock. Data from two test line sites are presented: one in Bundoran, County Donegal and a second line in Sliabh Beagh, County Monaghan. The plane flew over these areas at different times of the year and at a series of different elevations allowing the data to be assessed temporally with different soil/peat saturation levels. On the ground these flight test lines cover varying surface land use zones allowing future extrapolation of data from the sites. This research applies spatial statistical techniques, including uncertainty estimation in geostatistical prediction and simulation, to investigate and model the use of airborne geophysical data to examine the relationship between reduced radioactivity and peat depth. Ground truthing at test line locations and selected peat bog sites involves use of ground penetrating radar, terrestrial LiDAR, peat depth probing, magnetometry, resistivity, handheld gamma

  13. Progress on detection of radioactivity by airborne equipment

    USGS Publications Warehouse

    Stead, Frank W.

    1949-01-01

    Coincidence and anti-coincidence counting rate meters and also an air conductivity meter have been installed in a transport plane to measure gamma radiation from ground sources. Materials containing 0.01 percent uranium can be detected at 500 feet and at an airspeed of 150 miles per hour.

  14. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  15. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  16. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  17. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  18. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  19. Control of airborne fungal spores in a university hospital

    SciTech Connect

    Streifel, A.J.; Vesley, D. ); Rhame, F.S. ); Murray, B. )

    1989-01-01

    A new university hospital was designed to maximize the air quality protection of severely compromised patients undergoing transplantation or treatment for malignant disorders. The entire hospital was designed as a sealed building with two filter systems having >95% efficiencies for 1.0 {mu}m particles. Controlled airflow and isolation of the most severely compromised patients were also design features. Air quality monitoring of particles and airborne fungi demonstrate effective control in the patient environment. The results show the areas with the greatest control of personnel and air changes have the lowest airborne concentrations of fungi and the smallest particles. Larger indoor airborne particle ranking indicate highest levels depending on local human activity, air changes rates, or filtration efficiency.

  20. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  1. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-05-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  2. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-11-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  3. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Guyot, Éric; Chamberland, Martin

    2014-10-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  4. Facility Effluent Monitoring Plan for the 3720 Building

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  5. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  6. Radioactive wastes

    SciTech Connect

    Devarakonda, M.S.; Hickox, J.A.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of radioactive wastes. Topics covered include: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and environmental occurrence and transport of radionuclides. 155 refs.

  7. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  8. Study of Natural Radioactivity, Radon Exhalation Rate and Radiation Doses in Coal and Flyash Samples from Thermal Power Plants, India

    NASA Astrophysics Data System (ADS)

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B. K.; Sapra, B. K.; Kumar, Rajesh

    Coal is one of the most important source used for electrical power generation. Its combustion part known as fly ash is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products have significant amounts of radionuclide's including uranium, thorium which is the ultimate source of the radioactive gas radon and thoron respectively. Radiation hazard from airborne emissions of coal-fired power plants have been cited as possible causes of health in environmental. Assessment of the radiation exposure from coal burning is critically dependent on the concentration of radioactive elements in coal and in the fly ash. In the present study, samples of coal and flyash were collected from Rajghat Power Plant and Badarpur Thermal Power Plant, New Delhi, India. Radon exhalation is important parameter for the estimation of radiation risk from various materials. Solis State Nuclear Track Detector based sealed Can Technique (using LR-115 type II) has been used for measurement radon exhalation rate. Also accumulation chamber based Continuous Radon Monitor and Continuous Thoron Monitor have been used for radon masss exhalation and thoron surface exhalation rate respectively. Natural radioactivity has been measured using a low level NaI(Tl) detector based on gamma ray spectrometry.

  9. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  10. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  11. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations. PMID:7883556

  12. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  13. AIRBORNE RADIATION DETECTOR

    DOEpatents

    Cartmell, T.R.; Gifford, J.F.

    1959-08-01

    An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

  14. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  15. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  16. Radioactivity of Drinking-Water in the Vicinity of Nuclear Power Plants in China Based on a Large-Scale Monitoring Study

    PubMed Central

    Miao, Xiao-Xiang; Ji, Yan-Qin; Shao, Xian-Zhang; Wang, Huan; Sun, Quan-Fu; Su, Xu

    2013-01-01

    The public concern for radioactivity of drinking-water has been increasing in recent years after the rapid development of nuclear power plants, and especially after the Fukushima nuclear accident. In this study, the radioactivity of water samples collected in the vicinity of nuclear facilities from seven provinces in China was measured and an average annual equivalent effective dose derived from drinking-water ingestion was calculated. The results showed that, in winter and spring, the activities of gross α and β ranged from 0.009 Bq/L to 0.200 Bq/L and from 0.067 Bq/L to 0.320 Bq/L, respectively. While, in summer and autumn, the activities of gross α and β varied from 0.002 Bq/L to 0.175 Bq/L and from 0.060 Bq/L to 0.334 Bq/L. Our results indicated that the gross α and β activities in these measured water samples were below the WHO recommended values (0.5 Bq/L for gross α and 1.0 Bq/L for gross β) and the annual equivalent effective dose derived from drinking-water ingestion was at a safe level. PMID:24322395

  17. Stability, Visibility, and Histologic Analysis of a New Implanted Fiducial for Use as a Kilovoltage Radiographic or Radioactive Marker for Patient Positioning and Monitoring in Radiotherapy

    SciTech Connect

    Neustadter, David; Tune, Michal; Zaretsky, Asaph; Shofti, Rona; Kushnir, Arnon; Harel, Tami; Carmi-Yinon, Dafna; Corn, Ben M.S.

    2010-07-15

    Purpose: To analyze the stability, visibility, and histology of a novel implantable soft-tissue marker (nonradioactive and radioactive) implanted in dog prostate and rabbit liver. Methods and Materials: A total of 34 nonradioactive and 35 radioactive markers were implanted in 1 dog and 16 rabbits. Stability was assessed by measuring intermarker distance (IMD) variation relative to IMDs at implantation. The IMDs were measured weekly for 4 months in the dog and biweekly for 2-4 weeks in the rabbits. Ultrasound and X-ray imaging were performed on all subjects. Computed tomography and MRI were performed on the dog. Histologic analysis was performed on the rabbits after 2 or 4 months. Results: A total of 139 measurements had a mean ({+-} SD) absolute IMD variation of 1.1 {+-} 1.1 mm. These IMD variations are consistent with those reported in the literature as due to random organ deformation. The markers were visible, identifiable, and induced minimal or no image artifacts in all tested imaging modalities. Histologic analysis revealed that all pathologic changes were highly localized and not expected to be clinically significant. Conclusions: The markers were stable from the time of implantation. The markers were found to be compatible with all common medical imaging modalities. The markers caused no significant histologic effects. With respect to marker stability, visibility, and histologic analysis these implanted fiducials are appropriate for soft-tissue target positioning in radiotherapy.

  18. A review of acceptance testing of the Los Alamos/Canberra Alpha Sentry Continuous Air Monitor (CAM)

    SciTech Connect

    Rodgers, J.C.

    1998-09-01

    Los Alamos National Laboratory (LANL) undertook the design and development of a new generation of alpha continuous air monitor (CAM) instrumentation that would incorporate advanced technologies in the design of the sampling inlet, multi-channel analyzer (MCA) electronics, solid state alpha detectors, radon background interference suppression, background interference compensation and based on spectral analysis, and microcomputer based data communication, processing, storage, and retrieval. The ANSI air monitoring instrument standards (Performance Specifications for Health Physics Instrumentation -- Occupational Airborne Radioactivity Monitoring Instrumentation, N42.17B) specify performance criteria and testing procedures for instruments and instrument systems designed to continuously sample and quantify airborne radioactivity in the workplace. Although the intent of the standard is to provide performance testing criteria for type testing, it is appropriate to evaluate the performance of a new instrument such as the Alpha Sentry against certain of these criteria for purposes of an acceptance test based on stated specifications and the Los Alamos CAM Requirements document. This report provides an overview of the results of these tests, as they pertain to instruments designed to detect alpha-emitting radionuclides in particulate form.

  19. Asthmatic responses to airborne acid aerosols.

    PubMed Central

    Ostro, B D; Lipsett, M J; Wiener, M B; Selner, J C

    1991-01-01

    BACKGROUND: Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. METHODS: Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. RESULTS: Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. CONCLUSIONS: In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms. PMID:1851397

  20. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  1. Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.

    2014-12-01

    mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.

  2. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    SciTech Connect

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  3. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  4. 10 CFR 850.24 - Exposure monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.24... areas that may have airborne beryllium, as shown by the baseline inventory and hazard assessment. The... periodic monitoring of workers who work in areas where airborne concentrations of beryllium are at or...

  5. 10 CFR 850.24 - Exposure monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.24... areas that may have airborne beryllium, as shown by the baseline inventory and hazard assessment. The... periodic monitoring of workers who work in areas where airborne concentrations of beryllium are at or...

  6. 10 CFR 850.24 - Exposure monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.24... areas that may have airborne beryllium, as shown by the baseline inventory and hazard assessment. The... periodic monitoring of workers who work in areas where airborne concentrations of beryllium are at or...

  7. 10 CFR 850.24 - Exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.24... areas that may have airborne beryllium, as shown by the baseline inventory and hazard assessment. The... periodic monitoring of workers who work in areas where airborne concentrations of beryllium are at or...

  8. 10 CFR 850.24 - Exposure monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.24... areas that may have airborne beryllium, as shown by the baseline inventory and hazard assessment. The... periodic monitoring of workers who work in areas where airborne concentrations of beryllium are at or...

  9. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram

    2014-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  10. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Mackey, Jeffrey R.

    2013-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  11. Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    PubMed Central

    Oppelt, Natascha; Mauser, Wolfram

    2007-01-01

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented.

  12. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA`s, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  13. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA's, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  14. Tritium recapture behavior at a nuclear power reactor due to airborne releases.

    PubMed

    Harris, Jason T; Miller, David W; Foster, Doug W

    2008-08-01

    This paper describes the initiatives taken by Cook Nuclear Plant to study the on-site behavior of recaptured tritium released in its airborne effluents. Recapture is the process where a released radioactive effluent, in this case tritium, is brought back on-site through some mechanism. Precipitation, shifts in wind direction, or anthropogenic structures that restrict or alter effluent movement can all lead to recapture. The investigation was started after tritium was detected in the north storm drain outfall. Recent inadvertent tritium releases by several other nuclear power plants, many of which entered the groundwater, have led to increased surveillance and scrutiny by regulatory authorities and the general public. To determine the source of tritium in the outfall, an on-site surface water, well water, rainwater and air-conditioning condensate monitoring program was begun. Washout coefficients were also determined to compare with results reported by other nuclear power plants. Program monitoring revealed detectable tritium concentrations in several precipitation sample locations downwind of the two monitored containment building release vents. Tritium was found in higher concentrations in air-conditioning condensate, with a mean value of 528 Bq L(-1) (14,300 pCi L(-1)). The condensate, and to a lesser extent rainwater, were contributing to the tritium found in the north storm drain outfall. Maximum concentration values for each sample type were used to estimate the most conservative dose. A maximum dose of 1.1 x 10(-10) mSv (1.1 x 10(-8) mrem) total body was calculated to determine the health impact of the tritium detected. PMID:18617801

  15. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  16. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  17. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  18. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers. PMID:22788362

  19. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  20. Measurement of airborne 218Po--a Bayesian approach.

    PubMed

    Groer, P G; Lo, Y

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called Bateman equations adapted to the sampling process. These equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne 218Po can be characterized as an "immigration-death process" in the widely adopted, biologically based jargon. The probability distribution for the number of 218Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency epsilon during a counting period T after the end of sampling, is also Poisson, with mean dependent on epsilon, t, T, the flowrate and N(o), the number of airborne 218Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes' Theorem we obtained the posterior density for N(o). This density characterizes the remaining uncertainty about the measured number of 218Po atoms per unit volume of air. PMID:8919080

  1. Gamma spectrum unfolding for a NaI monitor of radioactivity in aquatic systems: experimental evaluations of the minimal detectable activity.

    PubMed

    Baré, J; Tondeur, F

    2011-08-01

    This paper deals with the experimental evaluation of the minimal detectable activity achievable by unfolding the gamma spectra of a NaI monitor. An aquatic monitor initially developed by the Institut des Radio-Eléments (IRE) is used for the application. Unfolding of the spectra is performed with GRAVEL, a UMG package code, on the basis of a response matrix obtained with MCNP5.1.40. Experimental data have been measured at IRE, in a 20m(3) seawater tank, for known activities of (137)Cs mixed with other gamma emitters ((40)K, (133)Ba, (113)Sn and (139)Ce). Deconvolution allows one to reduce the MDA of (137)Cs by an order of magnitude. PMID:21146415

  2. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  3. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  4. RESRAD. Site-Specific Residual Radioactivity

    SciTech Connect

    Yu, C.

    1989-06-01

    RESRAD is designed to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil. A guideline is defined as a radionuclide concentration or a level of radiation or radioactivity that is acceptable if a site is to be used without radiological restrictions. Guidelines are expressed as (1) concentrations of residual radionuclides in soil, (2) concentrations of airborne radon decay products, (3) levels of external gamma radiation, (4) levels of radioactivity from surface contamination, and (5) concentrations of residual radionuclides in air and water. Soil is defined as unconsolidated earth material, including rubble and debris that may be present. The controlling principles of all guidelines are (1) the annual radiation dose received by a member of the critical population group from the residual radioactive material - predicted by a realistic but reasonably conservative analysis and averaged over a 50 year period - should not exceed 100 mrem/yr, and (2) doses should be kept as low as reasonably achievable. All significant exposure pathways for the critical population group are considered in deriving soil guidelines. These pathways include direct exposure to external radiation from the contaminated soil material; internal radiation from inhalation of airborne radionuclides; and internal radiation from ingestion of plant foods grown in the contaminated soil, meat and milk from livestock fed with contaminated fodder and water, drinking water from a contaminated well, and fish from a contaminated pond.

  5. Trace Gas Monitoring

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space technology is contributing to air pollution control primarily through improved detectors and analysis methods. Miniaturized mass spectrometer is under development to monitor vinyl chloride and other hydrocarbon contaminants in an airborne laboratory. Miniaturized mass spectrometer can be used to protect personnel in naval and medical operations as well as aboard aircraft.

  6. Airborne multispectral detecting system for marine mammals survey

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Sofianos, James; Schoonmaker, Jon; Medeiros, Dustin; Boucher, Cynthia; Oakley, Daniel; Saggese, Steve

    2010-04-01

    This work presents an electro-optical multispectral capability that detects and monitors marine mammals. It is a continuance of Whale Search Radar SBIR program funded by PMA-264 through NAVAIR. A lightweight, multispectral, turreted imaging system is designed for airborne and ship based platforms to detect and monitor marine mammals. The system tests were conducted over the Humpback whale breeding and calving area in Maui, Hawaii. The results of the tests and the system description are presented. The development of an automatic whale detection algorithm is discussed as well as methodology used to turn raw survey data into quantifiable data products.

  7. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  8. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  9. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  10. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  11. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  12. Statement of work for services provided by the waste sampling and characterization facility for the effluent and environmental monitoring program during calendar year 1997

    SciTech Connect

    Gleckler, B.P., Fluor Daniel Hanford

    1997-02-28

    This document defines the services the Waste Sampling & Characterization Facility (WSCF) shall provide the Effluent and Environmental Monitoring Program (EEM) throughout the calendar year for analysis. The purpose of the EEM Program is to monitor liquid and gaseous effluents, and the environment immediately around the facilities which may contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine their degree of compliance with applicable federal and state regulations and permits. The Appendix identifies the samples EEM plans to submit for analysis in CY-1997. Analysis of effluent (liquid and air discharges) and environmental (air, liquid, animal, and vegetative) samples is required using standard laboratory procedures, in accordance with regulatory and control requirements cited in Quality Assurance Program Plan for Radionuclide Airborne Emissions Monitoring (especially Appendix G) (VTHC 1995a), Effluent Monitoring Quality Assurance Project Plan for Radionuclide Airborne Emissions Data (WHC 1995b), Operational Environmental Monitoring Program Quality Assurance Project Plan (WHC 1994b), and Hanford Analytical Services Quality Assurance Requirements Documents (DOE 1996). Should changes to this document be necessary, WSCF or the Air & Water Services (A&WS) Organization may amend it at any time with a jointly approved internal memo.

  13. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  14. Some principles of service life calculation of reinforcements and in situ corrosion monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain)

    NASA Astrophysics Data System (ADS)

    Andrade, C.; Martínez, I.; Castellote, M.; Zuloaga, P.

    2006-11-01

    Reinforced concrete is the most usual material used in engineered barriers in low-level nuclear waste disposal facilities. The record of modern concrete is no longer than about 100 years. During this time, it has been noticed that the material gives a good performance in many environments, however several chemical aggressive species in water, soil or the atmosphere may react with the cement mineralogical phases and perturb its integrity. El Cabril repository has a design life objective of longer than 300 years and therefore, these structures should maintain their main characteristics during this target service life. The potential aggressive conditions that the cement-based materials can suffer have been identified to be: carbonation, water permeation (leaching) and reinforcement corrosion. More unlikely may be the biological attack. Chlorides are not in the environment but they are inside the drums as part of analytical wastes. Vaults and containers are made of a very similar concrete composition while the mortar is specifically designed to be pumpable, with low hydration heat, low shrinkage and of low permeability. In this paper results of concrete characteristics are given as well as the monitoring of the behaviour of reinforcement corrosion parameters from 1995 on the same environmental conditions of the actual waste. This monitoring has been made in a buried structure with embedded sensors. The effect of temperature is commented.

  15. Airborne Tactical Intent-Based Conflict Resolution Capability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Vivona, Robert A.; Roscoe, David A.

    2009-01-01

    Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.

  16. Transport of airborne particles in straight and curved microchannels

    NASA Astrophysics Data System (ADS)

    Schaap, Allison; Chu, Winnie C.; Stoeber, Boris

    2012-08-01

    The measurement of airborne particles is important for environmental and exposure monitoring. Microfluidic technologies present potential advantages for aerosol monitoring but have been applied very little to the handling of airborne particles. In this paper, we examine the flow focusing and cross-streamline diffusion of aerosols in straight microchannels, and the size-based lateral displacement of aerosols caused by centrifugal forces in a curved channel. We present calculations, simulations, and experimental results verifying the models: measurements of the focusing and diffusion of 0.2 μm and 0.75 μm particles in straight channels and of the size-dependent lateral displacement of particles between 0.2 μm and 2 μm in curved channels are demonstrated and shown to match well with the simulations. We observe lateral dispersion of the particles: particles closer to the top and bottom wall of the channel experience less lateral displacement than particles near the center due to the flow velocity distribution across the channel cross section. These results confirm that the microchannel techniques presented are a viable method for the size-based manipulation of airborne particles.

  17. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  18. Radioactive particles in dose assessments.

    PubMed

    Dale, P; Robertson, I; Toner, M

    2008-10-01

    Radioactive particles present a novel exposure pathway for members of the public. For typical assessments of potential doses received by members of the public, habit surveys and environmental monitoring combine to allow the assessment to occur. In these circumstances it is believed that the probability of encounter/consumption is certain. The potential detriment is assessed through sampling the use of environmental monitoring data and dose coefficients such as that in ICRP 60 [ICRP, 1990. 1990 Recommendations of the international commission on radiological protection. Publication 60. Annals of the ICRP 21 (1-3)]. However, radioactive particles often represent a hazard that is difficult to quantify and where the probability of encounter is less than certain as are the potential effects on health. Normal assessment methodologies through sampling and analysis are not appropriate for assessing the impact of radioactive particles either prospectively or retrospectively. This paper details many of the issues that should be considered when undertaking an assessment of the risk to health posed by radioactive particles. PMID:18657886

  19. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  20. On-site airborne pheromone sensing.

    PubMed

    Wehrenfennig, Christoph; Schott, Matthias; Gasch, Tina; Düring, Rolf Alexander; Vilcinskas, Andreas; Kohl, Claus-Dieter

    2013-08-01

    Pheromones and other semiochemicals play an important role in the natural world by influencing the behavior of plants, mammals, and insects. In the latter case, species-dependent pheromone communication has numerous applications, including the detection, trapping, monitoring and guiding of insects, as well as pest management in agriculture. On-site sensors are desirable when volatile organic compounds (VOCs) are used as semiochemicals. Insects have evolved highly selective sensors for such compounds, so biosensors comprising complete insects, isolated organs or individual proteins can be highly effective. However, isolated insect organs have a limited lifetime as biosensor, so biomimetic approaches are needed for prolonged monitoring, novel applications, or measurements in challenging environments. We discuss the development of on-site biosensors and biomimetic approaches for airborne-pheromone sensing, together with biomimetic VOC sensor systems. Furthermore, the infochemical effect describing the anthropogenic contamination of the ecosystem through semiochemicals, will be considered in the context of novel on-site pheromone sensing-systems. PMID:23842897

  1. Airborne cell analysis.

    PubMed

    Santesson, S; Andersson, M; Degerman, E; Johansson, T; Nilsson, J; Nilsson, S

    2000-08-01

    A miniaturized analysis system for the study of living cells and biochemical reactions in microdroplets was developed. The technique utilizes an in-house-developed piezoelectric flow-through droplet dispenser for precise reagent supply and an ultrasonic levitator for contactless sample handling. A few-cell study was performed with living primary adipocytes. Droplets (500 nL) containing 3-15 individual cells were acoustically levitated. The addition of beta-adrenergic agonists into the levitated droplet using the droplet dispenser stimulated adipocyte lipolysis, leading to free fatty acid release and a consequent pH decrease of the surrounding buffer. The addition of insulin antagonized lipolysis and hence also the decrease in pH. The changes in pH, i.e., the cell response in the droplet, were followed using a pH-dependent fluorophore continuously monitored by fluorescence imaging detection. An image analysis computer program was employed to calculate the droplet intensities. To counteract droplet evaporation, found to affect the fluorescence intensities, a separate dispenser was used to continually add water, thus keeping the droplet volume constant. PMID:10952520

  2. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  3. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  4. Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Sanada, Yukihisa; Kondo, Atsuya; Sugita, Takeshi; Nishizawa, Yukiyasu; Yuuki, Youichi; Ikeda, Kazutaka; Shoji, Yasunori; Torii, Tatsuo

    2014-11-01

    The Great East Japan Earthquake that occurred on 11 March 2011 generated a series of large tsunami waves that caused serious damage to the Fukushima Daiichi nuclear power plant, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. In recent years, technologies for unmanned helicopters have been developed and applied in various fields. In expectation of the application of unmanned helicopters in airborne radiation monitoring, in this study we developed a radiation monitoring system for aerial use. We then measured the radiation level by using unmanned helicopters in areas where the soil had been contaminated by radioactive caesium emitted from the nuclear power plant to evaluate the ambient dose rate distribution around the site. We found that in dry riverbeds near the nuclear power plant, the dose rate was higher than that in the surrounding areas. The results of our measurements show that radiation monitoring using this system was useful in measuring radioactivity in contaminated areas.

  5. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  6. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  7. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  8. An aerial survey of radioactivity associated with Atomic Energy plants

    SciTech Connect

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  9. Radioactive materials released from nuclear power plants. Annual report 1978

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-03-01

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  10. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  11. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    NASA Astrophysics Data System (ADS)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  12. Stability of airborne microbes in the Louvre Museum over time.

    PubMed

    Gaüzère, C; Moletta-Denat, M; Blanquart, H; Ferreira, S; Moularat, S; Godon, J-J; Robine, E

    2014-02-01

    The microbial content of air has as yet been little described, despite its public health implications, and there remains a lack of environmental microbial data on airborne microflora in enclosed spaces. In this context, the aim of this study was to characterize the diversity and dynamics of airborne microorganisms in the Louvre Museum using high-throughput molecular tools and to underline the microbial signature of indoor air in this human-occupied environment. This microbial community was monitored for 6 month during occupied time. The quantitative results revealed variations in the concentrations of less than one logarithm, with average values of 10(3) and 10(4) Escherichia coli/Aspergillus fumigatus genome equivalent per m(3) for bacteria and fungi, respectively. Our observations highlight the stability of the indoor airborne bacterial diversity over time, while the corresponding eukaryote community was less stable. Bacterial diversity characterized by pyrosequencing 454 showed high diversity dominated by the Proteobacteria which represented 51.1%, 46.9%, and 38.4% of sequences, for each of the three air samples sequenced. A common bacterial diversity was underlined, corresponding to 58.4% of the sequences. The core species were belonging mostly to the Proteobacteria and Actinobacteria, and to the genus Paracoccus spp., Acinetobacter sp., Pseudomonas sp., Enhydrobacter sp., Sphingomonas sp., Staphylococcus sp., and Streptococcus sp. PMID:23710880

  13. Topography and Vegetation Characterization using Dual-Wavelength Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.; Bradford, B.; Magruder, L. A.

    2014-12-01

    Monitoring Earth surface dynamics at an ever increasing resolution has helped to support the characterization of local topography, including vegetated and urban environments. Airborne remote sensing using light detection and ranging (LIDAR) is naturally suited to characterize vegetation and landscapes as it provides detailed three-dimensional spatial data with multiple elevation recordings for each laser pulse. The full waveform LIDAR receiver is unique in this aspect as it can capture and record the complete temporal history of the reflected signal, which contains detailed information about the structure of the objects and ground surfaces illuminated by the beam. This study examines the utility of co-collected, dual-wavelength, full waveform LIDAR data to characterize vegetation and landscapes through the extraction of waveform features, including total waveform energy, canopy energy distribution, and foliage penetration metrics. Assessments are performed using data collected in May 2014 over Monterey, CA, including the Naval Postgraduate School campus area as well as the Point Lobos State Natural Reserve situated on the Monterey coast. The surveys were performed with the Chiroptera dual-laser LIDAR mapping system from Airborne Hydrography AB (AHAB), which can collect both green (515nm) and near infrared (1064nm) waveforms simultaneously. Making use of the dual waveforms allows for detailed characterization of the vegetation and landscape not previously possible with airborne LIDAR.

  14. Some aspects of the airborne transmission of infection

    PubMed Central

    Clark, Raymond P.; de Calcina-Goff, Mervyn L.

    2009-01-01

    The relationship between the human body and the dissemination of potentially pathogenic particles and droplets is described. Airborne transmission of infection in operating theatres and a burns unit and the part played by the human microclimate and its interaction with ventilating air flows is discussed. The mechanisms by which different garment assemblies used for surgery can enhance particle dispersion are illustrated and the way that floor cleaning can increase the concentration of airborne organisms is described. The development of the successful use of ultra-clean air systems in orthopaedic implant surgery is reviewed. Relationships between contact and airborne transmission of disease are explored and ways by which containment strategies and metrics used in pharmaceutical and electronics manufacturing can be applied to the design and monitoring of healthcare areas is discussed. It is suggested that currently available techniques involving architectural, ventilation and operational aspects of healthcare provision, when properly applied, can markedly improve treatment outcomes that may otherwise be compromised by hospital-acquired infections involving both bacteria and viruses. PMID:19815574

  15. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  16. Using mosaicked airborne imagery to assess cotton root rot infection on a regional basis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease in many of the cotton production areas in Texas. Since 2012, many cotton growers in Texas have used the Topguard fungicide to control this disease in their fields under Section 18 emergency exemptions. Airborne images have been used to monitor the...

  17. Year-long assessment of airborne endotoxin at a concentrated dairy operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing prevalence of concentrated animal feeding operations (CAFOs), concern over bioaerosols drifting in downwind plumes is gaining attention as they may cause health effects in humans and livestock. In this study, we monitored total airborne endotoxins at upwind and downwind locations...

  18. Validation of Airborne Visible-Infrared Imaging Spectrometer Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Lang, H.; Baloga, S.

    1999-01-01

    We validate 1997 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) reflectance spectra covering 0.4 meu - 2.4 meu from a stable, flat mineralogically characterized man-made target at Ray Mine, AZ, the site for an EPA/NASA assessment of the utility of remote sensing for monitoring acid drainage from an active open pit mine.

  19. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented.

  20. Airborne Detection and Tracking of Geologic Leakage Sites

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor

    2014-11-01

    Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.

  1. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  2. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  3. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  4. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  5. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  6. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  7. Comprehensive analysis of airborne contaminants from recent Spacelab missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.

    1993-01-01

    The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.

  8. 10 CFR 835.603 - Radiological areas and radioactive material areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution, Contamination Area” shall be posted at each contamination area. (f) High contamination area. The words “Caution, High Contamination Area” or “Danger, High Contamination Area” shall be posted at each...

  9. 10 CFR 835.603 - Radiological areas and radioactive material areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution, Contamination Area” shall be posted at each contamination area. (f) High contamination area. The words “Caution, High Contamination Area” or “Danger, High Contamination Area” shall be posted at each...

  10. 10 CFR 835.603 - Radiological areas and radioactive material areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution, Contamination Area” shall be posted at each contamination area. (f) High contamination area. The words “Caution, High Contamination Area” or “Danger, High Contamination Area” shall be posted at each...

  11. 10 CFR 835.603 - Radiological areas and radioactive material areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution, Contamination Area” shall be posted at each contamination area. (f) High contamination area. The words “Caution, High Contamination Area” or “Danger, High Contamination Area” shall be posted at each...

  12. 10 CFR 835.603 - Radiological areas and radioactive material areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution, Contamination Area” shall be posted at each contamination area. (f) High contamination area. The words “Caution, High Contamination Area” or “Danger, High Contamination Area” shall be posted at each...

  13. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  14. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  15. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  16. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  17. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  18. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe.

    PubMed

    Hervàs, Anna; Camarero, Lluís; Reche, Isabel; Casamayor, Emilio O

    2009-06-01

    We have analysed the diversity of the bacteria, which grow after addition of concentrated airborne particles and desert dust in different microcosms combinations with water samples from oligotrophic alpine lakes. We used, on the one hand, airborne bacteria transported by an African dust plume and collected in a high mountain area in the central Pyrenees (Spain). On the other hand, we collected desert dust in Mauritania (c. 3000 km distance, and a few days estimated airborne journey), a known source region for dust storms in West Africa, which originates many of the dust plumes landing on Europe. In all the dust-amended treatments we consistently observed bacterial growth of common phyla usually found in freshwater ecosystems, i.e. Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, and a few Bacteroidetes, but with different composition based on lake water pretreatment and dust type. Overall, we tentatively split the bacterial community in (i) typical freshwater non-airborne bacteria, (ii) cosmopolitan long-distance airborne bacteria, (iii) non-freshwater low-distance airborne bacteria, (iv) non-freshwater long-distance airborne soil bacteria and (v) freshwater non-soil airborne bacteria. We identified viable long-distance airborne bacteria as immigrants in alpine lakes (e.g. Sphingomonas-like) but also viable putative airborne pathogens with the potential to grow in remote alpine areas (Acinetobacter-like and Arthrobacter-like). Generation of atmospheric aerosols and remote dust deposition is a global process, largely enhanced by perturbations linked to the global change, and high mountain lakes are very convenient worldwide model systems for monitoring global-scale bacterial dispersion and pathogens entries in remote pristine environments. PMID:19453609

  19. Airborne particulate matter and spacecraft internal environments

    NASA Technical Reports Server (NTRS)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  20. Abscess scan - radioactive

    MedlinePlus

    Radioactive abscess scan; Abscess scan; Indium Scan; Indium-labelled white blood cell scan ... the white blood cells are tagged with a radioactive substance called indium. The cells are then injected ...