Science.gov

Sample records for airborne radionuclide emission

  1. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Boom, R.J.

    1995-12-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.

  2. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Vance, L.M.

    1993-07-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  3. Assessment of unabated facility emission potentials for evaluating airborne radionuclide monitoring requirements at Pacific Northwest National Laboratory - 1995

    SciTech Connect

    Ballinger, M.Y.; Jette, S.J.; Sula, M.J.

    1995-11-01

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants. In these assessments, potential unabated offsite doses were evaluated for 31 emission locations at the US DOE`s Pacific Northwest National Laboratory on the Hanford Site. Four buildings met Sate and Federal critical for continuous sampling of airborne radionuclide emissions. The assessments were performed using building radionuclide inventory data obtained in 1995.

  4. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  5. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

    SciTech Connect

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2011-05-13

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

  6. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007

    SciTech Connect

    Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

    2008-01-01

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP – U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection – Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

  7. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003

    SciTech Connect

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

    2003-12-05

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

  8. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001

    SciTech Connect

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

    2001-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

  9. 2014 LANL Radionuclide Air Emissions Report

    SciTech Connect

    Fuehne, David Patrick

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  10. Radionuclide Air Emissions Report for 2012

    SciTech Connect

    Wahl, Linnea

    2013-05-01

    Berkeley Lab operates facilities where radionuclides are produced, handled, store d, and potentially emitted . These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H (EPA 1989a). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2012, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]) . These minor sources include d about 140 stack sources and no diffuse sources . T here were no unplanned airborne radionuclide emissions from Berkeley Lab operations . Emissions from minor sources were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building- specific and common parameters, Laboratory personnel applied the EPA -approved computer code s, CAP88-PC and COMPLY , to calculate doses to the maximally exposed individual (MEI) at any offsite point where there is a residence, school, business, or office. Because radionuclides are used at three noncontiguous locations (the main site, Berkeley West Bio center, and Joint BioEnergy Institute), three different MEIs were identified.

  11. Radionuclide Air Emission Report for 2007

    SciTech Connect

    Wahl, Linnea; Wahl, Linnea

    2008-06-13

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

  12. Radionuclide Air Emission Report for 2009

    SciTech Connect

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  13. Radionuclide Air Emission Report for 2008

    SciTech Connect

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  14. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  15. Airborne radionuclides and radiation in buildings: a review.

    PubMed

    Nero, A V

    1983-08-01

    This paper reviews the literature on sources and measurement of natural airborne radionuclides and radiation in buildings. It also briefly reviews control measures and suggests areas for further research. The major emphasis is given to 222Rn and its daughters, since they typically cause the largest organ dose to the general population, most of which arises from indoor exposures. The indoor radiation field from radionuclides fixed in building materials and soil is also given substantial treatment.

  16. 2008 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  17. 2009 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  18. 2010 LANL radionuclide air emissions report /

    SciTech Connect

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  19. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  20. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  1. Airborne radionuclides in mosses collected at different latitudes.

    PubMed

    Krmar, M; Wattanavatee, K; Radnović, D; Slivka, J; Bhongsuwan, T; Frontasyeva, M V; Pavlov, S S

    2013-03-01

    Terrestrial mosses are a promising medium for investigation and monitoring of airborne radionuclide depositions due to their widespread occurrence, ease of sampling, and the possibility of high-resolution gamma spectrometry measurements without preparatory chemical treatment of samples. The overall objective of the present study was to compare (7)Be, (210)Pb and (137)Cs activity concentrations (in Bq/kg) in moss samples collected at two different climate zones: the south of Thailand (7 °N) and in Serbia (∼45 °N) in order to examine deposition of airborne radionuclide in these distant areas. Significant difference of the (210)Pb content (almost a factor of 2) in mosses was observed. The mean value of (7)Be activity in samples from Serbia was almost 40% higher than activity of those collected in Thailand. Level of (137)Cs in Thailand mosses was below the detection limit. It was shown that air transport of water droplets in the area of waterfalls and strong turbulence can deposit U and Th daughter nuclei.

  2. Airborne radionuclides of concern and their measurement in monitoring a Comprehensive Test Ban Treaty

    SciTech Connect

    Perkins, R.W.; Miley, H.S.; Hensley, W.K.; Abel, K.H.

    1995-01-01

    The U.S. Department of Energy (DOE) is conducting radioanalytical developmental programs with the goal of providing near-real-time analysis technology for airborne signature radionuclides which are indicative of a nuclear weapons test in any of the earth`s environments. If a test were conducted in the atmosphere or above the atmosphere, then the full spectrum of fission and activation products, together with residues from the device would be dispersed in the atmosphere. However, if a nuclear test were conducted underground or under water, the emission could range from a major to a very minor vent, and the material released would likely consist mainly of noble gas radionuclides and the radioiodines. Since many of the noble gases decay to form particulate radionuclides, these may serve as the more sensitive signatures. For example, Ba-140 is a daughter of Xe-140 (13.6 s), and Cs-137 is a daughter of Xe-137 (3.82 min). Both of these have been observed in large amounts relative to other fission products in dynamic venting of U.S. underground nuclear detonations. Large amounts of radionuclides are produced from even a comparatively small nuclear detonation. For example, a 10-KT fission device will produce approximately a megacurie of Ba-140 and of several other radionuclides with half-lives of days to weeks. If such a device were detonated in the atmosphere at midlatitude, it would easily be observable at downwind monitoring sites during its first and subsequent circumnavigations of the earth. Efficient and practical methods for the near-real-time analysis of both particulate and gaseous radionuclides are important to an effective monitoring and attribution program in support of a Comprehensive Test Ban Treaty (CTBT); methods for this purpose are being pursued.

  3. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  4. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  5. Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks.

    PubMed

    Masson, O; Baeza, A; Bieringer, J; Brudecki, K; Bucci, S; Cappai, M; Carvalho, F P; Connan, O; Cosma, C; Dalheimer, A; Didier, D; Depuydt, G; De Geer, L E; De Vismes, A; Gini, L; Groppi, F; Gudnason, K; Gurriaran, R; Hainz, D; Halldórsson, Ó; Hammond, D; Hanley, O; Holeý, K; Homoki, Zs; Ioannidou, A; Isajenko, K; Jankovic, M; Katzlberger, C; Kettunen, M; Kierepko, R; Kontro, R; Kwakman, P J M; Lecomte, M; Leon Vintro, L; Leppänen, A-P; Lind, B; Lujaniene, G; Mc Ginnity, P; Mc Mahon, C; Malá, H; Manenti, S; Manolopoulou, M; Mattila, A; Mauring, A; Mietelski, J W; Møller, B; Nielsen, S P; Nikolic, J; Overwater, R M W; Pálsson, S E; Papastefanou, C; Penev, I; Pham, M K; Povinec, P P; Ramebäck, H; Reis, M C; Ringer, W; Rodriguez, A; Rulík, P; Saey, P R J; Samsonov, V; Schlosser, C; Sgorbati, G; Silobritiene, B V; Söderström, C; Sogni, R; Solier, L; Sonck, M; Steinhauser, G; Steinkopff, T; Steinmann, P; Stoulos, S; Sýkora, I; Todorovic, D; Tooloutalaie, N; Tositti, L; Tschiersch, J; Ugron, A; Vagena, E; Vargas, A; Wershofen, H; Zhukova, O

    2011-09-15

    Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite dispersion and washout along the route of the contaminated air masses. In Europe, the first signs of the releases were detected 7 days later while the first peak of activity level was observed between March 28th and March 30th. Time variations over a 20-day period and spatial variations across more than 150 sampling locations in Europe made it possible to characterize the contaminated air masses. After the Chernobyl accident, only a few measurements of the gaseous (131)I fraction were conducted compared to the number of measurements for the particulate fraction. Several studies had already pointed out the importance of the gaseous (131)I and the large underestimation of the total (131)I airborne activity level, and subsequent calculations of inhalation dose, if neglected. The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous (131)I fraction to total (131)I, both on a spatial scale and its temporal variation. It can be pointed out that during the Fukushima event, the (134)Cs to (137)Cs ratio proved to be different from that observed after the Chernobyl accident. The data set provided in this paper is the most comprehensive survey of the main relevant airborne radionuclides from the Fukushima reactors, measured across Europe. A rough estimate of the total (131)I inventory that has passed over Europe during this period was <1% of the released amount. According to the measurements, airborne activity levels remain of no concern for public health in Europe.

  6. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  7. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP

  8. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect

    NSTec Ecological and Environmental Monitoring

    2012-06-19

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the

  9. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels.

    PubMed

    Masson, Olivier; Pourcelot, Laurent; Boulet, Béatrice; Cagnat, Xavier; Videau, Gérard

    2015-03-01

    Airborne activity levels of uranium and thorium series were measured in the vicinity (1.1 km) of a uranium (UF4) processing plant, located in Malvési, south of France. Regarding its impact on the environment, this facility is characterized by its routine atmospheric releases of uranium and by the emission of radionuclide-labelled particles from a storage pond filled with waste water or that contain dried sludge characterized by traces of plutonium and thorium ((230)Th). This study was performed during a whole year (November 2009-November 2010) and based on weekly aerosol sampling. Thanks to ICP-MS results, it was possible to perform investigations of uranium and thorium decay product concentration in the air. The number of aerosol filters sampled (50) was sufficient to establish a relationship between airborne radionuclide variations and the wind conditions. As expected, the more the time spent in the plume, the higher the ambient levels. The respective contributions of atmospheric releases and resuspension from local soil and waste ponds on ambient dust load and uranium-bearing aerosols were estimated. Two shutdown periods dedicated to facility servicing made it possible to estimate the resuspension contribution and to specify its origin (local or regional) according to the wind direction and remote background concentration. Airborne uranium mainly comes from the emission stack and, to a minor extent (∼20%), from wind resuspension of soil particles from the surrounding fields and areas devoted to waste storage. Moreover, weighed activity levels were clearly higher during operational periods than for shutdown periods.

  10. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect

    Ciucci, John

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no

  11. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  12. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect

    Warren, R.

    2013-06-10

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has

  13. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect

    Warren, R.

    2014-06-04

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has

  14. Post-Accident Sporadic Releases of Airborne Radionuclides from the Fukushima Daiichi Nuclear Power Plant Site.

    PubMed

    Steinhauser, Georg; Niisoe, Tamon; Harada, Kouji H; Shozugawa, Katsumi; Schneider, Stephanie; Synal, Hans-Arno; Walther, Clemens; Christl, Marcus; Nanba, Kenji; Ishikawa, Hirohiko; Koizumi, Akio

    2015-12-15

    The Fukushima nuclear accident (March 11, 2011) caused the widespread contamination of Japan by direct deposition of airborne radionuclides. Analysis of weekly air filters has revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors were stabilized. One major discharge was observed in August 2013 in monitoring stations north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported (137)Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high (90)Sr contamination (78 ± 8 Bq kg(-1)) as well as a high (90)Sr/(137)Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, gross (137)Cs activity of ca. 2.8 × 10(11) Bq has been released.

  15. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect

    Burris, S.A.; Thomas, S.P.

    1994-02-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  16. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Table 1. Table 1—Adjustment to Emission Factors for Effluent Controls Controls Types of radionuclides... applicable to gaseous radionuclides; periodic testing is prudent to ensure high removal efficiency....

  17. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Table 1. Table 1—Adjustment to Emission Factors for Effluent Controls Controls Types of radionuclides... applicable to gaseous radionuclides; periodic testing is prudent to ensure high removal efficiency....

  18. Airborne Emissions from Si/FeSi Production

    NASA Astrophysics Data System (ADS)

    Kero, Ida; Grådahl, Svend; Tranell, Gabriella

    2017-02-01

    The management of airborne emissions from silicon and ferrosilicon production is, in many ways, similar to the management of airborne emissions from other metallurgical industries, but certain challenges are highly branch-specific, for example the dust types generated and the management of NO X emissions by furnace design and operation. A major difficulty in the mission to reduce emissions is that information about emission types and sources as well as abatement and measurement methods is often scarce, incomplete and scattered. The sheer diversity and complexity of the subject presents a hurdle, especially for new professionals in the field. This article focuses on the airborne emissions from Si and FeSi production, including greenhouse gases, nitrogen oxides, airborne particulate matter also known as dust, polyaromatic hydrocarbons and heavy metals. The aim is to summarize current knowledge in a state-of-the-art overview intended to introduce fresh industry engineers and academic researchers to the technological aspects relevant to the reduction of airborne emissions.

  19. Diffuse and fugitive radionuclide emissions assessment for the Hanford Site

    SciTech Connect

    Davis, W.E.; Gleckler, B.P.; Schmidt, J.W.; Rhoads, K.

    1996-12-31

    On February 7, 1994 a Federal Facility Compliance Agreement (FFCA) was signed by the Department of Energy Richland Operations and the US Environmental Protection Agency, EPA, Region 10. The FFCA defines the actions needed to bring the Hanford Site into compliance with 40 Code of Federal Regulations Part 61 Subpart H. One of the milestones specified by the FFCA was that the Hanford Site is to provide EPA with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI includes a dose assessment of the radionuclide emissions from diffuse and unmonitored sources at the Hanford Site. This paper describes how the dose assessment was performed using upwind and downwind radionuclide air concentration measurements. The paper also describes results from two diffuse and fugitive emissions studies. The studies were performed at several diffuse and fugitive emissions sites and utilized arrays of upwind and downwind low volume (2 cfm) air samplers. One study also utilized 4 high volume (40 cfm) PM{sub 10} air samplers to sample during high wind conditions.

  20. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  1. Radionuclide air emissions report for the Hanford Site, calendar year 1992

    SciTech Connect

    Diediker, L.P.; Johnson, A.R.; Rhoads, K.; Klages, D.L.; Soldat, J.K.; Rokkan, D.J.

    1993-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  2. Radionuclide air emissions report for the Hanford site, Calendar year 1994

    SciTech Connect

    Gleckler, B.P.; Diediker, L.P.; Jette, S.J.; Rhoads, K.; Soldat, S.K.

    1995-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1994, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the ``MEI.`` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  3. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)

    SciTech Connect

    Mark Verdoorn; Tom Haney

    2011-06-01

    This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

  4. Size distributions of airborne radionuclides from the fukushima nuclear accident at several places in europe.

    PubMed

    Masson, Olivier; Ringer, Wolfgang; Malá, Helena; Rulik, Petr; Dlugosz-Lisiecka, Magdalena; Eleftheriadis, Konstantinos; Meisenberg, Olivier; De Vismes-Ott, Anne; Gensdarmes, François

    2013-10-01

    Segregation and radioactive analysis of aerosols according to their aerodynamic size were performed in France, Austria, the Czech Republic, Poland, Germany, and Greece after the arrival of contaminated air masses following the nuclear accident at the Fukushima Dai-ichi nuclear power plant in March 2011. On the whole and regardless of the location, the highest activity levels correspond either to the finest particle fraction or to the upper size class. Regarding anthropogenic radionuclides, the activity median aerodynamic diameter (AMAD) ranged between 0.25 and 0.71 μm for (137)Cs, from 0.17 to 0.69 μm for (134)Cs, and from 0.30 to 0.53 μm for (131)I, thus in the "accumulation mode" of the ambient aerosol (0.1-1 μm). AMAD obtained for the naturally occurring radionuclides (7)Be and (210)Pb ranged from 0.20 to 0.53 μm and 0.29 to 0.52 μm, respectively. Regarding spatial variations, AMADs did not show large differences from place to place compared with what was observed concerning bulk airborne levels registered on the European scale. When air masses arrived in Europe, AMADs for (131)I were about half those for cesium isotopes. Higher AMAD for cesium probably results from higher AMAD observed at the early stage of the accident in Japan. Lower AMAD for (131)I can be explained by the adsorption of gaseous iodine on particles of all sizes met during transport, especially for small particles. Additionally, weathering conditions (rain) encountered during transport and in Europe in March and April contributed to the equilibrium of the gaseous to total (131)I ratio. AMAD slightly increased with time for (131)I whereas a clear decreasing trend was observed with the AMADs for (137)Cs and (134)Cs. On average, the associated geometric standard deviation (GSD) appeared to be higher for iodine than for cesium isotopes. These statements also bear out a gaseous (131)I transfer on ambient particles of a broad size range during transport. Highest weighted activity levels were

  5. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  6. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  7. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  8. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    SciTech Connect

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  9. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  10. Constraining isoprene emission factors using airborne flux measurements during CABERNET

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Jiang, X.; Avise, J. C.; Scott, K.; Jonsson, H.; Guenther, A. B.; Goldstein, A. H.

    2012-12-01

    An aircraft flux study was conducted to assess biogenic volatile organic compound (BVOC) emissions from California ecosystems targeting oak woodlands and isoprene for most transects. The direct eddy covariance approach featured high speed proton transfer reaction mass spectrometry onboard a CIRPAS (Center for Interdisciplinary Remotely-Piloted Aircraft Studies) Twin Otter aircraft during June 2011 as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) project. Isoprene fluxes were calculated using wavelet analysis and scaled to surface fluxes using a divergence term obtained by measuring fluxes at multiple altitudes over homogenous oak terrain. By normalization of fluxes to standard temperature and photosynthetically active radiation levels using standard BVOC modeling equations, the resulting emission factors could be directly compared with those used by MEGAN (Model of Emissions of Gases and Aerosols from Nature) and BEIGIS (Biogenic Emission Inventory Geographic Information System) models which are the most commonly used BVOC emission models for California. As expected, oak woodlands were found to be the dominant source of isoprene in all areas surrounding and in the Central Valley of California. The airborne fluxes averaged to 2 km spatial resolution matched remarkably well with current oak woodland distributions driving the models and hence the correspondence of modeled and aircraft derived emission factors was also good, although quantitative differences were encountered depending on the region and driving variables used. Fluxes measured from aircraft proved to be useful for the improvement of the accuracy of modeled predictions for isoprene and other important ozone and aerosol precursor compounds. These are the first regional isoprene flux measurements using direct eddy covariance on aircraft.

  11. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2013 INL Report for Radionuclides [2014

    SciTech Connect

    Verdoorn, Mark; Haney, Tom

    2014-06-01

    This report documents the calendar year 2013 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 3.02 E-02 mrem per year, 0.30 percent of the 10 mrem standard.

  12. Radionuclide air emission report for the Hanford Site Calendar Year 1993

    SciTech Connect

    Diediker, L.P.; Curn, B.L.; Rhoads, K.; Damberg, E.G.; Soldat, J.K.; Jette, S.J.

    1994-08-01

    This report documents radionuclide air emissions from the Hanford Site in 1993 and the resulting effective dose equivalent to any member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, {open_quotes}National Emissions Standards for Hazardous Air Pollutants,{close_quotes} Subpart H, {open_quotes}National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.{close_quotes}

  13. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect

    Verdoorn, Mark; Haney, Tom

    2013-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  14. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2011 INL Report for Radionuclides (2012)

    SciTech Connect

    Mark Verdoorn; Tom Haney

    2012-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  15. CRRIS: a methodology for assessing the impact of airborne radionuclide releases

    SciTech Connect

    Baes, C.F. III; Miller, C.W.

    1983-01-01

    The Computerized Radiological Risk Investigation System (CRRIS) consists of six fully integrated computer codes which calculate environmental transport and resulting doses and risks to individuals or populations exposed to atmospheric radionuclide releases. The individual codes may be used alone for various assessment applications or may be run as a system. This presentation provides an overview and introduction to this system of computer codes and their use in conducting nuclear assessments. Radionuclides are handled by CRRIS either in terms of the released radionuclides or in terms of exposure radionuclides which consist of both the released nuclides and all (or a subset of) the decay daughters that grow in during environmental transport. The capability of CRRIS to handle radionuclide chains is accomplished through PRIMUS which serves as a preprocessor by accessing a library of radionuclide decay data and sets up matricies of decay constants which are used by the other CRRIS codes in all calculations involving transport and decay. PRIMUS may also be run independently by the user to define the decay chains, radionuclide decay constants, and branching ratios.

  16. Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999

    SciTech Connect

    ROKKAN, D.J.

    2000-06-01

    This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

  17. A coupled model of the airborne and surface concentration of radionuclides considering the resuspension-deposition process

    NASA Astrophysics Data System (ADS)

    Ichige, Hiroyuki; Hatano, Yuko; Onda, Yuichi

    2014-05-01

    We propose a new model of estimating the long-term behavior of both the airborne and the surface concentrations of radionuclides in the vicinity of 30 km of Fukushima plant. Our model consists of the following simultaneous equations: δC- = viδC-+ ΛupS - ΛdownC - ΛdecC (1) δt δxi δS- = - Λ S + Λ C - Λ S, (2) δt up down env where C is the airborne concentration of a specific nuclide, S the surface concentration, the suffix i is 1 or 2 (2 dimensional), v the effective wind velocity which migrates the radionuclides in the air, Λup the rate constant of resuspension process, Λdown of deposition process, Λdec the decay constant, and Λenv is the rate constant of the surface concentration decrease due to environmental factors such as runoff, washoff, infiltrations, and the vegetation effects. These equations are based on our former study (Hatano and Hatano, 1997; Hatano et al., 1998) which successfully reproduce the long-term decrease of airborne concentration of the Chernobyl data such as Cs-137, Cs-134, Ce-144, and Ru-106 over nearly a decade. The first equation of the present study is essentially the same as our previous studies, besides that we added a new term for deposition. The second equation is newly added in the present study which describes the behavior of the surface concentration. In Fukushima case, we found that the radiation risk is much higher than the airborne concentration. That is why we add the second equation. Since the new model requires parameter values of Λs we need to estimate these values from actual data. In order to do so, we apply the method of inverse problem and thereby estimate the values. We also do the spectral analysis of the dose rate (mainly from Cs-137, -134) and study if it is possible to estimate the resuspended amount from the ground surface.

  18. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2013-06-06

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2012 from PNNL Site sources is 9E-06 mrem (9E-08 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 1E-7 mrem (1E-9 mSv) EDE. The dose from radon emissions is 2E-6 mrem (2E-08 mSv) EDE. No nonroutine emissions occurred in 2012. The total radiological dose for 2012 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 1E-5 mrem (1E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  19. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2014-06-01

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance

  20. NARAC: An Emergency Response Resource for Predicting the Atmospheric Dispersion and Assessing the Consequences of Airborne Radionuclides

    SciTech Connect

    Bradley, M M

    2005-08-23

    Hazardous radioactive materials can be released into the atmosphere by accidents at nuclear power plants, fuel processing facilities, and other facilities, and by transportation accidents involving nuclear materials. In addition, the post-cold-war proliferation of nuclear material has increased the potential for terrorism scenarios involving radiological dispersal devices, improvised nuclear devices, and inadequately secured military nuclear weapons. To mitigate these risks, the National Atmospheric Release Advisory Center (NARAC) serves as a national resource for the United States, providing tools and services to quickly predict the environmental contamination and health effects caused by airborne radionuclides, and to provide scientifically based guidance to emergency managers for the protection of human life. NARAC's expert staff uses computer models, supporting databases, software systems, and communications systems to predict the plume paths and consequences of radiological, chemical, and biological atmospheric releases.

  1. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2014

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2015-06-01

    This report documents radionuclide air emissions that result in the 2014 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI due to routine major and minor point source emissions in 2014 from PNNL Campus sources is 2E 05 mrem (2E-07 mSv) EDE. The dose from all fugitive sources is 3E-6 mrem (3E-8 mSv) EDE. The dose from radon emissions is 1E-6 mrem (1E-8 mSv) EDE. No nonroutine emissions occurred in 2014. The total radiological dose for 2014 to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 3E-5 mrem (3E-7 mSv) EDE, or more than 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Campus is in compliance.

  2. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2015

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2016-06-01

    This report documents radionuclide air emissions that result in the 2015 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI from routine major and minor point source emissions in 2015 from PNNL Campus sources is 2.6E-4 mrem (2.6E-6 mSv) EDE. The dose from all fugitive sources is 1.8E-6 mrem (1.8E-8 mSv) EDE. The dose from radon emissions is 4.4E-8 mrem (4.4E-10 mSv) EDE. No nonroutine emissions occurred in 2015. The total radiological dose to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 2.6E-4 mrem (2.6E-6 mSv) EDE, or more than 10,000 times less than the federal and state standard of 10 mrem/yr, with which the PNNL Campus is in compliance.

  3. Methane emissions from Alaska in 2012 from CARVE airborne observations.

    PubMed

    Chang, Rachel Y-W; Miller, Charles E; Dinardo, Steven J; Karion, Anna; Sweeney, Colm; Daube, Bruce C; Henderson, John M; Mountain, Marikate E; Eluszkiewicz, Janusz; Miller, John B; Bruhwiler, Lori M P; Wofsy, Steven C

    2014-11-25

    We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m(-2)⋅d(-1) averaged over all of Alaska, corresponding to fluxes from wetlands of 56(-13)(+22) mg CH4⋅m(-2)⋅d(-1) if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared.

  4. Methane emissions from Alaska in 2012 from CARVE airborne observations

    PubMed Central

    Chang, Rachel Y.-W.; Miller, Charles E.; Dinardo, Steven J.; Karion, Anna; Sweeney, Colm; Daube, Bruce C.; Henderson, John M.; Mountain, Marikate E.; Eluszkiewicz, Janusz; Miller, John B.; Bruhwiler, Lori M. P.; Wofsy, Steven C.

    2014-01-01

    We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m−2⋅d−1 averaged over all of Alaska, corresponding to fluxes from wetlands of 56−13+22 mg CH4⋅m−2⋅d−1 if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared. PMID:25385648

  5. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  6. U.S. Department of Energy Report, 2005 LANL Radionuclide Air Emissions

    SciTech Connect

    Keith W. Jacobson, David P. Fuehne

    2006-09-01

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2006.

  7. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    SciTech Connect

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  8. Emissions of airborne toxics from coal-fired boilers: Mercury

    SciTech Connect

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  9. Radionuclide air emissions report for the Hanford site calendar year 1995

    SciTech Connect

    Gleckler, B.P., Westinghouse Hanford

    1996-06-26

    This report documents radionuclide air emissions from the Hanford Site in 1995, and the resulting effective dose equivalent (FDE) to the maximally exposed member of the public, referred to as the `MEI.` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, `National Emissions Standards for Hazardous Air Pollutants,` Subpart H, `National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.` This report has also been prepared for and will be submitted in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, `Radiation Protection-Air Emissions.`

  10. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2011

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2012-06-12

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation ProtectionAir Emissions. The EDE to the PNNL Site MEI due to routine emissions in 2011 from PNNL Site sources was 1.7E 05 mrem (1.7E-7 mSv) EDE. No nonroutine emissions occurred in 2011. The total radiological dose for 2011 to the MEI from all PNNL Site radionuclide emissions was more than 10,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  11. Hanford Site radionuclide national emission standards for hazardous air pollutants unregistered stack (power exhaust) source assessment

    SciTech Connect

    Davis, W.E.

    1994-08-04

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. This evaluation provides an assessment of the 39 unregistered stacks, under Westinghouse Hanford Company`s management, and their potential radionuclide emissions, i.e., emissions with no control devices in place. The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified three stacks, 107-N, 296-P-26 and 296-P-28, as having potential emissions that would cause an effective dose equivalent greater than 0.1 mrem/yr. These stacks, as noted by 40 CFR 61.93, would require continuous monitoring.

  12. A mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I of the project: early effects of inhaled radionuclides

    SciTech Connect

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.

    1980-06-01

    The report presents a mathematical model for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included.

  13. Contribution of traffic emissions to indoor airborne VOCs

    SciTech Connect

    Otson, R.; Williams, D.T.; Fellin, P.

    1998-12-31

    The contribution of nearby vehicle traffic to indoor airborne volatile organic compound levels and to personal exposures was examined to determine the importance of this source. Indoor and outdoor levels of selected VOCs, aldehydes, ketones, and ethanol were measured at 10 homes in Toronto, on sidewalks near the traffic source, indoors and in the backyards or balconies of apartments (outdoors). Concurrently, air exchange rates were measured at each home with a perfluorocarbon tracer method. All the residences were within 1 km of urban intersections with traffic counts of more than 20,000 vehicles per day. Average concentrations of hexane, 1,3-butadiene, toluene, benzene and propionaldehyde decreased in the order: street level > indoor > outdoor. These compounds occur in vehicle emissions, and the contribution of outdoor to indoor concentrations ranged from 24 to 88 % suggesting that traffic emissions contributed to indoor pollutant level through the process of air exchange. For other compounds different trends were observed. Indoors concentrations were greater than outdoors for ethylacetate, tetrachlorethane, pinene, limonene, 1,4-dichlorobenzene, naphthalene, formaldehyde, acetaldehyde and ethanol, for example. These compounds are common in consumer products, and the contribution of outdoor to indoor concentrations ranged from 2 to 44%. The differences in street and backyard (outdoor) concentrations for some compounds were large due to the presence of nearby vehicles at street level sampling sites, indicating that the impact of traffic on human exposures (pedestrians on sidewalks and occupants of vehicles) is potentially large, compared to the impact of general background urban air pollutants.

  14. Mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I

    SciTech Connect

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.; Roswell, R.L.; Stevens, D.L.

    1980-05-01

    A mathematical model was constructed for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included. 25 refs., 16 figs., 13 tabs.

  15. Radionuclide production for positron emission tomography: Choosing an appropriate accelerator

    NASA Astrophysics Data System (ADS)

    Votaw, John R.; Nickles, R. Jerome

    1989-04-01

    The appropriate accelerator for producing 18F, 15O, 13N and 11C depends upon the existing conditions at the intended installation site. The existence of limited resources (e.g. financial, space, etc.) require that the relationship between the accelerator beam energy ( E) and beam current ( I), the yield ( Y) and the external radiation burden be known for each of the reactions leading to the above end products. The interdependence of these parameters is calculated using published cross section data. Isoexposure curves I = D( E) trace the locus of points ( I, E) that cause the radiation exposure, outside a concrete shield of given thickness, to equal a set value. Similarly, isoyield curves I = Y( E) trace the production of the desired radionuclide. The appropriate accelerator must have operating parameters within the region of ( I, E) space bounded by the critical yield and exposure isocontours. The final choice among the candidates within this region is then governed by the particular constraints of an institution (e.g. technical support, manpower requirements, cost, etc.). Factors leading to the purchase of an accelerator at the University of Wisconsin-Madison are presented.

  16. Potential radionuclide emissions from stacks on the Hanford site, Part 1: Dose assessment

    SciTech Connect

    Davis, W.E.; Barnett, J.M.

    1995-02-01

    On February 3, 1993, the U.S. Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the U.S. Environmental Protection Agency, Region 10. The Compliance Order requires RL to evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission monitoring requirements in 40 CFR 61, Subpart H, and to continuously monitor radionuclide emissions in accordance with requirements in 40 CFR 61.93. The Information Request required RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. A Compliance Plan was submitted to EPA, Region 10, on April 30, 1993. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company stacks registered with the Washington State Department of Health on the Hanford Site. Stacks that have the potential emissions to cause an effective dose equivalent to a maximum exposed individual greater than 0.1 mrem/y must be monitored continuously for radionuclide emissions. Five methods were approved by EPA, Region 10 for performing the assessments: Release Fractions from Appendix D of 40 CFR 61, Back Calculations Using A HEPA Filtration Factor, Nondestructive Assay of HEPA Filters, A Spill Release Fraction, and Upstream of HEPA Filter Air Concentrations. The first two methods were extremely conservative for estimating releases. The third method, which used a state-of-the-art portable gamma spectrometer, yielded surprising results from the distribution of radionuclides on the HEPA filters. All five methods are described. Assessments using a HEPA Filtration Factor for back calculations identified 32 stacks that would have emissions that would cause an EDE to the MEI greater than 0.1 mrem y{sup {minus}1}. The number was reduced to 15 stacks when the other methods were applied. The paper discusses reasons for the overestimates.

  17. Radionuclide air emissions annual report for calendar year 1994

    SciTech Connect

    Not Available

    1995-04-04

    This report presents the results of the Pinellas Plant air sampling program for the year of 1994. Topics discussed include: site description; source description; air emissions data; dose assessments; description of dose model; summary of input parameters of dose model; unplanned releases; and diffuse emissions. Included in the attachments of this document are: non-radon individual dose assessment; non-radon population dose assessment; summary of stack flow rate measurements; HOTSPOT computer model run; and meteorological data for the Pinellas Plant for 1994.

  18. Radionuclide Air Emissions Report for the Hanford Site Calendar year 1998

    SciTech Connect

    DIEDIKER, L.P.

    1999-06-15

    This report documents radionuclide air emissions from the Hanford Site in I998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR SI), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246-247, Radiation Protection--Air Emissions. The federal regulations in 40 CFR 61, Subpart H; require the measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv), which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.5 E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE, which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned event

  19. Radionuclide air emissions. Annual report for calendar year 1997

    SciTech Connect

    1997-08-01

    A description is provided of radioactive effluent releases from the Pinellas Plant. The DOE sold the Pinellas Plant in March 1995. A portion of the plant was backed by DOE until September 1997 to facilitate a safe transition to commercial ventures.The plant`s radiological processing equipment was cleaned from past DOE operations. Emissions from the cleanup activity were monitored.

  20. Estimating HAPs and radionuclide emissions from a laboratory complex at a nuclear processing site

    SciTech Connect

    Paul, R.A.; Faugl, T.

    1993-10-01

    A unique methodology was developed for conducting an air emission inventory (AEI) at a DOE nuclear processing facility. This methodology involved the use of computer-assisted design (CAD) drawings to document emission points, computerized process drawings to document industrial processes leading to emissions, and a computerized data base of AEI forms to document emission estimates and related process data. A detailed air emissions inventory for operating years 1985--1991 was recently implemented for the entire site using this methodology. One industrial area at the DOE Site is comprised of laboratory facilities that provide direct support to the nuclear reactor and recovery operations, developmental studies to support reactor and separation operations, and developmental studies to support waste handling and storage. The majority of the functions are conducted in a single large building complex wherein bench scale and pilot scale experiments are carried out involving radionuclides, hazardous air pollutants (HAP), and other chemicals reportable under the Clean Air Act Amendments (CAAA) and Superfund Amendments and Re-authorization Act (SARA) Title 111. The results of the inventory showed that HAP and radionuclide emissions from the laboratory complex were relatively minor.

  1. US Department of Energy report 1996 LANL radionuclide air emissions

    SciTech Connect

    Jacobson, K.W.

    1997-08-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by the Los Alamos National Laboratory (LANL) in 1996. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The effective dose equivalent (EDE) to a hypothetical maximum exposed individual (MEI) of the public was calculated, using procedures specified by the EPA and described in this report. That dose was 1.93 mrem for 1996. Emissions of {sup 11}C, {sup 13}N, and {sup 15}O from a 1-mA, 800 MeV proton accelerator contributed over 92% of the EDE to LANL`s MEI. Using CAP88, the EPA`s dose assessment model, more than 86% of the total dose received by the MEI was via the air immersion pathway.

  2. Comparison of predicted ground-level airborne radionuclide concentrations to measured values resulting from operation of the Los Alamos Meson Physics Facility. Master's thesis

    SciTech Connect

    Hoak, W.V.

    1993-05-01

    A comparison study of measured and predicted downwind radionuclide concentrations from the Los Alamos Meson Physics Facility (LAMPF) was performed. The radionuclide emissions consist primarily of the radioisotopes 11C, 13N, and 150. The gases, vented to the outside environment by a stack located at the facility, potentially increase the radiation exposure at the facility boundary. Emission rate, meteorological, and radiation monitoring station data were collected between September 26, 1992 and October 3, 1992. The meteorological and emission data were input to the Clean Air Act Assessment Package-1988 (CAP88-PC) computer code. The downwind radionuclide air concentrations predicted by the code were compared to the air concentrations measured by the monitoring stations. The code was found to slightly over-predict downwind concentrations during unstable atmospheric conditions. For stable atmospheric conditions, the code was not useful for predicting downwind air concentrations. This is thought to be due to an underestimation of horizontal dispersion.

  3. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  4. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  5. Radionuclide air emissions report for the Hanford Site -- calendar year 1997

    SciTech Connect

    Gleckler, B.P.; Rhoads, K.

    1998-06-17

    This report documents radionuclide air emission from the Hanford Site in 1997, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the MEI. The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emissions Standards for Hazardous Air Pollutants, Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, Radiation Protection-Air Emissions. The effective dose equivalent to the MEI from the Hanford Site`s 1997 point source emissions was 1.2 E-03 mrem (1.2 E-05 mSv), which is well below the 40 CFR 61 Subpart H regulatory limit of 10 mrem/yr. Radon and thoron emissions, exempted from 40 CFR 61 Subpart H, resulted in an effective dose equivalent to the MEI of 2.5 E-03 mrem (2.5 E-05 mSv). The effective dose equivalent to the MEI attributable to diffuse and fugitive emissions was 2.2 E-02 mrem (2.2 E-04 mSv). The total effective dose equivalent from all of the Hanford Site`s air emissions was 2.6 E-02 mrem (2.6 E-04 mSv). The effective dose equivalent from all of the Hanford Site`s air emissions is well below the Washington Administrative Code, Chapter 246-247, regulatory limit of 10 mrem/yr.

  6. Background information on sources of low-level radionuclide emissions to air

    SciTech Connect

    Corbit, C.D.; Herrington, W.N.; Higby, D.P.; Stout, L.A.; Corley, J.P.

    1983-09-01

    This report provides a general description and reported emissions for eight low-level radioactive source categories, including facilties that are licensed by the Nuclear Regulatory Commission (NRC) and Agreement States, and non-Department of Energy (DOE) federal facilities. The eight categories of low-level radioactive source facilities covered by this report are: research and test reactors, accelerators, the radiopharmaceutical industry, source manufacturers, medical facilities, laboratories, naval shipyards, and low-level commercial waste disposal sites. Under each category five elements are addressed: a general description, a facility and process description, the emission control systems, a site description, and the radionuclides released to air (from routine operations).

  7. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect

    Davis, W.E.; Barnett, J.M.

    1994-07-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  8. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  9. Current status and future needs for standards of radionuclides used in positron emission tomography.

    PubMed

    Zimmerman, B E

    2013-06-01

    Positron Emission Tomography (PET) is being increasingly used as a quantitative technique for detecting disease and monitoring patient progress during treatment. To ensure the validity of the quantitative information derived from the imaging data, it is imperative that all radioactivity measurements that are part of the imaging procedure be traceable to national or international standards. This paper reviews the current status of standards for positron emitting radionuclides (e.g., (18)F, (68)Ge/(68)Ga, and (124)I) and suggests needs for future work.

  10. Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew S.; Xi, Xin; Jeong, Seongeun; Yates, Emma L.; Iraci, Laura T.; Tanaka, Tomoaki; Loewenstein, Max; Tadić, Jovan M.; Fischer, Marc L.

    2016-11-01

    Seasonal methane (CH4) emissions in Northern California are evaluated during this study by using airborne measurement data and inverse model simulations. This research applies Alpha Jet Atmospheric eXperiment (AJAX) measurements obtained during January-February 2013, July 2014, and October-November 2014 over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in order to constrain seasonal CH4 emissions in Northern California. The California Greenhouse Gas Emissions Measurement (CALGEM) a priori emission inventory was applied in conjunction with the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport model and inverse modeling techniques to optimize CH4 emissions. Comparing model-predicted CH4 mixing ratios with airborne measurements, we find substantial underestimates suggesting that CH4 emissions were likely larger than the year 2008 a priori CALGEM emission inventory in Northern California. Using AJAX measurements to optimize a priori emissions resulted in CH4 flux estimates from the SFBA/SJV of 1.77 ± 0.41, 0.83 ± 0.31, and 1.06 ± 0.39 Tg yr-1 when using winter, summer, and fall flight data, respectively. Averaging seasonal a posteriori emission estimates (weighted by posterior uncertainties) results in SFBA/SJV annual CH4 emissions of 1.28 ± 0.38 Tg yr-1. A posteriori uncertainties are reduced more effectively in the SFBA/SJV region compared to state-wide values indicating that the airborne measurements are most sensitive to emissions in this region. A posteriori estimates during this study suggest that dairy livestock was the source with the largest increase relative to the a priori CALGEM emission inventory during all seasons.

  11. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  12. Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms.

    PubMed

    Yamamoto, Naomichi; Hospodsky, Denina; Dannemiller, Karen C; Nazaroff, William W; Peccia, Jordan

    2015-04-21

    This study quantifies the influence of ventilation and indoor emissions on concentrations and particle sizes of airborne indoor allergenic fungal taxa and further examines geographical variability, each of which may affect personal exposures to allergenic fungi. Quantitative PCR and multiplexed DNA sequencing were employed to count and identify allergenic fungal aerosol particles indoors and outdoors in seven school classrooms in four different countries. Quantitative diversity analysis was combined with building characterization and mass balance modeling to apportion source contributions of indoor allergenic airborne fungal particles. Mass balance calculations indicate that 70% of indoor fungal aerosol particles and 80% of airborne allergenic fungal taxa were associated with indoor emissions; on average, 81% of allergenic fungi from indoor sources originated from occupant-generated emissions. Principal coordinate analysis revealed geographical variations in fungal communities among sites in China, Europe, and North America (p < 0.05, analysis of similarity), demonstrating that geography may also affect personal exposures to allergenic fungi. Indoor emissions including those released with occupancy contribute more substantially to allergenic fungal exposures in classrooms sampled than do outdoor contributions from ventilation. The results suggest that design and maintenance of buildings to control indoor emissions may enable reduced indoor inhalation exposures to fungal allergens.

  13. Inventory of PCBs in Chicago and Opportunities for Reduction in Airborne Emissions and Human Exposure.

    PubMed

    Shanahan, Caitlin E; Spak, Scott N; Martinez, Andres; Hornbuckle, Keri C

    2015-12-01

    Urban areas are important regional sources of airborne polychlorinated biphenyls (PCBs) and population-scale airborne exposure, yet a comprehensive bottom-up source inventory of PCB emissions has never been quantified at urban scales in the United States. Here we report a comprehensive parcel level inventory of PCB stocks and emissions for Chicago, Illinois, developed with a transferable method from publicly available data. Chicago's legacy stocks hold 276 ± 147 tonnes ∑PCBs, with 0.2 tonnes added annually. Transformers and building sealants represent the largest legacy categories at 250 and 20 tonnes, respectively. From these stocks, annual emissions rates of 203 kg for ∑PCBs and 3 kg for PCB 11 explain observed concentrations in Chicago air. Sewage sludge drying contributes 25% to emissions, soils 31%, and transformers 21%. Known contaminated sites account for <1% of stocks and 17% of emissions to air. Paint is responsible for 0.00001% of stocks but up to 7% of ∑PCBs emissions. Stocks and emissions are highly concentrated and not correlated with population density or demographics at the neighborhood scale. Results suggest that strategies to further reduce exposure and ecosystem deposition must focus on the largest emissions sources rather than the most contaminated sites or the largest closed source legacy stocks.

  14. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    PubMed

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  15. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  16. Radionuclide Generators

    NASA Astrophysics Data System (ADS)

    Rösch, F.; Knapp, F. F. (Russ)

    Radionuclide generator systems continue to play a key role in providing both diagnostic and therapeutic radionuclides for various applications in nuclear medicine, oncology, and interventional cardiology. Although many parent/daughter pairs have been evaluated as radionuclide generator systems, there are a relatively small number of generators, which are currently in routine clinical and research use. Essentially every conceivable approach has been used for parent/separation strategies, including sublimation, thermochromatographic separation, solvent extraction, and adsorptive column chromatography. The most widely used radionuclide generator for clinical applications is the 99Mo/99mTc generator system, but recent years have seen an enormous increase in the use of generators to provide therapeutic radionuclides, which has paralleled the development of complementary technologies for targeting agents for therapy and in the general increased interest in the use of unsealed therapeutic radioactive sources. More recently, use of the 68Ge/68Ga generator is showing great potential as a source of positron-emitting 68Ga for positron emission tomography (PET)/CT imaging. Key advantages for the use of radionuclide generators include reasonable costs, the convenience of obtaining the desired daughter radionuclide on demand, and availability of the daughter radionuclide in high specific activity, no-carrier added form.

  17. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  18. Detection of Unexploded Ordnance Using Airborne LWIR Emissivity Signatures

    DTIC Science & Technology

    2015-11-25

    glass and wood , are spectrally distinct and would not appear as false alarms. Index Terms— Hyperspectral, Long Wave Infrared, Emissivity, Target...potential false alarms. They included materials made of rubber, cardboard, metal, wood , glass and plastic (Figure 1). 2.2. Laboratory LWIR signature...glass and (c) wood pieces. The upper row displays the pixels that were detected while the lower row displays the intensity of the detection. The

  19. Airborne observations of vegetation and implications for biogenic emission characterization.

    PubMed

    Hawes, Amy K; Solomon, Susan; Portmann, Robert W; Daniel, John S; Langford, Andrew O; Miller, H LeRoy; Eubank, Charles S; Goldan, Paul; Wiedinmyer, Christine; Atlas, Elliot; Hansel, Armin; Wisthaler, Armin

    2003-12-01

    Measuring hydrocarbons from aircraft represents one way to infer biogenic emissions at the surface. The focus of this paper is to show that complementary remote sensing information can be provided by optical measurements of a vegetation index, which is readily measured with high temporal coverage using reflectance data. We examine the similarities between the vegetation index and in situ measurements of the chemicals isoprene, methacrolein, and alpha-pinene to estimate whether the temporal behavior of the in situ measurements of these chemicals could be better understood by the addition of the vegetation index. Data were compared for flights conducted around Houston in August and September 2000. The three independent sets of chemical measurements examined correspond reasonably well with the vegetation index curves for the majority of flight days. While low values of the vegetation index always correspond to low values of the in situ chemical measurements, high values of the index correspond to both high and low values of the chemical measurements. In this sense it represents an upper limit when compared with in situ data (assuming the calibration constant is adequately chosen). This result suggests that while the vegetation index cannot represent a purely predictive quantity for the in situ measurements, it represents a complementary measurement that can be useful in understanding comparisons of various in situ observations, particularly when these observations occur with relatively low temporal frequency. In situ isoprene measurements and the vegetation index were also compared to an isoprene emission inventory to provide additional insight on broad issues relating to the use of vegetation indices in emission database development.

  20. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes

    PubMed Central

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G.; Shelton, Betsy L.; Peters, Thomas M.

    2012-01-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm3) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm3) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m3) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m3) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded. PMID:23204914

  1. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes.

    PubMed

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G; Shelton, Betsy L; Peters, Thomas M

    2012-10-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm(3)) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm(3)) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m(3)) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m(3)) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded.

  2. Diacetyl emissions and airborne dust from butter flavorings used in microwave popcorn production.

    PubMed

    Boylstein, Randy; Piacitelli, Chris; Grote, Ardith; Kanwal, Richard; Kullman, Greg; Kreiss, Kathleen

    2006-10-01

    In microwave popcorn workers, exposure to butter flavorings has been associated with fixed obstructive lung disease resembling bronchiolitis obliterans. Inhalation toxicology studies have shown severe respiratory effects in rats exposed to vapors from a paste butter flavoring, and to diacetyl, a diketone found in most butter flavorings. To gain a better understanding of worker exposures, we assessed diacetyl emissions and airborne dust levels from butter flavorings used by several microwave popcorn manufacturing companies. We heated bulk samples of 40 different butter flavorings (liquids, pastes, and powders) to approximately 50 degrees C and used gas chromatography, with a mass selective detector, to measure the relative abundance of volatile organic compounds emitted. Air sampling was conducted for diacetyl and for total and respirable dust during the mixing of powder, liquid, or paste flavorings with heated soybean oil at a microwave popcorn plant. To further examine the potential for respiratory exposures to powders, we measured dust generated during different simulated methods of manual handling of several powder butter flavorings. Powder flavorings were found to give off much lower diacetyl emissions than pastes or liquids. The mean diacetyl emissions from liquids and pastes were 64 and 26 times larger, respectively, than the mean of diacetyl emissions from powders. The median diacetyl emissions from liquids and pastes were 364 and 72 times larger, respectively, than the median of diacetyl emissions from powders. Fourteen of 16 powders had diacetyl emissions that were lower than the diacetyl emissions from any liquid flavoring and from most paste flavorings. However, simulated handling of powder flavorings showed that a substantial amount of the airborne dust generated was of respirable size and could thus pose its own respiratory hazard. Companies that use butter flavorings should consider substituting flavorings with lower diacetyl emissions and the use of

  3. Investigation of Greenhouse Gas Emissions by Surface, Airborne, and Satellite on Local to Continental-Scale

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Egland, E. T.; Gerilowski, K.; Vigil, S. A.; Buchwitz, M.; Krings, T.; Bovensmann, H.; Krautwurst, S.; Burrows, J. P.

    2013-12-01

    In situ meteorological observations, including 10-m winds (U), in conjunction with greenhouse gas (GHG - methane, carbon dioxide, water vapor) measurements by continuous wave Cavity Enhanced Absorption Spectroscopy (CEAS) were conducted onboard two specialized platforms: MACLab (Mobile Atmospheric Composition Laboratory in a RV) and AMOG Surveyor (AutoMObile Greenhouse gas) - a converted commuter automobile. AMOG Surveyor data were collected for numerous southern California sources including megacity, geology, fossil fuel industrial, animal husbandry, and landfill operations. MACLab investigated similar sources along with wetlands on a transcontinental scale from California to Florida to Nebraska covering more than 15,000 km. Custom software allowing real-time, multi-parameter data visualization (GHGs, water vapor, temperature, U, etc.) improved plume characterization and was applied to large urban area and regional-scale sources. The capabilities demonstrated permit calculation of source emission strength, as well as enable documenting microclimate variability. GHG transect data were compared with airborne HyperSpectral Imaging data to understand temporal and spatial variability and to ground-truth emission strength derived from airborne imagery. These data also were used to validate satellite GHG products from SCIAMACHY (2003-2005) and GOSAT (2009-2013) that are currently being analyzed to identify significant decadal-scale changes in North American GHG emission patterns resulting from changes in anthropogenic and natural sources. These studies lay the foundation for the joint ESA/NASA COMEX campaign that will map GHG plumes by remote sensing and in situ measurements for a range of strong sources to derive emission strength through inverse plume modeling. COMEX is in support of the future GHG monitoring satellites, such as CarbonSat and HyspIRI. GHG transect data were compared with airborne HyperSpectral Imaging data to understand temporal and spatial variability

  4. Airborne measurements of the atmospheric emissions from a fuel ethanol refinery

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J. B.; Graus, M.; Hanisco, T.; Holloway, J. S.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K.-E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M.

    2015-05-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the U.S. The ethanol is produced in over 200 fuel ethanol refineries across the nation. We report airborne measurements downwind from Decatur, Illinois, where the third largest fuel ethanol refinery in the U.S. is located. Estimated emissions are compared with the total point source emissions in Decatur according to the 2011 National Emissions Inventory (NEI-2011), in which the fuel ethanol refinery represents 68.0% of sulfur dioxide (SO2), 50.5% of nitrogen oxides (NOx = NO + NO2), 67.2% of volatile organic compounds (VOCs), and 95.9% of ethanol emissions. Emissions of SO2 and NOx from Decatur agreed with NEI-2011, but emissions of several VOCs were underestimated by factors of 5 (total VOCs) to 30 (ethanol). By combining the NEI-2011 with fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities, defined as the emissions per ethanol mass produced. Emission intensities of SO2 and NOx are higher for plants that use coal as an energy source, including the refinery in Decatur. By comparing with fuel-based emission factors, we find that fuel ethanol refineries have lower NOx, similar VOC, and higher SO2 emissions than from the use of this fuel in vehicles. The VOC emissions from refining could be higher than from vehicles, if the underestimated emissions in NEI-2011 downwind from Decatur extend to other fuel ethanol refineries. Finally, chemical transformations of the emissions from Decatur were observed, including formation of new particles, nitric acid, peroxyacyl nitrates, aldehydes, ozone, and sulfate aerosol.

  5. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Smith, K. R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M. A. K.; Rasmussen, R. A.; Thorneloe, S. A.

    Emissions from household stoves, especially those using solid fuels, can contribute significantly to greenhouse gas (GHG) inventories and have adverse health impacts. Few data are available on emissions from the numerous types of cookstoves used in developing countries. We have systematically measured emissions from 56 fuel/stove combinations in India and China, a large fraction of the combinations in use world-wide. A database was generated containing emission factors of direct and indirect GHGs and other airborne pollutants such as CO 2, CO, CH 4, TNMHC, N 2O, SO 2, NO x, TSP, etc. In this paper, we report on the 28 fuel/stove combinations tested in China. Since fuel and stove parameters were measured simultaneously along with the emissions, the database allows construction of complete carbon balances and analyses of the trade-off of emissions per unit fuel mass and emissions per delivered energy. Results from the analyses show that the total emissions per unit delivered energy were substantially greater from burning the solid fuels than from burning the liquid or gaseous fuels, due to lower thermal and combustion efficiencies for solid-fuel/stove combinations. For a given biomass fuel type, increasing overall stove efficiency tends to increase emissions of products of incomplete combustion. Biomass fuels are typically burned with substantial production of non-CO 2 GHGs with greater radiative forcing, indicating that biomass fuels have the potential to produce net global warming commitments even when grown renewably.

  6. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.

    PubMed

    Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I

    2015-07-07

    We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.

  7. Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios

    NASA Astrophysics Data System (ADS)

    Johnson, Graham R.; Juwono, Alamsyah M.; Friend, Adrian J.; Cheung, Hing-Cho; Stelcer, Eduard; Cohen, David; Ayoko, Godwin A.; Morawska, Lidia

    2014-10-01

    This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulphur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng m-3 (87%) higher than the average for all wind directions and 0.83 ng m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.

  8. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  9. Nitrous oxide (N2O) emissions from California based on 2010 CalNex airborne measurements

    NASA Astrophysics Data System (ADS)

    Xiang, Bin; Miller, Scot M.; Kort, Eric A.; Santoni, Gregory W.; Daube, Bruce C.; Commane, Roisin; Angevine, Wayne M.; Ryerson, Tom B.; Trainer, Michael K.; Andrews, Arlyn E.; Nehrkorn, Thomas; Tian, Hanqin; Wofsy, Steven C.

    2013-04-01

    Nitrous oxide (N2O) is an important gas for climate and for stratospheric chemistry, with a lifetime exceeding 100 years. Global concentrations have increased steadily since the 18th century, apparently due to human-associated emissions, principally from the application of nitrogen fertilizers. However, quantitative studies of agricultural emissions at large spatial scales are lacking, inhibited by the difficulty of measuring small enhancements in atmospheric concentration. Here we derive regional emission rates for N2O in the agricultural heartland of California based on analysis of in-situ airborne atmospheric observations collected using a new quantum cascade laser spectrometer. The data were obtained on board the NOAA WP-3 research aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) program in late spring 2010. We coupled the WRF (weather research and forecasting) model, a meso-scale meteorology model, with the STILT (stochastic time-inverted Lagrangian transport) model, a Lagrangian particle dispersion model, to link our in-situ airborne observations to surface emissions. We then used a variety of statistical methods to identify source areas and to optimize emission rates. Our results are consistent with the view that fertilizer application is the largest source of N2O in the Central Valley. The spatial distribution of surface emissions, based on California land use and activity maps, was very different than indicated in the leading emission inventory (EDGAR 4.0). Our estimated total emission flux of N2O for California in May and June was 3 - 4 times larger than the annual mean given for the state by EDGAR and other inventories, indicating a strong seasonal variation. We estimated the statewide total annual emissions of N2O to be 0.042 ± 0.011 Tg N/year, roughly equivalent to inventory values if we account for seasonal variations using observations obtained in the midwestern United States. This state total N2O

  10. Pacific Northwest Laboratory facilities radionuclide inventory assessment CY 1992-1993

    SciTech Connect

    Sula, M.J.; Jette, S.J.

    1994-09-01

    Assessments for evaluating compliance with airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAPs - U.S. Code of Federal Regulations, Title 40 Part 61, Subparts H and I) were performed for 33 buildings at the U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory on the Hanford Site, and for five buildings owned and operated by Battelle, Pacific Northwest Laboratories in Richland, Washington. The assessments were performed using building radionuclide inventory data obtained in 1992 and 1993. Results of the assessments are summarized in Table S.1 for DOE-PNL buildings and in Table S.2 for Battelle-owned buildings. Based on the radionuclide inventory assessments, four DOE-PNL buildings (one with two emission points) require continuous sampling for radionuclides per 40 CFR 61. None of the Battelle-owned buildings require continuous emission sampling.

  11. Monitoring of chromium species and 11 selected metals in emission and immission of airborne environment

    NASA Astrophysics Data System (ADS)

    Krystek, Petra; Ritsema, Rob

    2007-08-01

    Monitoring of chromium species as hexavalent chromium (Cr(VI)) and the determination of the total chromium concentration as well as the concentration of 11 selected metals (Al, Ca, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in industrial emission of a foundry and immission studies of the nearby airborne environment were carried out. The samples were taken as industrial exhaust directly by the outlet and as airborne sample in the environment with distances between some hundred meters and 2 km from the industrial factoryE Wherefore two methods of sampling, sample pre-treatment and mass spectrometric measurement were developed and applied. With respect to different sampling duration different volumes of air were sampled and analysed. For the determination of Cr(VI) sampling in impingers (filled with carbonate-buffer) was used. A procedure of selective complex forming and extraction was developed and measured by double focussing sector field inductively coupled plasma mass spectrometry (ICP-SFMS). For the determination of the total chromium concentration as well as of 11 metals sampling was done by using quartz-filters. After microwave digestion in the medium of aqua regia the samples were analysed by quadrupole inductively coupled plasma mass spectrometry (ICP-QMS). The maximum concentration of Cr(VI)-species in emission samples was determined as 180 ng/m3 air which is about 2% of total Cr. The lowest concentration of Cr(VI)-species in immission was determined as 0.5 ng/m3 air.

  12. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  13. Hanford Site radionuclide national emission standards for hazardous ari pollutants registered and and unregistered stack (powered exhaust) source assessment

    SciTech Connect

    Davis, W.E.

    1995-12-01

    On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of the compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.

  14. Radiation-dose estimates and hazard evaluations for inhaled airborne radionuclides. Annual progress report, July 1981-June 1982

    SciTech Connect

    Mewhinney, J.A.

    1983-06-01

    The objective was to conduct confirmatory research on aerosol characteristics and the resulting radiation dose distribution in animals following inhalation and to provide prediction of health consequences in humans due to airborne radioactivity which might be released in normal operations or under accident conditions during production of nuclear fuel composed of mixed oxides of U and Pu. Four research reports summarize the results of specific areas of research. The first paper details development of a method for determination of specific surface area of small samples of mixed oxide or pure PuO/sub 2/ particles. The second paper details the extension of the biomathematical model previously used to describe retention, distribution and excretion of Pu from these mixed oxide aerosols to include a description of Am and U components of these aerosols. The third paper summarizes the biological responses observed in radiation dose pattern studies in which dogs, monkeys and rate received inhalation exposures to either 750/sup 0/C heat treated UO/sub 2/ + PuO/sub 2/, 1750/sup 0/C heat-treated (U,Pu)O/sub 2/ or 850/sup 0/C heat-treated pure PuO/sub 2/. The fourth paper described dose-response studies in which rats were exposed to (U,Pu)O/sub 2/ or pure PuO/sub 2/. This paper updates earlier reports and summarizes the status of animals through approximately 650 days after inhalation.

  15. Nitrous Oxide (N2O) Emissions from California based on 2010 CalNex Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Miller, S.; Kort, E. A.; Santoni, G. W.; Daube, B.; Commane, R.; Angevine, W. M.; Ryerson, T. B.; Trainer, M.; Andrews, A. E.; Nehrkorn, T.; Tian, H.; Wofsy, S. C.

    2012-12-01

    Nitrous oxide (N2O) is an important gas for climate and for stratospheric chemistry, with an atmospheric lifetime exceeding 100 years. Global concentrations have increased steadily since the 18th century, apparently due to human-associated emissions, principally from application of nitrogen fertilizers. However, quantitative studies of agricultural emissions at large spatial scales are lacking, inhibited by the difficulty of measuring small enhancements of atmospheric concentrations. Here we derive regional emission rates for N2O in the Central Valley of California, based on analysis of in-situ airborne atmospheric observations collected using a quantum cascade laser spectrometer. The data were obtained on board the NOAA P-3 research aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) program in May and June, 2010. We coupled WRF (Weather Research and Forecasting) model to STILT (Stochastic Time-Inverted Lagrangian Transport) to link our in-situ observations to surface emissions, and then used a variety of statistical methods to identify source areas and to extract optimized emission rates from the inversion. Our results support the view that fertilizer application is the largest source of N2O in the Central Valley. But the spatial distribution of derived surface emissions, based on California land use and activity maps, was very different than indicated in the leading emissions inventory (EDGAR 4.0), and our estimated total emission flux of N2O for California during the study period was 3 - 4 times larger than EDGAR and other inventories.

  16. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  17. Estimation of radionuclide ((137)Cs) emission rates from a nuclear power plant accident using the Lagrangian Particle Dispersion Model (LPDM).

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Ju, Jae-Won; Joo, Seung Jin

    2016-10-01

    A methodology for the estimation of the emission rate of (137)Cs by the Lagrangian Particle Dispersion Model (LPDM) with the use of monitored (137)Cs concentrations around a nuclear power plant has been developed. This method has been employed with the MM5 meteorological model in the 600 km × 600 km model domain with the horizontal grid scale of 3 km × 3 km centered at the Fukushima nuclear power plant to estimate (137)Cs emission rate for the accidental period from 00 UTC 12 March to 00 UTC 6 April 2011. The Lagrangian Particles are released continuously with the rate of one particle per minute at the first level modelled, about 15 m above the power plant site. The presently developed method was able to simulate quite reasonably the estimated (137)Cs emission rate compared with other studies, suggesting the potential usefulness of the present method for the estimation of the emission rate from the accidental power plant without detailed inventories of reactors and fuel assemblies and spent fuels. The advantage of this method is not so complicated but can be applied only based on one-time forward LPDM simulation with monitored concentrations around the power plant, in contrast to other inverse models. It was also found that continuously monitored radionuclides concentrations from possibly many sites located in all directions around the power plant are required to get accurate continuous emission rates from the accident power plant. The current methodology can also be used to verify the previous version of radionuclides emissions used among other modeling groups for the cases of intermittent or discontinuous samplings.

  18. Ground and Airborne Aerosol Composition Measurements of California Coastal Chaparral Smoke Emissions

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Sorooshian, A.; Hersey, S. P.; Metcalf, A. R.; Schilling-Fahnestock, K.; Newman, S.; Akagi, S. K.; Taylor, J.; McMeeking, G.; Coe, H.; Tang, P.; Cocker, D. R., III; Yokelson, R. J.; Flagan, R. C.; Seinfeld, J.

    2014-12-01

    Wildfire smoke has large local to global pollution impacts. We present aerosol composition data from two fires in southern California. We measured organic aerosol (OA) of nascent and aged (4 h) smoke from the Williams Fire during the 2009 airborne San Luis Obispo Biomass Burning Campaign (SLOBB). The net ΔOA/ΔCO2 decreased by ~20%; however, positive matrix factorization (PMF) analysis of the organic mass spectra supports two factors that enable the OA emissions to be separated into fresh and oxidized OA. The Δfresh BBOA/ΔCO2 had a steeper decline than the ΔOA/ΔCO2 consistent with outgassing of semi-voltile organic compounds (SVOCs) due to dilution, whereas the Δoxidized BBOA/ΔCO2 increased from its initial value, consist with formation of secondary organic aerosol (SOA). We compare these fresh and oxidized mass spectral signatures, along with chaparral smoke samples measured in the Missoula Fire Lab, to ground-based aerosol measurements made during the Station Fire that occurred one month earlier than the Williams Fire during the Pasadena Aerosol Characterization Observatory Campaign (PACO). Night and daytime aerosol smoke emissions were sampled for one week during the Station Fire. Daytime organic aerosol smoke emissions exhibited larger variability both in mass concentration and composition than nighttime smoke emissions. Both levoglucosan and potassium, known biomass burning tracers, were measured and had distinct time series, supporting diversity in the flaming vs. smoldering initial burning conditions. Similar to the Williams Fire, PMF of the Station Fire mass spectra also reveal two biomass burning factors, one that is less oxidized and correlates strongly with levoglucosan measurements and one that is heavily oxidized and correlates in time with the potassium signal. These two campaigns have allowed us to probe fresh and oxidized smoke in both night and daytime conditions, and PMF results have revealed that at least two emission factors are useful to

  19. Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

    2013-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were

  20. Building protection- and building shielding-factors for environmental exposure to radionuclides and monoenergetic photon emissions.

    PubMed

    Dickson, E D; Hamby, D M

    2016-09-01

    We describe a simplified method for calculating both building protection- and shielding-factors for generic one- and two-story housing-unit models that are source-term dependent. Typically, radionuclide-independent factors are applied generically to external dose coefficients to account for the radiation shielding effects of indoor residences. In reality, the shielding effectiveness of each housing-unit would change over time as the radionuclide mixture and gamma-ray energy spectrum change due to physical effects such as deposition, radioactive decay, weathering effects, and decontamination efforts. Thus, it is necessary to develop factors designed for multiple photon energy spectrums to generate a more realistic estimate of the shielding effectiveness of a particular building. It is impractical to develop factors specific to a spectrum of photons emitted by each radionuclide of interest. Therefore, Monte Carlo simulations have been performed for sixteen monoenergetic photon energies from 0.10 to 3.0 MeV to characterize the 3D radiation fluence through each housing-unit produced by two idealized, yet realistic, environmental exposure scenarios. Results of these simulations were then used to develop fitted logarithmic functions (extrapolated to 0.0 MeV) to correlate an estimated factor to any monoenergetic photon energy up to 3.0 MeV. To verify these functions, another series of Monte Carlo simulations were performed for a select set of radionuclides to develop radionuclide-specific building protection- and shielding-factors. Good agreement is achieved between factors estimated using the presented functions and those calculated directly using Monte Carlo methods. Factors predicted by these functions are found to be in general agreement with other study results reported on similar structures which applied various computational methods and source-terms. This study only focuses on generic one- and two-story homes to provide a practical application that can contribute

  1. Idaho radionuclide exposure study: Literature review

    SciTech Connect

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.

    1987-10-01

    Phosphate ores contain elevated levels of natural radioactivity, some of which is released to the environment during processing or use of solid byproducts. The effect of radionuclides from Idaho phosphate processing operations on the local communities has been the subject of much research and study. The literature is reviewed in this report. Two primary radionuclide pathways to the environment have been studied in detail: (1) airborne release of volatile radionuclides, primarily /sup 210/Po, from calciner stacks at the two elemental phosphorus plants; and (2) use of byproduct slag as an aggregate for construction in Soda Springs and Pocatello. Despite the research, there is still no clear understanding of the population dose from radionuclide emissions, effluents, and solid wastes from phosphate processing plants. Two other potential radionuclide pathways to the environment have been identified: radon exhalation from phosphogypsum and ore piles and contamination of surface and ground waters. Recommendations on further study needed to develop a data base for a complete risk assssment are given in the report.

  2. Point source emissions mapping using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Astrophysics Data System (ADS)

    Thorpe, Andrew K.; Roberts, Dar A.; Dennison, Philip E.; Bradley, Eliza S.; Funk, Christopher C.

    2012-06-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected solar radiation in the shortwave infrared and has been used to map methane (CH4) using both a radiative transfer technique [1] and a band ratio method [2]. However, these methods are best suited to water bodies with high sunglint and are not well suited for terrestrial scenes. In this study, a cluster-tuned matched filter algorithm originally developed by Funk et al. [3] for synthetic thermal infrared data was used for gas plume detection over more heterogeneous backgrounds. This approach permits mapping of CH4, CO2 (carbon dioxide), and N2O (nitrous oxide) trace gas emissions in multiple AVIRIS scenes for terrestrial and marine targets. At the Coal Oil Point marine seeps offshore of Santa Barbara, CA, strong CH4 anomalies were detected that closely resemble results obtained using the band ratio index. CO2 anomalies were mapped for a fossil-fuel power plant, while multiple N2O and CH4 anomalies were present at the Hyperion wastewater treatment facility in Los Angeles, CA. Nearby, smaller CH4 anomalies were also detected immediately downwind of hydrocarbon storage tanks and centered on a flaring stack at the Inglewood Gas Plant. Improving these detection methods might permit gas detection over large search areas, e.g. identifying fugitive CH4 emissions from damaged natural gas pipelines or hydraulic fracturing. Further, this technique could be applied to other trace gasses with distinct absorption features and to data from planned instruments such as AVIRISng, the NEON Airborne Observation Platform (AOP), and the visible-shortwave infrared (VSWIR) sensor on the proposed HyspIRI satellite.

  3. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Yan, Bokun; Dong, Xinfeng; Zhang, Shimin; Zhang, Jingfa; Tian, Feng; Wang, Runsheng

    2015-08-01

    Thermal infrared remote sensing (8-12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum-minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature-emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32-1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.

  4. Geogenic Sources Strongly Contribute to the Mackenzie River Delta's Methane Emissions Derived From Airborne Flux Data

    NASA Astrophysics Data System (ADS)

    Kohnert, K.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T.

    2015-12-01

    Arctic permafrost-associated wetlands and thawing permafrost emit the greenhouse gas methane (CH4), either as a product of recent microbial activity in the active layer or taliks, or from deeper geogenic sources where pathways through the permafrost exist. Current emission estimates vary strongly between different models and there is still disagreement between bottom-up estimates from local field studies and top-down estimates from atmospheric measurements. We use airborne flux data from two campaigns in the Mackenzie River Delta, Canada, in July 2012 and 2013 to directly quantify permafrost CH4 emissions on the regional scale, to analyse the regional pattern of CH4 fluxes and to estimate the contribution of geogenic emissions to the overall CH4 budget of the delta. CH4 fluxes were calculated with a time-frequency resolved version of the eddy covariance technique, resulting in a gridded 100 m x 100 m resolution flux map within the footprints of the flight tracks. We distinguish geogenic gas seeps from biogenic sources by their strength and show that they contribute strongly to the annual CH4 budget of the delta. Our study provides the first estimate of annual CH4 release from the Mackenzie River Delta and the adjacent coastal plain. We show that one percent of the covered area contains the strongest geogenic seeps which contribute disproportionately to the annual emission estimate. Our results show that geogenic CH4 emissions might need more attention, especially in areas where permafrost is vulnerable to thawing sufficiently to create pathways for geogenic gas migration. The presented map can be used as a baseline for future CH4 flux studies in the Mackenzie River Delta.

  5. Radionuclide Releases During Normal Operations for Ventilated Tanks

    SciTech Connect

    Blunt, B.

    2001-09-24

    This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

  6. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Hartmann, J.; Sachs, T.; Erzinger, J.; Burrows, J. P.; Bovensmann, H.

    2013-01-01

    The quantification of emissions of the greenhouse gas methane is essential for attributing the roles of anthropogenic activity and natural phenomena in global climate change. Our current measurement systems and networks, whilst having improved during the last decades, are deficient in many respects. For example, the emissions from localised and point sources such as landfills or fossil fuel exploration sites are not readily assessed. A tool developed to better understand point sources of the greenhouse gases carbon dioxide and methane is the optical remote sensing instrument MAMAP (Methane airborne MAPper), operated from aircraft. After a recent instrument modification, retrievals of the column-averaged dry air mole fractions for methane XCH4 (or for carbon dioxide XCO2) derived from MAMAP data have a precision of about 0.4% or better and thus can be used to infer emission rate estimates using an optimal estimation inverse Gaussian plume model or a simple integral approach. CH4 emissions from two coal mine ventilation shafts in western Germany surveyed during the AIRMETH 2011 measurement campaign are used as examples to demonstrate and assess the value of MAMAP data for quantifying CH4 from point sources. While the knowledge of the wind is an important input parameter in the retrieval of emissions from point sources and is generally extracted from models, additional information from a turbulence probe operated on-board the same aircraft was utilised to enhance the quality of the emission estimates. Although flight patterns were optimised for remote sensing measurements, data from an in situ analyser for CH4 were found to be in good agreement with retrieved dry columns of CH4 from MAMAP and could be used to investigate and refine underlying assumptions for the inversion procedures. With respect to the total emissions of the mine at the time of the overflight, the inferred emission rate of 50.4 kt CH4 yr-1 has a difference of less than 1% compared to officially

  7. Unmanned Airborne Platforms for Validation of Volcanic Emission Composition and Transport Models

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.

    2012-12-01

    In recent years there has been an increasing realization that current remote sensing retrieval and transport models to detect, characterize, and track airborne volcanic emissions will be much improved fundamentally, and in their application, by the acquisition of in situ validation data. This issue was highlighted by the need for operational estimates of airborne ash concentrations during the 2010 eruption at Eyjafjallajökull-Fimmvörduháls in Iceland. In response, important campaigns were mounted in Europe to conduct airborne in situ observations with manned aircraft to validate ash concentration estimates based on remote sensing data. This effort had immediate application providing crucial accuracy and precision estimates for predicting locations, trajectories, and concentrations of the drifting ash to mitigate the severe economic impacts caused by the continent-wide grounding of aircraft. Manned flying laboratories, however, sustain serious risks if flown into the areas of volcanic plumes and drifting clouds that are of the highest interest, namely the zones of most concentrated ash and gas, which are often opaque to upwelling radiation at the longer infrared wavelengths (e.g., 8-12μm), where ash and gas can be most readily detected. Unmanned airborne vehicles (UAVs), of course, can provide volcanic aerosol and gas sampling and measurement platforms with no risk to flight crews, and can penetrate the most ash-concentrated zones of plumes and drifting clouds. Current interest has been high in developing and testing small UAVs (e.g., NASA, University of Costa Rica, University of Düsseldorf; INGV-Catania and Rome, and others) for proximal sulfur dioxide and solid aerosol observations and sampling in relatively quiescently erupting plumes as a first step toward more far ranging and higher altitude deployments into drifting volcanic ash clouds at regional scales. Nevertheless, in the aftermath of the Icelandic crisis, ash and gas concentrations from analysis of

  8. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Andreae, T. W.; Annegarn, H.; Beer, J.; Cachier, H.; Le Canut, P.; Elbert, W.; Maenhaut, W.; Salma, I.; Wienhold, F. G.; Zenker, T.

    1998-12-01

    We investigated smoke emissions from fires in savanna, forest, and agricultural ecosystems by airborne sampling of plumes close to prescribed burns and incidental fires in southern Africa. Aerosol samples were collected on glass fiber filters and on stacked filter units, consisting of a Nuclepore prefilter for particles larger than ˜1-2 μm and a Teflon second filter stage for the submicron fraction. The samples were analyzed for soluble ionic components, organic carbon, and black carbon. Onboard the research aircraft, particle number and volume distributions as a function of size were determined with a laser-optical particle counter and the black carbon content of the aerosol with an aethalometer. We determined the emission ratios (relative to CO2 and CO) and emission factors (relative to the amount of biomass burnt) for the various aerosol constituents. The smoke aerosols were rich in organic and black carbon, the latter representing 10-30% of the aerosol mass. K+ and NH4+ were the dominant cationic species in the smoke of most fires, while Cl- and SO42- were the most important anions. The aerosols were unusually rich in Cl-, probably due to the high Cl content of the semiarid vegetation. Comparison of the element budget of the fuel before and after the fires shows that the fraction of the elements released during combustion is highly variable between elements. In the case of the halogen elements, almost the entire amount released during the fire is present in the aerosol phase, while in the case of C, N, and S, only a small proportion ends up as particulate matter. This suggests that the latter elements are present predominantly as gaseous species in the fresh fire plumes studied here.

  9. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements

    NASA Astrophysics Data System (ADS)

    Friedli, H. R.; Radke, L. F.; Lu, J. Y.; Banic, C. M.; Leaitch, W. R.; MacPherson, J. I.

    The emission of mercury from biomass burning was investigated in laboratory experiments and the results confirmed in airborne measurements on a wildfire near Hearst, Ont. Mercury contained in vegetation (live, dead, coniferous, deciduous) was essentially completely released in laboratory burns in the form of gaseous elemental mercury and mercury contained in particles. Replicate burns of dry Ponderosa needles indicated a linear relationship between emitted mercury and fuel mass loss. Regionally collected fuels showed the same behavior as the replicate burns, i.e. essentially total removal of mercury. Mercury released from fuel could be accounted for as gaseous and particulate mercury in the smoke. The mercury content of regionally collected fuels varied between 14 and 70 ng/g on a dry mass (dm) basis. The smoke plume from a small wildfire was investigated with a research aircraft yielding a mean output of 0.15±0.02 ng/m 3 of elemental mercury for each ppm of CO 2 emitted. The particulate mercury determined by sampling at specific points in the plume was <0.083 ng/m 3 compared to elemental mercury of 0.56 ng/m 3 for the same air, supporting the conclusion that most of the mercury was emitted in the gaseous elemental form. Emission factors for the high/low mercury content samples of the laboratory burns were 14-71×10 -6 and 112×10 -6 g Hg/kg (dm) fuel for the wildfire. The difference is believed to be the contribution of mercury released from fire-heated soil. Mercury budgets extrapolated from this single wildfire gave upper emission limits of 66 t/yr for temperate/boreal forests. This large source estimate must be refined and included in future regional and global models. Forests are sinks for mercury already in the atmosphere, thus the wildfire "source" is part of the overall cycling of mercury originating from other sources.

  10. HONO emission and production determined from airborne measurements over the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Trainer, M.; Brown, S. S.; Min, K.-E.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Veres, P. R.

    2016-08-01

    The sources and distribution of tropospheric nitrous acid (HONO) were examined using airborne measurements over the Southeast U.S. during the Southeast Nexus Experiment in June and July 2013. HONO was measured once per second using a chemical ionization mass spectrometer on the NOAA WP-3D aircraft to assess sources that affect HONO abundance throughout the planetary boundary layer (PBL). The aircraft flew at altitudes between 0.12 and 6.4 km above ground level on 18 research flights that were conducted both day and night, sampling emissions from urban and power plant sources that were transported in the PBL. At night, HONO mixing ratios were greatest in plumes from agricultural burning, where they exceeded 4 ppbv and accounted for 2-14% of the reactive nitrogen emitted by the fires. The HONO to carbon monoxide ratio in these plumes from flaming stage fires ranged from 0.13 to 0.52%. Direct HONO emissions from coal-fired power plants were quantified using measurements at night, when HONO loss by photolysis was absent. These direct emissions were often correlated with total reactive nitrogen with enhancement ratios that ranged from 0 to 0.4%. HONO enhancements in power plant plumes measured during the day were compared with a Lagrangian plume dispersion model, showing that HONO produced solely from the gas phase reaction of OH with NO explained the observations. Outside of recently emitted plumes from known combustion sources, HONO mixing ratios measured several hundred meters above ground level were indistinguishable from zero within the 15 parts per trillion by volume measurement uncertainty. The results reported here do not support the existence of a ubiquitous unknown HONO source that produces significant HONO concentrations in the lower troposphere.

  11. U.S. Department of Energy Report 1998 LANL Radionuclide Air Emissions

    SciTech Connect

    Keith W. Jacobson

    1999-07-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by Los Alamos National Laboratory (LANL) in 1998. This information is required under the Clean Air Act and is being reported to the US Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. For 1998, the dose was 1.72 mrem. Airborne effluents from a 1 mA, 800 MeV proton accelerator contributed about 80% of the EDE; the majority of the total dose contribution was via the air immersion pathway.

  12. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms

    NASA Astrophysics Data System (ADS)

    Berg, N.; Mellqvist, J.; Jalkanen, J.-P.; Balzani, J.

    2012-05-01

    A unique methodology to measure gas fluxes of SO2 and NO2 from ships using optical remote sensing is described and demonstrated in a feasibility study. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. A simple geometric approximation is used to calculate the optical path. To obtain the total emission in kg h-1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h-1, and the average NO2 emission was (33 ± 8) kg h-1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h-1, NO2 was not measured here. The detection limit of the system made it possible to detect SO2 in the ship plumes in 60% of the measurements when the described method was used. A comparison exercise was carried out by conducting airborne optical measurements on a passenger ferry in parallel with onboard measurements. The comparison shows agreement of (-30 ± 14)% and (-41 ± 11)%, respectively, for two days, with equal measurement precision of about 20%. This gives an idea of the measurement uncertainty caused by errors in the simple geometric approximation for the optical light path neglecting scattering of the light in ocean waves and direct and multiple scattering in the exhaust plume under various conditions. A tentative

  13. Airborne Ethane Observations over the Barnett and Bakken Shale Formations: Quantification of Ethane Fluxes and Attribution of Methane Emissions

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.

    2014-12-01

    The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes

  14. Radionuclide Emission Estimation for the Center for Advanced Energy Studies (CAES)

    SciTech Connect

    Bradley J Schrader

    2010-02-01

    An Radiological Safety Analysis Computer Program (RSAC)-7 model dose assessment was performed to evaluate maximum Center for Advanced Energy Studies (CAES) boundary effective dose equivalent (EDE, in mrem/yr) for potential individual releases of radionuclides from the facility. The CAES is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE), and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding educational opportunities at Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed a strategic plan (INL/EXT-07-12950) based on the balanced scorecard approach. At the present time it is unknown exactly what processes will be used in the facility in support of this strategic plan. What is known is that the Idaho State University (ISU) Radioactive Materials License (Nuclear Regulatory Commission [NRC] license 11-27380-01) is the basis for handling radioactive material in the facility. The material in this license is shared between the ISU campus and the CAES facility. There currently are no agreements in place to limit the amount of radioactive material at the CAES facility or what is done to the material in the facility. The scope of this analysis is a summary look at the basis dose for each radionuclide included under the license at a distance of 100, 500, and 1,000 m. Inhalation, ingestion and ground surface dose was evaluated using the NRC design basis guidelines. The results can be used to determine a sum of the fractions approach to facility safety. This sum of the fractions allows a facility threshold value (TV) to be established and potential activities to be evaluated against

  15. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  16. U.S. Department of Energy Report 1997 LANL Radionuclide Air Emissions

    SciTech Connect

    Jacobson, K.W.

    1998-09-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by the Los Alamos National Laboratory (LANL) in 1997. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an offsite member of the public was calculated using procedures specified by the EPA and described in this report. For 1997, the dose was 3.51 mrem. Airborne effluents from a 1mA, 800 MeV proton accelerator contributed to over 90% of the EDE; more than 86% of the total dose contribution was through the air immersion pathway.

  17. Positron emission reconstruction tomography for the assessment of regional myocardial metabolism by the administration of substrates labeled with cyclotron produced radionuclides

    NASA Technical Reports Server (NTRS)

    Ter-Pogossian, M. M.; Hoffman, E. J.; Weiss, E. S.; Coleman, R. E.; Phelps, M. E.; Welch, M. J.; Sobel, B. E.

    1975-01-01

    A positron emission transverse tomograph device was developed which provides transaxial sectional images of the distribution of positron-emitting radionuclides in the heart. The images provide a quantitative three-dimensional map of the distribution of activity unencumbered by the superimposition of activity originating from regions overlying and underlying the plane of interest. PETT is used primarily with the cyclotron-produced radionuclides oxygen-15, nitrogen-13 and carbon-11. Because of the participation of these atoms in metabolism, they can be used to label metabolic substrates and intermediary molecules incorporated in myocardial metabolism.

  18. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    yields, we were able to predict ~50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA and have an impact on aerosol composition on a regional scale.

  19. Airborne observations of mercury emissions from the Chicago/Gary urban/industrial area during the 2013 NOMADSS campaign

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Knote, C.; Jaeglé, L.; Selin, N. E.; Campos, T.; Flocke, F. M.; Reeves, M.; Stechman, D.; Stell, M.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Tyndall, G. S.; Mauldin, R. L.; Cantrell, C. A.; Apel, E. C.; Hornbrook, R. S.; Blake, N. J.

    2016-11-01

    Atmospheric emissions from the Chicago/Gary urban/industrial area significantly enhance ambient mercury (Hg) concentrations and lead to increased levels of atmospheric Hg deposition within the Lake Michigan Basin. We use airborne observations collected over Lake Michigan during the 2013 Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) campaign to quantify the outflow of total Hg (THg) emissions from the Chicago/Gary urban/industrial area. We use concurrent airborne measurements of THg, carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), and sulfur dioxide (SO2) to calculate measured enhancement ratios and to characterize Chicago/Gary emissions with respect to the 2011 U.S. EPA National Emissions Inventory. We determine the observed THg/CO enhancement ratio in outflow from Chicago/Gary to be 0.21 ± 0.09 × 10-6 mol mol-1 (ppqv/ppbv), which is comparable to observations reported for other major U.S. urban/industrial areas. We also employ the FLEXPART Lagrangian transport and dispersion model to simulate air mass transport during plume encounters and to compare our observations to inventoried emission ratios. We find that our observed THg/CO enhancement ratios are 63-67% greater than the transport-corrected emission ratios for the Chicago/Gary area. Our results suggest that there are many small emission sources that are not fully accounted for within the inventory, and/or that the re-emission of legacy Hg is a significant source of THg to the atmosphere in this region.

  20. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    NASA Technical Reports Server (NTRS)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  1. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  2. Airborne Observations of Mercury Emissions from the Chicago/Gary Urban/Industrial Area during the 2013 NOMADSS Campaign

    NASA Astrophysics Data System (ADS)

    Gratz, L.; Ambrose, J. L., II; Jaffe, D. A.; Knote, C. J.; Jaegle, L.; Selin, N. E.; Campos, T. L.; Flocke, F. M.; Reeves, J. M.; Stechman, D. M.; Stell, M. H.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D.; Tyndall, G. S.; Mauldin, L.; Cantrell, C. A.; Apel, E. C.; Hornbrook, R. S.; Blake, N. J.

    2015-12-01

    Atmospheric emissions from the Chicago/Gary urban/industrial area significantly enhance ambient mercury (Hg) concentrations and lead to increased levels of atmospheric mercury deposition within the Lake Michigan Basin (Gratz et al., 2013a; Gratz et al., 2013b; Landis and Keeler, 2002; Landis et al., 2002; Vette et al., 2002). In this study we use airborne observations of total atmospheric Hg (THg) collected over Lake Michigan during summer 2013 as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) field campaign to quantify the outflow of total atmospheric Hg from the Chicago/Gary urban/industrial area. We use concurrent airborne measurements of THg, carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) to calculate measured enhancement ratios (ER) and thus characterize Chicago/Gary emissions. We determine the observed THg/CO ER in outflow from Chicago/Gary to be 2.11x10-7 mol mol-1, which is comparable to values reported in the literature for other major U.S. urban/industrial areas (Radke et al., 2007; Talbot et al., 2008; Weiss-Penzias et al., 2013). We also employ the FLEXPART Lagrangian transport and dispersion model to simulate air mass transport during plume encounters. We convolve the emissions of each species from the 2011 U.S. EPA National Emissions Inventory (NEI) with the FLEXPART-modeled air mass transport to compare our observations to inventoried emission ratios (EmR). We find that the inventoried THg/CO EmRs are biased low by -63% to -67% compared to the observed ERs for the Chicago/Gary area. This suggests that there are many small emission sources that are not fully accounted for within the inventory, and/or that the re-emission of legacy Hg is a significant source of THg to the atmosphere in this region.

  3. Normalization of discharges and emissions of radionuclides and harmful substances into the environment

    SciTech Connect

    Kononovich, A.L.; Barbashov, S.V.; Korotkov, V.T.; Koltik, I.I.

    1994-12-01

    This report proposes an approximate approach to setting normalized standards for determining the effect of industrial enterprises on the environment. It includes emissions and discharges of toxic and radioactive substances, separately or combined. The proposal is based on the requirement that the normal state of a region, with respect to man, flora, and fauna, must be preserved. Several values and algorithms for determining values of normal environmental states are suggested. 19 refs.

  4. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  5. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Eichler, Philipp; Mikoviny, Tomas; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Yang, Melissa; Yokelson, Robert; Weinheimer, Andrew; Fried, Alan; Wisthaler, Armin

    2015-04-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  6. An exposure assessment of radionuclide emissions associated with potential mixed-low level waste disposal facilities at fifteen DOE sites

    SciTech Connect

    Lombardi, D.A.; Socolof, M.L.

    1996-05-01

    A screening method was developed to compare the doses received via the atmospheric pathway at 15 potential DOE MLLW (mixed low-level waste) sites. Permissible waste concentrations were back calculated using the radioactivity NESHAP (National Emissions Standards for Hazardous Air Pollutants) in 40 FR 61 (DOE Order 5820.2A performance objective). Site-specific soil and meteorological data were used to determine permissible waste concentrations (PORK). For a particular radionuclide, perks for each site do not vary by more than one order of magnitude. perks of {sup 14}C are about six orders of magnitude more restrictive than perks of {sup 3}H because of differences in liquid/vapor partitioning, decay, and exposure dose. When comparing results from the atmospheric pathway to the water and intruder pathways, {sup 14}C disposal concentrations were limited by the atmospheric pathway for most arid sites; for {sup 3}H, the atmospheric pathway was not limiting at any of the sites. Results of this performance evaluation process are to be used for planning for siting of disposal facilities.

  7. First results from the Airborne Detector for Energetic Lightning Emissions (ADELE) (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Dwyer, J. R.; Grefenstette, B.; Hazelton, B. J.; Martinez-McKinney, F.; Zhang, Z.; Lowell, A.; Kelley, N. A.; Splitt, M. E.; Lazarus, S. M.; Ulrich, W.; Rassoul, H.; Schaal, M.; Saleh, Z. H.; Cramer, E.; Shao, X.; Ho, C.; Cummer, S. A.; Lu, G.; Blakeslee, R.

    2009-12-01

    The Airborne Detector for Energetic Lightning Emissions (ADELE) had its first flights in August and September 2009 on the NSF/NCAR Gulfstream GV research aircraft. It flew over and around thunderstorm cells, mostly in Florida, at 13-14 km altitude to search for signatures of relativistic runaway on all timescales. ADELE is designed for extremely high dynamic range, with about six orders of magnitude between the smallest events that can be seen above background and the saturation of its smallest gamma detectors. Crude directional capability and good energy resolution in the NaI detectors allow discrimination among incoming positrons, electrons, and gamma-rays in some cases. Preliminary results show a rich variety of behavior, including the first terrestrial gamma-ray flash (TGF) detected from aircraft altitudes, two brief (100 ms) episodes in which the aircraft flew through a cloud of positrons accompanied by bursts of radio noise, and a 2-second episode in which the aircraft flew through an intense beam of electrons or gammas, accompanied by a spike in the local concentration of ice crystals. Instrumental modeling, not yet performed as of this writing, will help determine the composition of the beam. The latter event was cut off abruptly (dropping off in less than a millisecond), presumably by the discharge of the associated electric field. All the phenomena above took place in a single 2-minute pass by a storm. Other passes and other storms frequently showed signs of relativistic runaway: minute-long increases in high-energy radiation, possibly consistent with the time it takes the plane to fly past a static structure. But TGFs were scarce, despite many lightning flashes near the flight path, suggesting that the bright TGFs seen from space are not the dominant mechanism for lightning initiation. In addition to the data from ADELE itself, we will present correlated lightning data from the Los Alamos National Laboratory Sferic Array (LASA), the Duke University

  8. Investigating Seasonal Emissions of Carbon Dioxide and Methane in Northern California Using Airborne Measurements and Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Xi, X.; Yates, E. L.; Iraci, L. T.; Potter, C. S.; Tanaka, T.; Tadic, J.; Loewenstein, M.; Jeong, S.; Fischer, M. L.; Gurney, K. R.

    2014-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to increasing global surface temperatures and climate change. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Solutions Act of 2006 (AB-32). This requires that by 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. Currently, California emits ~500 Tg yr-1 of CO2eq GHGs, with CO2 and CH4 contributing ~90% of the total. To quantify the success of AB-32, GHG emission rates must be more thoroughly quantified in California. Presently, uncertainties remain in the existing "bottom-up" emission inventories in California due to many contributing factors not being fully understood. To help alleviate these uncertainties, we have analyzed airborne GHG measurements and applied inverse modeling techniques to quantify GHG spatiotemporal concentration patterns and "top-down" emission rates. To assess the magnitude/spatial variation of GHGs, and to identify local emission "hot spots", airborne measurements of CO2 and CH4 were made by the Alpha Jet Atmospheric eXperiment (AJAX) in the boundary layer of the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in Jan.-Feb. 2013 and July-Aug. 2014. To quantify/constrain GHG emissions we applied the WRF-STILT model and inverse modeling techniques, in conjunction with AJAX data, to estimate "top-down" SFBA/SJV GHG emission rates. Model simulations utilized source apportioned a priori CO2 and CH4 emission inventories from the Vulcan Project (including NASA Carnegie Ames Stanford Approach (NASA-CASA) model CO2 biosphere fluxes) and the California Greenhouse Gas Emissions Measurement (CALGEM) Project, respectively. Results from the evaluation of a priori and posterior GHG concentrations/emissions in northern California using AJAX data, along with the analysis of CO2 and CH4 concentration spatiotemporal

  9. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission.

    PubMed

    Rojas, Santiago; Gispert, Juan D; Martín, Roberto; Abad, Sergio; Menchón, Cristina; Pareto, Deborah; Víctor, Víctor M; Alvaro, Mercedes; García, Hermenegildo; Herance, J Raúl

    2011-07-26

    Nanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography. Moreover, the impact on the biodistribution of their kinetic particle size and of the surfactant agents has been evaluated. Radiolabeled diamond nanoparticles accumulated mainly in the lung, spleen, and liver and were excreted into the urinary tract. The addition of surfactant agents did not lead to significant changes in this pattern, with the exception of a slight reduction in the urinary excretion rate. On the other hand, after filtration of the radiolabeled diamond nanoparticles to remove those with a larger kinetic size, the uptake in the lung and spleen was completely inhibited and significantly reduced in the liver.

  10. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  11. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  12. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  13. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate Which Fires Produce Ozone

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2015-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(sub burn) = delta C(sub tot) added to the fire plume, where C(sub tot) approximately equals (CO2 + CO). Mixed-effects regression can estimate pre-fire background values of Ctot (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta epsilon lambda tau alpha-x(sub i)/(C(sub burn))i,j., MERET and "consensus" require more than two emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (bscat, babs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx

  14. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  15. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    DTIC Science & Technology

    2009-02-01

    biological particles (1–10) are important in the transmission of diseases (11, 12) of humans (e.g., tuberculosis , influenza), farm animals (e.g...the air. Bacteria, rickettsia, viruses, protein toxins, and some neurotoxins produced by microbes have been feared as potential airborne biological

  16. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London.

    PubMed

    Font, A; Grimmond, C S B; Kotthaus, S; Morguí, J-A; Stockdale, C; O'Connor, E; Priestman, M; Barratt, B

    2015-01-01

    Airborne measurements within the urban mixing layer (360 m) over Greater London are used to quantify CO(2) emissions at the meso-scale. Daytime CO(2) fluxes, calculated by the Integrative Mass Boundary Layer (IMBL) method, ranged from 46 to 104 μmol CO(2) m(-2) s(-1) for four days in October 2011. The day-to-day variability of IMBL fluxes is at the same order of magnitude as for surface eddy-covariance fluxes observed in central London. Compared to fluxes derived from emissions inventory, the IMBL method gives both lower (by 37%) and higher (by 19%) estimates. The sources of uncertainty of applying the IMBL method in urban areas are discussed and guidance for future studies is given.

  17. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  18. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  19. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature.

    PubMed

    Stabile, L; Scungio, M; Buonanno, G; Arpino, F; Ficco, G

    2017-03-01

    The knowledge of exposure to the airborne particle emitted from three-dimensional (3D) printing activities is becoming a crucial issue due to the relevant spreading of such devices in recent years. To this end, a low-cost desktop 3D printer based on fused deposition modeling (FDM) principle was used. Particle number, alveolar-deposited surface area, and mass concentrations were measured continuously during printing processes to evaluate particle emission rates (ERs) and factors. Particle number distribution measurements were also performed to characterize the size of the emitted particles. Ten different materials and different extrusion temperatures were considered in the survey. Results showed that all the investigated materials emit particles in the ultrafine range (with a mode in the 10-30-nm range), whereas no emission of super-micron particles was detected for all the materials under investigation. The emission was affected strongly by the extrusion temperature. In fact, the ERs increase as the extrusion temperature increases. Emission rates up to 1×10(12)  particles min(-1) were calculated. Such high ERs were estimated to cause large alveolar surface area dose in workers when 3D activities run. In fact, a 40-min-long 3D printing was found to cause doses up to 200 mm(2) .

  20. Development of a real-time monitor for airborne alpha emissions. First quarter report, TTP AL 142003

    SciTech Connect

    Gritzo, R.E.; Fowler, M.M.

    1994-02-01

    This is the first quarterly report for Fiscal Year (FY) 1994 for TTP AL 142003, Development of a Real-Time Monitor for Airborne Alpha Emissions. Los Alamos National Laboratory (LANL) is developing a new technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. While initially developed for incinerators, this new technology may well find other applications in continuous air monitoring, process monitoring, and monitoring during remediation activities. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology responds directly to the need for fast responding, high sensitivity effluent monitoring systems. With DOE EM-50 funding, LANL has fabricated a bench-top proof of concept detector system and is conducting tests to evaluate its performance. A second- generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for FY 95. Accomplishments during the first quarter of FY 94 are chronicled in this report, including budgetary data. A schedule for the remainder of the fiscal year is also provided.

  1. Review of airborne emissions from agricultural fumigants: design and uncertainty considerations for the use of the integrated horizontal flux method.

    PubMed

    Sullivan, D A; Ajwa, H A

    2011-01-01

    Ground-level area sources, such as those associated with the use of agricultural fumigants, waste disposal sites, wastewater lagoons, and other applications, present a challenge in terms of characterizing atmospheric flux as a function of time. Studies are costly in terms of field activities and laboratory analysis. The optimization of field study design, therefore, is essential to conduct cost-effective research. The collection of on-field profile data for airborne concentration, wind speed, and wind direction can be used in conjunction with the integrated horizontal flux (IHF) method to empirically compute complex source terms as a function of time. This paper focuses on complicating factors and field study design issues for the use of the IHF method. Insights and examples are drawn from five field research studies. The methods and results of characterizing the uncertainty and method precision in the emission fitting for the IHF method also are presented.

  2. Vacuum cleaner emissions as a source of indoor exposure to airborne particles and bacteria.

    PubMed

    Knibbs, Luke D; He, Congrong; Duchaine, Caroline; Morawska, Lidia

    2012-01-03

    Vacuuming can be a source of indoor exposure to biological and nonbiological aerosols, although there are few data that describe the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price, and age. Emissions of particles between 0.009 and 20 μm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10(6) to 1.1 × 10(11) particles min(-1). Emission of 0.54-20 μm particles ranged from 4.0 × 10(4) to 1.2 × 10(9) particles min(-1). PM(2.5) emissions were between 2.4 × 10(-1) and 5.4 × 10(3) μg min(-1). Bacteria emissions ranged from 0 to 7.4 × 10(5) bacteria min(-1) and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to nonbiological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.

  3. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  4. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  5. Airborne Measurements of the Atmospheric Emissions from a Fuel Ethanol Refinery

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J.; Graus, M.; Hanisco, T. F.; Holloway, J. S.; Lerner, B. M.; Kaiser, J.; Keutsch, F. N.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K. E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M., Jr.

    2014-12-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the United States. The ethanol is produced in over 200 fuel ethanol refineries across the country. In this work, we report measurements of the atmospheric emissions from the third largest fuel ethanol refinery in the U.S. located in Decatur, Illinois. Measurements were made from the NOAA WP-3D research aircraft during the NOAA Southeast Nexus (SENEX) campaign in the summer of 2013, which was part of the larger Southeast Atmosphere Study (SAS). Emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) agreed with reported emissions in the 2011 National Emissions Inventory (NEI-2011). In contrast, emissions of several volatile organic compounds (VOCs) including ethanol, formaldehyde and acetaldehyde, were underestimated by an order of magnitude in the NEI-2011. By combining data from the NEI-2011 and fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities for SO2, NOx and VOCs, defined as the emissions per volume of fuel produced. These emission intensities can be readily compared to fuel-based emission factors from gasoline vehicles and the relative contributions made by fuel refining and fuel use to overall emissions will be quantified. Emission intensities of SO2 and NOx are particularly high for those fuel ethanol refineries that use coal as an energy source, including the plant in Decatur studied in this work. Finally, by comparing the measurements at different distances downwind, chemical transformation of the emissions could be observed, including the formation of new particles, peroxyacyl nitrates, ozone and sulfate aerosol.

  6. The time series analysis of the radionuclide emissions from Fukushima Daiichi nuclear power plant by online global chemistry transport model and inverse model

    NASA Astrophysics Data System (ADS)

    Maki, Takashi; Tanaka, Taichu; Kajino, Mizuo; Sekiyama, Tsuyoshi; Igarashi, Yasuhito; Mikami, Masao

    2013-04-01

    The accident of the Fukushima Daiichi nuclear power plant that occurred in March 2011 emitted a large amount of radionuclide. The important feature of this accident was that the source position was evidently clear, however, time and vertical emission variations were unknown (in this case, it was known that the height of emission was not so high in altitude). In such a case, the technique of inverse model was a powerful tool to gain answers to questions; high resolution and more precise analysis by using prior emission information with relatively low computational cost are expected to be obtainable. Tagged simulation results by global aerosol model named MASINGAR (Tanaka et al., 2005) were used; the horizontal resolution was TL319 (about 60 km). Tagged tracers (Cs137) from lowest model layer (surface to 100m) were released every three hours with 1Tg/hr which accumulated daily mean. 50 sites' daily observation data in the world (CTBTO, Ro5, Berkeley, Hoffmann and Taiwan) were collected. The analysis period was 40 days, from 11 March to 19 April. We tested two prior emission information. The first information was JAEA posterior emission (Chino et al., 2011) and the second was NILU prior emission (not posterior) (Stohl et al.,2011) as our observation data were almost similar to their study. Due to consideration for observation error and space representation error, the observation error was set as 20%. Several sensitivity tests were examined by changing prior emission flux uncertainties. As a result, Cs137 estimated the total emission amount from 11 March to 19 April as 18.5PBq with the uncertainty of 3.6PBq. Moreover, the maximum radio nuclei emission occurred during 15 March, which was larger than prior information. The precision of the analysis was highly dependent on observation data (quantity and quality) and precision of transport model. Possibility to obtain robust result by using multi-model ensemble results with inverse model was also considered. The results of

  7. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J. M. K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  8. Airborne Measurements of Gas Emissions during the 2009 Eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Werner, C. A.; Kelly, P. J.; Doukas, M. P.; Pfeffer, M. A.; Evans, W. C.; McGimsey, R. G.; Neal, C. A.

    2009-12-01

    Multi-component measurements of gas emissions were critical for assessing volcanic processes and thus hazard prior to and during the eruption of Redoubt Volcano, Alaska, which began in March 2009. Carbon dioxide (CO2) emissions were elevated at least six months prior to the onset of the eruption, with emission rates on the order of 1,800 tonnes per day (t/d) in October and November 2008. At that time, sulfur dioxide (SO2), the most commonly monitored volcanic gas, was below the detection limit. From January to early March 2009 there was a marked increase in melting of ice from the summit region, increased seismicity, and a dramatic increase in CO2 emissions (up to 10,000 t/d). In contrast, SO2 emissions, first detected in late January, remained low (< 300 t/d). During this period, CO2/SO2 molar ratios reached their highest levels, ranging from 48 to 305. SO2 scrubbing in the volcanic edifice could explain the high CO2/SO2 ratios, yet water samples taken from the Drift River, where meltwater from the summit region drained, did not show sulphate concentrations consistent with scrubbing 1,000s of t/d SO2. We hypothesize that the initially high CO2/SO2 ratios were mainly related to the degassing of deep magma because volatile/melt solubility relationships dictate that magma at higher pressure will exsolve a volatile fluid phase with higher CO2/SO2 than magma at lower pressure. Immediately following the first small explosion on March 15, the SO2 emission rate increased to 5,200 t/d and the molar CO2/SO2 ratio dropped to 3.9. From the middle of March through early June, we measured CO2 emission rates between 6,000 and 30,000 t/d, SO2 emission rates from 1,500 to 14,000 t/d, and molar CO2/SO2 ratios between ~2 and 7. Emission rates of both gases varied by as much as 10,000 t/d between measurements made only a few days apart. Also, some large decreases in SO2 emissions were not accompanied by decreases in CO2 emissions, which suggests that multiple reservoirs may

  9. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  10. Comparison of Predicted Ground-Level Airborne Radionuclide Concentrations to Measured Values Resulting from Operation of the Los Alamos Meson Physics Facility

    DTIC Science & Technology

    1993-05-01

    radiation monitoring station data were collected between September 26, 1992 and October 3, 1992. The Smeteorological and emission data were input to the...Don Van Etten and Dave Waechter from the Environmental Management Division for their help with the gamma spectroscopy data . I appreciate the...123 M eteorological Data

  11. Bayesian estimation of airborne fugitive emissions using a Gaussian plume model

    NASA Astrophysics Data System (ADS)

    Hosseini, Bamdad; Stockie, John M.

    2016-09-01

    A new method is proposed for estimating the rate of fugitive emissions of particulate matter from multiple time-dependent sources via measurements of deposition and concentration. We cast this source inversion problem within the Bayesian framework, and use a forward model based on a Gaussian plume solution. We present three alternate models for constructing the prior distribution on the emission rates as functions of time. Next, we present an industrial case study in which our framework is applied to estimate the rate of fugitive emissions of lead particulates from a smelter in Trail, British Columbia, Canada. The Bayesian framework not only provides an approximate solution to the inverse problem, but also quantifies the uncertainty in the solution. Using this information we perform an uncertainty propagation study in order to assess the impact of the estimated sources on the area surrounding the industrial site.

  12. Methodology for Airborne Quantification of NOx fluxes over Central London and Comparison to Emission Inventories

    NASA Astrophysics Data System (ADS)

    Vaughan, A. R.; Lee, J. D.; Lewis, A. C.; Purvis, R.; Carslaw, D.; Misztal, P. K.; Metzger, S.; Beevers, S.; Goldstein, A. H.; Hewitt, C. N.; Shaw, M.; Karl, T.; Davison, B.

    2015-12-01

    The emission of pollutants is a major problem in today's cities. Emission inventories are a key tool for air quality management, with the United Kingdom's National and London Atmospheric Emission Inventories (NAEI & LAEI) being good examples. Assessing the validity of such inventoried is important. Here we report on the technical methodology of matching flux measurements of NOx over a city to inventory estimates. We used an eddy covariance technique to directly measure NOx fluxes from central London on an aircraft flown at low altitude. NOx mixing ratios were measured at 10 Hz time resolution using chemiluminescence (to measure NO) and highly specific photolytic conversion of NO2 to NO (to measure NO2). Wavelet transformation was used to calculate instantaneous fluxes along the flight track for each flight leg. The transformation allows for both frequency and time information to be extracted from a signal, where we quantify the covariance between the de-trended vertical wind and concentration to derive a flux. Comparison between the calculated fluxes and emission inventory data was achieved using a footprint model, which accounts for contributing source. Using both a backwards lagrangian model and cross-wind dispersion function, we find the footprint extent ranges from 5 to 11 Km in distance from the sample point. We then calculate a relative weighting matrix for each emission inventory within the calculated footprint. The inventories are split into their contributing source sectors with each scaled using up to date emission factors, giving a month; day and hourly scaled estimate which is then compared to the measurement.

  13. Airborne studies of the emissions from the volcanic eruptions of mount st. Helens.

    PubMed

    Hobbs, P V; Radke, L F; Eltgroth, M W; Hegg, D A

    1981-02-20

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuées ardentes, lightning flashes, and volcanic hail.

  14. Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens

    SciTech Connect

    Hobbs, P.V.; Radke, L.F.; Eltgroth, M.W.; Hegg, D.A.

    1981-01-01

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuees ardentes, lightning flashes, and volcanic hail.

  15. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Hartmann, J.; Sachs, T.; Erzinger, J.; Burrows, J. P.; Bovensmann, H.

    2012-10-01

    The quantification of emissions of the greenhouse gas methane is essential for attributing the roles of anthropogenic activity and natural phenomena in global climate change. Our current measurement systems and networks whilst having improved during the last decades, are deficient in many respects. For example, the emissions from localised and point sources such as landfills or fossil fuel exploration sites are not readily assessed. A tool developed to better understand point sources of the greenhouse gases carbon dioxide and methane is the optical remote sensing instrument MAMAP, operated from aircraft. After a recent instrument modification, retrievals of the column averaged dry air mole fractions for methane XCH4 (or for carbon dioxide XCO2) derived from MAMAP data, have a precision of about 0.4% or better and thus can be used to infer emission rate estimates using an optimal estimation inverse Gaussian plume model or a simple integral approach. CH4 emissions from two coal mine ventilation shafts in Western Germany surveyed during the AIRMETH 2011 measurement campaign are used as examples to demonstrate and assess the value of MAMAP data for quantifying CH4 from point sources. While the knowledge of the wind is an important input parameter in the retrieval of emissions from point sources and is generally extracted from models, additional information from a turbulence probe operated on-board the same aircraft was utilised to enhance the quality of the emission estimates. Although flight patterns were optimised for remote sensing measurements, data from an in-situ analyser for CH4 were found to be in good agreement with retrieved dry columns of CH4 from MAMAP and could be used to investigate and refine underlying assumptions for the inversion procedures. With respect to the total emissions of the mine at the time of the overflight, the inferred emission rate of 50.4 kt CH4 yr-1 has a difference of less than 1% compared to officially reported values by the mine

  16. COCA: deriving urban emissions and the carbon exchange of a forested region using airborne CO2 and CO observations

    NASA Astrophysics Data System (ADS)

    Geiss, H.; Schmitgen, S.; Ciais, P.; Neininger, B.; Baeumle, M.; Brunet, Y.; Kley, D.

    2002-05-01

    A crucial challenge in measuring the partitioning of sources and sinks of atmospheric CO2 is the separation of regional anthropogenic CO2 sources from biogenic activity. The aim of the COCA project is to quantify the fossil fuel and biogenic CO2 fractions using continuous airborne CO2 and CO measurements, where CO acts as a tracer for anthropogenic CO2. At first part of the project COCA an attempt was made to measure daytime biogenic CO2 fluxes over a forest area (about 15 by 30 km size). The campaign took place around the CARBOEUROFLUX site ``Le Bray'' (Pinus pinaster) close to Bordeaux in France end of June 2001 Based on continuous airborne CO2, H2O and CO flux and concentration measurements a Lagrangian budgeting approach was chosen to measure regional CO2 deposition fluxes. The objective is to determine the CO2 uptake of the extended forest area from the CO2/CO gradients up- and downwind of the ecosystem, using CO as air mass tracer and such estimating the influence of anthropogenic CO2 advected into the area First results of the summer flight on June 23rd will be shown, where fair wind speeds (~5 m/s) and a low CBL height led to the observation of a clear decrease in CO2 at the downwind flight stacks with basically constant CO concentrations. For other summer flights with very low wind speeds, local effects dominate the observations leading to a larger variability in the observations. Both, correlations and anti-correlations of CO2 with the anthropogenic tracer CO have been observed. Positive correlations indicate fresh plumes of anthropogenic CO2. Negative correlations are indicative of entrainment of free tropospheric air, that was marked by relatively higher CO2 and lower CO concentrations than the average CBL concentrations. During a second campaign the variance of anthropogenic CO and CO2 emissions of a large city unaffected by biogenic processes has been studied. This campaign was carried out on February 16 and 17, 2002 over the Paris metropolitan area

  17. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  18. Airborne Measurements of Emissions from Oil and Gas Exploration and Production Activities in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Roiger, A.; Raut, J.; Rose, M.; Weinzierl, B.; Reiter, A.; Thomas, J. L.; Marelle, L.; Law, K.; Schlager, H.

    2013-12-01

    A rapid decline of Arctic sea ice is expected to promote hydrocarbon extraction in the Arctic, which in turn will increase emissions of atmospheric pollutants. To investigate impacts of different pollution sources on the Arctic atmosphere, an aircraft campaign based in northern Norway was conducted in July 2012, as a part of the EU ACCESS (Arctic Climate Change Economy and Society) project. One of the flights focused on measuring emissions from various oil/gas exploration and production facilities ~110 km south of the Arctic Circle in the Norwegian Sea. Fresh and aged (from 5 minutes to 2.5 hours old) exhaust plumes from oil/gas production platforms, drilling rigs and tankers were probed with extensive aerosol and trace gas instrumentations. It was found that different types of facilities emit plumes with distinct chemical compositions. For example, tanker plumes were characterized by high SO2 concentration and high fraction of non-volatile particles while plumes from oil/gas production platforms showed significant increase in the nucleation mode particle concentration. Drilling rigs were found to be high black carbon emitters. In addition to the fresh plumes, relatively aged plumes (1.5 - 2.5 hours old) from a facility under development were measured. Even in these aged plumes, total particle concentrations were more than 6 times higher than the background concentration. Therefore, emissions from oil and gas activities are expected to have a significant impact on local air quality and atmospheric composition. With the aid of FLEXPART-WRF (a Lagrangian dispersion model) simulations, the results of this study will be used to validate and improve current emission inventories. In the future, these improved emission inventories can be used in regional and global chemical transport models to more accurately predict future Arctic air pollution.

  19. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    NASA Technical Reports Server (NTRS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  20. Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire

    NASA Astrophysics Data System (ADS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2016-02-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4 (ppm CO2)-1 on 26 August, 6.5 ppb CH4 (ppm CO2)-1 on 29 August and 18.3 ppb CH4 (ppm CO2)-1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4 (ppm CO2)-1 during the primary burning period to 18.3 ppb CH4 (ppm CO2)-1 during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  1. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liantong; Zhang, Xiangyu; Xu, Caijia; Dong, Liming; Yao, Maosheng

    2016-01-01

    Air samples from twelve sampling sites (including seven intra-plant sites, one upwind site and four downwind sites) from a wastewater treatment plant (WWTP) in Beijing were collected using a Reuter Centrifugal Sampler High Flow (RCS); and their microbial fractions were studied using culturing and high throughput gene sequence. In addition, the viable (fluorescent) bioaerosol concentrations for 7 intra-plant sites were also monitored for 30 min each using an ultraviolet aerodynamic particle sizer (UV-APS). Both air and water samples collected from the plant were investigated for possible bacterial antibiotic resistance genes and integrons using polymerase chain reaction (PCR) coupled with gel electrophoresis. The results showed that the air near sludge thickening basin was detected to have the highest level of culturable bacterial aerosols (up to 1697 CFU/m3) and fungal aerosols (up to 930 CFU/m3). For most sampling sites, fluorescent peaks were observed at around 3-4 μm, except the office building with a peak at 1.5 μm, with a number concentration level up to 1233-6533 Particles/m3. About 300 unique bacterial species, including human opportunistic pathogens, such as Comamonas Testosteroni and Moraxella Osloensis, were detected from the air samples collected over the biological reaction basin. In addition, we have detected the sul2 gene resistant to cotrimoxazole (also known as septra, bactrim and TMP-SMX) and class 1 integrase gene from the air samples collected from the screen room and the biological reaction basin. Overall, the screen room, sludge thickening basin and biological reaction basin imposed significant microbial exposure risks, including those from airborne antibiotic resistance genes.

  2. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms

    NASA Astrophysics Data System (ADS)

    Berg, N.; Mellqvist, J.; Jalkanen, J.-P.; Balzani, J.

    2011-10-01

    A unique methodology to measure gas fluxes of SO2 and NO2 from ships has been developed in a Swedish national project using optical remote sensing. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. To obtain the total emission in kg h-1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h-1, and the average NO2 emission was (33 ± 8) kg h-1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h-1, NO2 was not measured here. The system was able to detect plumes of SO2 in 60% of the measurements when the described method was used. The optical measurement carried out on a passenger ferry on two consecutive days was compared to onboard emission data obtained from analysed fuel content and power consumption. The comparison shows agreement of (-30 ± 14) % and (-41 ± 11) %, respectively, for two days, with equal measurement precision of about 20%, this indicates the presence of systematic error sources that are yet unaccounted for when deriving the flux. Two such error sources are the difficulty in estimating the optical path of the ocean scattered light due to waves, and direct and multiple scattering in the exhaust plume. Rough estimates of these sources have been accounted for in the total

  3. Performance study and influence of radiation emission energy and soil contamination level on γ-radiation shielding of stabilised/solidified radionuclide-polluted soils.

    PubMed

    Falciglia, Pietro P; Puccio, Valentina; Romano, Stefano; Vagliasindi, Federico G A

    2015-05-01

    This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different (232)Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations.

  4. Off-site population radiological dose and risk assessment for potential airborne emissions from the Weldon Spring Site

    SciTech Connect

    Avci, H.I.; Biwer, B.M.; Blunt, D.L.

    1992-11-01

    Radiological doses and health risks to the population around the Weldon Spring site from potential airborne emissions during remedial action at the chemical plant area of the site have been assessed with the Clean Air Act Assessment Package-1988 computer code. Two treatment options are being considered for waste produced by site cleanup activities: chemical stabilization/solidification and vitrification. Over the entire cleanup period of 7 years, the collective dose received by the people who live within 80 km (50 mi) of the site (about 3 million persons) is estimated to be about 34 person-rem for the chemical stabilization/ solidification option and 32 person-rem for the vitrification option. By comparison, the same population is expected to receive about 6 {times} 10{sup 6} person-rem from natural background radiation during that time. If only the population within a reasonable radius of impact is considered (about 10,700 persons live within 5 km [3 mi] of the site), the remedial action activities are estimated to result in about 5 person-rem over the entire cleanup period; the same population is expected to receive about 20,000 person-rem from natural background radiation during that time. Because the doses are low, no cancers or genetic effects are expected to occur among the population around the Weldon Spring site as a result of exposures resulting from potential radioactive releases to the atmosphere during remediation of the chemicalplant area.

  5. Off-site population radiological dose and risk assessment for potential airborne emissions from the Weldon Spring Site

    SciTech Connect

    Avci, H.I.; Biwer, B.M.; Blunt, D.L.

    1992-11-01

    Radiological doses and health risks to the population around the Weldon Spring site from potential airborne emissions during remedial action at the chemical plant area of the site have been assessed with the Clean Air Act Assessment Package-1988 computer code. Two treatment options are being considered for waste produced by site cleanup activities: chemical stabilization/solidification and vitrification. Over the entire cleanup period of 7 years, the collective dose received by the people who live within 80 km (50 mi) of the site (about 3 million persons) is estimated to be about 34 person-rem for the chemical stabilization/ solidification option and 32 person-rem for the vitrification option. By comparison, the same population is expected to receive about 6 [times] 10[sup 6] person-rem from natural background radiation during that time. If only the population within a reasonable radius of impact is considered (about 10,700 persons live within 5 km [3 mi] of the site), the remedial action activities are estimated to result in about 5 person-rem over the entire cleanup period; the same population is expected to receive about 20,000 person-rem from natural background radiation during that time. Because the doses are low, no cancers or genetic effects are expected to occur among the population around the Weldon Spring site as a result of exposures resulting from potential radioactive releases to the atmosphere during remediation of the chemicalplant area.

  6. A Comparative Study of the Monitoring of a Self Aligning Spherical Journal using Surface Vibration, Airborne Sound and Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Raharjo, P.; Tesfa, B.; Gu, F.; Ball, A. D.

    2012-05-01

    A Self aligning spherical journal bearing is a plain bearing which has spherical surface contact that can be applied in high power industrial machinery. This type of bearing can accommodate a misalignment problem. The journal bearing faults degrade machine performance, decrease life time service and cause unexpected failure which are dangerous for safety issues. Non-intrusive measurements such as surface vibration (SV), airborne sound (AS) and acoustic emission (AE) measurement are appropriate monitoring methods for early stage journal bearing fault in low, medium and high frequency. This paper focuses on the performance comparison using SV, AS and AE measurements in monitoring a self aligning spherical journal bearing for normal and faulty (scratch) conditions. It examines the signals in the time domain and frequency domain and identifies the frequency ranges for each measurement in which significant changes are observed. The results of SV, AS and AE experiments indicate that the spectrum can be used to detect the differences between normal and faulty bearing. The statistic parameter shows that RMS value and peak value for faulty bearing is higher than normal bearing.

  7. Reactor-Produced Medical Radionuclides

    SciTech Connect

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.

  8. Remote sensing of large scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over the Kern River and Kern Front Oil fields and validation through airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Krautwurst, S.; Kolyer, R.; Jonsson, H.; Krings, T.; Horstjann, M.; Leifer, I.; Schuettemeyer, D.; Fladeland, M. M.; Burrows, J. P.; Bovensmann, H.

    2014-12-01

    During three flights performed with the MAMAP (Methane Airborne MAPper) airborne remote sensing instrument in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of HyspIRI and CarbonSat mission definition activities - large scale methane plumes were detected over the Kern River and Kern Front Oil fields in the period between June 3 and 13, 2014. MAMAP was installed for these flights aboard of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operate by the Ames Research Center, ARC), a 5 hole turbulence probe as well as a atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point and other atmospheric parameters. Data collected with the in-situ GHG analyzer will be used for validation of MAMAP remotely sensed data by acquiring vertical cross sections of the discovered plumes at a fixed downwind distance. Precise airborne wind information from the turbulence probe together with ground based wind data from the nearby airport will be used to estimate emission rates from the remote sensed and in-situ measured data. Remote sensed and in-situ data as well as initial flux estimates for the three flights will be presented.

  9. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  10. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  11. Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity.

    PubMed

    Gür, Filiz; Yaprak, Günseli

    2010-12-01

    To evaluate the effect of radionuclide emission on the environment from Yatagan, Yenikoy and Kemerkoy coal-fired power plants which are located in southwestern Anatolia of Turkey, the concentrations of natural radionuclides such as (226)Ra, (232)Th and (40)K in coal, bottom ash and fly ash samples, have been measured, as well as the concentration of the same radionuclides in surface soils. The dose rate arises from the total radioactivity content of soil that the people living by the power plants are exposed to be assessed additionally. The average activity concentrations of (226)Ra for Yatagan CPP is 80 ± 22 Bq kg(-1) ranging from 56 to 131 Bq kg(-1), for Yenikoy CPP is 138 ± 20 Bq kg(-1) ranging from 115 to 189 Bq kg(-1), for Kemerkoy CPP is 238 ± 80 Bq kg(-1) ranging from 134 to 356 Bq kg(-1) in coal; average activity concentrations of (226)Ra in fly ash and in bottom ash for above-mentioned power plants are 334 ± 60 Bq kg(-1) ranging from 291 to 481 Bq kg(-1), 461 ± 33 Bq kg(-1) ranging from 398 to 511 Bq kg(-1), 815 ± 254 Bq kg(-1) ranging from 316 to 1260 Bq kg(-1), 276 ± 51 Bq kg(-1) ranging from 222 to 349 Bq kg(-1), 285 ± 69 Bq kg(-1) ranging from 213 to 409 Bq kg(-1), 743 ± 234 Bq kg(-1) ranging from 366 to 1098 Bq kg(-1), respectively. The radionuclides activity concentrations of surface soil in the vicinity of coal-fired power plants are 32 ± 9 Bq kg(-1) (18-53 Bq kg(-1)) for (226)Ra, 37 ± 16 Bq kg(-1) (17-89 Bq kg(-1)) for (232)Th, 455 ± 165 Bq kg(-1) (203-794 Bq kg(-1)) for (40)K relevant to Yatagan CPP; 42 ± 30 Bq kg(-1) (9-168 Bq kg(-1)) for (226)Ra, 32 ± 14 Bq kg(-1) (6-74 Bq kg(-1)) for (232)Th, 365 ± 151 Bq kg(-1) (117-937 Bq kg(-1)) for (40)K relevant to Yenikoy and Kemerkoy CPP. As a result, average dose rates in the vicinity of coal-fired power plants have been calculated to be 56 ± 16 nGy h(-1) ranging from 30 to 100 nGy h(-1) for Yatagan CPP, 54 ± 22 nGy h(-1) ranging from 15 to 126 nGy h(-1) for Yenikoy and Kemerkoy CPP. To

  12. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  13. Radionuclide removal

    SciTech Connect

    Sorg, T.J.

    1991-01-01

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. During the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium, uranium and radon from drinking water. The research consisted of laboratory and field studies conducted by USEPA, universities and consultants. The paper summarizes the results of the most significant projects completed. General information is also presented on the general chemistry of the three radionuclides. The information presented indicates that the most practical treatment methods for radium are ion exchange and lime-soda softening and reverse osmosis. The methods tested for radon are aeration and granular activated carbon and the methods for uranium are anion exchange and reverse osmosis.

  14. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  15. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    USGS Publications Warehouse

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  16. Effect of diltiazem on myocardial infarct size estimated by enzyme release, serial thallium-201 single-photon emission computed tomography and radionuclide angiography

    SciTech Connect

    Zannad, F.; Amor, M.; Karcher, G.; Maurin, P.; Ethevenot, G.; Sebag, C.; Bertrand, A.; Pernot, C.; Gilgenkrantz, J.M.

    1988-06-01

    Diltiazem is a calcium antagonist with demonstrated experimental cardioprotective effects. Its effects on myocardial infarct size were studied in 34 patients admitted within 6 hours after the first symptoms of acute myocardial infarction. These patients were randomized, double-blind to placebo or diltiazem (10-mg intravenous bolus followed by 15 mg/hr intravenous infusion during 72 hours, followed by 4 X 60 mg during 21 days). Myocardial infarct size was assessed by plasma creatine kinase and creatine kinase-MB indexes, perfusion defect scores using single-photon emission computed tomography with thallium-201 and left ventricular ejection fraction measured by radionuclide angiography. Tomographic and angiographic scanning was performed serially before randomization, after 48 hours and 21 days later. Groups were comparable in terms of age, sex, inclusion time and baseline infarct location and size. Results showed no difference in creatine kinase and creatine kinase-MB data between controls and treated patients, a significant decrease in the perfusion defect scores in the diltiazem group (+0.1 +/- 3.0 placebo vs -2.2 +/- 1.9 diltiazem, p less than 0.02) and a better ejection fraction recovery in the diltiazem group (-4.2 +/- 7.4 placebo vs +7.7 +/- 11.2 diltiazem, p less than 0.05). Myocardial infarct size estimates from perfusion defect scores and enzyme data were closely correlated. These preliminary results suggest that diltiazem may reduce ischemic injury in acute myocardial infarction.

  17. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhang, Bin; Tian, Jian; Wang, Jiaqing; Chong, Yu; Wang, Xin; Deng, Yaoyao; Tang, Minghua; Li, Yonggang; Ge, Cuicui; Pan, Yue; Gu, Hongwei

    2015-02-01

    We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging. Electronic supplementary information (ESI) available: Details of general experimental procedures, TEM image. See DOI: 10.1039/c4nr07255c

  18. Daytime CO2 Urban-Regional Scale Surface Fluxes from Airborne Measurements, Eddy-Covariance Observations and Emissions Inventories in Greater London

    NASA Astrophysics Data System (ADS)

    Font, A. M.; Grimmond, S. B.; Morgui, J. A.; Kotthaus, S.; Priestman, M.; Barratt, B.

    2014-12-01

    As the global population becomes increasingly urbanized, spatially concentrated centres of anthropogenic CO2 and other greenhouse gases (GHG) arise. While mitigation measures exist at national and international scales, their implementation will be more effective if linked to the urban-scale of the sources. Routine top-down approaches that quantify emissions of GHG from cities and megacities are needed to understand the dynamics of the urban carbon cycle to eventually define relevant policy decisions. London is the biggest urban conurbation in Western Europe with more than 8 million inhabitants. It emitted roughly 45000 ktn CO2 in 20101. To understand the carbon dynamics and quantify anthropogenic emissions from London, airborne surveys of atmospheric CO2, O3, particles and meteorological variables were carried out over the city, onboard the NERC-ARSF Dornier-228 UK research aircraft. We applied an Integrative Mass Boundary Layer method (IMBL) using airborne CO2 observations obtained in horizontal transects crossing London at 360 m at different times of the day and by sampling upwind-downwind profiles. IMBL CO2 fluxes were compared to an emissions inventory and neighbourhood-scale eddy-covariance fluxes in central London. Daytime fluxes in October 2011 from the IMBL calculations ranged from 46 to 104 μmolCO2 m-2 s-1 and covered 30-70% of the urban region. The IMBL CO2 fluxes were the same order of magnitude as observed eddy-covariance fluxes and were statistically comparable to the emission inventory for the same footprint area. A sensitivity analysis suggested that horizontal variability of the CO2 field in the urban mixing layer is the most critical factor affecting IMBL fluxes. The determination of the boundary height and vertical wind speed had more impact on fluxes calculated from upwind-downwind profiles. Furthermore, low-altitude airborne measurements of CO2 provide the advantage of direct observation of the CO2 urban dome of a megacity and relate the

  19. Associations between immune function in yearling beef cattle and airborne emissions of sulfur dioxide, hydrogen sulfide, and VOCs from oil and natural gas facilities.

    PubMed

    Bechtel, Daniel G; Waldner, Cheryl L; Wickstrom, Mark

    2009-01-01

    Researchers assessed the associations between airborne emissions from oil and gas field facilities and the structure and function of the immune system of yearling beef cattle in 27 herds during spring 2002. They evaluated the immune systems of these animals by enumerating B lymphocytes and T-lymphocyte subtypes (CD4, CD8, gammadelta, and WC1) in peripheral circulation and by measuring systemic antibody production in response to vaccination. Researchers prospectively measured exposure to sulfur dioxide, hydrogen sulfide, and volatile organic compounds (VOCs) by using air-quality data from passive monitors installed in pastures and wintering areas. They estimated the mean exposure of each animal over the 6-month period before the start of sample collection. The researchers used mixed models, which adjusted for clustering by herd and accounted for known risk factors, to examine potential associations between exposure to airborne sulfur dioxide, VOCs (measured as concentrations of benzene and toluene) and hydrogen sulfide, as well as proximity to emission sources (well-site density), and the immune system outcomes. Increasing exposure to VOCs measured as toluene was associated with significant CD4 T lymphocytopenia. The number of CD4 T lymphocytes was 30% lower in cattle exposed to VOCs measured as toluene in the highest quartile (> 0.823 microg/m3) than in cattle exposed in the lowest quartile (< 0.406 microg/m3).

  20. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  1. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  2. Directly attributing methane emissions to point source locations using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Thompson, D. R.; Frankenberg, C.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Kort, E. A.; Eastwood, M. L.; Helmlinger, M. C.; Nolte, S. H.

    2015-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) are well suited for identifying methane point sources by covering large regions with the high spatial resolution necessary to resolve emissions. A controlled release experiment at the Rocky Mountain Oilfield Testing Center (RMOTC) showed detectable methane plumes at multiple flux rates and flight altitudes. Images of plumes agreed with wind direction measured at ground stations and were consistently present for fluxes as low as 0.09 kt/year (14.16 cubic meters per hour; 500 standard cubic feet per hour, scfh). In some cases plumes were detected as low as 0.02 kt/year (3.40 cubic meters per hour; 120 scfh), indicating that AVIRIS-NG has the capability of detecting a number of fugitive methane source categories for natural gas fields. Following the RMOTC campaign, real time detection and geolocation of methane plumes has been implemented using an operator interface that overlays plumes on a true color image acquired by AVIRIS-NG. This has facilitated surveys over existing oil and gas fields to identify and attribute methane emissions to individual point source locations, including well pads known to use hydraulic fracturing and natural gas pipelines. An imaging spectrometer built exclusively for detection, quantification, and attribution of methane plumes would have improved sensitivity compared to AVIRIS-NG. The Airborne Methane Plume Spectrometer (AMPS) instrument concept is mature, ready for development, and would provide a spectral resolution of 1 nm and a detection threshold of approximately 0.28 cubic meters per hour (10 scfh). By offering the potential to identify point source locations, airborne imaging spectrometers could have particular utility for resolving the large uncertainties associated with anthropogenic emissions, including industrial point source emissions and fugitive methane from the oil and gas industry. Fig.1: True color image subset with

  3. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  4. Flowering phenology and potential pollen emission of three Artemisia species in relation to airborne pollen data in Poznań (Western Poland).

    PubMed

    Bogawski, Paweł; Grewling, Łukasz; Frątczak, Agata

    Artemisia pollen is an important allergen in Europe. In Poznań (Western Poland), three Artemisia species, A. vulgaris, A. campestris and A. absinthium, are widely distributed. However, the contributions of these species to the total airborne pollen are unknown. The aim of the study was to determine the flowering phenology and pollen production of the three abovementioned species and to construct a model of potential Artemisia pollen emission in the study area. Phenological observations were conducted in 2012 at six sites in Poznań using a BBCH phenological scale. Pollen production was estimated by counting the pollen grains per flower and recalculating the totals per inflorescence, plant and population in the study area. Airborne pollen concentrations were obtained using a Hirst-type volumetric trap located in the study area. Artemisia vulgaris began to flower the earliest, followed by A. absinthium and then A. campestris. The flowering of A. vulgaris corresponded to the first peak in the airborne pollen level, and the flowering of A. campestris coincided with the second pollen peak. The highest amounts of pollen per single plant were produced by A. vulgaris and A. absinthium. A. campestris produced considerably less pollen, however, due to its common occurrence, it contributed markedly (30 %) to the summation of total of recorded pollen. A. vulgaris is the most important pollen source in Poznań, but the roles of two other Artemisia species cannot be ignored. In particular, A. campestris should be considered as an important pollen contributor and likely might be one of the main causes of allergic reactions during late summer.

  5. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke

    SciTech Connect

    Viner, Brian J.; Jannik, Tim; Stone, Daniel; Hepworth, Allan; Naeher, Luke; Adetona, Olorunfemi; Blake, John; Eddy, Teresa

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 × 107 Bq ha–1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. Potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s–1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. As a result, our approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.

  6. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke.

    SciTech Connect

    Viner, Brian J.

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 x 107Bq ha-1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. The potential for exceeding dose guidelines was mitigated by including plume rise (>2ms-1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. This approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.

  7. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke

    DOE PAGES

    Viner, Brian J.; Jannik, Tim; Stone, Daniel; ...

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 ×more » 107 Bq ha–1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. Potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s–1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. As a result, our approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.« less

  8. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  9. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  10. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    NASA Technical Reports Server (NTRS)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; Bright, Benjamin C.; O'Brien, Joseph J.; Hornsby, Benjamin; Ichoku, Charles; Faulring, Jason; Gerace, Aaron; Peterson, David; Mauceri, Joseph

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  11. Application and Validation of a Novel Airborne Sampling Methodology That Uses Green's Theorem and Micrometeorological Principles to Estimate Surface Emission Rates

    NASA Astrophysics Data System (ADS)

    Faloona, I. C.; Conley, S. A.; Mehrotra, S.; Suard, M.

    2015-12-01

    Airborne, so called top-down, estimates of greenhouse gas emissions are becoming much more prevalent with the advent of sensitive, high-rate trace gas instrumentation, and they have lead to some controversial findings when compared with bottom-up engineering estimates reported to environmental regulatory agencies. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of methane and ethane, of spatial scales as small as about 100 m, where consecutive loops are flown around the source at many different flight altitudes. Using the principles of Reynolds decomposition for the wind and scalar concentrations, along with Green's Theorem, we show that the method accurately accounts for the smaller scale turbulent dispersion of the local plume, which is often ignored in other average "mass balance" methods. With the help of Large Eddy Simulations we further show how the sampling method can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we are able to ascertain an accuracy in the method of better than 15%, with limits of detection below 5 kg/hr for both gases. Because of the FAA mandated minimum flight safe altitude of 500 ft., placement of the plane is critical to not allowing a large portion of the plume to flow underneath the lowest sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, because the bulk of the flux is carried by rapid plume encounters, which are relatively rare, we show how the accuracy of the method is strongly dependent on the number of sampling loops, or time spent sampling the source.

  12. On-line dynamic extraction system hyphenated to inductively coupled plasma optical emission spectrometry for automatic determination of oral bioaccessible trace metal fractions in airborne particulate matter.

    PubMed

    Mohr, Victoria; Miró, Manuel; Limbeck, Andreas

    2017-04-01

    For a realistic evaluation of the potential hazard emanating from airborne particulate matter (APM), the determination of the total inhaled metal amounts associated with APM is insufficient in risk assessment. Additional information about metal fractions that can be mobilized by the human body is necessary, because only those soluble (also called bioaccessible) fractions can be absorbed by the human body, and thus potentially cause adverse health effects. In the present study, a dynamic flow-through approach as a front end to inductively coupled plasma optical emission spectrometry (ICP-OES) exploiting advanced flow analysis is employed for on-line handling of multiple APM samples and determination of bioaccessible trace metals under worst case extraction scenarios. The method is based on on-line continuous extraction of filter samples with synthetic gastric fluid followed by on-line ICP-OES measurement of the dissolved fraction of trace metals. The assembly permits an automated successive measurement of three sample replicates in less than 19 min. The on-line extraction procedure offers increased sample throughput and reduced risk of sample contamination and overcomes metal re-adsorption processes compared to the traditional batch-wise counterparts. Furthermore, it provides deeper information on the kinetics of the leaching process. The developed procedure was applied to the determination of bioaccessible metal fractions (Al, Ba, Cu, Fe and Mn as model analytes) in PM10 samples from Palma de Mallorca (Spain) and Vienna (Austria). Graphical Abstract On-line gastric bioaccessibility of elements in airborne particulate matter.

  13. Natural Radionuclides in Ground Water.

    ERIC Educational Resources Information Center

    Davis, Stanley N.

    1988-01-01

    Described are the natural trace radionuclides in ground water. Indicates the geologic origin of these radionuclides. Discusses the importance of these radionuclides. Suggests future uses of a number of additional radionuclides. (CW)

  14. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  15. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  16. Experimental and numerical study of gas-to-particle conversion in an emission plume from mining and metallurgical industry based on airborne sounding in a polar atmosphere

    NASA Astrophysics Data System (ADS)

    Simonenkov, Denis V.; Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.; Belan, Boris D.

    2016-11-01

    The results of an airborne survey of plumes from the Norilsk Mining and Metallurgical Plant by an Optik-É AN-30 aircraft laboratory on November 10, 2002 are discussed. Most pollutants are blown out of the city in the gas phase in the form of acidic oxides (mainly sulfur). Mapping of the substances is performed along the main trajectory of air mass transport at a distance of 20-140 km from the city. Horizontal flights were performed at 400, 600, 800, and 1200 m above sea level at equidistant traverses (from 3 to 6 at each height) normally to the main flow direction. Most pollution was concentrated above the 400-m level. An active gas-to-particle conversion was observed at a distance of 60-100 km from the emission source. In the plume areas distant from the source there was a sulfate anion increase from 4% to 51% in aerosol composition weight and a calcium decrease from 64% to 9%. Under the conditions of low humidity in the polar atmosphere in winter, SO2 is apparently removed from the air mainly due to dry heterogeneous condensation with calcium oxide as the main counteragent of industrial origin. The concentrations of these active pollutants in the plume are well approximated by a two-parameter transformation model.

  17. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  18. The Relationship Between Fossil and Dairy Greenhouse Gas Emissions and Complex Urban Land-Use Patterns by In Situ and Remote Sensing Data from Surface Mobile, Airborne, and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Melton, C.; Tratt, D. M.; Kuze, A.; Buckland, K. N.; Butz, A.; Deguchi, A.; Eastwood, M. L.; Fischer, M. L.; Frash, J.; Fladeland, M. M.; Gore, W.; Iraci, L. T.; Johnson, P. D.; Kataoka, F.; Kolyer, R.; Leen, J. B.; Quattrochi, D. A.; Shiomi, K.; Suto, H.; Tanaka, T.; Thompson, D. R.; Yates, E. L.; Van Damme, M.; Yokota, T.

    2015-12-01

    The GOSAT-COMEX-IASI Experiment (Greenhouse gases Observing SATellite-CO2and Methane EXperiment) demonstrated a novel approach to airborne-surface mobile in situ data fusion for interpretation and validation of satellite and airborne remote sensing data of greenhouse gases and direct calculation of flux. Key data were collected for the Chino Dairy in the Los Angeles Basin, California and for the Kern River Oil Fields adjacent to Bakersfield, California. In situ surface and remote sensing greenhouse gas and ammonia observations were compared with IASI and GOSAT retreivals, while hyperspectral imaging data from the AVIRIS, AVIRIS NG, and Mako airborne sensors were analyzed to relate emissions and land use. Figure - platforms participating in the experiment. TANSO-FTS aboard the Ibuki satellite (GOSAT) provided targeted pixels to measure column greenhouse gases. AMOG is the AutoMObile Gas Surveyor which supports a suite of meteorology and in situ trace gas sensors for mobile high speed measurement. AVIRIS, the Airborne Visual InfraRed Imaging Spectrometer aboard the NASA ER-2 airplane collected hyperspectral imaging data at 20 m resolution from 60,000 ft. Mako is a thermal infrared imaging spectrometer that was flown on the Twin Otter International. AJAX is a fighter jet outfitted for science sporting meteorology and greenhouse gas sensors. RAMVan is an upward looking FTIR for measuring column methane and ammonia and other trace gases.

  19. Radionuclide bone imaging and densitometry

    SciTech Connect

    Mettler, F.A.

    1988-01-01

    This book contains 13 selections. Some of the titles are: Radionuclides and the Normal Bone Scan; The Radionuclide Bone Scan in Malignant Disease; Pediatric Applications of Radionuclide Bone Imaging; The Radionuclide Bone Scan in Arthritis and Metabolic and Miscellaneous Disorders; and Soft Tissue Activity on the Radionuclide Bone Scan.

  20. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  1. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  2. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  3. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well.

  4. Radionuclide removal by apatite

    SciTech Connect

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity and show how apatites might be used to environmental advantage in the future.

  5. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  6. Evaluation of NOx emission inventories in California using multi-satellite data sets, AMAX-DOAS and in-situ airborne measurements, and regional model simulations during the CalNex field campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Baidar, S.; Boersma, F.; Brioude, J.; Bucsela, E. J.; Burrows, J. P.; Celarier, E. A.; Cohen, R. C.; Frost, G. J.; Krotkov, N. A.; Lamsal, L. N.; Martin, R. V.; McKeen, S. A.; Oetjen, H.; Pollack, I. B.; Richter, A.; Russell, A. R.; Ryerson, T. B.; Trainer, M.; Valin, L. C.; Volkamer, R. M.

    2012-12-01

    Satellite NO2 column measurements indicate large NOx emissions from urban and agricultural sources in California. In this presentation, we highlight the NOx sources identified in California using the satellite measurements. Comparison of regional model-simulated NO2 columns with satellite retrievals has proven useful in evaluating emission inventories for various sectors. We compare the NO2 columns from the WRF-Chem model with the multi-satellite data sets from different instruments and retrieval groups for a variety of California sources. Use of multiple satellite data sets help to define the uncertainties in the satellite retrievals. In addition, the CalNex 2010 intensive field campaign provides a unique opportunity to independently assess California's emission inventories. CU-AMAX-DOAS and in-situ airborne observations from CalNex 2010 and fine-resolution model simulations are used to estimate the accuracy of the satellite NO2 column retrievals.

  7. Airborne chemical baseline evaluation of the 222-S laboratory complex

    SciTech Connect

    Bartley, P., Fluor Daniel Hanford

    1997-02-12

    The 222-S Laboratory complex stores and uses over 400 chemicals. Many of these chemicals are used in laboratory analysis and some are used for maintenance activities. The majority of laboratory analysis chemicals are only used inside of fume hoods or glove boxes to control both chemical and radionuclide airborne concentrations. This evaluation was designed to determine the potential for laboratory analysis chemicals at the 222-S Laboratory complex to cause elevated airborne chemical concentrations under normal conditions. This was done to identify conditions and activities that should be subject to airborne chemical monitoring in accordance with the Westinghouse Hanford Company Chemical Hygiene Plan.

  8. Radionuclides in US coals

    SciTech Connect

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  9. Radioimmunotherapy with alpha-particle emitting radionuclides.

    PubMed

    Zalutsky, M R; Pozzi, O R

    2004-12-01

    An important consideration in the development of effective strategies for radioimmunotherapy is the nature of the radiation emitted by the radionuclide. Radionuclides decaying by the emission of alpha-particles offer the possibility of matching the cell specific reactivity of monoclonal antibodies with radiation with a range of only a few cell diameters. Furthermore, alpha-particles have important biological advantages compared with external beam radiation and beta-particles including a higher biological effectiveness, which is nearly independent of oxygen concentration, dose rate and cell cycle position. In this review, the clinical settings most likely to benefit from alpha-particle radioimmunotherapy will be discussed. The current status of preclinical and clinical research with antibodies labeled with 3 promising alpha-particle emitting radionuclides - (213)Bi, (225)Ac, and (211)At - also will be summarized.

  10. Therapeutic Radionuclides: Biophysical and Radiobiologic Principles

    PubMed Central

    Kassis, Amin I.

    2008-01-01

    Although the general radiobiologic principles underlying external beam therapy and radionuclide therapy are the same, there are significant differences in the biophysical and radiobiologic effects from the two types of radiation. In addition to the emission of particulate radiation, targeted radionuclide therapy is characterized by (i) extended exposures and, usually, declining dose rates; (ii) nonuniformities in the distribution of radioactivity and, thus, absorbed dose; and (iii) particles of varying ionization density and, hence, quality. This chapter explores the special features that distinguish the biologic effects consequent to the traversal of charged particles through mammalian cells. It also highlights what has been learned when these radionuclides and radiotargeting pharmaceuticals are used to treat cancers. PMID:18662557

  11. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  12. (abstract) Airborne Emission Spectrometer (AES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    AES is a low-cost analog of the TES downlooking modes. Because AES operates at ambient temperature, limb-viewing is not possible. The first flight of AES took place in April 1994 on the NASA P3B aircraft out of Wallops Island, VA. While planned as an engineering test flight, spectra were successfully acquired both over the Atlantic Ocean and the area of the Great Dismal Swamp on the Virginia-North Carolina border. At this writing (July 1994), a second series of flights on the NASA DC8 aircraft out of Ames RC,CA is in progress. By the time of the workshop, a third series using the NASA C130 should have been accomplished.

  13. Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides: An Uncertainty Analysis for Risk Coefficients Reported in Federal Guidance Report No. 13

    EPA Pesticide Factsheets

    Federal Guidance Report No.13 (FGR 13) provides cancer risk coefficients for modes of environmental exposure to each of more than 800 radionuclides (EPA 1999), including inhalation of airborne activity and ingestion of activity in food or drinking water.

  14. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  15. Syringe calibration factors for the NPL Secondary Standard Radionuclide Calibrator for selected medical radionuclides.

    PubMed

    Tyler, D K; Woods, M J

    2003-01-01

    Before a radiopharmaceutical is administered to a patient, its activity needs to be accurately assayed. This is normally done via a radionuclide calibrator, using a glass vial as the calibration device. The radionuclide is then transferred to a syringe and it is now becoming common practice to re-measure the syringe and use this value as the activity administered to the patient. Due to elemental composition and geometrical differences, etc. between the glass vial and the syringe, the calibration factors are different for the two containers and this can lead to an incorrect activity being given to the patient unless a correction is applied for these differences. To reduce the uncertainty on syringe measurements, syringe calibration factors and volume correction factors for the NPL Secondary Standard Radionuclide Calibrator have been derived by NPL for several medically important radionuclides. It was found that the differences between the calibration factors for the syringes and glass vials depend on the energies of the photon emissions from the decay of the radionuclides; the lower the energy, the greater the difference. As expected, large differences were observed for 125I (70%) and only small differences for 131I. However, for radionuclides such as 99mTc and 67Ga, differences of up to 30% have been observed. This work has shown the need for the use of specifically derived syringe calibration factors as well as highlighting the complexity of the problem with regard to syringe types, procurement, etc.

  16. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Douglass, E.; Buesseler, K.

    2013-01-01

    The March of 2011 earthquake and tsunami that caused a loss of power at the Fukushima nuclear power plants (FNPP) resulted in emission of radioactive isotopes into the atmosphere and the ocean. In June of 2011, an international survey of various radionuclide isotopes, including 137Cs, was conducted in surface and subsurface waters off Japan. This paper presents the results of numerical simulations aimed at interpreting these observations, investigating the spread of Fukushima-derived radionuclides off the coast of Japan and into the greater Pacific Ocean, studying the dominant mechanisms governing this process, as well as estimating the total amount of radionuclides in discharged coolant waters and atmospheric airborne radionuclide fallout. The numerical simulations are based on two different ocean circulation models, one inferred from AVISO altimetry and NCEP/NCAR reanalysis wind stress, and the second generated numerically by the NCOM model. Our simulations determine that >95% of 137Cs remaining in the water within ~600 km of Fukushima, Japan in mid-June 2011 was due to the direct oceanic discharge. The estimated strength of the oceanic source is 16.2 ± 1.6 PBq, based on minimizing the model-data mismatch. We cannot make an accurate estimate for the atmospheric source strength since most of the fallout cesium would have moved out of the survey area by mid-June. The model explained several features of the observed 137Cs distribution. First, the absence of 137Cs at the southernmost stations is attributed to the Kuroshio Current acting as a transport barrier against the southward progression of 137Cs. Second, the largest 137Cs concentrations were associated with a semi-permanent eddy that entrained 137Cs-rich waters collecting and stirring them around the eddy perimeter. Finally, the intermediate 137Cs concentrations at the westernmost stations were attributed to younger, and therefore less Cs-rich, coolant waters that continued to leak from the reactor in June of

  17. Potential radionuclide emissions from stacks on the Hanford site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscopy

    SciTech Connect

    Barnett, J.M.

    1995-02-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes}, stacks that have the potential to emit {ge} 1 {mu}Sv y{sup {minus}1} (0.1 mrem y{sup {minus}1}) to the maximally exposed individual are considered {open_quotes}major{close_quotes} and must meet the continuous monitoring requirements. After the method was tested and verified, the U.S. Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method, and 15 were assessed. (The method could not be applied at seven stacks because of excessive background radiation or because no gamma emitting particles appear in the emission stream.) The most significant result from this study was the redesignation of the T Plant main stack. The stack was assessed as being {open_quotes}minor{close_quotes}, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  18. Triaryl (Z)-olefins suitable for radiolabeling with iodine-124 or fluorine-18 radionuclides for positron emission tomography imaging of estrogen positive breast tumors.

    PubMed

    Abdellatif, Khaled R A; Velázquez, Carlos A; Huang, Zhangjian; Chowdhury, Morshed A; Knaus, Edward E

    2011-02-15

    A group of (Z)-1,2-diphenyl-1-[4-[2-(4-methylpiperazin-1-yl)ethoxy]phenyl]but-1-enes were synthesized using methodologies that will allow incorporation of a [(124)I]iodine substituent at the para-position of either the C-1 phenyl ring or the C-2 phenyl ring, or a [(18)F]OCH(2)CH(2)F substituent at the para-position of the C-2 phenyl ring. These [(124)I] and [(18)F] radiotracers are designed as potential radiopharmaceuticals to image estrogen positive breast tumors using positron emission tomography (PET).

  19. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  20. Initial Radionuclide Inventories

    SciTech Connect

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  1. Radionuclide studies in impotence

    SciTech Connect

    Hilson, A.J.; Lewis, C.A. )

    1991-04-01

    Impotence may be of physiological origin with causes including vascular or neurological pathology. Alternatively, it may be of psychogenic origin. Clinicians can distinguish between psychological and organic impotence by observing nocturnal penile tumescence. Non-radionuclide investigations for organic impotence include penile plethysmography or pulse Doppler analysis for arterial supply, cavernosometry for venous drainage, and biothesiometry or evoked potentials for neurological pathology. Radionuclide studies are primarily based on the use of technetium 99m-pertechnetate, 99mTc-red blood cells, or xenon 133 to study the blood flow, with or without pharmacological intervention, commonly papaverine. 26 references.

  2. Computational methods in radionuclide dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, M.; Myers, M. J.

    1996-10-01

    The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.

  3. Gallbladder radionuclide scan

    MedlinePlus

    ... please enable JavaScript. Gallbladder radionuclide scan is a test that uses radioactive material to check gallbladder function. It is also used ... for bile duct blockage or leak. How the Test is Performed ... called a gamma emitting tracer into a vein. This material collects mostly in the liver. It will then ...

  4. VULNERABILITY OF HEADWATER CATCHMENT RESOURCES TO INCIDENCES OF 210PB EXCESS AND 137CS RADIONUCLIDE FALLOUT

    EPA Science Inventory

    Recent identification of elevated excess 210Pb (≤302.6 mBq L-1) and 137Cs (≤ 111.3 mBq L-1) activity in drinking water wells up to 20 m depth indicates some transport of airborne radionuclide fallout beyond soils in the Shaker Village c...

  5. Quantitative estimation of infarct size by simultaneous dual radionuclide single photon emission computed tomography: comparison with peak serum creatine kinase activity

    SciTech Connect

    Kawaguchi, K.; Sone, T.; Tsuboi, H.; Sassa, H.; Okumura, K.; Hashimoto, H.; Ito, T.; Satake, T. )

    1991-05-01

    To test the hypothesis that simultaneous dual energy single photon emission computed tomography (SPECT) with technetium-99m (99mTc) pyrophosphate and thallium-201 (201TI) can provide an accurate estimate of the size of myocardial infarction and to assess the correlation between infarct size and peak serum creatine kinase activity, 165 patients with acute myocardial infarction underwent SPECT 3.2 +/- 1.3 (SD) days after the onset of acute myocardial infarction. In the present study, the difference in the intensity of 99mTc-pyrophosphate accumulation was assumed to be attributable to difference in the volume of infarcted myocardium, and the infarct volume was corrected by the ratio of the myocardial activity to the osseous activity to quantify the intensity of 99mTc-pyrophosphate accumulation. The correlation of measured infarct volume with peak serum creatine kinase activity was significant (r = 0.60, p less than 0.01). There was also a significant linear correlation between the corrected infarct volume and peak serum creatine kinase activity (r = 0.71, p less than 0.01). Subgroup analysis showed a high correlation between corrected volume and peak creatine kinase activity in patients with anterior infarctions (r = 0.75, p less than 0.01) but a poor correlation in patients with inferior or posterior infarctions (r = 0.50, p less than 0.01). In both the early reperfusion and the no reperfusion groups, a good correlation was found between corrected infarct volume and peak serum creatine kinase activity (r = 0.76 and r = 0.76, respectively; p less than 0.01).

  6. Decadal changes in ozone and precursor emissions in the Los Angeles California region using in-situ airborne and ground-based field observations, roadside monitoring data, and surface network measurements

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Atlas, E. L.; Blake, D. R.; Flynn, J. H.; Frost, G. J.; Grossberg, N.; Harley, R. A.; Holloway, J. S.; Lefer, B. L.; Lueb, R.; Parrish, D. D.; Peischl, J.

    2011-12-01

    In-situ observations from the Photochemical Assessment Monitoring Stations (PAMS) and the California Air Resources Board (CARB) surface network show decreases in ozone (O3), nitrogen oxide (NOx=NO+NO2), carbon monoxide (CO), and select volatile organic compounds (VOCs) in California's South Coast Air Basin (SoCAB). Decreases in CO, NOx, and VOCs reflect changes, such as improved catalytic converters and reformulated fuels etc., that have been implemented in response to increasingly strict emissions standards placed upon on-road vehicles in the state of California. Here, we compare changes in emissions ratios of NOx and VOCs to CO determined from surface network data collected since 1994 to changes in emissions ratios from biennial roadside studies conducted in west Los Angeles since 1999 and airborne and ground-based measurements from three independent field campaigns conducted in California in 2002, 2008, and 2010. Using the more extensive in-situ surface network data set, we show that decreasing ozone is positively correlated with decreasing abundances of NOx and VOCs and with decreasing VOC/NOx ratio over time. The changes observed from 1994 to present suggest that reductions in both NOx and VOCs and the VOC/NOx ratio over the years have been effective in reducing ozone in the SoCAB.

  7. EBS Radionuclide Transport Abstraction

    SciTech Connect

    R. Schreiner

    2001-06-27

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M&O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  8. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  9. [Dependence of uniformity on the radionuclide in SPECT: test methods].

    PubMed

    Kalnischke, Heiko; Grebe, Gerhard; Zander, Andreas; Munz, Dieter Ludwig; Geworski, Lilli

    2004-01-01

    The aim of this study was to investigate test methods to clarify whether the non-uniformity of a gamma camera depends on individual radionuclides, and whether it is necessary to measure a separate correction matrix for each radionuclide used in single photon emission computed tomography (SPECT). Two methods were devised to verify the nuclide-dependence of the gamma camera. In order to test the energy correction of the detectors, the first approach was based on the evaluation of the intrinsic non-uniformity and on the production of images with asymmetrical energy window. The second method was based on the production of correction matrices for different radionuclides, as well as on the subsequent application to phantom data that were also generated with different radionuclides. The investigation of a dualhead gamma camera produced the same results with both methods. One detector head was found to be weakly dependent on the radionuclide, due to the insufficient quality of energy correction. In this case, the phantom or patient data should be corrected using a uniformity correction matrix measured with the same radionuclide. The second detector remained nuclide-independent; in this case the uniformity correction matrix acquired for only one radionuclide was sufficient.

  10. Osteoid osteoma: radionuclide diagnosis

    SciTech Connect

    Helms, C.A.; Hattner, R.S.; Vogler, J.B.

    1984-06-01

    The double-density sign, seen on radionuclide bone scans, is described for diagnosing osteoid osteomas and for localizing the nidus. Its use in differentiating the nidus of an osteoid osteoma from osteomyelitis is also described. The utility of computed tomography in localization of the nidus is also illustrated. The double-density sign was helpful in diagnosing seven cases of surgically confirmed osteoid osteoma.

  11. 77 FR 24746 - Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... COMMISSION Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other..., ``Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees other than Power... on airborne emissions of radioactive material to the environment. ADDRESSES: Please refer to...

  12. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  13. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  14. Airborne emissions from 1961 to 2004 of benzo[a]pyrene from U.S. vehicles per km of travel based on tunnel studies.

    PubMed

    Beyea, Jan; Stellman, Steven D; Hatch, Maureen; Gammon, Marilie D

    2008-10-01

    We identified 13 historical measurements of polycyclic aromatic hydrocarbons (PAHs) in U.S. vehicular traffic tunnels that were either directly presented as tailpipe emission factors in microg per vehicle-kilometer or convertible to such a form. Tunnel measurements capture fleet cruise emissions. Emission factors for benzo[a]pyrene (BaP) for a tunnel fleet operating under cruise conditions were highest prior to the 1980s and fell from more than 30-microg per vehicle-km to approximately 2-microg/km in the 1990s, an approximately 15-fold decline. Total annual U.S. (cruise) emissions of BaP dropped by a lesser factor, because total annual km driven increased by a factor of 2.7 during the period. Other PAH compounds measured in tunnels over the 40-year period (e.g., benzo[ghi]perylene, coronene) showed comparable reduction factors in emissions. PAH declines were comparable to those measured in tunnels for carbon monoxide, volatile organic compounds, and particulate organic carbon. The historical PAH "source terms" determined from the data are relevant to quantifying the benefits of emissions control technology and can be used in epidemiological studies evaluating the health effects of exposure, such as those undertaken with breast cancer in New York State.

  15. Airborne Emissions from 1961 to 2004 of Benzo[a]pyrene from U.S. Vehicles per km of Travel Based on Tunnel Studies

    PubMed Central

    2008-01-01

    We identified 13 historical measurements of polycyclic aromatic hydrocarbons (PAHs) in U.S. vehicular traffic tunnels that were either directly presented as tailpipe emission factors in μg per vehicle-kilometer or convertible to such a form. Tunnel measurements capture fleet cruise emissions. Emission factors for benzo[a]pyrene (BaP) for a tunnel fleet operating under cruise conditions were highest prior to the 1980s and fell from more than 30-μg per vehicle-km to approximately 2-μg/km in the 1990s, an approximately 15-fold decline. Total annual U.S. (cruise) emissions of BaP dropped by a lesser factor, because total annual km driven increased by a factor of 2.7 during the period. Other PAH compounds measured in tunnels over the 40-year period (e.g., benzo[ghi]perylene, coronene) showed comparable reduction factors in emissions. PAH declines were comparable to those measured in tunnels for carbon monoxide, volatile organic compounds, and particulate organic carbon. The historical PAH “source terms” determined from the data are relevant to quantifying the benefits of emissions control technology and can be used in epidemiological studies evaluating the health effects of exposure, such as those undertaken with breast cancer in New York State. PMID:18939564

  16. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  17. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  18. Concentration and emission sources of airborne metals in particulate matter in the industrial district of Médio Paraíba, state of Rio de Janeiro, Brazil.

    PubMed

    Loyola, Josiane; de Almeida, Pierre Batista; Quiterio, Simone Lorena; Sousa, Célia Regina; Arbilla, Graciela; Escaleira, Viviane; de Carvalho, Maria Isabel; dos Santos Amaral Gomes da Silva, Alzira

    2006-11-01

    Total suspended particles and 12 airborne metals were determined in 4 sampling sites in the industrial region of Médio Paraíba, Brazil. The geometrical means for the four sampling locals were (in units of microg/m3): 65.9 in Barra Mansa, 57.3 in Jardim Paraíba (Volta Redonda), 41.7 in Resende, and 48.9 in Volta Grande (Volta Redonda). These values are lower than levels previously determined in urban and industrial locals of the Metropolitan Area of Rio de Janeiro. For metals, the higher concentrations were obtained for Ca, Zn, Al, Fe, and Mg. Ca, Zn, and Al levels are higher than those determined in other industrial areas. These three metals are used in steel manufacturing, the main economical activity of the region. Enrichment factors for Zn, Cu, Cd, and Pb are higher than 10, suggesting an industrial input. Statistical analysis show a high correlation among Ca, Mg, Zn, Cr, Al, Mn, and Fe, all of them used as raw materials in steel manufacturing and/or accumulated as industrial blast furnace slag and steelworks slag.

  19. An inversion analysis of carbon dioxide emission from airborne sampling of the 2013 Yosemite Rim Fire and its relationship with combustion phase

    NASA Astrophysics Data System (ADS)

    Xi, X.; Johnson, M. S.; Wang, W.; Yates, E. L.; Iraci, L. T.; Tanaka, T.; Dean-Day, J. M.; Bui, T. V.

    2015-12-01

    Fires from biomass burning are responsible for emitting large quantities of trace gases (e.g., carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO)) and particulate matter, which are of great importance for air quality, climate forcing and biogeochemical cycles. On average wildfires emit about 290 Tg CO2 per year in the United States, equivalent to 4-6% of annual anthropogenic emissions. Characterization of wildfire emissions is crucial for understanding the atmospheric trace gas budget and variability, and the quality of these characterizations depends on accurate gas concentration measurements associated with fuel type, meteorological conditions and fire combustion phase. The 2013 Yosemite Rim Fire was sampled by the NASA Ames Alpha Jet Atmopsheric eXperiment (AJAX) during two fire burning stages: intensive burning phase on August 29 and smoldering phase on September 10. The AJAX trace gas measurements (CO2, CH4 and ozone (O3)) provide a unique opportunity to conduct an inverse analysis of the fire emissions of key trace gases and linkage with the dynamic nature of wildfires. This study proposes to use a coupled Eulerian-Lagrangian atmospheric transport model, WRF-STILT, along with estimates of fossil fuel emissions and atmospheric CO2 background, and the latest wildfire emission inventories, to determine the contribution of the Rim Fire to atmospheric CO2. WRF-STILT is used to establish the source-receptor relationship of CO2 under different model configurations in order to bracket the transport model uncertainty. Observationally constrained CO2 emission rates will be obtained by improving the model fit to flight measurements, and the associated uncertainties with a priori and model errors will be evaluated. The model/measurement data setup and initial results of this study will be presented.

  20. Targeted radionuclide therapy

    PubMed Central

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-01-01

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT∕CT and PET∕CT scanners. PMID:18697529

  1. On the Link Between Ocean Biota Emissions, Aerosol, and Maritime Clouds: Airborne, Ground, and Satellite Measurements Off the Coast of California

    DTIC Science & Technology

    2009-10-14

    et al., 2008); that study showed that there is a large marine source of dicarbonyls (e.g. glyoxal and methylglyoxal ) missing in the GEOS-Chem...global chemical transport model, which can be explained by marine biota emissions. Glyoxal, methylglyoxal , and glycolaldehyde, an aqueous-phase...Carlton, A. G., Turpin, B. J., Klein, G. C., and A. G. Marshall (2008). Oligomers formed through in-cloud methylglyoxal reactions: Chemical

  2. Analysis of motor vehicle emissions over eastern Los Angeles, California from in-situ airborne measurements of trace gases and particulates during CalNex

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Peischl, J.; Fahey, D. W.; Perring, A.; Schwarz, J. P.; Spackman, J. R.

    2010-12-01

    In-situ measurements of trace gases and particulates were acquired on the instrumented NOAA WP-3D aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May and June 2010. Multiple daytime research flights under similar meteorological conditions provide a sufficient data set for characterizing automobile emissions over the eastern Los Angeles (eLA) area of the South Coast air basin. Ratios of nitrogen oxides (NOx) and black carbon (BC) to carbon monoxide (CO) are used to isolate emissions of light duty vehicles from those of medium/heavy duty diesel trucks. Observations in the mixed boundary layer for the eLA area are separated according to latitude, longitude, and altitude. Industrial influences are eliminated by filtering the data according to SO2 mixing ratio and wind direction. The resulting correlations show weekday-to-weekend differences in enhancement ratios of NOx to CO and BC to CO, indicating a general tendency for higher emissions from heavy duty vehicles during the week. The CalNex data over eLA in 2010 will be compared to eLA data from a research flight in May 2002 by the WP-3D aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) field study.

  3. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    SciTech Connect

    Beasley, T.M.; Rivera, W. Jr.; Kelley, J.M.; Bond, L.A.; Liszewski, M.J.; Orlandini, K.A.

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  4. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  5. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  6. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  7. Radionuclide therapy for arthritic knees

    SciTech Connect

    Doepel, L.K.

    1985-02-08

    A new radionuclide therapeutic approach for rheumatoid arthritis of the knee is described. This therapy combines a short-lived radionuclide with a carrier whose physical and chemical characteristics aid retention of the radioactive particles within the joint. Joining a radionuclide to a particulate carrier had not been explored previously as a potential method for inhibiting radiation leakage. The treatment couples the rare earth element dysprosium 165 to ferric hydroxide in macroaggregate form (size range: 3 to 10 ..mu..m). After the relatively inert iron complex penetrates the synovium, it causes cell death. Macrophages and phagocytes clear away the cellular debris, essentially eliminating the synovium.

  8. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  9. Critical radionuclide/critical pathway analysis for the U.S. Department of Energy's Savannah River Site.

    PubMed

    Jannik, G T

    1999-06-01

    Many different radionuclides have been released to the environment from the Savannah River Site (SRS) during the facility's operational history. However, as shown by this analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to off-site people. This article documents the radiological critical contaminant/critical pathway analysis performed for SRS. If site missions and operations remain constant over the next 30 years, only tritium oxide releases are projected to exceed a maximally exposed individual (MEI) risk of 1.0E-06 for either the airborne or liquid pathways. The critical exposure pathways associated with site airborne releases are inhalation and vegetation consumption, whereas the critical exposure pathways associated with liquid releases are drinking water and fish consumption. For the SRS-specific, nontypical exposure pathways (i.e., recreational fishing and deer and hog hunting), cesium-137 is the critical radionuclide.

  10. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Douglass, E.; Buesseler, K.

    2013-07-01

    The Great East Japan Earthquake and tsunami that caused a loss of power at the Fukushima nuclear power plants (FNPP) resulted in emission of radioactive isotopes into the atmosphere and the ocean. In June of 2011, an international survey measuring a variety of radionuclide isotopes, including 137Cs, was conducted in surface and subsurface waters off Japan. This paper presents the results of numerical simulations specifically aimed at interpreting these observations and investigating the spread of Fukushima-derived radionuclides off the coast of Japan and into the greater Pacific Ocean. Together, the simulations and observations allow us to study the dominant mechanisms governing this process, and to estimate the total amount of radionuclides in discharged coolant waters and atmospheric airborne radionuclide fallout. The numerical simulations are based on two different ocean circulation models, one inferred from AVISO altimetry and NCEP/NCAR reanalysis wind stress, and the second generated numerically by the NCOM model. Our simulations determine that > 95% of 137Cs remaining in the water within ~600 km of Fukushima, Japan in mid-June 2011 was due to the direct oceanic discharge. The estimated strength of the oceanic source is 16.2 ± 1.6 PBq, based on minimizing the model-data mismatch. We cannot make an accurate estimate for the atmospheric source strength since most of the fallout cesium had left the survey area by mid-June. The model explained several key features of the observed 137Cs distribution. First, the absence of 137Cs at the southernmost stations is attributed to the Kuroshio Current acting as a transport barrier against the southward progression of 137Cs. Second, the largest 137Cs concentrations were associated with a semi-permanent eddy that entrained 137Cs-rich waters, collecting and stirring them around the eddy perimeter. Finally, the intermediate 137Cs concentrations at the westernmost stations are attributed to younger, and therefore less Cs

  11. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.; Bates, D.J.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  12. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.; Bates, D.J.

    1994-01-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  13. Radionuclide imaging of osteomyelitis.

    PubMed

    Palestro, Christopher J

    2015-01-01

    Radionuclide procedures frequently are performed as part of the diagnostic workup of osteomyelitis. Bone scintigraphy accurately diagnoses osteomyelitis in bones not affected by underlying conditions. Degenerative joint disease, fracture, and orthopedic hardware decrease the specificity of the bone scan, making it less useful in these situations. Gallium-67 scintigraphy was often used as an adjunct to bone scintigraphy for diagnosing osteomyelitis. However, now it is used primarily for spinal infections when (18)F-FDG imaging cannot be performed. Except for the spine, in vitro-labeled leukocyte imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. Leukocytes accumulate in bone marrow as well as in infection. Performing complementary bone marrow imaging with (99m)Tc-sulfur colloid facilitates the differentiation between osteomyelitis and normal marrow and improves test overall accuracy. Antigranulocyte antibodies and antibody fragments, such as (99m)Tc-besilesomab and (99m)Tc-sulesomab, were developed to eliminate the disadvantages associated with in vitro-labeled leukocytes. These agents, however, have their own shortcomings and are not widely available. As biotin is used as a growth factor by certain bacteria, (111)In-biotin is useful to diagnose spinal infections. Radiolabeled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, can differentiate infection from sterile inflammation and may be useful to monitor response to treatment. (18)F-FDG is extremely useful in the diagnostic workup of osteomyelitis. Sensitivity in excess of 95% and specificity ranging from 75%-99% have been reported. (18)F-FDG is the radionuclide test of choice for spinal infection. The test is sensitive, with a high negative predictive value, and reliably differentiates degenerative from infectious vertebral body end-plate abnormalities. Data on the accuracy of (18)F-FDG for diagnosing diabetic pedal

  14. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  15. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  16. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  17. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  18. Surface charge accumulation of particles containing radionuclides in open air

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  19. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  20. Anthropogenic radionuclides in the environment

    SciTech Connect

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  1. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  2. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  3. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  4. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    SciTech Connect

    Jannik, T.

    2011-08-30

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  5. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  6. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  7. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R.; Lister, Tedd E.; Tranter, Troy J.

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  8. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  9. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    PubMed

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  10. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter

    PubMed Central

    Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry -, postmining -, and soil –derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants. PMID:26147982

  11. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  12. 100 years of radionuclide metrology.

    PubMed

    Judge, S M; Arnold, D; Chauvenet, B; Collé, R; De Felice, P; García-Toraño, E; Wätjen, U

    2014-05-01

    The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics.

  13. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. )

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  14. Radiochemical Separations:. Useful Methods for the Preparation of No-Carrier Solutions of Different Radionuclides for Metabolic Radiotherapy

    NASA Astrophysics Data System (ADS)

    Zona, C.; Groppi, F.; Persico, E.; Canella, L.; Bonardi, M. L.; Chinol, M.; Abbas, K.; Holzwarth, U.; Gibson, N.

    2008-06-01

    In Nuclear Medicine, radionuclides are used in the detection and the treatment for cancers and others diseases. We must obtain, for therapeutic purposes, solutions of radionuclides in the required chemical form, with an high specific activity (AS). To reach our goal we must, first, obtain no-carrier-added (NCA) solutions. In this work we present different methods for the production of NCA radionuclides, based on either wet-chemistry, or thermc- and radio-chromatography. We set up four different methods: two for the preparation of the alpha emitter 211At, and two for the beta emitters 186gRe and 90Y. These radionuclides had been chosen because of their chemical and nuclear properties as their half-life, type, abundance and energy of emissions, that make them among the most promising radionuclides to label compounds for the metabolic radionuclide therapy.

  15. Radionuclide imaging and treatment of thyroid cancer.

    PubMed

    Wang, Xiu Juan; Li, XianFeng; Ren, Yuan

    2016-06-01

    Over the past decades, the diagnostic methods and therapeutic tools for thyroid cancer (TC) have been greatly improved. In addition to the classical method of ingestion of radioactive iodine-131 (I131) and subsequent I123 and I124 positron emission tomography (PET) in therapy and examination, I124 PET-based 3-dimensional imaging, Ga68-labeled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI(3)-octreotide (DOTANOC) PET/computed tomography (CT), Tc99m tetrofosmin, pre-targeted radioimmunotherapy, and peptide receptor radionuclide therapy have all been used clinically. These novel methods are useful in diagnosis and therapy of TC, but also have unavoidable adverse effects. In this review, we will discuss the development of nuclear medicine in TC examination and treatment.

  16. Cosmogenic radionuclides on LDEF: An unexpected Be-10 result

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Dezfouly-Arjomandy, B.; Harmon, B. A.

    1993-01-01

    Following the discovery of the atmospheric derived cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), a search began for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enabled its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  17. Radionuclide Imaging of Cardiovascular Infection.

    PubMed

    Ahmed, Fozia Zahir; James, Jackie; Memmott, Matthew J; Arumugam, Parthiban

    2016-02-01

    Owing to expanding clinical indications, cardiac implantable electronic devices (CIEDs) are being increasingly used. Despite improved surgical techniques and the use of prophylactic antimicrobial therapy, the rate of CIED-related infection is also increasing. Infection is a potentially serious complication, with clinical manifestations ranging from surgical site infection and local symptoms in the region of the generator pocket to fulminant endocarditis. The utility of radionuclide imaging as a stand-alone noninvasive diagnostic imaging test in patients with suspected endocarditis has been less frequently examined. This article summarizes the recent advances in radionuclide imaging for evaluation of patients with suspected cardiovascular infections.

  18. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  19. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell

    1985-01-01

    Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  20. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  1. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  2. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  3. Radionuclide Sensors for Subsurface Water Monitoring

    SciTech Connect

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  4. [Role of Radionuclide Technologies in Medicine].

    PubMed

    Chernyaev, A P; Belousov, A V; Varzar, S M; Borchegovskaya, P Y; Nikolaeva, A A; Krusanov, G A

    2016-01-01

    The paper describes the role of radionuclide technologies among the nuclear-physical methods used in medicine. The condition and prospects of the development of nuclear technology with use of radionuclides in medicine, and in particular, the method of brachytherapy are analyzed. The analysis of the current state of applying radionuclide facilities in medicine is provided.

  5. TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL

    EPA Science Inventory

    This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

  6. Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident.

    PubMed

    Winkelmann, I; Strobl, C; Thomas, M

    2004-01-01

    Gamma-ray spectrometric systems carried by helicopters prove to be indispensable for the surveillance of environmental radioactivity. The aerial measurements are an important tool for rapid and large-scale nuclide specific determination of soil contamination after an accidental release of radionuclides from a nuclear facility. Furthermore this technique is also applied for the determination of anomalies of elevated radioactivity of natural radionuclides, the detection of lost radioactive sources and geological mapping. For the measurements the helicopters are equipped with a NaI(Tl)-detector array and a high purity germanium-semiconductor (HPGe) detector. Especially with the HPGe-detector it is possible to clearly identify individual radionuclides. To improve and to guarantee the quality of this method several exercises with different fields of interest have been carried out during the last years. Thereby the main focus is on the improvement of the instrumentation, data handling and data analysis. The results of the airborne radionuclide measurements from the Black Forest which was performed in co-operation with the Swiss National Emergency Operation Centre, are presented here. During this exercise the gamma dose rate, soil contamination due to 137Cs and the specific activities of natural radionuclides in soil were determined.

  7. Radionuclide evaluation in childhood injuries

    SciTech Connect

    Sty, J.R.; Starshak, R.J.; Hubbard, A.M.

    1983-07-01

    Radionuclide techniques serve an important role in evaluating childhood injuries. Frequently, they can be employed as the initial and definitive examination. At times they represent the only modality that will detect specific injuries such as the skeletal system. Familiarity with the advantages and limitations of tracer techniques will insure appropriate management of childhood injuries.

  8. Natural radionuclide accumulation by raindrops

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. A time resolution of up to 1 minute allows a detailed comparison of changes in meteorological parameters with those of a concentration of ambient radon progenies in the atmosphere. Results of a study of variation of a fallout of radon progenies ^{214}Pb and ^{214}Bi concomitanting rainfalls are present. The radionuclide fallout rate is reconstructed from the observed gamma rate through a simulation of the first kind Volterra integral equation with difference kernel, determined by ratio of precipitating rates of 214Pb and 214Bi and their decay half times. An original straightforward step-by-step procedure was used for the numerical solution of the equation. The radionuclide concentration in the rainwater is calculated as a ratio of the reconstructed fallout to the measured rainfall. It was observed that the radionuclide fallout rate increases as the rainfall one in approximately power 0.6, i.e. the same as the mean raindrop volume. The concentration thereafter decreases as the rainfall rate in power 0.4. A numerical simulation of the process of accumulation of the radionuclides during diffusion and coalescence drop growth and aerosol scavenging during a passage from a cloud to the ground was performed. The results of the simulations agree with the experimental data.

  9. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  10. Modeling Radionuclide Transport in Clays

    SciTech Connect

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny; Liu, Hui -Hai; Birkholzer, Jens

    2012-05-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field

  11. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  12. ARES - A New Airborne Reflective Emissive Spectrometer

    DTIC Science & Technology

    2005-10-01

    then 150 nm in the thermal. ARES will be used mainly for environmental applications in terrestrial ecosystems. The thematic focus is thought to be...been used for as different applications as geological mapping, determination of soil properties, agricultural and forest applications, water quality...operated in a DLR Do228 the instrument could be installed in a wide range of remote sensing aircraft as used for conventional aerial work. The general

  13. Identification of CSF fistulas by radionuclide counting

    SciTech Connect

    Yamamoto, Y.; Kunishio, K.; Sunami, N.; Yamamoto, Y.; Satoh, T.; Suga, M.; Asari, S. )

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  14. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  15. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  16. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  17. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  18. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  19. Airborne infrared spectroscopy of 1994 western wildfires

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07 cm-1 resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  20. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  1. 40 CFR 61.107 - Emission determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission determination. 61.107 Section...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered...

  2. 40 CFR 61.107 - Emission determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission determination. 61.107 Section...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered...

  3. 40 CFR 61.107 - Emission determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission determination. 61.107 Section...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered...

  4. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  5. Radionuclide synovectomy - essentials for rheumatologists.

    PubMed

    Chojnowski, Marek M; Felis-Giemza, Anna; Kobylecka, Małgorzata

    2016-01-01

    Radionuclide synovectomy is a minimally invasive method of treating persistent joint inflammation. It involves intra-articular injection of radioactive colloids which induce necrosis and fibrosis of hypertrophic synovial membrane. The most common indication for radiosynovectomy is rheumatoid arthritis, although patients with seronegative spondyloarthropathies, unclassified arthritis, haemophilic arthropathy and other less common arthropathies can also benefit from this method. Radiosynovectomy is safe, well tolerated and efficacious. About 70-80% of patients respond well to the therapy. However, the therapeutic effects are considerably worse in patients with co-existent osteoarthritis and advanced joint degeneration. Despite its advantages, radionuclide synovectomy is not performed as often as it could be, so greater knowledge and understanding of this method are needed. The authors present the most important facts about radiosynovectomy that may help rheumatologists in their daily clinical practice.

  6. Chernobyl radionuclide distribution and migration.

    PubMed

    Izrael, Yury A

    2007-11-01

    The accident at Unit No. 4 of the Chernobyl Nuclear Power Plant on 26 April 1986 presented severe challenges in radiation protection. Early activity measurements defined the contaminated areas in order to determine what persons should be evacuated on the basis of the exposure limit at that time of 100 mSv (10 rem) for accidents. The immediate definition of these areas was accomplished with specially equipped aircraft capable of measuring external gamma-exposure rate and radionuclide spectra. Over time, maps of 137Cs contamination (the most important long-lived radionuclide) have become more and more sophisticated and have been used for further determinations of the control of the consequences of the accident. About 70% of the total release of 137Cs was deposited in Belarus, the Russian Federation, and Ukraine; but there was also widespread deposition throughout the countries of Western Europe. Two atlases of contamination throughout Europe were prepared, and the Russian atlas included data on other radionuclides and on external gamma-exposure rates. The radiocesiums behaved as volatile radionuclides because of the volatility of cesium. In contrast to the typical pattern after nuclear weapons tests, 90Sr behaved only as a refractory element, as its volatile precursors krypton and rubidium had already decayed within the reactor. Nearly all of the refractory elements (strontium, plutonium, etc.) released by the accident were confined to the 30-km zone around the reactor. A proposal is made to develop a more complete atlas of 137Cs deposition from the accident that would include the entire Northern Hemisphere. Water was not an important vector of exposure to human beings following the accident.

  7. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  8. OPTIMAL BETA-RAY SHIELDING THICKNESSES FOR DIFFERENT THERAPEUTIC RADIONUCLIDES AND SHIELDING MATERIALS.

    PubMed

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2016-04-06

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides.

  9. Radionuclide behavior in the environment

    SciTech Connect

    Tveten, U. )

    1991-09-01

    The purpose of this report is to document the results of the following task: Review for quality and consistency the available data on measurements of initial ground contamination of Chernobyl radionuclides in various parts of Norway and subsequent concentrations of these radionuclides in various environmental media as functions of time. Utilize the data obtained to verify the existing models, or to improve them, for describing radionuclide behavior in the environment. Some of the processes standard were: migration into soil; weathering; resuspension; food-chain contamination; and loss or reconcentration by run-off. The task performed within this contract has been to use post-Chernobyl data from Norway to verify or find areas for possible improvement in the chronic exposure pathway models utilized in MACCS. Work has consisted mainly of collecting and evaluating post-Chernobyl information from Norway or other countries when relevant; but has also included experimental work performed specifically for the current task. In most connections the data available show the models and data in MACCS to be appropriate. A few areas where the data indicate that the MACCS approach is faulty or inadequate are, however, pointed out in the report. These should be examined carefully, and appropriate modifications should eventually be made. 14 refs., 12 figs., 22 tabs.

  10. Criteria for the selection of radionuclides for tumor radioimmunotherapy

    SciTech Connect

    Srivastava, S.C.; Mausner, L.F.; Mease, R.C.

    1991-01-01

    The potential of utilizing monoclonal antibodies as carriers of radionuclides for the selective destruction of tumors (radioimmunotherapy, RIT) has stimulated much research activity. From dosimetric and other considerations, the choice of radiolabel is an important factor that needs to be optimized for maximum effectiveness of RIT. This paper reviews and assesses a number of present and future radionuclides that are particularly suitable for RIT based on the various physical, chemical, and biological considerations. Intermediate to high-energy beta emitters' (with and without gamma photons in their emission) are emphasized since they possess a number of advantages over alpha and Auger emitters. Factors relating to the production and availability of candidate radiometals as well as their stable chemical attachment to monoclonal antibodies are discussed. 34 refs., 4 tabs.

  11. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  12. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  13. Airborne Ultrasonics for Nondestructive Evaluation of Leather Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent research has shown that besides Acoustic Emission (AE), Airborne Ultrasonics (AU) can also be applied for the nondestructive evaluation (NDE) of leather quality. Implementation of these methods in the manufacturing process could save a considerable amount of money, decrease the use of ch...

  14. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  15. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  16. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  17. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  18. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  1. Chemical speciation of radionuclides migrating in groundwaters

    SciTech Connect

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

  2. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  3. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  4. Sources and pathways of artificial radionuclides to soils at a High Arctic site.

    PubMed

    Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J

    2014-11-01

    Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.

  5. DKPRO: A radionuclide decay and reprocessing code

    SciTech Connect

    Wootan, D.; Schmittroth, F.A.

    1997-07-14

    The DKPRO code solves the general problem of modeling complex nuclear wastes streams using ORIGEN2 radionuclide production files. There is a continuing need for estimates of Hanford radionuclides. Physical measurements are one basis; calculational estimates, the approach represented here, are another. Given a known nuclear fuel history, it is relatively straightforward to calculate radionuclide inventories with codes such as the widely-used Oak Ridge National Laboratory code ORIGEN2.

  6. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  7. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  8. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  9. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  10. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  11. Therapy for incorporated radionuclides: scope and need

    SciTech Connect

    Smith, V.H.

    1981-03-01

    In the United States the recent termination of funding for research on therapy for incorporated radionuclides has virtually halted progress on improved or new agents and procedures for removing radioactivity from the body. Research was eliminated, but is still needed on new removal agents, improved delivery system, in vitro test systems, and the toxicology of treatments. For many radionuclides, no adequate therapy exists. The relationship between radionuclide removal and reduction in cancer risk is still unanswered. Without proper research support, needed improvements in the treatment for incorporated radionuclides in the US are uncertain.

  12. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  13. Airborne radioactive effluent study at the Savannah River Plant

    SciTech Connect

    Blanchard, R.L.; Broadway, J.A.; Sensintaffar, E.L.; Kirk, W.P.; Kahn, B.; Garrett, A.J.

    1984-07-01

    Under the Clean Air Act, Sections 112 and 122 as amended in 1977, the Office of Radiation Programs (OPR) of the United States Environmental Protection Agency is currently developing standards for radionuclides emitted to the air by several source categories. In order to confirm source-term measurements and pathway calculations for radiation exposures to humans offsite, the ORP performs field studies at selected facilities that emit radionuclides. This report describes the field study conducted at the Savannah River Plant (SRP), a laboratory operated by E.I. du Pont de Nemours and Company for the US Department of Energy. This purpose of the study at ARP was to verify reported airborne releases and resulting radiation doses from the facility. Measurements of radionuclide releases for brief periods were compared with measurements performed by SRP staff on split samples and with annual average releases reported by SRP for the same facilities. The dispersion model used by SRP staff to calculate radiation doses offsite was tested by brief environmental radioactivity measurements performed simultaneously with the release measurements, and by examining radioactivity levels in environmental samples. This report describes in detail all measurements made and data collected during the field study and presents the results obtained. 34 references, 18 figures, 49 tables.

  14. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  15. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  16. Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy

    SciTech Connect

    Hartmann Siantar, C; Descalle, M-A; DeNardo, G L; Nigg, D W

    2002-02-19

    Targeted radionuclide therapy promises to expand the role of radiation beyond the treatment of localized tumors. This novel form of therapy targets metastatic cancers by combining radioactive isotopes with tumor-seeking molecules such as monoclonal antibodies and custom-designed synthetic agents. Ultimately, like conventional radiotherapy, the effectiveness of targeted radionuclide therapy is limited by the maximum dose that can be given to a critical, normal tissue, such as bone marrow, kidneys, and lungs. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. We have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA treatment planning system. This system calculates patient-specific radiation dose estimates using a set of computed tomography scans to describe the 3D patient anatomy, combined with 2D (planar image) and 3D (SPECT, or single photon emission computed tomography) to describe the time-dependent radiation source. The accuracy of such a dose calculation is limited primarily by the accuracy of the initial radiation source distribution, overlaid on the patient's anatomy. This presentation provides an overview of MINERVA functionality for molecular targeted radiation therapy, and describes early validation and implementation results of Monte Carlo simulations.

  17. Small Animal Radionuclide Imaging With Focusing Gamma-Ray Optics

    SciTech Connect

    Hill, R; Decker, T; Epstein, M; Ziock, K; Pivovaroff, M J; Craig, W W; Jernigan, J G; Barber, W B; Christensen, F E; Funk, T; Hailey, C J; Hasegawa, B H; Taylor, C

    2004-02-27

    Significant effort currently is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. While physiological function in small animals can be localized and imaged using conventional radionuclide imaging techniques such as single-photon emission tomography (SPECT) and positron emission tomography (PET), these techniques inherently are limited to spatial resolutions of 1-2 mm. For this reason, we are developing a small animal radionuclide imaging system (SARIS) using grazing incidence optics to focus gamma-rays emitted by {sup 125}I and other radiopharmaceuticals. We have developed a prototype optic with sufficient accuracy and precision to focus the 27.5 keV photons from {sup 125}I onto a high-resolution imaging detector. Experimental measurements from the prototype have demonstrated that the optic can focus X-rays from a microfocus X-ray tube to a spot having physical dimensions (approximately 1500 microns half-power diameter) consistent with those predicted by theory. Our theoretical and numerical analysis also indicate that an optic can be designed and build that ultimately can achieve 100 {micro}m spatial resolution with sufficient efficiency to perform in vivo single photon emission imaging studies in small animal.

  18. Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory

    SciTech Connect

    Srivastava S. C.

    2011-06-06

    This paper introduces a relatively novel paradigm that involves specific individual radionuclides or radionuclide pairs that have emissions that allow pre-therapy low-dose imaging plus higher-dose therapy in the same patient. We have made an attempt to sort out and organize a number of such theragnostic radionuclides and radionuclide pairs that may potentially bring us closer to the age-long dream of personalized medicine for performing tailored low-dose molecular imaging (SPECT/CT or PET/CT) to provide the necessary pre-therapy information on biodistribution, dosimetry, the limiting or critical organ or tissue, and the maximum tolerated dose (MTD), etc. If the imaging results then warrant it, it would be possible to perform higher-dose targeted molecular therapy in the same patient with the same radiopharmaceutical. A major problem that remains yet to be fully resolved is the lack of availability, in sufficient quantities, of a majority of the best candidate theragnostic radionuclides in a no-carrier-added (NCA) form. A brief description of the recently developed new or modified methods at BNL for the production of four theragnostic radionuclides, whose nuclear, physical, and chemical characteristics seem to show great promise for personalized cancer therapy are described.

  19. Radionuclide imaging in ischemic stroke.

    PubMed

    Heiss, Wolf-Dieter

    2014-11-01

    Ischemic stroke is caused by interruption or significant impairment of blood supply to the brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and morphologic damage. The changes in regional cerebral blood flow and regional metabolism can be assessed by radionuclide imaging, especially SPECT and PET. SPECT and PET have broadened our understanding of flow and metabolic thresholds critical for maintenance of brain function and morphology: PET was essential in the transfer of the concept of the penumbra to clinical stroke and thereby had a great impact on developing treatment strategies. Receptor ligands can be applied as early markers of irreversible neuronal damage and can predict the size of the final infarcts, which is important for decisions on invasive therapy in large ("malignant") infarction. With SPECT and PET, the reserve capacity of the blood supply can be tested in obstructive arteriosclerosis, which is essential for planning interventions. The effect of a stroke on surrounding and contralateral primarily unaffected tissue can be investigated, helping to understand symptoms caused by disturbance in functional networks. Activation studies are useful to demonstrate alternative pathways to compensate for lesions and to test the effect of rehabilitative therapy. Radioisotope studies help to detect neuroinflammation and its effect on extension of tissue damage. Despite the limitations of broad clinical application of radionuclide imaging, this technology has a great impact on research in cerebrovascular diseases and still has various applications in the management of stroke.

  20. Hysterosalpingo-radionuclide scintigraphy (HERS)

    SciTech Connect

    Iturralde, M.; Venter, P.F.

    1981-10-01

    A radionuclide procedure, hysterosalpingo-radionuclide scintigraphy (HERS), was designed to evaluate the migration of a particulate radioactive tracer from the vagina to the peritoneal cavity and ovaries as well as to image and functionally outline the patency of the pathways between these two extremes of the female reproductive system. Technetium-99m human albumin microspheres (99mTc-HAM) were deposited in the posterior fornices of patients who were divided into two specific groups. Group I consisted of patients who were to undergo different elective gynecologic operations, in which besides obtaining sequential images, radioactivity levels were measured in the removed organs and tissues. Group II consisted of patients referred by the Infertility Clinic for evaluation of their reproductive system pathways patency. In this latter group, HERS was compared with contrast hysterosalpingography (HSG) and peritoneoscopy (PCP). The results obtained from measurements of radioactivity levels on the removed surgical specimens and comparison with other conventional gynecologic diagnostic procedures provide accurate evidence of the migration of 99mTc-HAM from the vagina, through the uterus and tubes, to the peritoneal cavity and ovaries, and show that HERS is a simple noninvasive method for functionally imaging and assessing the patency of the female reproductive system pathways.

  1. Radionuclide transit in esophageal varices

    SciTech Connect

    Yeh, S.H.; Wang, S.J.; Wu, L.C.; Liu, R.S.; Tsai, Y.T.; Chiang, T.T.

    1985-05-01

    This study assessed esophageal motility in patients with esophageal varices by radionuclide transit studies. Data were acquired in list mode after an oral dose of 0.5 mCi Tc-99m sulfur colloid in 10 ml of water in the supine position above a low-energy all-purpose collimator of a gamma camera. The condensed image (CI) superimposed with a centroid curve was also produced in each case. Twenty-five normal subjects (N) and 32 patients (pts) with esophageal varices by endoscopy (large varices in Grades IV and V in 8 and small varices in Grade III or less in 24) were studied. TMTT, RTT, RF, and RI were all significantly increased in pts as compared to N. Especially, the transit time for the middle third (6.7 +- 2.6 sec vs 3.5 +- 0.9 sec in N, rho < 0.005) had the optimal sensitivy and specificity of 88% each at the cutoff value of 4.2 sec as determined by ROC analysis. In summary, radionuclide transit disorders occur in the majority of pts with esopageal varices. The middle RTT and CI are both optimal in sensitivity and specificity for detecting the abnormalities.

  2. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  3. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  4. Airborne measurements of gases and particles from an Alaskan wildfire

    NASA Astrophysics Data System (ADS)

    Nance, J. D.; Hobbs, Peter V.; Radke, Lawrence F.; Ward, Darold E.

    1993-08-01

    Airborne measurements of several gaseous and particulate chemical species were obtained in the emissions from a wildfire that burned in an old black spruce forest in Alaska during the summer of 1990. The relative proportions of most of the measured plume constituents are consistent with ground-based and airborne measurements in the plumes of several other biomass fires, and with laboratory measurements. Possible exceptions include the mean fine-particle emission factor, which was about 3 times larger than predicted from a regression relation based on measurements of the smoke from several prescribed biomass fires, and the mean CH4/CO molar emission ratio which was at the low end of a range of values measured for other biomass fires. Measurements of water-soluble particulate ions in the smoke plume from the Alaskan wildfire indicate that acids formed from the oxides of sulphur and nitrogen were partially neutralized inside cloud droplets by NH3 absorbed from the plume.

  5. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  6. Sensors and Automated Analyzers for Radionuclides

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.

    2003-03-27

    The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

  7. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  8. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  9. Drift-Scale Radionuclide Transport

    SciTech Connect

    P.R. Dixon

    2004-02-17

    The purpose of this Model Report is to document two models for drift-scale radionuclide transport. This has been developed in accordance with ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]), which includes planning documents for the technical work scope, content, and management of this Model Report in Section 1.15, Work Package AUZM11, ''Drift-Scale Radionuclide Transport.'' The technical work scope for this Model Report calls for development of a process-level model and an abstraction model representing diffusive release from the invert to the rocks, partitioned between fracture and matrix, as compared to the fracture-release approach used in the Site Recommendation. The invert is the structure constructed in a drift to provide the floor of that drift. The plan for validation of the models documented in this Model Report is given in Section I-5 of Attachment I in BSC (2002 [160819]). Note that the model validation presented in Section 7 deviates from the technical work plan (BSC 2002 [160819], Section I-5) in that an independent technical review specifically for model validation has not been conducted, nor publication in a peer-reviewed journal. Model validation presented in Section 7 is based on corroboration with alternative mathematical models, which is also called out by the technical work plan (BSC 2002 [160819], Section I-5), and is sufficient based on the requirements of AP-SIII.10Q for model validation. See Section 7 for additional discussion. The phenomenon of flow and transport in the vicinity of the waste emplacement drift are evaluated in this model report under ambient thermal, chemical, and mechanical conditions. This includes the effects of water diversion around an emplacement drift and the flow and transport behavior expected in a fractured rock below the drift. The reason for a separate assessment of drift-scale transport is that the effects of waste emplacement drifts on flow

  10. Non-invasive three-dimensional localisation of arrhythmogenic foci in Wolff-Parkinson-White syndrome and in ventricular tachycardia by radionuclide ventriculography: phase analysis of double-angulated integrated single photon emission computed tomography (SPECT).

    PubMed Central

    Weismüller, P; Clausen, M; Weller, R; Richter, P; Steinmann, J; Henze, E; Dormehl, I; Kochs, M; Adam, W E; Hombach, V

    1993-01-01

    A new tomographic technique combined with phase analysis was used to detect premature and ectopic ventricular contraction patterns in 15 patients with Wolff-Parkinson-White syndrome and during ventricular tachycardia in seven patients. Data generated by gated single-photon emission computed tomography (SPECT) were analysed by backprojection of the Fourier coefficients, double-angulation, and integration to thick slices containing the ventricles, thus allowing visualisation of the contraction patterns in three perpendicular views. The results were compared with those of catheter mapping. In nine patients with Wolff-Parkinson-White syndrome the site of initial contraction detected was identical with the site of the accessory pathway found by catheter mapping. The sites of origin of the ventricular tachycardias determined by catheter mapping were within 3 cm of the sites detected by the new technique. This new technique seems to be a promising non-invasive method for localising ectopic ventricular activity that will considerably shorten the time required for subsequent invasive procedures. Images PMID:8461217

  11. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  12. Cosmogenic radionuclides in stone meteorites

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    This document presents the techniques and compilation of results of cosmogenic Al-26 measurements at Goddard Space Flight Center on 91 samples of 76 stone meteorites. Short-lived radionuclides, including Na-22, Sc-46, Mn-54, and Co-60, were measured in 13 of these meteorites. About one-third of these data has not previously been published. The results are discussed briefly in terms of (1) depletion of Al-26 and natural potassium due to weathering, (2) possible exposure of several chondrites to an unusually high cosmic-ray flux, (3) comparison of Al-26, Na-22, Sc-46, and Mn5-54 in chondrites with the spallation Ne-22/Ne-21 ratio as a shielding indicator, and (4) comparison of (Al-26)-(Ne-22)/Ne-21 data for achondrite classes with the chondrite trend.

  13. Radionuclides in surface and groundwater

    USGS Publications Warehouse

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  14. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  15. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  16. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    SciTech Connect

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).

  17. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  18. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  19. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  20. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  1. Theranostic Applications of Lutetium-177 in Radionuclide Therapy.

    PubMed

    Das, Tapas; Banerjee, Sharmila

    2016-01-01

    Lutetium-177 has been widely discussed as a radioisotope of choice for targeted radionuclide therapy. The simultaneous emission of imageable gamma photons [208 keV (11%) and 113 keV (6.4%)] along with particulate β(-) emission [β(max) = 497 keV] makes it a theranostically desirable radioisotope. In the present article, the possibility of using two 177Lu-based agents viz. 177Lu-EDTMP and 177Lu-DOTATATE for theranostic applications in metastatic bone pain palliation (MBPP) and peptide receptor radionuclide therapy (PRRT), have been explored. In the case of 177Lu-EDTMP, the whole-body images obtained are compared with those recorded using 99mTc-MDP in the same patient. On the other hand, pre-therapy images acquired with 177Lu-DOTA-TATE are compared with similar images obtained with standard agents, such as 99mTc-HYNIC-TOC (SPECT) and 68Ga-DOTA-TOC (PET) in the same patient. The advantage of the long physical half-life (T1/2) of 177Lu has been utilized in mapping the pharmacokinetics of two additional agents, 177Lu-labeled hydroxyapatite (HA) in radiation synovectomy of knee joints and 177Lu-HA for therapy of hepatocellular carcinoma. Results of these multiple studies conclusively document the potential of 177Lu as a theranostic radioisotope.

  2. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  3. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  4. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  5. Radionuclide imaging of neurohormonal system of the heart.

    PubMed

    Chen, Xinyu; Werner, Rudolf A; Javadi, Mehrbod S; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.

  6. Ecological distribution and bioavailability of uranium series radionuclides in terrestrial food chains: Key Lake uranium operations, northern Saskatchewan

    SciTech Connect

    Thomas, P.A.

    1997-12-31

    The purpose of this study was to determine radionuclide uptake within the terrestrial ecosystem at uranium mining operations in northern Saskatchewan. The study site was the Key Lake mine, chosen because it has been an operational mine, mill, and surface tailings area for 15 years and will continue to be an active ore-milling and tailings disposal area for the next 40 years. The focus of the study was on the small mammal food chains in black spruce bogs nearest to the Key Lake facilities, since bog habitats tend to absorb and accumulate radionuclides. Three study sites were chosen on the basis of their proximity to sources of radioactive dust and the presence of bog habitats. Interconnected terrestrial ecosystem components were sampled at the same time at each site. Samples of needles, twigs, ground cover, litter, soils, small mammals, and birds were analyzed for the four radionuclides of greatest concern in the uranium decay series. Radiation doses were calculated to small mammals and birds, food chain transfer parameters were determined to enable future modelling of environmental pathways, and a variety of atmospheric dust collectors were pilot tested to examine the rates of radionuclide deposition from facility emissions to local environments. Four sets of conclusions are discussed regarding: radionuclide distribution within habitats and among sites; the radionuclides responsible for animal doses; the relative bioavailability of radionuclides among sites; and the measurement of atmospheric deposition rates.

  7. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents

    NASA Astrophysics Data System (ADS)

    Christoudias, Theodoros; Proestos, Yiannis; Lelieveld, Jos

    2015-04-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We simulated atmospheric transport and decay, focusing on 137Cs and 131I as proxies for particulate and gaseous radionuclides, respectively. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes. We present risk maps for potential surface layer concentrations, deposition and doses to humans from the inhalation exposure of 131I. The estimated risks exhibit seasonal variability, with the highest surface level concentrations of gaseous radionuclides in the Northern Hemisphere during winter.

  8. Simulation of the dose rate per activity of beta-emitting radionuclides.

    PubMed

    Behrens, R

    2015-12-01

    The dose rate per activity was simulated for 10 beta-emitting radionuclides and for different activity distributions (point source, areal sources and a semi-infinite volume source). The results are given for 7 different distances from the source (from 0.01 to 2 m) for both contributions: the beta- and electron-emission, and the X- and gamma-emission. Data are provided for both operational quantities and organ doses: Hp(0.07), Hp(3), Hp(10), Hskin and Hlens. Finally, a software applicaton to interpolate the dose rate per activity due to the beta-emission of arbitrary radionuclides is presented and a simple superposition of these data and of gamma-ray dose constants to calculate the total dose rate is described.

  9. Dosimetry and Case Studies for Selected Radionuclides

    SciTech Connect

    Leggett, Richard Wayne

    2009-01-01

    This is a comprehensive review and analysis of biokinetic and dosimetric information for those radionuclides most likely to be involved in accidental exposures to workers or members of the public or used in radiological terrorism.

  10. Radionuclide carriers for targeting of cancer

    PubMed Central

    Sofou, Stavroula

    2008-01-01

    This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential. PMID:18686778

  11. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  12. Livermore Accelerator Source for Radionuclide Science (LASRS)

    SciTech Connect

    Anderson, Scott; Bleuel, Darren; Johnson, Micah; Rusnak, Brian; Soltz, Ron; Tonchev, Anton

    2016-05-05

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  13. Alchemy with short-lived radionuclides

    SciTech Connect

    Rubio, F.F.; Finn, R.D.; Gilson, A.J.

    1981-04-01

    A variety of short-lived radionuclides are produced and subsequently incorporated into radiopharmaceutical compounds in the radionuclide production program currently being conducted at the Cyclotron Facility of Mount Sinai Medical Center. The recovery of high specific activity oxygen-15 labelled water prepared by means of an inexpensive system operating in conjunction with an on-line radiogas target routinely utilized for oxygen-15 labelled carbon dioxide studies is currently receiving particular attention.

  14. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R.; van der Meer, A.; Das, S. K.; de Bruin, M.; Gascon, J.; Wolterbeek, H. T.; Denkova, A. G.; Serra-Crespo, P.

    2017-03-01

    177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β‑ emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.

  15. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects.

    PubMed

    Bhardwaj, R; van der Meer, A; Das, S K; de Bruin, M; Gascon, J; Wolterbeek, H T; Denkova, A G; Serra-Crespo, P

    2017-03-13

    (177)Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β(-) emission results in very efficient energy deposition in small-size tumours. Because of this, (177)Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, (177m)Lu and (177)Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The (177m)Lu/(177)Lu radionuclide generator provides a new production route for the therapeutic radionuclide (177)Lu and can bring significant growth in the research and development of (177)Lu based pharmaceuticals.

  16. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects

    PubMed Central

    Bhardwaj, R.; van der Meer, A.; Das, S. K.; de Bruin, M.; Gascon, J.; Wolterbeek, H. T.; Denkova, A. G.; Serra-Crespo, P.

    2017-01-01

    177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β− emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals. PMID:28287131

  17. Radionuclide scintigraphy of bacterial nephritis

    SciTech Connect

    Conway, J.J.; Weiss, S.C.; Shkolnik, A.; Yogev, R.; Firlit, C.; Traisman, E.S.

    1984-01-01

    Pyelonephritis is a leading cause of renal failure and is expected to cost as much as three billion dollars in 1984. The diagnosis of urinary tract infection is usually not difficult. However, localization of the infection within the renal parenchyma as opposed to the collecting system is much more difficult. Flank pain, fever, bacteiuria and evidence of parenchymal involvement by intravenous urography may be absent or unrecognized particularly in the infant. Ultrasound and Nuclear Medicine are advocated as better methods to define parenchymal involvement. Such definition is important in the consideration of treatment since parenchymal involvement of the kidney carries a much more ominous potential outcome than infection restricted to within the collecting system. 38 children with a clinical diagnosis of urinary tract infection were studied. 26 of the patients demonstrated abnormal renal parenchymal findings with Gallium-67 Citrate or Tc-99m Glucoheptonate scintigraphy. Intravenous urography was notably ineffective with only 5 of the 20 interpreted as abnormal due to parenchymal disease or decreased function. 11 were entirely normal while only 5 demonstrated scars or hydronephrosis. Only 10 of 17 patients demonstrated intranvesicoureteral reflux on x-ray or nuclear cystography. Ultrasound depicted 6 of 20 patients as having parenchymal abnormalities. Seven were normal. Nonspecific findings such as dilitation of the renal pelvis or renal enlargement was noted in 11 of the 20 patients. Radionuclide Scintigraphy is the most efficacious modality to detect since acute bacterial nephritis.

  18. Radionuclides in an underground environment

    SciTech Connect

    Thompson, J.L.

    1996-08-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ``experiments`` conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes.

  19. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  20. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect

    Ronald Warren and Robert F. Grossman

    2009-06-30

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo

  1. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  2. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  3. Radioactive air emissions notice of construction portable temporary radioactive air emission units - August 1998

    SciTech Connect

    FRITZ, D.W.

    1999-07-22

    This notice of construction (NOC) requests a categorical approval for construction and operation of three types of portable/temporary radionuclide airborne emission units (PTRAEUs). These three types are portable ventilation-filter systems (Type I), mobile sample preparation facilities (Type II), and mobile sample screening and analysis facilities (Type 111). Approval of the NOC application is intended to allow construction and operation of the three types of PTRAEUs without prior project-specific approval. Environmental cleanup efforts on the Hanford Site often require the use of PTRAEUs. The PTRAEUs support site characterization activities, expedited response actions (ERAs), sampling and monitoring activities, and other routine activities. The PTRAEUs operate at various locations around the Hanford Site. Radiation Air Emissions Program, Washington Administrative Code (WAC) 246-247, requires that the Washington State Department of Health (WDOH) be notified before construction of any new emission that would release airborne radioactivity. The WDOH also must receive notification before any modification of an existing source. This includes changes in the source term or replacement of emission control equipment that might significantly contribute to the offsite maximum dose from a licensed facility. During site characterization activities, ERAs, sampling and monitoring activities, and other routine activities, the PTRAEUs might require startup immediately. The notification period hampers efforts to complete such activities in an effective and timely manner. Additionally, notification is to be submitted to the WDOH when the PTRAEUs are turned off. The U.S. Department of Energy, Richland Operations Office (DOE-RL) potentially could generate several notifications monthly. The WDOH would be required to review and provide approval on each NOC as well as review the notices of discontinued sources. The WDOH regulation also allows facilities the opportunity to request a

  4. Airborne and laboratory studies of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Hudgins, D. M.; Witteborn, Fred C.

    1995-01-01

    A brief history of the observations which have led to the hypothesis that polycyclic aromatic hydrocarbons (PAH's) are the carriers of the widespread interstellar emission features near 3050, 1615, '1300' and 890 cm(exp -1) (3.29, 6.2, '7.7', and 11.2 mu m) is presented. The central role of airborne spectroscopy is stressed. The principal reason for the assignment to PAH's was the resemblance of the interstellar emission spectrum to the laboratory absorption spectra of PAH's and PAH-like materials. Since precious little information was available on the properties of PAH's in the forms that are thought to exist under interstellar conditions -isolated and ionized in the emission zones, with the smallest PAH's being dehydrogenated- there was a need for a spectral data base on PAH's taken in these states. Here, the relevant infrared spectroscopic properties of PAH's will be reviewed. These laboratory spectra show that relative band intensities are severely altered and that band frequencies shift. It is shown that these new data alleviate several of the spectroscopic criticisms previously leveled at the hypothesis.

  5. Rapid determination of radon daughters and of artificial radionuclides in air by online gamma-ray spectrometry.

    PubMed

    Hötzl, H; Winkler, R

    1993-01-01

    For the determination of airborne radionuclide concentrations in real time, a fixed filter device was constructed which fits directly onto a germanium detector with standard nuclear electronics and a multichannel analyzer buffer connected via a data line to a personal computer for remote control and on-line spectrum evaluation. The on-line gamma-ray spectrometer was applied to the study of radon decay product concentrations in ground-level air and to the rapid detection of any contamination of the environmental air by artificial radionuclides. At Munich-Neuherberg, depending on the meterological conditions, the measured air concentrations of 214Pb, the first gamma-ray-emitting member of the 222Rn decay series, varied from about 1 to 50 Bq m-3. For the artificial radionuclides 60Co, 131I and 137Cs the detection limits were determined as a function of the varying natural radon daughter concentrations at sampling and counting times of 1 h or 1 day. For these radionuclides minimum detectable air activity concentrations of 0.3 or 0.001 Bq m-3, respectively, were obtained at low radon daughter levels. At high radon daughter levels the respective detection limits were found to be higher by a factor of only about 2.

  6. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikolich, George; Shadel, Craig; Chapman, Jenny; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.; Mizell, Steve

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  7. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  8. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  9. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  10. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  11. Targeted radionuclide therapy for solid tumors: An overview

    SciTech Connect

    De Nardo, Sally J.

    2006-10-01

    Although radioimmunotherapy (RIT) has been effective in non-Hodgkin's lymphoma (NHL) as a single agent, solid tumors have shown less clinically significant therapeutic response to RIT alone. The clinical impact of RIT or other forms of targeted radionuclide therapy for solid tumors depends on the development of a high therapeutic index (TI) for the tumor vs. normal tissue effect, and the implementation of RIT as part of synergistic combined modality therapy (CMRIT). Preclinical and clinical studies have provided a wealth of information, and new prototypes or paradigms have shed light on future possibilities in many instances. Evidence suggests that combination and sequencing of RIT in CMRIT appropriately can provide effective treatment for many solid tumors. Vascular targets provide RIT enhancement opportunities and nanoparticles may prove to be effective carriers for RIT combined with intracellular drug delivery or alternating magnetic frequency (AMF) induced thermal tumor necrosis. The sequence and timing of combined modality treatments will be of critical importance to achieve synergy for therapy while minimizing toxicity. Fortunately, the radionuclide used for RIT also provides a signal useful for nondestructive quantitation of the influence of sequence and timing of CMRIT on events in animals and patients. This can be readily accomplished clinically using quantitative high-resolution imaging (e.g., positron emission tomography [PET])

  12. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  13. Radionuclide Retention in Concrete Wasteforms - FY13

    SciTech Connect

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  14. Radionuclide Mobility at the Nevada Test Site

    SciTech Connect

    Hu, Q; Smith, D; Rose, T; Glascoe, L; Steefel, C; Zavarin, M

    2003-11-13

    Underground nuclear tests conducted at the Nevada Test Site (NTS) are characterized by abundant fission product and actinide source terms. Included are {sup 99}Tc and other soluble radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 85}Kr, and {sup 129}I), which are presumably mobile in groundwater and potentially toxic to down-gradient receptors. NTS provides the Office of Civilian Radioactive Waste Management (OCRWM) with an analog of the release of these radionuclides from a nuclear waste repository in the absence of engineered barriers. The investigation described in this report synthesizes a substantial body of data collected on the identity and distribution of soluble radionuclides at field scales over distances of hundreds of meters, for durations up to 40 years, and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. This body of data is complemented by laboratory transport studies and a synthesis of recent modeling investigations from the NTS, with an emphasis on the ongoing Yucca Mountain Program (YMP) efforts. Overall, understanding the controls of radionuclide mobility associated with these nuclear tests will provide insight into the repository's future performance as well as bounds and calibrations for the numerical predictions of long-term radionuclide releases and migration.

  15. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  18. Study of different filtering techniques applied to spectra from airborne gamma spectrometry

    SciTech Connect

    Wilhelm, Emilien; Gutierrez, Sebastien; Reboli, Anne; Menard, Stephanie; Nourreddine, Abdel-Mjid; Arbor, Nicolas

    2015-07-01

    One of the features of spectra obtained by airborne gamma spectrometry is low counting statistics due to the short acquisition time (1 s) and the large source-detector distance (40 m). It leads to considerable uncertainty in radionuclide identification and determination of their respective activities from the windows method recommended by the IAEA, especially for low-level radioactivity. The present work compares the results obtained with filters in terms of errors of the filtered spectra with the window method and over the whole gamma energy range. The results are used to determine which filtering technique is the most suitable in combination with some method for total stripping of the spectrum. (authors)

  19. ALLDOS: a computer program for calculation of radiation doses from airborne and waterborne releases

    SciTech Connect

    Strenge, D.L.; Napier, B.A.; Peloquin, R.A.; Zimmerman, M.G.

    1980-10-01

    The computer code ALLDOS is described and instructions for its use are presented. ALLDOS generates tables of radiation doses to the maximum individual and the population in the region of the release site. Acute or chronic release of radionuclides may be considered to airborne and waterborne pathways. The code relies heavily on data files of dose conversion factors and environmental transport factors for generating the radiation doses. A source inventory data library may also be used to generate the release terms for each pathway. Codes available for preparation of the dose conversion factors are described and a complete sample problem is provided describing preparation of data files and execution of ALLDOS.

  20. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect

    Robert Grossman; Ronald Warren

    2008-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole

  1. Radionuclide migration as a function of mineralogy

    SciTech Connect

    Triay, I.R.; Mitchell, A.J.; Ott, M.A.

    1991-02-01

    The migration of radionuclides is studied as a function of mineralogy utilizing batch sorption and column experiments. The transport behavior of alkaline, alkaline-earth, and transition metals, and actinide species is studied in pure mineral separates. The solid phases utilized for these investigations are silicates, alumino-silicates, carbonates, and metal oxides and oxyhydroxides. The results of this effort are utilized to aid in the elucidation of the dominant chemical mechanisms of radionuclide migration, the prediction of radionuclide transport in conditions similar to those expected at the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, and the identification of materials that act as natural geological barriers or that can be utilized as strong sorbers in engineered barriers. 9 refs., 2 figs., 2 tabs.

  2. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  3. Therapeutic radionuclides: Making the right choice

    SciTech Connect

    Srivastava, S.C.

    1996-08-01

    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article.

  4. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  5. Production cross sections of short-lived silver radionuclides from natPd(p,xn) nuclear processes

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Kim, Kwangsoo; Kim, Guinyun

    2012-03-01

    Production cross-sections of short-lived 103Ag, 104mAg and 104gAg radionuclides from proton-induced reactions on natural palladium (Pd) were measured up to 41 MeV by using a stacked-foil activation technique combined with high resolution γ-ray spectrometry. The present results are compared with the available literature values as well as theoretical data calculated by the TALYS and the ALICE-IPPE computer codes. Note that production cross-sections of the 104mAg radionuclide from natPd(p,xn) processes has been measured here for the first time. Physical thick target yields for the investigated radionuclides were deduced from the respective threshold energy to 41 MeV taking into account that the total energy is absorbed in the targets. Measured data of the short-lived 103Ag radionuclide are noteworthy due to its possible applications as a precursor for the indirect production of widely used therapeutic 103Pd radionuclide via natPd(p,xn)103Ag → 103Pd processes. On the other hand, the investigated 104Ag radionuclide finds importance due to its potential use as a diagnostic and positron emission tomography (PET) imaging analogue. Above all, measured data will enrich the literature database leading to various applications in science and technology.

  6. Data Authentication Demonstration for Radionuclide Stations

    SciTech Connect

    Harris, Mark; Herrington, Pres; Miley, Harry; Ellis, J. Edward; McKinnon, David; St. Pierre, Devon

    1999-08-03

    Data authentication is required for certification of sensor stations in the International Monitoring System (IMS). Authentication capability has been previously demonstrated for continuous waveform stations (seismic and infrasound). This paper addresses data surety for the radionuclide stations in the IMS, in particular the Radionuclide Aerosol Sampler/Analyzer (RASA) system developed by Pacific Northwest National Laboratory (PNNL). Radionuclide stations communicate data by electronic mail using formats defined in IMS 1.0, Formats and Protocols for Messages. An open message authentication standard exists, called S/MIME (Secure/Multipurpose Internet Mail Extensions), which has been proposed for use with all IMS radionuclide station message communications. This standard specifies adding a digital signature and public key certificate as a MIME attachment to the e-mail message. It is advantageous because it allows authentication to be added to all IMS 1.0 messages in a standard format and is commercially supported in e-mail software. For command and control, the RASA system uses a networked Graphical User Interface (GUI) based upon Common Object Request Broker Architecture (CORBA) communications, which requires special authentication procedures. The authors have modified the RASA system to meet CTBTO authentication guidelines, using a FORTEZZA card for authentication functions. They demonstrated signing radionuclide data messages at the RASA, then sending, receiving, and verifying the messages at a data center. They demonstrated authenticating command messages and responses from the data center GUI to the RASA. Also, the particular authentication system command to change the private/public key pair and retrieve the new public key was demonstrated. This work shows that data surety meeting IMS guidelines may be immediately applied to IMS radionuclide systems.

  7. Electroplated targets for production of unique PET radionuclides

    NASA Astrophysics Data System (ADS)

    Bui, V.; Sheh, Y.; Finn, R.; Francesconi, L.; Cai, S.; Schlyer, D.; Wieland, B.

    1995-12-01

    The past decade has witnessed the applications of positron emission tomography (PET) evolving from a purely research endeavor to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in both medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules, i.e. monoclonal antibodies and peptides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center (MSKCC) cyclotron are examples of target design and development applicable to many medical accelerators.

  8. Electroplating targets for production of unique PET radionuclides

    SciTech Connect

    Bui, V.; Sheh, Y.; Finn, R.

    1994-12-31

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators.

  9. Laboratory studies of radionuclide migration in tuff

    SciTech Connect

    Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Thompson, J.L.; Triay, I.R.

    1989-10-01

    The movement of selected radionuclides has been observed in crushed tuff, intact tuff, and fractured tuff columns. Retardation factors and dispersivities were determined from the elution profiles. Retardation factors have been compared with those predicted on the basis of batch sorption studies. This comparison forms a basis for either validating distribution coefficients or providing evidence of speciation, including colloid formation. Dispersivities measured as a function of velocity provide a means of determining the effect of sorption kinetics or mass transfer on radionuclide migration. Dispersion is also being studied in the context of scaling symmetry to develop a basis for extrapolating from the laboratory scale to the field. 21 refs., 6 figs., 2 tabs.

  10. Radionuclide imaging of the urinary tract

    SciTech Connect

    Velchik, M.G.

    1985-11-01

    This article describes the role of nuclear medicine in the evaluation of the genitourinary tract. The technical aspects of radionuclide imaging (radiopharmaceuticals, radiation dosimetry, instrumentation, and method) are briefly presented, and each of the indications for renal scintigraphy--including the evaluation of differential renal function, hypertension, obstruction, renal transplants, masses, trauma, congenital anomalies, vesicoureteral reflux, and infection--are discussed. The relative advantages and disadvantages of radionuclide imaging with respect to alternative radiographic examinations (such as intravenous urography, ultrasonography, CT, angiography, and magnetic resonance imaging) are emphasized wherever applicable. 136 references.

  11. Radionuclide imaging of the urinary tract.

    PubMed

    Velchik, M G

    1985-11-01

    This article describes the role of nuclear medicine in the evaluation of the genitourinary tract. The technical aspects of radionuclide imaging (radiopharmaceuticals, radiation dosimetry, instrumentation, and method) are briefly presented, and each of the indications for renal scintigraphy--including the evaluation of differential renal function, hypertension, obstruction, renal transplants, masses, trauma, congenital anomalies, vesicoureteral reflux, and infection--are discussed. The relative advantages and disadvantages of radionuclide imaging with respect to alternative radiographic examinations (such as intravenous urography, ultrasonography, CT, angiography, and magnetic resonance imaging) are emphasized wherever applicable.

  12. External accumulation of radionuclide in hepatic hydrothorax

    SciTech Connect

    Albin, R.J.; Johnston, G.S.

    1989-05-01

    Hepatic hydrothorax is a complication in approximately 5% of patients with cirrhosis. Ascites is almost always present and helps to suggest the correct diagnosis. However, when ascites is absent, radionuclide imaging has proven to be helpful in establishing that the pleural effusion originated from ascitic fluid. When pleural fluid is rapidly removed, such as by thoracostomy tube drainage, the radioisotope may accumulate outside the thorax and produce a negative scan of the chest. When the radionuclide scan is nondiagnostic and the pleural space is being rapidly drained, the pleural fluid collecting system should always be imaged before rejecting a diagnosis of hepatic hydrothorax.

  13. The Watchboy Radionuclide Detector Deployment and Analysis

    SciTech Connect

    Dazeley, S.; Bernstein, A.; Bowden, N.

    2014-09-30

    The Watchboy detector was designed to measure the rate of radionuclide production in water created via muon spallation. The three primary nuclei of interest, 11Li, 8He and 9Li, can mimic an antineutrino induced inverse beta decay, producing a high energy beta particle in coincidence with a neutron. Their signature in Watchboy would be the passage of a muon through the target, followed some time later, characterized by the decay time of the radionuclide, by a beta and a neutron emitted in coincidence.

  14. Radionuclide-Based Cancer Imaging Targeting the Carcinoembryonic Antigen

    PubMed Central

    Hong, Hao; Sun, Jiangtao; Cai, Weibo

    2008-01-01

    Carcinoembryonic antigen (CEA), highly expressed in many cancer types, is an important target for cancer diagnosis and therapy. Radionuclide-based imaging techniques (gamma camera, single photon emission computed tomography [SPECT] and positron emission tomography [PET]) have been extensively explored for CEA-targeted cancer imaging both preclinically and clinically. Briefly, these studies can be divided into three major categories: antibody-based, antibody fragment-based and pretargeted imaging. Radiolabeled anti-CEA antibodies, reported the earliest among the three categories, typically gave suboptimal tumor contrast due to the prolonged circulation life time of intact antibodies. Subsequently, a number of engineered anti-CEA antibody fragments (e.g. Fab’, scFv, minibody, diabody and scFv-Fc) have been labeled with a variety of radioisotopes for CEA imaging, many of which have entered clinical investigation. CEA-Scan (a 99mTc-labeled anti-CEA Fab’ fragment) has already been approved by the United States Food and Drug Administration for cancer imaging. Meanwhile, pretargeting strategies have also been developed for CEA imaging which can give much better tumor contrast than the other two methods, if the system is designed properly. In this review article, we will summarize the current state-of-the-art of radionuclide-based cancer imaging targeting CEA. Generally, isotopes with short half-lives (e.g. 18F and 99mTc) are more suitable for labeling small engineered antibody fragments while the isotopes with longer half-lives (e.g. 123I and 111In) are needed for antibody labeling to match its relatively long circulation half-life. With further improvement in tumor targeting efficacy and radiolabeling strategies, novel CEA-targeted agents may play an important role in cancer patient management, paving the way to “personalized medicine”. PMID:19578524

  15. Assessment of Radionuclides in the Savannah River Site Environment Summary

    SciTech Connect

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  16. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  17. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  18. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  19. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  20. Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.

    1999-01-01

    Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.

  1. An airborne infrared spectrometer for solar eclipse observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; Cheimets, Peter; DeLuca, Edward; Galeros, John; Gauron, Thomas; Golub, Leon; Guth, Giora; Hertz, Edward; Judge, Philip; Koutchmy, Serge; Marquez, Vanessa

    2016-08-01

    This paper presents the design of an innovative solar spectrometer that will y on the NSF/NCAR Gulfstream V High-Performance Instrumented Airborne Platform for Environmental Research (GV HIAPER) during the 2017 solar eclipse. The airborne infrared spectrometer (AIR-Spec) is groundbreaking in two aspects: it will image infrared coronal emission lines that have never been measured, and it will bring high resolution imaging to GV HIAPER. The instrument development faces the challenges of achieving adequate resolution and signal-to-noise ratio in a compact package mounted to a noisy moving platform. To ensure that AIR-Spec meets its research goals, the instrument is undergoing pre-flight modeling and testing. The results are presented with reference to the instrument requirements.

  2. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  3. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is...

  4. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is...

  5. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is...

  6. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is...

  7. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  8. Ion-Beam Analysis of Airborne Pollution

    NASA Astrophysics Data System (ADS)

    Harrington, Charles; Gleason, Colin; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Labrake, Scott; Vineyard, Michael

    2010-11-01

    An undergraduate laboratory research program in ion-beam analysis (IBA) of atmospheric aerosols is being developed to study pollution in the Capitol District and Adirondack Mountains of New York. The IBA techniques applied in this project include proton induced X-ray emission (PIXE), proton induced gamma-ray emission (PIGE), Rutherford backscattering (RBS), and proton elastic scattering analysis (PESA). These methods are well suited for studying air pollution because they are quick, non-destructive, require little to no sample preparation, and capable of investigating microscopic samples. While PIXE spectrometry is used to analyze most elements from silicon to uranium, the other techniques are being applied to measure some of the remaining elements and complement PIXE in the study of aerosols. The airborne particulate matter is collected using nine-stage cascade impactors that separate the particles according to size and the samples are bombarded with proton beams from the Union College 1.1-MV Pelletron Accelerator. The reaction products are measured with SDD X-ray, Ge gamma-ray, and Si surface barrier charged particle detectors. Here we report on the progress we have made on the PIGE, RBS, and PESA analysis of aerosol samples.

  9. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  10. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  11. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  12. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  13. [Body composition analysis in obesity: radionuclide and non radionuclide methods].

    PubMed

    Tzotzas, Themistoklis; Krassas, Gerasimos E; Doumas, Argirios

    2008-01-01

    Body composition (BC) assessment provides important information regarding the absolute or relative amount of bone, lean and fat tissue. Different somatometric techniques have been applied in numerous epidemiological and experimental studies, as well as in every day clinical practice. Traditional techniques for BC analysis include skin fold thickness measurements, radioisotope dilution methods, hydrodensitometry and underwater weighing, while newer techniques include bioelectrical impedance analysis (BIA), air displacement plethysmography (ADP), dual energy X-rays absorptiometry (DEXA), computer tomography and magnetic resonance imaging. In addition, positron emission tomography helped to the functional investigation of adipose tissue, in particular of brown tissue. All these techniques have contributed a lot to the understanding of physiological conditions such as exercise training, menopause and ageing, adolescence health parameters, as well as pathological conditions such as disorders of nutrition, cancer, obesity and diabetes mellitus. In obesity, BC contributed to diagnosis and the pathological impact of visceral adipose tissue. In addition, conditions such as pseudo- or hypermuscular obesity and sarcopenia, which are often observed in various endocrine diseases, were investigated in detail by using such methods. During weight loss, some of these methods were quite accurate in measuring changes in fat and lean mass. Apart from anthropometric measurements, a BC measurement if possible should be included in obesity assessment. Measurements of skin fold thickness combined with BIA are quite sufficient for routine clinical practice. However, in specialized clinics and in research, more sophisticated methods like ADP or DEXA are used.

  14. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges

    PubMed Central

    Nayak, Tapan K.; Brechbiel, Martin W.

    2012-01-01

    Radioimmunoimaging and therapy has been an area of interest for several decades. Steady progress has been made towards clinical translation of radiolabeled monoclonal antibodies for diagnosis and treatment of diseases. Tremendous advances have been made in imaging technologies such as positron emission tomography (PET). However, these advances have so far eluded routine translation into clinical radioimmunoimaging applications due to the mismatch between the short half-lives of routinely used positron-emitting radionuclides such as 18F versus the pharmacokinetics of most intact monoclonal antibodies of interest. The lack of suitable positron-emitting radionuclides that match the pharmacokinetics of intact antibodies has generated interest in exploring the use of longer-lived positron emitters that are more suitable for radioimmunoimaging and dosimetry applications with intact monoclonal antibodies. In this review, we examine the opportunities and challenges of radioimmunoimaging with select longer-lived positron-emitting radionuclides such as 124I, 89Zr and 86Y with respect to radionuclide production, ease of radiolabeling intact antibodies, imaging characteristics, radiation dosimetry and clinical translation potential. PMID:19125647

  15. Dosimetric model for antibody targeted radionuclide therapy of tumor cells in cerebrospinal fluid

    SciTech Connect

    Millar, W.T.; Barrett, A. )

    1990-02-01

    Although encouraging results have been obtained using systemic radioimmunotherapy in the treatment of cancer, it is likely that regional applications may prove more effective. One such strategy is the treatment of central nervous system leukemia in children by intrathecal instillation of targeting or nontargeting beta particle emitting radionuclide carriers. The beta particle dosimetry of the spine is assessed, assuming that the spinal cord and the cerebrospinal fluid compartment can be adequately represented by a cylindrical annulus. The radionuclides investigated were {sup 90}Y, {sup 131}I, {sup 67}Cu, and {sup 199}Au. It is shown that the radiation dose to the cord can be significantly reduced using short range beta particle emitters and that there is little advantage in using targeting carriers with these radionuclides. {sup 199}Au and {sup 67}Cu also have the advantage of having a suitable gamma emission for imaging, permitting pretherapy imaging and dosimetric calculations to be undertaken prior to therapy. If these methods prove successful, it may be possible to replace the external beam component used in the treatment of central nervous system leukemia in children by intrathecal radionuclide therapy, thus reducing or avoiding side effects such as growth and intellectual impairment.

  16. MULTI-TECHNIQUE APPROACH TO MEASURE SIZE AND TIME RESOLVED ATMOSPHERIC AND RADIONUCLIDE AEROSOLS

    SciTech Connect

    Shutthanandan, V; Xie, YuLong; Disselkamp, Robert S; Laulainen, Nels S; Smith, Edward A; Thevuthasan, Suntharampillai

    2008-12-01

    Accurate quantifications of aerosol components are crucial to predict global atmospheric transport models. Recently developed International Monitoring System (IMS) network represents an opportunity to enhance comprehensive systematic aerosol observations on a global scale because it provides a global infrastructure. As such, a local pilot study utilizing several state-of-the-art instruments has been conducted at the peak of Rattlesnake Mountain, Washington, USA, during three month periods (June-August) in 2003 to explore this opportunity. In this study, routine aerosol samples were collected using a 3-stage Cascade Impactor Beam Analyzer (0.07 to 2.5 µm) with time resolution about 6 hours on long Teflon strips while radionuclide aerosols were collected using Radionuclide aerosol sampler/analyzer (RASA) developed at Pacific Northwest National Laboratory. The elemental composition and hydrogen concentration were measured using proton induced x-ray emission (PIXE) and proton elastic scattering analysis (PESA), respectively. In addition, short and long-lived radionuclides that exist in nature were measured with same time resolution (6 hours) using RASA. In this method, high-resolution gamma-ray spectra were analyzed for radionuclide concentration. Combination of trace radioactive and non-radioactive element analysis in aerosols makes this investigation unique.

  17. Selection of dominant radionuclides for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since their inception in 1944. A vital step in the estimation of radiation doses is the determination of the source term,'' that is, the quantities of radionuclides that were released to the environment from the various Hanford operations. Hanford operations have at various times involved hundreds of different radionuclides, some in relatively large quantities. Those radionuclides present in the largest quantities, although significant from an operational handling point of view, may not necessarily have been those of greatest concern for offsite radiation dose. This report documents the selection of the dominant radionuclides (those that may have resulted in the largest portion of the received doses) in the source term for Phase 1 of the HEDR Project, that is, for atmospheric releases from 1944 through 1947 and for surface water releases from 1964 through 1966. 15 refs., 3 figs., 10 tabs.

  18. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  19. TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology

    NASA Astrophysics Data System (ADS)

    da Cruz, P. A. L.; da Silva, C. J.; Iwahara, A.; Loureiro, J. S.; De Oliveira, A. E.; Tauhata, L.; Lopes, R. T.

    2016-07-01

    This work presents TDCR and CIEMAT/NIST methods of liquid scintillation implemented in National Institutes of Metrology for activity standardization of radionuclides, which decay by beta emission and electron capture. The computer codes used to calculate the detection efficiency take into account: decay schemes, beta decay theory, quenching parameter evaluation, Poisson statistic model and Monte Carlo simulation for photon and particle interactions in the detection system. Measurements were performed for pure emitters 3H, 14C, 99Tc and for 68Ge/68Ga which decay by electron capture and positron emission, with uncertainties smaller than 1% (k = 1).

  20. Results of inspection and cleaning of two radionuclide air-sampling systems based on the requirements of ANSI/HPS N13.1-1999.

    PubMed

    Barnett, J M; Ballinger, M Y; Gervais, T L; Douglas, D D; Edwards, D L

    2004-04-01

    The Pacific Northwest National Laboratory inspected and cleaned two radionuclide air-sampling systems that continuously monitor radioactive air emissions from research and development facilities. The inspection and cleaning was performed to evaluate effective methods and potential cost impacts of maintenance requirements in the revised American National Standard Institute standard Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. The standard requires at least annual inspections of sampling systems followed by cleaning if deposits are visible. During 2001 and 2002, inspections were performed leaving the sampling systems in place and inserting videoscope cables into different access points to allow viewing of the inside and outside of sampling manifolds and transport lines. Cleaning was performed on one of the systems by disconnecting and extracting the sampling manifold, then washing it with de-ionized water and scrub brushes. The wash water was analyzed for radioactivity and solids. Results of the inspection showed greater deposition in one of the systems than would be expected by a High Efficiency Particulate Air (HEPA) filtered exhaust stream, possibly due to accumulation of dust from a short period when unfiltered air was exhausted from construction areas. The second system was also downstream of HEPA filters and appeared much cleaner. The videoscope was a useful and cost-effective tool and provided a better view than could be obtained with the naked eye. However, because even small amounts of deposition were made visible with the videoscope, clarification is needed in defining when probe washing is merited, particularly in existing sampling systems whose design is not conducive to easy removal and cleaning.

  1. High resolution atmospheric transport modelling in support of radionuclide detections at CTBTO network

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Szintai, B.; Kuśmierczyk-Michulec, J.; Carter, J. A.; Given, J. W.

    2014-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of seismic, infrasound, hydroacoustic, referred to as waveform, sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. While the process of event building for the waveform technologies is well-established, the task of event building using the radionuclide detections remains a challenge. One of the reasons is the complexity of the process of atmospheric transport of airborne radionuclides from their sources to the detecting stations and subsequent difficulties in representing this process in models. An atmospheric transport model is driven by meteorological fields generated by numerical models coupled to observations. In addition, it is equipped with parameterisations of sub-grid scale processes to account for incompleteness of the representation of meteorological processes in the meteorological fields. In this presentation we will discuss possibilities of improving the accuracy of the atmospheric transport modelling simulations in support of radionuclide detections at CTBTO. Some of these improvements can be implemented operationally, while others, due to their computational cost, could only be performed on request. We will present the influence an increase of resolution of global meteorological fields, provided by the EMCWF (European Centre of Medium-Range Weather Forecasts), has on the quality of the simulations. We will address possible benefits of using high resolution regional meteorological fields generated with the mesoscale model WRF (Weather research and Forecasting). We will illustrate the impact of parameterisations, namely those linked to the atmospheric

  2. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  3. National Low-Level Waste Management Program Radionuclide Report Series

    SciTech Connect

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

  4. Uptake by plants of radionuclides from FUSRAP waste materials

    SciTech Connect

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  5. Action levels for automatic gamma-measurements based on probabilistic radionuclide transport calculations.

    PubMed

    Lauritzen, Bent; Hedemann-Jensen, Per

    2005-12-01

    In the event of a nuclear or radiological emergency resulting in an atmospheric release of radioactive materials, stationary gamma-measurements, for example obtained from distributed, automatic monitoring stations, may provide a first assessment of exposures resulting from airborne and deposited activity. Decisions on the introduction of countermeasures for the protection of the public can be based on such off-site gamma measurements. A methodology is presented for calculation of gamma-radiation action levels for the introduction of specific countermeasures, based on probabilistic modelling of the dispersion of radionuclides and the radiation exposure. The methodology is applied to a nuclear accident situation with long-range atmospheric dispersion of radionuclides, and action levels of dose rate measured by a network of monitoring stations are estimated for sheltering and foodstuff restrictions. It is concluded that the methodology is applicable to all emergency countermeasures following a nuclear accident but measurable quantities other than ambient dose equivalent rate are needed for decisions on the introduction of foodstuff countermeasures.

  6. Lung-clearance classification of radionuclides in calcined phosphate rock dust

    SciTech Connect

    Kalkwarf, D.R.; Jackson, P.O.

    1984-08-01

    Lung-clearance classifications for /sup 210/Pb and /sup 210/Po in airborne dust from elemental phosphorus plants were estimated for use with the lung clearance model proposed by the ICRP Task Group on Lung Dynamics. Estimates were based on measurements of dissolution rates for these radionuclides from sized dust samples into simulated lung fluid at 37/sup 0/C. The estimates were expressed in the classification terms of the model, i.e., D, W and Y, indicating lung clearance half-times of 0 to 10 days, 11 to 100 days and more than 100 days. Dust samples were obtained from two plants in the western United States, and dissolution trials were conducted on fractions containing particles with aerodynamic equivalent diameters (AED) of 0 to 3 ..mu..m and of 3 to 10 ..mu..m. The /sup 210/Pb and /sup 210/Po in each of these fractions were classified 100% Class Y. The specific activities of both radionuclides increased with decreasing AED of the particles. 11 references, 1 figure, 4 tables.

  7. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  8. The Future of Airborne Reconnaissance

    DTIC Science & Technology

    1996-01-01

    biplanes to the worldwide Cold War missions of the U - 2 and SR-71, airborne reconnaissance has become an indispensable tool to the intelligence community...Reconnaissance Operations (SRO) procedures, such as the U - 2 , RC- 135, and the EP-3, and traditional theater/fleet tactical reconnaissance systems like...upgraded sensor package on the U -2.14 The Army Staffs argument centers around command and control of the asset. The Army agreed that the U - 2 ’s

  9. Artificial radionuclides in Russia due to the Fukushima NPP accident

    NASA Astrophysics Data System (ADS)

    Polianskaia, Olga; Vakulovsky, Sergey; Kim, Vera; Yahryushin, Valery; Volokitin, Andrey

    2013-04-01

    Radioactive emission into the atmosphere from the damaged reactors of the Fukushima Daiichi nuclear power plant (NPP) started on March 12th, 2011. The network of Federal Hydrometeorology and Environmental Monitoring Service (Rosgydromet) carries out supervision over a radiation situation on the territory of Russia. In Russia, the first radionuclides from Fukushima were detected on March 20th in the Far East by network. From March 20th to April 30th I-131 (particulate form), Cs-137 and Cs-134 were detected in samples of atmospheric aerosols at the 30 stations of networks and the same ones were detected in fallout at the 25 stations of networks. The first detection of I-131 in the European territory of Russia (ETR) occurred on March 23rd; and in the South and the North of Siberia - on March 26th. The volumetric activities of I-131 in the ETR sharply increased from March 28th to 30th. Along with the increasing content of I-131 cesium isotopes appeared in the air. The maximum values of radionuclides volume activity were observed between April 3rd and 4th: for I-131 - 4,0 mBq/m3, for Cs-137 - 1,15 mBq/m3, for Cs-134 - 1,04 mBq/m3. Observed in the Far East, the maximum values for I-131 were 2-4 times lower than in the ETR. The maximum values for I-131 in the Asian territory of Russia (ATR) were 2 - 8 times lower, than in the ETR. The Cs-137/Cs-134 ratio in samples of atmospheric aerosols was about 1. The ratio I-131/Cs-137 in air changed in a wide range. From March 23rd to April 5th the ratio fluctuated within 11 to 34, from April 5th to 20th of the ratio decreased and varied within 1,5 to 7,7, further it became less than 1. The value of cesium isotopes in second quarter of 2011 in fallout was lower than 2 Bq/m2. The addition to the density of soil contamination by Cs-137 by 2 to 3 orders of magnitude less than the decrease of the density of contamination with this isotope of the global origin due to radioactive decay. Based on the obtained experimental data we can

  10. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-01-01

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557

  11. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  12. Noninvasive assessment of right ventricular function: will there be resurgence in radionuclide imaging techniques?

    PubMed

    Ramani, Gautam V; Gurm, Gagandeep; Dilsizian, Vasken; Park, Myung H

    2010-03-01

    Right ventricular (RV) function is increasingly being recognized as an important prognostic marker in multiple cardiopulmonary disease states, including congestive heart failure, pulmonary arterial hypertension, and chronic obstructive pulmonary disease. Accurate and reproducible measures of RV function, although technically challenging, are highly relevant in the clinical setting. Radionuclide techniques (eg, first-pass radionuclide angiography for quantifying RV systolic function) were developed nearly 40 years ago. More recently, MRI and transthoracic echocardiography have become the diagnostic imaging techniques of choice for the noninvasive evaluation of RV function. However, developments in single photon emission computed tomography (SPECT), positron emission tomography (PET), and hybrid SPECT/CT and PET/CT systems have greatly improved the image quality and contrast resolution of radionuclide imaging of the heart, allowing for coregistered physiologic and anatomical information of the right ventricle in three dimensions. These improvements in cardiac imaging provide new opportunities for assessing RV myocardial perfusion, function, and anatomy in the same setting. Such imaging approaches may in the future provide assistance with proactive disease management, including early diagnosis of impending RV dysfunction in high-risk patients and for guiding decisions to initiate and/or modify treatments.

  13. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  14. PSMA PET and Radionuclide Therapy in Prostate Cancer.

    PubMed

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter L

    2016-11-01

    Prostate cancer (PCa) is the most common malignancy in men and a major cause of cancer death. Accurate imaging plays an important role in diagnosis, staging, restaging, detection of biochemical recurrence, and for therapy of patients with PCa. Because no effective treatment is available for advanced PCa, there is an urgent need to develop new and more effective therapeutic strategies. To optimize treatment outcome, especially in high-risk patients with PCa, therapy for PCa is moving rapidly toward personalization. Medical imaging, including positron emission tomography (PET)/computed tomography (CT), plays an important role in personalized medicine in oncology. In the recent years, much focus has been on prostate-specific membrane antigen (PSMA) as a promising target for imaging and therapy with radionuclides, as it is upregulated in most PCa. In the prostate, one potential role for PSMA PET imaging is to help guide focal therapy. Several studies have shown great potential of PSMA PET/CT for initial staging, lymph node staging, and detection of recurrence of PCa, even at very low prostate-specific antigen values after primary therapy. Furthermore, studies have shown that PSMA PET/CT has a higher detection rate than choline PET/CT. Radiolabeled PSMA ligands for therapy show promise in several studies with metastatic PCa and is an area of active investigation. The "image and treat" strategy, with radiolabeled PSMA ligands, has the potential to improve the treatment outcome of patients with PCa and is paving the way for precision medicine in PCa. The aim of this review is to give an overview of recent advancement in PSMA PET and radionuclide therapy for PCa.

  15. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier.

    PubMed

    Łokas, Edyta; Zaborska, Agata; Kolicka, Małgorzata; Różycki, Michał; Zawierucha, Krzysztof

    2016-10-01

    Surface of glaciers is covered by mineral and organic dust, together with microorganisms forming cryoconite granules. Despite fact that glaciers and ice sheets constitute significance part of land surface, reservoir of freshwater, and sites of high biological production, the knowledge on the cryoconite granules still remain unsatisfactory. This study presents information on radionuclide and heavy metal contents in cryoconites. Cryoconites collected from the Hans Glacier in SW Spitsbergen reveal high activity concentrations of anthropogenic ((238,239,240)Pu, (137)Cs, (90)Sr) and natural ((210)Pb) radionuclides. The (238)Pu/(239+240)Pu activity ratios in these cryoconites significantly exceed the mean global fallout ratio (0.025). The (238)Pu/(239+240)Pu ranged from 0.064 to 0.118. The (239+240)Pu/(137)Cs varied from 0.011 ± 0.003 to 0.030 ± 0.007. Such activity ratios as observed in these cryoconites were significantly higher than the values characterizing global fallout, pointing to possible contributions of these radionuclides from other sources. Heavy metals (Pb, Cd, Cu, Zn, Fe, and Mn) in cryoconites exceed both UCC concentrations and local rocks' concentrations, particularly for cadmium. The concentration ratios of stable lead isotopes ((206)Pb/(207)Pb, (208)Pb/(206)Pb) were determined to discriminate between the natural and anthropogenic sources of Pb in cryoconites and to confirm the strong anthropogenic contribution to heavy metal deposition in the Arctic. In investigated cryoconite holes, two groups of invertebrates, both extremophiles, Tardigrada and Rotifera were detected. Our study indicate that cryoconites are aggregates of mineral and organic substances on surfaces of glaciers are able to accumulate large amounts of airborne pollutants bound to extracellular polymeric substances secreted by microorganisms.

  16. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport.

  17. Innovative methodology for intercomparison of radionuclide calibrators using short half-life in situ prepared radioactive sources

    SciTech Connect

    Oliveira, P. A.; Santos, J. A. M.

    2014-07-15

    Purpose: An original radionuclide calibrator method for activity determination is presented. The method could be used for intercomparison surveys for short half-life radioactive sources used in Nuclear Medicine, such as{sup 99m}Tc or most positron emission tomography radiopharmaceuticals. Methods: By evaluation of the resulting net optical density (netOD) using a standardized scanning method of irradiated Gafchromic XRQA2 film, a comparison of the netOD measurement with a previously determined calibration curve can be made and the difference between the tested radionuclide calibrator and a radionuclide calibrator used as reference device can be calculated. To estimate the total expected measurement uncertainties, a careful analysis of the methodology, for the case of{sup 99m}Tc, was performed: reproducibility determination, scanning conditions, and possible fadeout effects. Since every factor of the activity measurement procedure can influence the final result, the method also evaluates correct syringe positioning inside the radionuclide calibrator. Results: As an alternative to using a calibrated source sent to the surveyed site, which requires a relatively long half-life of the nuclide, or sending a portable calibrated radionuclide calibrator, the proposed method uses a source preparedin situ. An indirect activity determination is achieved by the irradiation of a radiochromic film using {sup 99m}Tc under strictly controlled conditions, and cumulated activity calculation from the initial activity and total irradiation time. The irradiated Gafchromic film and the irradiator, without the source, can then be sent to a National Metrology Institute for evaluation of the results. Conclusions: The methodology described in this paper showed to have a good potential for accurate (3%) radionuclide calibrators intercomparison studies for{sup 99m}Tc between Nuclear Medicine centers without source transfer and can easily be adapted to other short half-life radionuclides.

  18. Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units

    SciTech Connect

    JOHNSON, R.E.

    1999-09-01

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

  19. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  20. Decline of radionuclides in Columbia River biota

    SciTech Connect

    Cushing, C.E.; Watson, D.G.; Scott, A.J.; Gurtisen, J.M.

    1980-03-01

    In January 1971, the last of nine plutonium production reactors using direct discharge of once-through cooling waters into the Columbia River was closed. Sampling was initiated at three stations on the Columbia River to document the decline of the radionuclide body burdens in the biota of the Columbia River ecosystem. The data show that in a river-reservoir complex, the measurable body burden of fission-produced radionuclides decreased to essentially undetectable levels within 18 to 24 mo after cessation of discharge of once-through cooling water into the river. On the basis of data from the free-flowing station, we believe that this decrease would be even more rapid in an unimpounded river.

  1. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  2. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggrregated albumin (/sup 99m/Tc MAA) labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cutaneous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  3. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary vasculature resulting in intrapulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggregated albumin labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cuntaeous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  4. Cadastral valuation of lands polluted with radionuclides

    NASA Astrophysics Data System (ADS)

    Makarov, O. A.; Tsvetnov, E. V.; Shcheglov, A. I.; Romashkina, A. D.; Ermiyaev, Ya. R.

    2016-11-01

    The major method to correct the cadastral value of land for contamination with radionuclides is to reduce it by the sum of expenses necessary for land remediation and for special measures ensuring the obtaining of agricultural and forestry products satisfying safety norms. Lands contaminated with radionuclides and used in agriculture and forestry are often removed from the system of land taxation. In this case, their cadastral value becomes an excessive element of the state cadaster of real estate. An approach toward cadastral valuation of such lands suggested by the authors assumes the creation of a system of compensation payments as the main source of financing of land rehabilitation and soil conservation measures. An original system of calculation of such payments has been tested for radioactively contaminated lands in Plavsk district of Tula oblast. It is argued that compensation payments for radioactively contaminated agrocenoses should be higher than those for natural cenoses.

  5. Radionuclide synovectomy – essentials for rheumatologists

    PubMed Central

    Felis-Giemza, Anna; Kobylecka, Małgorzata

    2016-01-01

    Radionuclide synovectomy is a minimally invasive method of treating persistent joint inflammation. It involves intra-articular injection of radioactive colloids which induce necrosis and fibrosis of hypertrophic synovial membrane. The most common indication for radiosynovectomy is rheumatoid arthritis, although patients with seronegative spondyloarthropathies, unclassified arthritis, haemophilic arthropathy and other less common arthropathies can also benefit from this method. Radiosynovectomy is safe, well tolerated and efficacious. About 70–80% of patients respond well to the therapy. However, the therapeutic effects are considerably worse in patients with co-existent osteoarthritis and advanced joint degeneration. Despite its advantages, radionuclide synovectomy is not performed as often as it could be, so greater knowledge and understanding of this method are needed. The authors present the most important facts about radiosynovectomy that may help rheumatologists in their daily clinical practice. PMID:27504020

  6. Sources of airborne microorganisms in the built environment.

    PubMed

    Prussin, Aaron J; Marr, Linsey C

    2015-12-22

    Each day people are exposed to millions of bioaerosols, including whole microorganisms, which can have both beneficial and detrimental effects. The next chapter in understanding the airborne microbiome of the built environment is characterizing the various sources of airborne microorganisms and the relative contribution of each. We have identified the following eight major categories of sources of airborne bacteria, viruses, and fungi in the built environment: humans; pets; plants; plumbing systems; heating, ventilation, and air-conditioning systems; mold; dust resuspension; and the outdoor environment. Certain species are associated with certain sources, but the full potential of source characterization and source apportionment has not yet been realized. Ideally, future studies will quantify detailed emission rates of microorganisms from each source and will identify the relative contribution of each source to the indoor air microbiome. This information could then be used to probe fundamental relationships between specific sources and human health, to design interventions to improve building health and human health, or even to provide evidence for forensic investigations.

  7. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  8. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk.

  9. Breast-Dedicated Radionuclide Imaging Systems.

    PubMed

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted.

  10. Radionuclide bone scintigraphy in pediatric orthopedics

    SciTech Connect

    Conway, J.J.

    1986-12-01

    Radionuclide bone scintigraphy is highly sensitive and specific for diagnosing the musculoskeletal disorders of childhood. Conditions such as neonatal osteomyelitis, septic arthritis, diskitis of childhood, Legg-Calve-Perthes disease, the osteochondroses, the toddler's fracture, sports injuries, spondylolysis, myositis ossificians, and reflex sympathetic dystrophy are readily defined. High-quality state-of-the-art scintigraphy is essential in infants and young children. 64 references.

  11. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  12. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  13. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    PubMed

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.

  14. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    SciTech Connect

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-07

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  15. Spectral deconvolution and operational use of stripping ratios in airborne radiometrics.

    PubMed

    Allyson, J D; Sanderson, D C

    2001-01-01

    Spectral deconvolution using stripping ratios for a set of pre-defined energy windows is the simplest means of reducing the most important part of gamma-ray spectral information. In this way, the effective interferences between the measured peaks are removed, leading, through a calibration, to clear estimates of radionuclide inventory. While laboratory measurements of stripping ratios are relatively easy to acquire, with detectors placed above small-scale calibration pads of known radionuclide concentrations, the extrapolation to measurements at altitudes where airborne survey detectors are used bring difficulties such as air-path attenuation and greater uncertainties in knowing ground level inventories. Stripping ratios are altitude dependent, and laboratory measurements using various absorbers to simulate the air-path have been used with some success. Full-scale measurements from an aircraft require a suitable location where radionuclide concentrations vary little over the field of view of the detector (which may be hundreds of metres). Monte Carlo simulations offer the potential of full-scale reproduction of gamma-ray transport and detection mechanisms. Investigations have been made to evaluate stripping ratios using experimental and Monte Carlo methods.

  16. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    SciTech Connect

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  17. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  18. Short- and long-lived radionuclide particle size measurements in a uranium mine

    SciTech Connect

    Tu, Keng-Wu; Fisenne, I.M.; Hutter, A.R.

    1997-04-01

    The radon-222 progeny and long-lived radionuclide measurements were done in a wet underground uranium mine in Saskatchewan, Canada, on Nov. 8-12, 1995. Radon-222 in the mine varied from 2 kBq/m{sup 3} at 90 m below surface to 12 kBq/m{sup 3} in the mining areas, 240 m below surface. Radon-222 progeny activity and potential alpha energy concentration appear affected by the airborne particle number concentration and size distribution. Particle number was up to 200x10{sup 3}/cm{sup 3}. Only an accumulation mode (30-1000 nm) and some bimodal size distributions in this accumulation size range were significant. Diesel particles and combustion particles from burning propane caused a major modal diameter shift to a smaller size range (50-85 nm) compared with previous values (100-200 nm). The high particle number reduced the unattached progeny (0.5-2 nm) to >5%. The nuclei mode (2-30 nm) in this test was nonexistent, and the coarse mode (>1000 nm), except from the drilling areas and on the stopes, was mostly not measurable. Airborne particle total mass and long- lived radionuclide alpha activity concentrations were very low (80- 100 {mu}g/m{sup 3} and 4-5 mBq/m{sup 3}) owing to high ventilation rates. Mass-weighted size distributions were trimodal, with the major mode at the accumulation size region, which accounts for 45-50% of the mass. The coarse model contains the the least mass, about 20%. The size spectra from gross alpha activities were bimodal with major mode in the coarse region (>1000 nm) and a minor accumulation mode in the 50-900 nm size range. These size spectra were different from the {sup 222}Rn progeny that showed a single accumulation mode in the 50- 85 nm size region. The accumulation mode in the long-lived radionuclide size spectrum was not found in previous studies in other uranium mines.

  19. Atmospheric Radionuclides from the Fukushima Nuclear Accident-Two years observations in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhito; Kajino, Mizuo; Zaizen, Yuji; Adachi, Koji; Mikami, Masao; Kita, Kazuyuki; Hatano, Yuko

    2013-04-01

    The accident of Fukushima Dai-Ichi Nuclear Power Plant of the Tokyo Electric Power Corporation arisen by the hit of great earthquake and tsunami in March 11, 2011, emitted abundant fresh radioactive material to the atmospheric environment. The amount has been estimated to be at least a few-tenth of those from the Chernobyl accident (by NISA, etc.). By this large-scale contamination, atmospheric environments over Japan, especially the eastern part, were seriously impacted with such a massive amount of the anthropogenic radionuclides (e.g. typical hotspots). So the persisting aftermath is one of the concerns. Although the heavy primary emission seems to be terminated until April of 2011, 2ndary emissions from contaminated ground surface, coppices, fields, roads, any burnings of the contaminated materials generated the resuspension of radionuclides into the atmosphere. With 2-years observation for the Fukushima radioactivity at the Meteorological Research Institute, Japan (MRI) such persisting resuspension is considered in this presentation. The resuspension seems still in difficulty to give forecast by computer modeling; the observations are indispensable bodies of the research even in the future. The MRI has carried out observations of the atmospheric radionuclides, which are long-lived with potentials of environmental and health impacts, for more than 50 years. Aiming at to clarify temporal change in concentration of anthropogenic radionuclides in the atmosphere and its control factors, the observations have continued over the long period. The long-lasting impacts of the Fukushima accident are addressed with our long-term time series of the atmospheric radioactivity as a reference.

  20. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and