Science.gov

Sample records for airborne real time

  1. Real-time detection of airborne chemicals

    NASA Astrophysics Data System (ADS)

    Hartenstein, Steven D.; Tremblay, Paul L. A.; Fryer, Michael O.; Kaser, Timothy

    1999-02-01

    Accurate, real time air quality measurements are difficult to make, because real time sensors for some gas species are not specific to a single gas. For example, some carbon dioxide sensors react to hydrogen sulfide. By combining the response of several types of real time gas sensors the Real-time Air Quality Monitoring System (RAQMS) accurately measures many different gases. The sensor suite for the INEEL's Real-time Air Quality Monitoring System (RAQMS) incudes seven, inexpensive, commercially-available chemical sensors for gases associated with air quality. These chemical sensors are marketed as devices to measure carbon dioxide, hydrogen sulfide, carbon monoxide, sulfur dioxide, nitrogen dioxide, water vapor and volatile organic compounds (VOC's). However, these chemical sensors respond to more than a single compound, e.g. both the VOC and the carbon dioxide sensors respond strongly to methane. This multiple sensor response to a given chemical is used to advantage in the RAQMS system, as patterns of responses by the sensors were found to be unique and distinguishable for several chemicals. Therefore, there is the potential that the seven sensors combined output can: (1) provide more accurate measurements of the advertized gases and (2) estimate the presence and quantity of additional gases. The patterns of sensor response can be thought of as clusters of data points in a seven dimensional space. One dimension for each sensor's output. For all of the gases tested, these clusters were separated enough that good quantitative results were obtained. As an example, the prototype RAQMS is able to distinguish methane from butane and predict accurate concentrations of both gases. A mathematical technique for estimating probability density functions from random samples is used to distinguish the data clusters from each other and to make gas concentration estimates. Bayes optimal estimates of gas concentration are calculated using the probability density function. The

  2. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  3. Real-time airborne particle analyzer

    DOEpatents

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  4. A Real-Time Advisory System For Airborne Early Warning

    NASA Astrophysics Data System (ADS)

    Kirk, D. B.; Cromwell, M. E.; Donnell, M. L.; Barrett, C. L.

    1987-05-01

    Decision speed and quality can be greatly enhanced by the use of decision augmentation software to assist operators in information analysis and tactical problem solving, dynamic resource allocation, and in determining strategies which optimize overall system performance. One example of such software is the real-time advisory system (RTAS) being constructed to assist in tactical decision-making for airborne early warning (AEW) aircraft, particularly the carrier-based Navy E-2C. Using a vector logic approach, the current AEW RTAS is a real-time backward chaining expert system which provides advice for both threat interception and refueling in the complex Outer Air Battle Scenario. This paper describes the current system, discusses a number of design issues for such a system, and describes ongoing modifications to the current AEW RTAS using SAIC's frame-based knowledge repre-sentation language (KRL).

  5. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  6. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  7. Airborne ocean water lidar (OWL) real time processor (RTP)

    NASA Astrophysics Data System (ADS)

    Hryszko, M.

    1995-03-01

    The Hyperflo Real Time Processor (RTP) was developed by Pacific-Sierra Research Corporation as a part of the Naval Air Warfare Center's Ocean Water Lidar (OWL) system. The RTP was used for real time support of open ocean field tests at Barbers Point, Hawaii, in March 1993 (EMERALD I field test), and Jacksonville, Florida, in July 1994 (EMERALD I field test). This report describes the system configuration, and accomplishments associated with the preparation and execution of these exercises. This document is intended to supplement the overall test reports and provide insight into the development and use of the PTP. A secondary objective is to provide basic information on the capabilities, versatility and expandability of the Hyperflo RTP for possible future projects. It is assumed herein that the reader has knowledge of the OWL system, field test operations, general lidar processing methods, and basic computer architecture.

  8. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  9. Management Of Airborne Reconnaissance Images Through Real-Time Processing

    NASA Astrophysics Data System (ADS)

    Endsley, Neil H.

    1985-12-01

    Digital reconnaissance images gathered by low-altitude over-flights with resolutions on the order of a few feet and fields of view up to 120 degrees can generate millions of pixels per second. Storing this data in-flight, transmitting it to the ground, and analyzing it presents significant problems to the tactical community. One potential solution is in-flight preview and pruning of the data where an operator keeps or transmits only those image segments which on first view contain potential intelligence data. To do this, the images must be presented to the operator in a geometrically correct form. Wide-angle dis-tortion, distortions induced by yaw, pitch, roll and altitude variations, and distortions due to non-ideal alignment of the focal plane array must be removed so the operator can quickly assess the scene content and make decisions on which image segments to keep. When multiple sensors are used with a common field of view, they must be mutually coregistered to permit multispectral or multimode processing to exploit these rich data dimensions. In addition, the operator should be able to alter the apparent point of view of the image, i.e., be able to zoom in and out, rotate, and roam through the displayed field of view while maintaining geometric and radiometric precision. These disparate requirements have a common feature in the ability to perform real-time image geometry manipulation. The role of image geometry manipulation, or image warping, is reviewed and a "strawman" system dis-cussed which incorporates the Pipelined Resampling Processor (PRP). The PRP is a real-time image warping processor discussed at this conference in previous years"2'3". Actual results from the PRP prototype are presented. In addition, other image processing aids such as image enhancement and object classification are discussed as they apply to reconnaissance applications.

  10. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.

    PubMed

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  11. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  12. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  13. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  14. Real-time detection of airborne asbestos by light scattering from magnetically re-aligned fibers.

    PubMed

    Stopford, Christopher; Kaye, Paul H; Greenaway, Richard S; Hirst, Edwin; Ulanowski, Zbigniew; Stanley, Warren R

    2013-05-01

    Inadvertent inhalation of asbestos fibers and the subsequent development of incurable cancers is a leading cause of work-related deaths worldwide. Currently, there is no real-time in situ method for detecting airborne asbestos. We describe an optical method that seeks to address this deficiency. It is based on the use of laser light scattering patterns to determine the change in angular alignment of individual airborne fibers under the influence of an applied magnetic field. Detection sensitivity estimates are given for both crocidolite (blue) and chrysotile (white) asbestos. The method has been developed with the aim of providing a low-cost warning device to trades people and others at risk from inadvertent exposure to airborne asbestos. PMID:23669992

  15. Visual real-time detection, recognition and tracking of ground and airborne targets

    NASA Astrophysics Data System (ADS)

    Kovács, Levente; Benedek, Csaba

    2011-03-01

    This paper presents methods and algorithms for real-time visual target detection, recognition and tracking, both in the case of ground-based objects (surveyed from a moving airborne imaging sensor) and flying targets (observed from a ground-based or vehicle mounted sensor). The methods are highly parallelized and partially implemented on GPU, with the goal of real-time speeds even in the case of multiple target observations. Real-time applicability is in focus. The methods use single camera observations, providing a passive and expendable alternative for expensive and/or active sensors. Use cases involve perimeter defense and surveillance situations, where passive detection and observation is a priority (e.g. aerial surveillance of a compound, detection of reconnaissance drones, etc.).

  16. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  17. Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.

    1988-01-01

    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.

  18. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2010-01-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an

  19. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. PMID:22805239

  20. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples

    NASA Astrophysics Data System (ADS)

    An, Hey Reoun; Mainelis, Gediminas; White, Lori

    This manuscript describes the coupling of bioaerosol collection and the use of real-time PCR (RT-PCR) to quantify the airborne bacteria. The quantity of collected bacteria determined by RT-PCR is compared with conventional quantification techniques, such as culturing, microscopy and airborne microorganism counting by using optical particle counter (OPC). Our data show that an experimental approach used to develop standard curves for use with RT-PCR is critical for accurate sample quantification. Using universal primers we generated 12 different standard curves which were used to quantify model organism Escherichia coli (Migula) Catellani from air samples. Standard curves prepared using a traditional approach, where serially diluted genomic DNA extracted from pure cultured bacteria were used in PCR reaction as a template DNA yielded significant underestimation of sample quantities compared to airborne microorganism concentration as measured by an OPC. The underestimation was especially pronounced when standard curves were built using colony forming units (CFUs). In contrast, the estimate of cell concentration in an air sample by RT-PCR was more accurate (˜60% compared to the airborne microorganism concentration) when the standard curve was built using aerosolized E. coli. The accuracy improved even further (˜100%) when air samples used to build the standard curves were diluted first, then the DNA extracted from each dilution was amplified by the RT-PCR—to mimic the handling of air samples with unknown and possibly low concentration. Therefore, our data show that standard curves used for quantification by RT-PCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question. Reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples.

  1. The Way Point Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2012-01-01

    Airborne real time observation are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientist, planning a research aircraft mission within the context of meeting the science objective is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircraft are often involved in the NASA field campaigns the coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving dynamic weather conditions often determine the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientist and help them plan and modify the flight tracks successfully. Scientists at the University of Alabama Huntsville and the NASA Marshal Space Flight Center developed the Waypoint Planning Tool (WPT), an interactive software tool that enables scientist to develop their own flight plans (also known as waypoints), with point and click mouse capabilities on a digital map filled with time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analyses during and after each campaign helped identify both issues and new requirements, initiating the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities to the Google Earth Plugin and Java Web Start/Applet on web platform, as well as to the rising open source GIS tools with new JavaScript frameworks, the Waypoint planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed

  2. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  3. Near Real Time Review of Instrument Performance using the Airborne Data Processing and Analysis Software Package

    NASA Astrophysics Data System (ADS)

    Delene, D. J.

    2014-12-01

    Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.

  4. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  5. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  6. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  7. Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Van Gilst, D. P.; Sorenson, C. E.

    2011-12-01

    Multi-instrument aircraft-based science campaigns require a baseline level of housekeeping service to record and distribute real time data, including timing signals, aircraft state and air data. As campaigns have become more sophisticated with greater integration between aircraft, ground instrumentation, satellites and forecasters in locations around the world, the scope of the services provided by the facility data systems on NASA's airborne science aircraft have increased to include situational awareness displays, real-time interchange of data between instruments and aircraft, and ingest of data to assist in real-time targeting of flights. As the scope of services has expanded, it has become increasingly important to provide standardized interfaces to experimenters to minimize integration complexity, and to make services sufficiently reliable for mission operations to depend upon them. Within the NASA airborne science program in recent years this has been provided by systems based around the core of the REVEAL/NASDAT system, with additional services including satellite communications, data display and ingest of outside data being provided by a mix of custom and COTS hardware and software. With a strong emphasis on transmission of data over industry standard IP and ethernet based networks, this system has been proven on numerous highly diverse missions on the DC-8 over the last 4 years and is being replicated on other NASA Airborne Science Platforms.

  8. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  9. Demonstration of decimeter-level real-time positioning of an airborne platform

    NASA Technical Reports Server (NTRS)

    Armatys, M.; Muellerschoen, R.; Bar-Sever, Y.; Meyer, R.

    2003-01-01

    We demonstrate the ability of the NASA Global Differential GPS System to support 10 to 20 cm accurate real-time airplane positioning, anywhere in the world, independent of local navigational aids or infrastructure.

  10. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    SciTech Connect

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.; Bernacki, Bruce E.; Jordan, David V.; Stewart, Trevor N.; Seifert, Carolyn E.; Kernan, Warnick J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.

  11. Development of a real-time monitor for airborne alpha emissions. First quarter report, TTP AL 142003

    SciTech Connect

    Gritzo, R.E.; Fowler, M.M.

    1994-02-01

    This is the first quarterly report for Fiscal Year (FY) 1994 for TTP AL 142003, Development of a Real-Time Monitor for Airborne Alpha Emissions. Los Alamos National Laboratory (LANL) is developing a new technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. While initially developed for incinerators, this new technology may well find other applications in continuous air monitoring, process monitoring, and monitoring during remediation activities. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology responds directly to the need for fast responding, high sensitivity effluent monitoring systems. With DOE EM-50 funding, LANL has fabricated a bench-top proof of concept detector system and is conducting tests to evaluate its performance. A second- generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for FY 95. Accomplishments during the first quarter of FY 94 are chronicled in this report, including budgetary data. A schedule for the remainder of the fiscal year is also provided.

  12. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    NASA Astrophysics Data System (ADS)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  13. Real-time measurement of sub-PPM concentrations of airborne chemicals in semiconductor manufacturing.

    PubMed

    Corn, M; Cohen, R

    1993-01-01

    Real-time mass spectroscopy (ICAMS) can provide hourly or daily estimates of employee exposure. Field calibration of the unit indicated essentially linear response from 0.01 (Cellosolve Acetate) and 0.03 ppm (Diglyme) to 1 ppm in semiconductor cleanrooms. The instrument can be programmed for 4 minute readings on a single compound, or for rotation among several chemicals, each requiring 4 minute dwell times for analysis. In contrast to full shift personal sampling methods to measure exposure, ICAMS offers insights into the occurrence of peak exposures. In addition, in the occupational environment ICAMS results can be integrated to estimate full-shift within a zone exposures. Thus, the ICAMS extends measurement sensitivities below those currently available and offers a viable alternative to personal sampling in the semiconductor industry. PMID:9857292

  14. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  15. Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry.

    PubMed

    Dall'Osto, Manuel; Harrison, Roy M; Charpantidou, E; Loupa, G; Rapsomanikis, S

    2007-10-01

    An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS; TSI 3800) was deployed to Athens (Greece) during August 2003. The instrument provides information on a polydisperse aerosol, acquiring precise aerodynamic diameter (+/-1%) within the range 0.3 to 3 mum and individual particle positive and negative mass spectral data in real time. Sampling was carried out indoors and outdoors at an office in a building on a minor road in the city centre and various outdoor and indoor sources were identified. Specific outdoor particles such as dust and carbon particles were detected in indoor air. The generation of particles from indoor sources was studied and several different types of particle were found to be present in environmental tobacco smoke (ETS): three were potassium-rich (with differing proportions of carbon) emitted directly in the exhaled mainstream smoke. Two other types arose mainly when the cigarette was left smouldering on an ash-tray. Another particle type exhibited a strong signal at m/z 84, most likely due to a nicotine fragment. The temporal trend of this specific particle type showed likely condensation of semi-volatile constituents on existing potassium-rich particles. A release of insect repellent in the room was also successfully monitored. PMID:17628640

  16. Real Time Data/Video/Voice Uplink and Downlink for Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Harper, Doyal A.

    1997-01-01

    LFS was an educational outreach adventure which brought the excitement of astronomical exploration on NASA's Kuiper Airborne Observatory (KAO) to a nationwide audience of children, parents and children through live, interactive television, broadcast from the KAO at an altitude of 41,000 feet during an actual scientific observing mission. The project encompassed three KAO flights during the fall of 1995, including a short practice mission, a daytime observing flight between Moffett Field, California to Houston, Texas, and a nighttime mission from Houston back to Moffett Field. The University of Chicago infrared research team participated in planning the program, developing auxiliary materials including background information and lesson plans, developing software which allowed students on the ground to control the telescope and on-board cameras via the Internet from the Adler Planetarium in Chicago, and acting as on-camera correspondents to explain and answer questions about the scientific research conducted during the flights.

  17. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber

    PubMed Central

    Schmid, Silvan; Kurek, Maksymilian; Adolphsen, Jens Q.; Boisen, Anja

    2013-01-01

    Nanomechanical resonators have an unprecedented mass sensitivity sufficient to detect single molecules, viruses or nanoparticles. The challenge with nanomechanical mass sensors is the direction of nano-sized samples onto the resonator. In this work we present an efficient inertial sampling technique and gravimetric detection of airborne nanoparticles with a nanomechanical resonant filter-fiber. By increasing the nanoparticle momentum the dominant collection mechanism changes from diffusion to more efficient inertial impaction. In doing so we reach a single filter-fiber collection efficiency of 65 ± 31% for 28 nm silica nanoparticles. Finally, we show the detection of single 100 nm silver nanoparticles. The presented method is suitable for environmental or security applications where low-cost and portable monitors are demanded. It also constitutes a unique technique for the fundamental study of single filter-fiber behavior. We present the direct measurement of diffusive nanoparticle collection on a single filter-fiber qualitatively confirming Langmuir's model from 1942. PMID:23411405

  18. Real-time sensor mapping display for airborne imaging sensor test with the adaptive infrared imaging spectroradiometer (AIRIS)

    NASA Astrophysics Data System (ADS)

    Burton, Megan M.; Cruger, William E.; Gittins, Christopher; Kindle, Harry; Ricks, Timothy P.

    2005-11-01

    Captive flight testing (CFT) of sensors and seekers requires accurate data collection and display for sensor performance evaluation. The U.S. Army Redstone Technical Test Center (RTTC), in support of the U.S. Army Edgewood Chemical Biological Center (ECBC), has developed a data collection suite to facilitate airborne test of hyperspectral chemical/biological sensors. The data collection suite combines global positioning system (GPS) tracking, inertial measurement unit (IMU) data, accurate timing streams, and other test scenario information. This data collection suite also contains an advanced real-time display of aircraft and sensor field-of-view information. The latest evolution of this system has been used in support of the Adaptive InfraRed Imaging Spectroradiometer (AIRIS), currently under development by Physical Sciences Incorporated for ECBC. For this test, images from the AIRIS sensor were overlaid on a digitized background of the test area, with latencies of 1 second or less. Detects of surrogate chemicals were displayed and geo-referenced. Video overlay was accurate and reliable. This software suite offers great versatility in the display of imaging sensor data; support of future tests with the AIRIS sensor are planned as the system evolves.

  19. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  20. Functionality Based Detection of Airborne Engineered Nanoparticles in Quasi Real Time: A New Type of Detector and a New Metric

    PubMed Central

    Neubauer, Nicole

    2013-01-01

    A new type of detector which we call the Catalytic Activity Aerosol Monitor (CAAM) was investigated towards its capability to detect traces of commonly used industrial catalysts in ambient air in quasi real time. Its metric is defined as the catalytic activity concentration (CAC) expressed per volume of sampled workplace air. We thus propose a new metric which expresses the presence of nanoparticles in terms of their functionality - in this case a functionality of potential relevance for damaging effects - rather than their number, surface, or mass concentration in workplace air. The CAAM samples a few micrograms of known or anticipated airborne catalyst material onto a filter first and then initiates a chemical reaction which is specific to that catalyst. The concentration of specific gases is recorded using an IR sensor, thereby giving the desired catalytic activity. Due to a miniaturization effort, the laboratory prototype is compact and portable. Sensitivity and linearity of the CAAM response were investigated with catalytically active palladium and nickel nano-aerosols of known mass concentration and precisely adjustable primary particle size in the range of 3–30nm. With the miniature IR sensor, the smallest detectable particle mass was found to be in the range of a few micrograms, giving estimated sampling times on the order of minutes for workplace aerosol concentrations typically reported in the literature. Tests were also performed in the presence of inert background aerosols of SiO2, TiO2, and Al2O3. It was found that the active material is detectable via its catalytic activity even when the particles are attached to a non-active background aerosol. PMID:23504803

  1. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  2. Rapid Data Assimilation in the Indoor Environment: theory and examples from real-time interpretation of indoor plumes of airborne chemicals

    SciTech Connect

    Gadgil, Ashok; Sohn, Michael; Sreedharan, Priya

    2008-09-01

    Releases of acutely toxic airborne contaminants in or near a building can lead to significant human exposures unless prompt response measures are identified and implemented. Commonly, possible responses include conflicting strategies, such as shutting the ventilation system off versus running it in a purge (100percent outside air) mode, or having occupants evacuate versus sheltering in place. The right choice depends in part on quickly identifying the source locations, the amounts released, and the likely future dispersion routes of the pollutants. This paper summarizes recent developments to provide such estimates in real time using an approach called Bayesian Monte Carlo updating. This approach rapidly interprets measurements of airborne pollutant concentrations from multiple sensors placed in the building and computes best estimates and uncertainties of the release conditions. The algorithm is fast, capable of continuously updating the estimates as measurements stream in from sensors. The approach is employed, as illustration, to conduct two specific investigations under different situations.

  3. Rapid Data Assimilation in the Indoor Environment: Theory and Examples from Real-Time Interpretation of Indoor Plumes of Airborne Chemical

    SciTech Connect

    Gadgil, Ashok; Gadgil, Ashok; Sohn, Michael; Sreedharan, Priya

    2007-08-01

    Releases of acutely toxic airborne contaminants in or near a building can lead to significant human exposures unless prompt response measures are identified and implemented. Possible responses include conflicting options, such as shutting the ventilation system off versus running it in a purge (100 percent outside air) mode, or having occupants evacuate versus sheltering in place. The right choice depends in part on quickly identifying the source location, the amount released, and the likely future dispersion of the pollutant. This paper summarizes recent developments to provide such estimates in real time using an approach called Bayesian Monte Carlo updating. This approach rapidly interprets measurements of airborne pollutant concentrations from multiple sensors placed in the building, and computes best estimates and uncertainties of the release conditions. The algorithm is fast, and can continuously update the estimates as measurements stream in from sensors. As an illustration, two specific applications of the approach are described.

  4. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  5. Real-time detection and characterization of individual flowing airborne biological particles: fluorescence spectra and elastic scattering measurements

    NASA Astrophysics Data System (ADS)

    Pan, Yongle; Holler, Stephen; Chang, Richard K.; Hill, Steven C.; Pinnick, Ronald G.; Niles, Stanley; Bottiger, Jerold R.; Bronk, Burt V.

    1999-11-01

    Real-time methods which is reagentless and could detect and partially characterize bioaerosols are of current interest. We present a technique for real-time measurement of UV-excited fluorescence spectra and two-dimensional angular optical scattering (TAOS) from individual flowing biological aerosol particles. The fluorescence spectra have been observed from more than 20 samples including Bacillus subtilis, Escherichia coli, Erwinia herbicola, allergens, dust, and smoke. The S/N and resolution of the spectra are sufficient for observing small lineshape differences among the same type of bioaerosol prepared under different conditions. The additional information from TAOS regarding particle size, shape, and granularity has the potential of aiding in distinguishing bacterial aerosols from other aerosols, such as diesel and cigarette smoke.

  6. A rapidly deployable chemical sensing network for the real-time monitoring of toxic airborne contaminant releases in urban environments

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Lloyd, David R.

    2010-04-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders in providing a rapid, reliable on-scene analysis of the dispersion of toxic airborne contaminants following their malicious or accidental release into a rural, urban or industrial environment. We describe the development of a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  7. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. PMID:26773821

  8. Real-Time Analysis of Individual Airborne Microparticles Using Laser Ablation Mass Spectroscopy and Genetically Trained Neural Networks

    SciTech Connect

    Parker, E.P.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.

    1999-01-22

    We are developing a method for analysis of airborne microparticles based on laser ablation of individual molecules in an ion trap mass spectrometer. Airborne particles enter the spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a pulsed excimer laser as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. The mass spectra are then analyzed using genetically-trained neural networks (NNs). A number of mass spectra are averaged to obtain training cases which contain a recognizable spectral signature. Averaged spectra for a bacteria and a non-bacteria are shown to the NNs, the response evaluated, and the weights of the connections between neurodes adjusted by a Genetic Algorithm (GA) such that the output from the NN ranges from 0 for non-bacteria to 1 for bacteria. This process is iterated until the population of the GA converges or satisfies predetermined stopping criteria. Using this type of bipolar training we have obtained generalizing NNs able to distinguish five new bacteria from five new non-bacteria, none of which were used in training the NN.

  9. Implementation of a near-real time cross-border web-mapping platform on airborne particulate matter (PM) concentration with open-source software

    NASA Astrophysics Data System (ADS)

    Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph

    2015-01-01

    Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).

  10. A comparison of real and simulated airborne multisensor imagery

    NASA Astrophysics Data System (ADS)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  11. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.; Zhang, Fuqing

    2014-03-01

    the Pennsylvania State University (PSU) real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) that assimilates airborne Doppler radar observations, the sensitivity and uncertainty of forecasts initialized several days prior to landfall of Hurricane Sandy (2012) are assessed. The performance of the track and intensity forecasts of both the deterministic and ensemble forecasts by the PSU WRF-EnKF system show significant skill and are comparable to or better than forecasts produced by operational dynamical models, even at lead times of 4-5 days prior to landfall. Many of the ensemble members correctly capture the interaction of Sandy with an approaching midlatitude trough, which precedes Sandy's forecasted landfall in the Mid-Atlantic region of the United States. However, the ensemble reveals considerable forecast uncertainties in the prediction of Sandy. For example, in the ensemble forecast initialized at 0000 UTC 26 October 2012, 10 of the 60 members do not predict a United States landfall. Using ensemble composite and sensitivity analyses, the essential dynamics and initial condition uncertainties that lead to forecast divergence among the members in tracks and precipitation are examined. It is observed that uncertainties in the environmental steering flow are the most impactful factor on the divergence of Sandy's track forecasts, and its subsequent interaction with the approaching midlatitude trough. Though the midlatitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land.

  12. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  13. Promoting Smoke-Free Homes: A Novel Behavioral Intervention Using Real-Time Audio-Visual Feedback on Airborne Particle Levels

    PubMed Central

    Klepeis, Neil E.; Hughes, Suzanne C.; Edwards, Rufus D.; Allen, Tracy; Johnson, Michael; Chowdhury, Zohir; Smith, Kirk R.; Boman-Davis, Marie; Bellettiere, John; Hovell, Melbourne F.

    2013-01-01

    Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS) levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m3, and low noise. A linear relationship (R2 = 0.98) was observed between the monitor and average SHS mass concentrations up to 150 µg/m3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches. PMID:24009742

  14. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  15. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  16. Exposure to Bioaerosols in Poultry Houses at Different Stages of Fattening; Use of Real-time PCR for Airborne Bacterial Quantification

    PubMed Central

    Oppliger, Anne; Charrière, Nicole; Droz, Pierre-Olivier; Rinsoz, Thomas

    2008-01-01

    Previous studies have demonstrated that poultry house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at three different stages of the birds’ growth; samples of air taken from within the breathing zones of individual poultry house employees as they caught the chickens ready to be transported for slaughter were also analysed. Quantitative polymerase chain reaction (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 26 ± 1.9 mg m−3 and endotoxin concentration was 6198 ± 2.3 EU m−3 air, >6-fold higher than the Swiss occupational recommended value (1000 EU m−3). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively, reaching values of 53 (±2.6) × 107 cells m−3 air and 62 (±1.9) × 106 m−3 air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices. PMID:18497431

  17. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  18. Real-time on-board airborne demonstration of high-speed on-board data processing for science instruments (HOPS)

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-05-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  19. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  20. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  1. Real-time CHAMP (RTC) infrared scene generation program

    NASA Astrophysics Data System (ADS)

    Crow, Dennis R.; Coker, Charles F.

    2001-08-01

    The Real-Time CHAMP (RTC) program is a computer simulation used to provide time varying high-fidelity infrared simulations of airborne vehicles and backgrounds in real- time. RTC is currently being utilized to provide real-time infrared imagery to support closed-loop digital and hardware-in-the-loop simulations. RTC computational algorithms take advantage of parametric databases created by its non real-time companion code (CHAMP--Composite Hardbody and Missile Plume) to allow accurate infrared imagery to be generated at real-time frame rates.

  2. Identifying Airborne Pathogens in Time to Respond

    SciTech Connect

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  3. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  4. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  5. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  6. A Real-Time Nonvolatile Residue (NVR) Monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, Raymond L.

    1995-01-01

    New development and application of device described in "Surface-Acoustic-Wave Piezoelectric Microbalance," (LAR-14476). Active sensing element of Real-Time NVR Monitor comprises pair of piezoelectric surface-acoustic-wave resonators resonating at frequency of 200 MHz. Bare, uncoated resonator exposed to atmosphere and directly in contact with airborne volatile and nonvolatile materials leaving residues on surface. Resonant frequency of exposed resonator decreases with increasing mass of adsorbed residue; resulting beat frequency between two resonators increases with mass and serves as sensitive real-time indication of airborne contaminants or non-volatile residue.

  7. Real-Time Benchmark Suite

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  8. Real Time Baseball Database

    NASA Astrophysics Data System (ADS)

    Fukue, Yasuhiro

    The author describes the system outline, features and operations of "Nikkan Sports Realtime Basaball Database" which was developed and operated by Nikkan Sports Shimbun, K. K. The system enables to input numerical data of professional baseball games as they proceed simultaneously, and execute data updating at realtime, just-in-time. Other than serving as supporting tool for prepareing newspapers it is also available for broadcasting media, general users through NTT dial Q2 and others.

  9. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  10. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  11. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  12. Real-time refinery optimization

    SciTech Connect

    Kennedy, J.P.

    1989-05-01

    This article discusses refinery operation with specific consideration of the topics of: gasoline; control projects; catalytic reforming control; hydrocracker control packages; blending optimization; real-time data acquisition; and other plant automation packages.

  13. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  14. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  15. Laboratory Study of Airborne Fallout Particles and Their Time Distribution.

    ERIC Educational Resources Information Center

    Smith, H. A., Jr.; And Others

    1979-01-01

    Samples of filtered airborne particulate, collected daily for the first month after the September 18, 1977 Chinese nuclear detonation, showed fourteen fission products. Fluctuations in the daily fallout activity levels suggested a global fallout orbit time of approximately twenty days. (Author/BB)

  16. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  17. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  18. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.

    1991-01-01

    Information is given in viewgraph form on the Real Time Data System (RTDS). Topics covered include applications to the Space Station Freedom, the Space Shuttle flight controllers, the Mission Control Center workstations, and the Remote Manipulator Systems (RMS). Also covered are the technology gap, pacing factors, and lessons learned during research.

  19. Airborne time-series measurement of soil moisture using terrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas R.; Lipinski, Daniel M.; Peck, Eugene L.

    1988-01-01

    Terrestrial gamma radiation data and independent ground-based core soil moisture data are analyzed. They reveal the possibility of using natural terrestrial gamma radiation collected from a low-flying aircraft to make reliable real-time soil moisture measurements for the upper 20 cm of soil. The airborne data were compared to the crude ground-based soil moisture data set collected at the core sites.

  20. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.

    1991-01-01

    Information is given in viewgraph form on the Real Time Data System (RTDS). The goals are to increase the quality of flight decision making, reduce and enhance flight controller training time, and serve as a near-operations technology test-bed. Information is given on the growth of RTDS; flight control disciplines; RTDS technology deployment in 1987-1989 and 1990-91; a functionality comparison of mainframes and workstations; and technology transfer activities.

  1. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  2. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  3. Real-time ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Bae, Unmin; Kim, Yongmin

    2007-03-01

    Ultrasound elastography can provide tissue stiffness information that is complementary to the anatomy and blood flow information offered by conventional ultrasound machines, but it is computationally challenging due to many time-consuming modules and a large amount of data. To facilitate real-time implementations of ultrasound elastography, we have developed new methods that can significantly reduce the computational burden of common processing components in ultrasound elastography, such as the crosscorrelation analysis and spatial filtering applied to displacement and strain estimates. Using the new correlation-based search algorithm, the computational requirement of correlation-based search does not increase with the correlation window size. For typical parameters used in ultrasound elastography, the computation in correlation-based search can be reduced by a factor of more than 30. Median filtering is often performed to suppress the spike-like noise that results from correlation-based search. For fast median filtering, we have developed a method that efficiently finds a new median value utilizing the sort result of the previous pixel. With careful mapping of the new algorithms on digital signal processors, our work has led to development of a clinical ultrasound machine supporting real-time elastography. Our methods can help real-time implementations of various applications including ultrasound elastography, which could lead to increased use of ultrasound elastography in the clinic.

  4. Real-time tritium imaging

    SciTech Connect

    Malinowski, M.E.

    1981-09-15

    A real-time image of a tritium-containing titanium film has been made by detecting the secondary electrons produced by tritium ..beta.. decay with a simple two-element electrostatic lens and microchannel plate image intensifier. The obtained image indicates that a resolution of better than 100 ..mu..m is currently obtainable and suggests that image magnification to enhance resolution should be possible.

  5. Extracting very early time airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Macnae, J. C.

    2013-12-01

    Many helicopter EM systems stream data during both the on- and off-time, and in theory should be able to extract responses at either zero delay (simultaneous with the transmitter changes) and/or at discrete delays determined by the sample rate. In practice, this has not been the case. Historically, VTEM data, have only been ';usable' at delays longer than say 70 to 100 us. Systems such as mini-Skytem (Schamper & Auken, EAGE 2012) have been able to make quantitative measurements at very early delays through reducing transmitter power (and necessarily signal/noise levels). Recent developments now permit extraction of quantitative data from high power streamed VTEM data at delays as short as 5 us. Such quantitative very early time data is the key to extracting near-surface conductivities. Macnae & Baron-Hay (ASEG, 2008) improved early time data through subtraction of a constant 'parasitic' response caused by capacitive current leakage in the transmitter loop wiring. This permitted useful data to be extracted from about 20 or 25 us. More recently, further improvements have been made using high altitude data as a reference, and time-domain deconvolution as discussed by Stolz & Macnae (Geophysics 1998). The procedure successfully 1) subtracts the coupling-dependent primary and 2) then corrects the observed secondary for bandwidth limitations and the parasitic effects. The parasitic correction uses both static and bucking dependent components derived from the residual on-time response of the transmitter. Complications in the process derive from problems in exactly measuring primary fields: with very low noise levels in the VTEM system, extensive conductors may be detected to distances (depths) of up to 3 km. It is uncommon for helicopters to collect data at this height, and as a result it is necessary to predict the primary from measurements at lower altitude. Such a prediction can be obtained from repeat measurements at different heights over a 'relatively uniform' area

  6. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  7. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  8. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  9. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  10. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  11. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  12. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  13. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  14. Stability of airborne microbes in the Louvre Museum over time.

    PubMed

    Gaüzère, C; Moletta-Denat, M; Blanquart, H; Ferreira, S; Moularat, S; Godon, J-J; Robine, E

    2014-02-01

    The microbial content of air has as yet been little described, despite its public health implications, and there remains a lack of environmental microbial data on airborne microflora in enclosed spaces. In this context, the aim of this study was to characterize the diversity and dynamics of airborne microorganisms in the Louvre Museum using high-throughput molecular tools and to underline the microbial signature of indoor air in this human-occupied environment. This microbial community was monitored for 6 month during occupied time. The quantitative results revealed variations in the concentrations of less than one logarithm, with average values of 10(3) and 10(4) Escherichia coli/Aspergillus fumigatus genome equivalent per m(3) for bacteria and fungi, respectively. Our observations highlight the stability of the indoor airborne bacterial diversity over time, while the corresponding eukaryote community was less stable. Bacterial diversity characterized by pyrosequencing 454 showed high diversity dominated by the Proteobacteria which represented 51.1%, 46.9%, and 38.4% of sequences, for each of the three air samples sequenced. A common bacterial diversity was underlined, corresponding to 58.4% of the sequences. The core species were belonging mostly to the Proteobacteria and Actinobacteria, and to the genus Paracoccus spp., Acinetobacter sp., Pseudomonas sp., Enhydrobacter sp., Sphingomonas sp., Staphylococcus sp., and Streptococcus sp. PMID:23710880

  15. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  16. Real-time face tracking

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Wilder, Joseph

    1998-10-01

    A real-time face tracker is presented in this paper. The system has achieved 15 frames/second tracking using a Pentium 200 PC with a Datacube MaxPCI image processing board and a Panasonic RGB color camera. It tracks human faces in the camera's field of view while people move freely. A stochastic model to characterize the skin color distribution of human skin is used to segment the face and other skin areas from the background. Median filtering is then used to clean up the background noise. Geometric constraints are applied to the segmented image to extract the face from the background. To reduce computation and achieve real-time tracking, 1D projections (horizontal and vertical) of the image are analyzed instead of the 2D image. Run-length- encoding and frequency domain analysis algorithms are used to separate faces from other skin-like blobs. The system is robust to illumination intensity variations and different skin colors. It can be applied to many human-computer interaction applications such as sound locating, lip- reading, gaze tracking and face recognition.

  17. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  18. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  19. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  20. Near-Real-Time Earth Observation Data Supporting Wildfire Management

    NASA Astrophysics Data System (ADS)

    Ambrosia, V. G.; Zajkowski, T.; Quayle, B.

    2013-12-01

    During disaster events, the most critical element needed by responding personnel and management teams is situational intelligence / awareness. During rapidly-evolving events such as wildfires, the need for timely information is critical to save lives, property and resources. The wildfire management agencies in the US rely heavily on remote sensing information both from airborne platforms as well as from orbital assets. The ability to readily have information from those systems, not just data, is critical to effective control and damage mitigation. NASA has been collaborating with the USFS to mature and operationalize various asset-information capabilities to effect improved knowledge of fire-prone areas, monitor wildfire events in real-time, assess effectiveness of fire management strategies, and provide rapid, post-fire assessment for recovery operations. Specific examples of near-real-time remote sensing asset utility include daily MODIS data employed to assess fire potential / wildfire hazard areas, and national-scale hot-spot detection, airborne thermal sensor collected during wildfire events to effect management strategies, EO-1 ALI 'pointable' satellite sensor data to assess fire-retardant application effectiveness, and Landsat 8 and other sensor data to derive burn severity indices for post-fire remediation work. These cases of where near-real-time data is used operationally during the previous few fire seasons will be presented.

  1. MISR Level 1 Near Real Time Products

    Atmospheric Science Data Center

    2014-09-15

    Level 1 Near Real Time The MISR Near Real Time Level 1 data products consist of radiance measurements organized in 10-50 minute ... (off-nadir) cameras. The remaining channels are sampled at 1.1 km. ...

  2. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  3. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  4. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  5. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  6. Meteorological data assimilation for real-time emergency response

    SciTech Connect

    Sugiyama, G.; Chan, S.T.

    1996-11-01

    The US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) provides real-time dose assessments of airborne pollutant releases. Diverse data assimilation techniques are required to meet the needs of a new generation of ARAC models and to take advantage of the rapidly expanding availability of meteorological data. We are developing a hierarchy of algorithms to provide gridded meteorological fields which can be used to drive dispersion codes or to provide initial fields for mesoscale models. Data to be processed include winds, temperature, moisture, and turbulence.

  7. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  8. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.

    2009-12-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  9. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  10. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    PubMed Central

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiologic impact of PM2.5 exposure in the animal model and in cultured primary pulmonary macrophages. We demonstrated that PM2.5 exposure increased the production of reactive oxygen species (ROS) in blood vessels in vivo. Furthermore, in vitro PM2.5 exposure experiment suggested that PM2.5 could trigger oxidative stress response, reflected by an increased expression of the anti-oxidative stress enzymes superoxide dismutase-1 (SOD-1) and heme oxygenase-1(HO-1), in mouse primary macrophages. Together, the results obtained through our “real-world” PM exposure approach demonstrated the pathophysiologic effect of ambient PM2.5 exposure on triggering oxidative stress in the specialized organ and cell type of an animal model. Our results and approach will be informative for the research in air pollution-associated physiology and pathology. PMID:21383899

  11. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  12. Real-time chemical analysis of aerosol particles

    SciTech Connect

    Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1995-04-01

    An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

  13. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  14. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  15. Making real-time reactive systems reliable

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  16. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  17. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  18. Real-Time Monitoring of Active Landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Ellis, William L.

    1999-01-01

    Landslides threaten lives and property in every State in the Nation. To reduce the risk from active landslides, the U.S. Geological Survey (USGS) develops and uses real-time landslide monitoring systems. Monitoring can detect early indications of rapid, catastrophic movement. Up-to-the-minute or real-time monitoring provides immediate notification of landslide activity, potentially saving lives and property. Continuous information from real-time monitoring also provides a better understanding of landslide behavior, enabling engineers to create more effective designs for halting landslide movement.

  19. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  20. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  1. Monitoring apoptosis in real time.

    PubMed

    Green, Allan M; Steinmetz, Neil D

    2002-01-01

    clinical responses. A single site study in 15 subjects with 1-year follow-up has suggested that increased posttreatment Tc 99m-rh annexin uptake is associated with improved time to progression of disease and survival time. In vivo imaging of cell death may have the potential to improve the treatment of cancer patients by allowing rapid, objective, patient-by-patient assessment of the efficacy of tumor cell killing. PMID:11999952

  2. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  3. Real-time smart fluorescence sensor platform

    NASA Astrophysics Data System (ADS)

    Dickens, Jason E.; Vaughn, Mike S.; Taylor, Mervin; Ponstingl, Mike

    2011-06-01

    A novel compact LED array based light induced fluorescence (LIF) sensor has been developed for real-time in-line monitoring of intrinsic fluorophores in the solid and liquid state. The sensor is essential for on-the-spot, routine, and cost effective real-time analysis. The sensor is designed to provide real-time emission response along with various smart sensing parameters to ensure real-time measurement quality that is required for regulated GMP process monitoring applications. This work describes a LIF sensor tailored for solid-phase fluorometry. Fundamental figures of merit, excitation overexposure and smart sensing features required for modern process monitoring and control are discussed within the context of pharmaceutical solid-phase manufacturing and similar applications.

  4. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  5. Real-time interferometric synthetic aperture microscopy.

    PubMed

    Ralston, Tyler S; Marks, Daniel L; Carney, P Scott; Boppart, Stephen A

    2008-02-18

    An interferometric synthetic aperture microscopy (ISAM) system design with real-time 2D cross-sectional processing is described in detail. The system can acquire, process, and display the ISAM reconstructed images at frame rates of 2.25 frames per second for 512 X 1024 pixel images. This system provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future real-time ISAM systems. PMID:18542337

  6. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  7. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  8. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  9. Concept of Operations for Real-time Airborne Management System

    SciTech Connect

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  10. Fluorescence particle detector for real-time quantification of viable organisms in air

    NASA Astrophysics Data System (ADS)

    Luoma, Greg; Cherrier, Pierre P.; Piccioni, Marc; Tanton, Carol; Herz, Steve; DeFreez, Richard K.; Potter, Michael; Girvin, Kenneth L.; Whitney, Ronald

    2002-02-01

    The ability to detect viable organisms in air in real time is important in a number of applications. Detecting high levels of airborne organisms in hospitals can prevent post-operative infections and the spread of diseases. Monitoring levels of airborne viable organisms in pharmaceutical facilities can ensure safe production of drugs or vaccines. Monitoring airborne bacterial levels in meat processing plants can help to prevent contamination of food products. Monitoring the level of airborne organisms in bio-containment facilities can ensure that proper procedures are being followed. Finally, detecting viable organisms in real time is a key to defending against biological agent attacks. This presentation describes the development and performance of a detector, based on fluorescence particle counting technology, where an ultraviolet laser is used to count particles by light scattering and elicit fluorescence from specific biomolecules found only in living organisms. The resulting detector can specifically detect airborne particles containing living organisms from among the large majority of other particles normally present in air. Efforts to develop the core sensor technology, focusing on integrating an UV laser with a specially designed particle-counting cell will be highlighted. The hardware/software used to capture the information from the sensor, provide an alarm in the presence of an unusual biological aerosol content will also be described. Finally, results from experiments to test the performance of the detector will be presented.

  11. Real-time GPS monitoring throughout Cascadia

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Santillan, V. M.; Scrivner, C. W.; Szeliga, W. M.; Webb, F.; Abundiz, S.

    2012-12-01

    Over 400 GPS receivers of the combined PANGA and PBO networks currently operate along the Cascadia subduction zone, all of which are high-rate and telemetered in real-time. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources, and together enable a host of new approaches towards hazards mitigation. Data from the majority of the stations is received in real time at CWU and processed into one-second position estimates using 1) relative positioning within several reference frames constrained by 2) absolute point positioning using streamed satellite orbit and clock corrections. While the former produces lower-noise time series, for earthquakes greater than ~M7 and ground displacements exceeding ~20 cm, point positioning alone is shown to provide very rapid and robust estimates of the location and amplitude of both dynamic strong ground motion and permanent deformation. Raw phase and range observables from stations throughout Cascadia are being processed in real time at JPL and CWU into station positions, which in turn are analyzed also in real-time for earthquake processes at CWU. Our efforts can be broken down into three distinct areas: 1) Real-time point-positioning methodologies, 2) a data aggregator that captures real-time position streams from a variety of processing centers and methodologies (JPL RTGipsy, CWU rtPP, Trimble VRS) and re-streams the data as configurable streams to application clients out anywhere on the web, and 3) a suite of analysis tools that operate on the real-time position streams, including plotting, vectors, peak ground deformation contouring, and finite-fault inversions. This suite is currently bundled within a single client written in JAVA, called 'GPS Cockpit.'

  12. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  13. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  14. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  15. INTA-SAR real-time processor

    SciTech Connect

    Gomez, B.; Leon, J.

    1996-10-01

    This paper presents the INTASAR real time processor development based on a DSP open architecture for processing Synthetic Aperture Radar (SAR) signal. The final designed architecture must consider three different constraints sources: (a) SAR signal characteristics : high dynamic range, and complex SAR imaging algorithms with high computational load (multiprocessing is convenient). (b) Flexible: in connectivity and algorithms to be programmed. (c) Suitable: for on-board and ground working. The real time constraints will be defined by the image acquisition time, within it the INTASAR system will process the rawdata image and finally presents the results in the system monitor. At ground, however, the real time processing is not a constraint, but the high quality image is. The first algorithm implemented in the system was a Range - Doppler one. With the multiprocessor architecture selected, a pipeline processing method is used. 17 refs., 4 figs., 2 tabs.

  16. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  17. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification. PMID:26843055

  18. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  19. Real-time enhanced vision system

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-05-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  20. Hard Real-Time: C++ Versus RTSJ

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Reinholtz, William K.

    2004-01-01

    In the domain of hard real-time systems, which language is better: C++ or the Real-Time Specification for Java (RTSJ)? Although ordinary Java provides a more productive programming environment than C++ due to its automatic memory management, that benefit does not apply to RTSJ when using NoHeapRealtimeThread and non-heap memory areas. As a result, RTSJ programmers must manage non-heap memory explicitly. While that's not a deterrent for veteran real-time programmers-where explicit memory management is common-the lack of certain language features in RTSJ (and Java) makes that manual memory management harder to accomplish safely than in C++. This paper illustrates the problem for practitioners in the context of moving data and managing memory in a real-time producer/consumer pattern. The relative ease of implementation and safety of the C++ programming model suggests that RTSJ has a struggle ahead in the domain of hard real-time applications, despite its other attractive features.

  1. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  2. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  3. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  4. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868

  5. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  6. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  7. Real-Time Sensor Validation System Developed

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1998-01-01

    Real-time sensor validation improves process monitoring and control system dependability by ensuring data integrity through automated detection of sensor data failures. The NASA Lewis Research Center, Expert Microsystems, and Intelligent Software Associates have developed an innovative sensor validation system that can automatically detect automated sensor failures in real-time for all types of mission-critical systems. This system consists of a sensor validation network development system and a real-time kernel. The network development system provides tools that enable systems engineers to automatically generate software that can be embedded within an application. The sensor validation methodology captured by these tools can be scaled to validate any number of sensors, and permits users to specify system sensitivity. The resulting software reliably detects all types of sensor data failures.

  8. Real-time cardiac MRI using DSP's.

    PubMed

    Morgan, P N; Iannuzzelli, R J; Epstein, F H; Balaban, R S

    1999-07-01

    A real-time cardiac magnetic resonance imaging (MRI) system has been implemented using digital signal processing (DSP) technology. The system enables real-time acquisition, processing, and display of ungated cardiac movies at moderate video rates of 20 images/s. A custom graphical user interface (GUI) provides interactive control of data acquisition parameters and image display functions. Images can be compressed into moving-picture experts group (MPEG) movies, but are displayed on the console without compression during the scan. Compared to existing real-time MRI systems, implementation with DSP's allows rapid parallel computations, fast data transfers, and greater system flexibility, including the ability to scale to multiple channels, at the expense of somewhat higher component cost. PMID:10504098

  9. Network protocols for real-time applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1987-01-01

    The Fiber Distributed Data Interface (FDDI) and the SAE AE-9B High Speed Ring Bus (HSRB) are emerging standards for high-performance token ring local area networks. FDDI was designed to be a general-purpose high-performance network. HSRB was designed specifically for military real-time applications. A workshop was conducted at NASA Ames Research Center in January, 1987 to compare and contrast these protocols with respect to their ability to support real-time applications. This report summarizes workshop presentations and includes an independent comparison of the two protocols. A conclusion reached at the workshop was that current protocols for the upper layers of the Open Systems Interconnection (OSI) network model are inadequate for real-time applications.

  10. Real-time hyperspectral detection and cuing

    NASA Astrophysics Data System (ADS)

    Stellman, Christopher M.; Hazel, Geoff; Bucholtz, Frank; Michalowicz, Joseph V.; Stocker, Alan D.; Schaaf, William

    2000-07-01

    The Dark HORSE 1 (Hyperspectral Overhead Reconnaissance and Surveillance Experiment 1) flight test has demonstrated autonomous, real-time visible hyperspectral detection of military ground targets with real-time cuing of a high- resolution framing camera. An overview of the Dark HORSE 1 hyperspectral sensor system is presented. The system hardware components are described in detail, with an emphasis on the visible hyperspectral sensor and the real- time processor. Descriptions of system software and processing methods are also provided. The recent field experiment in which the Dark HORSE 1 system was employed is described in detail along with an analysis of the collected data. The results evince per-pixel false-alarm rates on the order of 10-5/km2, and demonstrate the improved performance obtained by operating two detection algorithms simultaneously.

  11. Real Time Linux - The RTOS for Astronomy?

    NASA Astrophysics Data System (ADS)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  12. Making Real-Time Data "Real" for General Interest Users

    NASA Astrophysics Data System (ADS)

    Hotaling, L.

    2003-04-01

    Helping educators realize the benefits of integrating technology into curricula to effectively engage student learning and improve student achievement, particularly in science and mathematics, is the core mission of the Center for Improved Engineering and Science Education (CIESE). To achieve our mission, we focus on projects utilizing real-time data available from the Internet, and collaborative projects utilizing the Internet's potential to reach peers and experts around the world. As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (COSEE), the Center for Improved Engineering and Science Education (CIESE), is committed to delivering relevant ocean science education to diverse audiences, including K-12 teachers, students, coastal managers, families and tourists. The highest priority of the Mid-Atlantic COSEE is to involve scientists and educators in the translation of data and information from the coastal observatories into instructional materials and products usable by educators and the public. A combination of three regional observing systems, the New Jersey Shelf Observing System (NJSOS), Chesapeake Bay Observing System (CBOS), and the York River observing system will provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. At present, the Mid-Atlantic COSEE offers three projects that enable users to apply and validate scientific concepts to real world situations. (1) The Gulf Stream Voyage is an online multidisciplinary project that utilizes both real-time data and primary source materials to help guide students to discover the science and history of the Gulf Stream current. (2) C.O.O.L. Classroom is an online project that utilizes concepts and real-time data collected through the NJSOS. The C.O.O.L. Classroom is based on the concept of the Rutgers-IMCS Coastal Ocean Observation Laboratory, a real

  13. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    SciTech Connect

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  14. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  15. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  16. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  17. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  18. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  19. Real-Time Occupancy Change Analyzer

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  20. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  1. The Real Time Display Builder (RTDB)

    NASA Technical Reports Server (NTRS)

    Kindred, Erick D.; Bailey, Samuel A., Jr.

    1989-01-01

    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.

  2. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  3. Real-Time Operating System/360

    NASA Technical Reports Server (NTRS)

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  4. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  5. Real-Time Multidetector Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Drejzin, V. E.; Grimov, A. A.; Logvinov, D. I.

    2016-07-01

    We explain a new approach to constructing a real-time neutron spectrometer, using several detectors with different spectral characteristics and coprocessing the data using a pre-trained neural network. We present the results of simulation and experimental studies on a prototype, demonstrating the effectiveness of this approach.

  6. Real-time distributed multimedia systems

    SciTech Connect

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  7. Real time solar magnetograph Skylab mission Atlas

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Cumings, N. P.

    1975-01-01

    An atlas of all magnetic field observations made during the Skylab missions with the Real Time Solar Magnetograph system located at the Marshall Space Flight Center is presented. Also included are a description of the system and its operation; an outline of the data reductions performed; and a discussion of probable errors, noise, magnetic sensitivity, and system reliability.

  8. Real-Time Blackboards For Sensor Fusions

    NASA Astrophysics Data System (ADS)

    Johnson, Donald H.; Shaw, Scott W.; Reynolds, Steven; Himayat, Nageen

    1989-09-01

    Multi-sensor fusion, at the most basic level, can be cast into a concise, elegant model. Reality demands, however, that this model be modified and augmented. These modifications often result in software systems that are confusing in function and difficult to debug. This problem can be ameliorated by adopting an object-oriented, data-flow programming style. For real-time applications, this approach simplifies data communications and storage management. The concept of object-oriented, data-flow programming is conveniently embodied in the black-board style of software architecture. Blackboard systems allow diverse programs access to a central data base. When the blackboard is described as an object, it can be distributed over multiple processors for real-time applications. Choosing the appropriate parallel architecture is the subject of ongoing research. A prototype blackboard has been constructed to fuse optical image regions and Doppler radar events. The system maintains tracks of simulated targets in real time. The results of this simulation have been used to direct further research on real-time blackboard systems.

  9. Real-time optoacoustic monitoring during thermotherapy

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  10. Solar neutrinos: Real-time experiments

    NASA Astrophysics Data System (ADS)

    Totsuka, Yoji

    1993-04-01

    This report outlines the principle of real-time solar neutrino detection experiments by detecting electrons with suitable target material, via Charged-Current (CC) reaction using conventional counting techniques developed in high-energy physics. Only B-8 neutrinos can be detected by minimum detectable energy of several MeV. The MSW (Mikheyev, Smirnov, Wolfenstein) effect not only distorts the energy spectrum but also induces new type of neutrinos, i.e. mu-neutrinos or tau-neutrinos. These neutrinos do not participate in the CC reaction. Therefore real-time experiment is to be sensitive to Neutral Current (NC) reactions. It is a challenge to eliminate environment background as much as possible and to lower the minimum detectable energy to several 100 keV, which will enable observation of Be-7 neutrinos. Target particles of real-time experiments currently running and under construction or planning are electron, deuteron, or argon. The relevant reactions corresponding to CC reaction and some relevant comments on the following targets are described: (1) electron target; (2) deuteron target; and (3) argon target. On-going experiment and future experiments for real-time neutron detection are also outlined.

  11. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  12. [Real-time ultrasonography in neonatal diagnosis].

    PubMed

    Nogués, A; Morales, A; Munguía, C; Pagola, C; Arena, J

    1982-11-01

    Real time ultrasonography is a diagnostic technique very widely used in pediatrics and with specific applications in neonatology. Bedside its use in Neonatal I.C.U. it has many interesting aspects for intraabdominal and intracranial pathology. In some particular conditions this procedure can be the first diagnostic tool. Conventional X-rays can be performed after sonographic data have been analyzed. PMID:7168508

  13. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  14. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  15. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  16. Object detection in real-time

    NASA Astrophysics Data System (ADS)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  17. Real Time RF Simulator (RTS) and control

    SciTech Connect

    Cancelo, G.; Armiento, C.; Treptow, K.; Vignoni, A.; Zmuda, T.; /Fermilab

    2008-10-01

    The multi-cavity RTS allows LLRF algorithm development and lab testing prior to commissioning with real cavities and cryomodules. The RTS is a valuable tool since it models the functions, errors and disturbances of real RF systems. The advantage of a RTS over an off-line simulator is that it can be implemented on the actual LLRF hardware, on the same FPGA and processor, and run at the same speed of the LLRF control loop. Additionally the RTS can be shared by collaborators who do not have access to RF systems or when the systems are not available to LLRF engineers. The RTS simulator incorporates hardware, firmware and software errors and limitations of a real implementation, which would be hard to identify and time consuming to model in off-line simulations.

  18. Real Time Pricing and the Real Live Firm

    SciTech Connect

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  19. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  20. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  1. Real-time automatic target identification system for air-to-ground targeting

    NASA Astrophysics Data System (ADS)

    Nicholas, Mike; Wood, Jonathan; Nothard, Jo

    2005-10-01

    Future targeting systems, for manned or unmanned combat aircraft, aim to provide increased mission success and platform survivability by successfully detecting and identifying even difficult targets at very long ranges. One of the key enabling technologies for such systems is robust automatic target identification (ATI), operating on high resolution electro-optic sensor imagery. QinetiQ have developed a real time ATI processor which will be demonstrated with infrared imagery from the Wescam MX15 in airborne trials in summer 2005. This paper describes some of the novel ATI algorithms, the challenges overcome to port the ATI from the laboratory onto a real time system and offers an assessment of likely airborne performance based on analysis of synthetic image sequences.

  2. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  3. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  4. Real-time earthquake data feasible

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  5. Distributed Real-Time Computing with Harness

    SciTech Connect

    Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

    2007-01-01

    Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

  6. Visualizations for Real-time Pricing Demonstration

    SciTech Connect

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  7. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  8. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  9. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  10. REAL TIME BETATRON TUNE CONTROL IN RHIC.

    SciTech Connect

    SCHULTHEISS,C.; CAMERON,P.; MARUSIC,A.; VAN ZEIJTS,J.

    2002-06-02

    Precise control of the betatron tunes is necessary to preserve proton polarization during the RHIC ramp. In addition, control of the tunes during beam deceleration is necessary due to hysteresis in the superconducting magnets. A real-time feedback system to control the betatron tunes during ramping has been developed for use in RHIC. This paper describes this system and presents the results from commissioning the system during the polarized proton run.

  11. Real time computer controlled weld skate

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  12. Real-time radiographic inspection facility

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1977-01-01

    A real time radiographic inspection facility has been developed for nondestructive evaluation applications. It consists of an X-ray source, an X-ray sensitive television imaging system, an electronic analog image processing system, and a digital image processing system. The digital image processing system is composed of a computer with the necessary software to drive the overall facility. Descriptions are given of the design strategy, the facility's components, and its current capabilities.

  13. Real-time RGBD SLAM system

    NASA Astrophysics Data System (ADS)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  14. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  15. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  16. Portable real time neutron spectrometry II

    NASA Astrophysics Data System (ADS)

    Maurer, R. H.; Roth, D. R.; Fainchtein, R.; Goldsten, J. O.; Kinnison, J. D.

    2000-01-01

    We describe the continued development of a portable, real-time neutron spectrometer. The spectrometer is composed of two distinct detector systems: a Helium 3 gas filled proportional counter for the lower neutron energy interval between 20 KeV and 2 MeV and a bulk silicon solid state detector for the higher energy interval between 2 MeV and 500 MeV. Modeling and experimental results with mono-energetic neutron beams are reported. .

  17. Real-time contingency handling in MAESTRO

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.

    1992-01-01

    A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.

  18. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  19. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  20. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  1. Steering a mobile robot in real time

    NASA Astrophysics Data System (ADS)

    Chuah, Mei C.; Fennema, Claude L., Jr.

    1994-10-01

    Using computer vision for mobile robot navigation has been of interest since the 1960s. This interest is evident in even the earliest robot projects: at SRI International (`Shakey') and at the Stanford University (`Stanford Cart'). These pioneering projects provided a foundation for late work but fell far short of providing real time solutions. Since the mid 1980s, the ARPA sponsored ALV and UGV projects have established a need for real time navigation. To achieve the necessary speed, some researchers have focused on building faster hardware; others have turned to the use of new computational architectures, such as neural nets. The work described in this paper uses another approach that has become known as `perceptual servoing.' Previously reported results show that perceptual servoing is both fast and accurate when used to steer vehicles equipped with precise odometers. When the instrumentation on the vehicle does not give precise measurements of distance traveled, as could be the case for a vehicle traveling on ice or mud, new techniques are required to accommodate the reduced ability to make accurate predictions about motion and control. This paper presents a method that computes estimates of distance traveled using landmarks and path information. The new method continues to perform in real time using modest computational facilities, and results demonstrate the effects of the new implementation on steering accuracy.

  2. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  3. Real-time realistic skin translucency.

    PubMed

    Jimenez, Jorge; Whelan, David; Sundstedt, Veronica; Gutierrez, Diego

    2010-01-01

    Diffusion theory allows the production of realistic skin renderings. The dipole and multipole models allow for solving challenging diffusion-theory equations efficiently. By using texture-space diffusion, a Gaussian-based approximation, and programmable graphics hardware, developers can create real-time, photorealistic skin renderings. Performing this diffusion in screen space offers advantages that make diffusion approximation practical in scenarios such as games, where having the best possible performance is crucial. However, unlike the texture-space counterpart, the screen-space approach can't simulate transmittance of light through thin geometry; it yields unrealistic results in those cases. A new transmittance algorithm turns the screen-space approach into an efficient global solution, capable of simulating both reflectance and transmittance of light through a multilayered skin model. The transmittance calculations are derived from physical equations, which are implemented through simple texture access. The method performs in real time, requiring no additional memory usage and only minimal additional processing power and memory bandwidth. Despite its simplicity, this practical model manages to reproduce the look of images rendered with other techniques (both offline and real time) such as photon mapping or diffusion approximation. PMID:20650726

  4. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  5. Turning movement estimation in real time

    SciTech Connect

    Martin, P.T.

    1997-08-01

    Fast processors offer exciting opportunities for real-time traffic monitoring. Conventional transportation planning models that assume stable and predictable travel patterns do not lend themselves to on-line traffic forecasting. This paper describes how a new traffic flow inference model has the potential to determine comprehensive flow information in real time. Its philosophical basis is borrowed from the field of operational research, where it has been used for optimizing water and electricity flows. This paper shows how road traffic turning movement flows can be estimated from link detected flows at small recurrent intervals, in real time. The paper details the formulation of the problem, outlines the structure of the data set that provides the detector data for the model input and observed turning flows for the model evaluation. The theoretical principles that define the model are described briefly. Turning movement flow estimates, at 5-min intervals, from two independent surveys are presented and analyzed. The results show an overall mean coefficient of determination (r{sup 2}) of 79--82% between observed and modeled turning movement flows.

  6. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  7. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  8. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  9. Machine learning for real time remote detection

    NASA Astrophysics Data System (ADS)

    Labbé, Benjamin; Fournier, Jérôme; Henaff, Gilles; Bascle, Bénédicte; Canu, Stéphane

    2010-10-01

    Infrared systems are key to providing enhanced capability to military forces such as automatic control of threats and prevention from air, naval and ground attacks. Key requirements for such a system to produce operational benefits are real-time processing as well as high efficiency in terms of detection and false alarm rate. These are serious issues since the system must deal with a large number of objects and categories to be recognized (small vehicles, armored vehicles, planes, buildings, etc.). Statistical learning based algorithms are promising candidates to meet these requirements when using selected discriminant features and real-time implementation. This paper proposes a new decision architecture benefiting from recent advances in machine learning by using an effective method for level set estimation. While building decision function, the proposed approach performs variable selection based on a discriminative criterion. Moreover, the use of level set makes it possible to manage rejection of unknown or ambiguous objects thus preserving the false alarm rate. Experimental evidences reported on real world infrared images demonstrate the validity of our approach.

  10. Subsystem real-time time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-01

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  11. Modeling fibril fragmentation in real-time

    NASA Astrophysics Data System (ADS)

    Tan, Pengzhen; Hong, Liu

    2013-08-01

    During the application of the mass-action-equation models to the study of amyloid fiber formation, time-consuming numerical calculations constitute a major bottleneck. To conquer this difficulty, here an alternative efficient method is introduced for the fragmentation-only model. It includes two basic steps: (1) simulate close-formed time-evolutionary equations for the number concentration P(t) derived from the moment-closure method; (2) reconstruct the detailed fiber length distribution based on the knowledge of moments obtained in the first step. Compared to direct calculation, our method speeds up the performance by at least 10 000 times (from days to seconds). The accuracy is also satisfactory if suitable functions for the approximate fibril length distribution are taken. Further application to the sonication studies on PI264-b-PFS48 micelles performed by Guerin et al. confirms our method is very promising for the real-time analysis of the experiments on fibril fragmentation.

  12. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  13. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  14. Real-time computed optical interferometric tomography

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; Liu, Yuan-Zhi; Ahmad, Adeel; Adie, Steven G.; Carney, P. Scott; Boppart, Stephen A.

    2014-03-01

    High-resolution tomography is of great importance to many areas of biomedical imaging, but with it comes several apparent tradeoffs such as a narrowing depth-of-field and increasing optical aberrations. Overcoming these challenges has attracted many hardware and computational solutions. Hardware solutions, though, can become bulky or expensive and computational approaches can require high computing power or large processing times. This study demonstrates memory efficient implementations of interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) - two computational approaches for overcoming the depthof- field limitation and the effect of optical aberrations in optical coherence tomography (OCT). Traditionally requiring lengthy post processing, here we report implementations of ISAM and CAO on a single GPU for real-time in vivo imaging. Real-time, camera-limited ISAM processing enabled reliable acquisition of stable data for in vivo imaging, and CAO processing on the same GPU is shown to quickly correct static aberrations. These algorithmic advances hold the promise for high-resolution volumetric imaging in time-sensitive situations as well as enabling aberrationfree cellular-level volumetric tomography.

  15. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  16. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  17. Prototype COBRA near-real-time processor

    NASA Astrophysics Data System (ADS)

    Earp, Samuel L.; Marshall, J. W.; Anthony, E. R.

    1996-05-01

    The U.S. Marine Corps COBRA countermine surveillance program has developed, as a risk- reduction alternative, a near real-time processor for the output of the COBRA multispectral camera. This processor has been tested using approximately 13.5 hours of video data from the COBRA DT-0 developmental test, representing approximately 243,000 frames of multispectral data. The results have been very encouraging--the system is robust and the minefield detection performance has met the goals of the COBRA program. The MITRE COBRA prototype processor is built from commercial-off-the-shelf VME bus technology. Video capture is provided by a Transtech TDM 435 capture/display VME card. Control is performed on a GMSV64 Super Sparc card that resides in two VME slots. The compute engine consists of two Pentek 4270 Quad TMS320C40 digital signal processing boards. There are two additional 6U VME boards to provide fast SCSI IO. The system is capable of capturing, digitizing and processing the COBRA data stream at between one-eighth and one-half real-time, depending on processing options. The nominal compute power of the system is 2.2 GOPS, 450 MFLOPS. The system is easily upgradeable due to the open architecture--one proposed upgrade will be to increase the number of available TMS320C40 processors to sixteen, providing real-time performance without compromising the current investment in software and hardware. The software for the system is primarily written in C, with hand-optimized assembler code for portions of the compute kernel. The algorithm that is implemented is based on the MITRE minefield detection algorithm detailed at AeroSense '95. The system development required a registration algorithm--this was the only algorithm development that was performed, the rest of the algorithms coming from previous MITRE effort on the COBRA program. Lessons learned from the development and upgrade/test plans will be presented.

  18. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  19. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  20. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E. )

    1989-10-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed.

  1. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  2. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  3. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  4. Teaching with Real-Time Seismic Data

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Ortiz, A.; Hall-Wallace, M.; Taber, J.; Braile, L.

    2002-12-01

    Many terabytes of digital seismic data have been gathered in the past decade. These data include summary tables of events as well as raw seismograms. The event information, which can be plotted, analyzed statistically and interpreted in the context of plate tectonics and geologic hazards, make excellent classroom investigations. However, the bulk of the data are raw seismograms that require advanced knowledge and specific software to analyze and manipulate thus, they are generally inaccessible to a non-seismologist. To make real-time seismic data more accessible to students in high schools and colleges, we are developing a network of school seismometers through the IRIS Seismometer in Schools Program. The goal of this program is to promote seismology as a platform for teaching principles of physics and Earth science in schools across the nation. When studying plate tectonics and earthquakes, a seismometer in the classroom promotes awareness of earthquake activity around the world and provides an opportunity to teach with real-time data and real-world examples. The AS-1 seismometer is a low cost, durable, yet precise instrument that allows students to both investigate how a seismometer works and the recordings of the instrument, making it ideal for student and classroom use. The AS-1 recording and analysis software, AmaSeis, is simple to use yet includes all the basic tools needed for analysis: waveform display, filtering, and phase picking. The software also includes travel time curves to determine event distance and location. The seismometer keeps time using the computer's clock, which can be updated regularly through the Internet. While each instrument's response is unique, it is possible to calibrate the instrument and determine accurate magnitudes for events. In the past year our efforts have resulted in teachers using the seismometer effectively in high school classrooms. For example, using data from their own station and several others, students located

  5. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  6. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  7. Real-Time Surface Traffic Adviser

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2001-01-01

    A real-time data management system which uses data generated at different rates by multiple heterogeneous incompatible data sources are presented. In one embodiment, the invention is as an airport surface traffic data management system (traffic adviser) that electronically interconnects air traffic control, airline, and airport operations user communities to facilitate information sharing and improve taxi queuing. The system uses an expert system to fuse dam from a variety of airline, airport operations, ramp control, and air traffic control sources, in order to establish, predict, and update reference data values for every aircraft surface operation.

  8. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  9. A novel compact real time radiation detector.

    PubMed

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Tang, Shibiao; Ding, Baogang; Yin, Zejie

    2012-08-01

    A novel compact real time radiation detector with cost-effective, ultralow power and high sensitivity based on Geiger counter is presented. The power consumption of this detector which employs CMOS electro circuit and ultralow-power microcontroller is down to only 12.8 mW. It can identify the presences of 0.22 μCi (60)Co at a distance of 1.29 m. Furthermore, the detector supports both USB bus and serial interface. It can be used for personal radiation monitoring and also fits the distributed sensor network for radiation detection. PMID:22738843

  10. Real Time Telemetry Data Capture and Storage

    SciTech Connect

    DeAguero, James G.

    1997-05-14

    This program is used to capture telemetry data from remote instrumentation systems. The data can be captured at the rate of 1M bit per second. The data can come in one of several formats, NRZ, RZ, and Bi-Phase. The DECOM software takes the serial data stream and locks on to a unique code word. By tracking the code word the software can strip out the information. Thus the program can display the incoming data real time while saving the data to disk.

  11. Simultaneous real-time data collection methods

    NASA Technical Reports Server (NTRS)

    Klincsek, Thomas

    1992-01-01

    This paper describes the development of electronic test equipment which executes, supervises, and reports on various tests. This validation process uses computers to analyze test results and report conclusions. The test equipment consists of an electronics component and the data collection and reporting unit. The PC software, display screens, and real-time data-base are described. Pass-fail procedures and data replay are discussed. The OS2 operating system and Presentation Manager user interface system were used to create a highly interactive automated system. The system outputs are hardcopy printouts and MS DOS format files which may be used as input for other PC programs.

  12. Real-time radar rainfall estimation

    NASA Astrophysics Data System (ADS)

    Anagnostou, Emmanouil Nikolaos

    1997-08-01

    This research reports on several aspects of real-time monitoring of the spatial and temporal distribution of rainfall from ground-based weather radar. Optimization of the performance of the National Weather Service's Precipitation Processing Subsystem (PPS) is the first objective. This is achieved by developing a calibration procedure which simultaneously estimates the optimal parameter values by providing a global assessment of the system's performance. Evaluation of the system is based on a data set consisting of two months of radar reflectivity measurements, and hourly raingage rainfall accumulations, from the Melbourne, Florida WSR-88D site. Radar-raingage root mean square (RMS) difference reduction up to 20% with respect to the default system parameter values is demonstrated. Investigation of statistical procedures for real-time adjustment of the mean-field systematic radar rainfall error is the second objective. For this purpose, a data- based Monte Carlo simulation experiment is performed. The study uses an extensive data set of hourly radar rainfall products and raingage accumulations from the Tulsa, Oklahoma WSR-88D site. This intercomparison study concluded to a bias procedure which overall appeared to perform better than the other. The main results from this research are: (1) statistical methods with optimal error model parameters perform significantly better than using only bias observations, and (2) bias adjustment is mostly effective in cold season precipitation measurements. Final objective of this research is development of a new real-time radar rainfall estimation algorithm. The new processing steps introduced in this algorithm are beam- height effect correction, vertical integration, rain classification, and continuous range effect correction. Additionally, the algorithm applies advection correction at the gridded rainfall rates to minimize the temporal sampling effect, and its calibration is cast in a recursive formulation with parameters

  13. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  14. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  15. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  16. Real-time fractal signal processing in the time domain

    NASA Astrophysics Data System (ADS)

    Hartmann, András; Mukli, Péter; Nagy, Zoltán; Kocsis, László; Hermán, Péter; Eke, András

    2013-01-01

    Fractal analysis has proven useful for the quantitative characterization of complex time series by scale-free statistical measures in various applications. The analysis has commonly been done offline with the signal being resident in memory in full length, and the processing carried out in several distinct passes. However, in many relevant applications, such as monitoring or forecasting, algorithms are needed to capture changes in the fractal measure real-time. Here we introduce real-time variants of the Detrended Fluctuation Analysis (DFA) and the closely related Signal Summation Conversion (SSC) methods, which are suitable to estimate the fractal exponent in one pass. Compared to offline algorithms, the precision is the same, the memory requirement is significantly lower, and the execution time depends on the same factors but with different rates. Our tests show that dynamic changes in the fractal parameter can be efficiently detected. We demonstrate the applicability of our real-time methods on signals of cerebral hemodynamics acquired during open-heart surgery.

  17. Needs of Near Real-Time Data: Perspectives for Supporting Disaster Observations -- Wildfires

    NASA Astrophysics Data System (ADS)

    Ambrosia, V. G.; Buechel, S.; Sullivan, D. V.; Enomoto, F. Y.; Hinkley, E.

    2010-12-01

    Between 2004 and 2010, the Wildfire Research and Applications Partnership (WRAP), a joint NASA / US Forest Service project, matured, demonstrated and transitioned innovative technologies and capabilities for real-time information data delivery to Incident Management Teams on wildland fires in the United States. The capabilities included the development of innovative unmanned airborne systems (UAS), multispectral sensors, on-board, real-time processing, and a COTS-driven visualization and common operating picture (COP) capability. The UAS airborne element involved demonstrating a medium-altitude, large payload capacity, long-duration, Unmanned Airborne Systems (UAS) the NASA Ikhana (Predator-B derivative). The sensor system, a redesigned Daedalus AADS1268 line-scanner with 16 spectral channels (VIS-IR-TIR), was further modified to allow long-duration mission capabilities, and full on-board geo-rectification and second-generation product development for delivery through a UAS / SatCom / Ground data telemetry system. The COP, the Collaborative Decision Environment (CDE) based on a mash-up of wildfire intelligence data in GoogleEarth, enabled operational use of the real-time UAS-acquired sensor data, along with other critical geospatial fire / weather data for incident management team use and visualization. The CDE allowed the shared integration of various additional asset information sets (satellite, other airborne sensor data, and ground condition information, comprising a simplified sensor web concept design. All of these capabilities and advancements are described from both a development and “end-user” perspective. The wildfire management agency end-users (primarily the U.S. Forest Service), are currently adopting some of these capabilities into operational utility. An assessment of the gaps in adaptation will also be addressed.

  18. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  19. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  20. Residential Real-time Price Response Simulation

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Chassin, David P.; Fuller, Jason C.; Pratt, Robert G.

    2011-10-10

    The electric industry is gaining experience with innovative price responsive demand pilots and limited roll-outs to customers. One of these pilots is investigating real-time pricing signals to engage end-use systems and local distributed generation and storage in a distributed optimization process. Attractive aspects about the approach include strong scalability characteristics, simplified interfaces between automation devices, and the adaptability to integrate a wide variety of devices and systems. Experience in this nascent field is revealing a rich array of for engineering decisions and the application of complexity theory. To test the decisions, computer simulations are used to reveal insights about design, demand elasticity, and the limits of response (including consumer fatigue). Agent-based approaches lend themselves well in the simulation to modeling the participation and interaction of each piece of equipment on a distribution feeder. This paper discusses rate design and simulation experiences at the distribution feeder level where consumers and their HVAC systems and water heaters on a feeder receive real-time pricing signals.

  1. NSTX power supply real time controller

    SciTech Connect

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  2. Real-time Raman sensing without spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Min Ju; Kim, Sungho; Yang, Timothy K.; Kumar, Dinesh; Bae, Sung Chul

    2015-03-01

    Raman spectroscopy has been a powerful tool in various fields of science and technology ranging from analytical chemistry to biomedical imaging. In spite of unique features, Raman spectroscopy has also some limitations. Among them are weak Raman signal compared to strong fluorescence and relatively complicated setup with expensive and bulky spectrometer. In order to increase the sensitivity of Raman technique, many clever attempts have been made and some of them were very successful including CARS, SRS, and so on. However, these still requires expensive and more complicated setup. In this work, we have attempted to build a real-time compact Raman sensor without spectrometer. Conventional spectrometer was replaced with a narrow-band optical filter and alternatively modulated two lasers with slightly different wavelengths. At one laser, Raman signal from a target molecule was transmitted through the optical filter. At the other laser, this signal was blocked by the optical filter and could not be detected by photon detector. The alternative modulation of two lasers will modulate the Raman signal from a target molecule at the same modulation frequency. This modulated weak Raman signal was amplified by a lock-in amplifier. The advantages of this setup include compactness, low cost, real-time monitoring, and so on. We have tested the sensitivity of this setup and we found that it doesn't have enough sensitivity to detect single molecule-level, but it is still good enough to monitor the change of major chemical composition in the sample.

  3. Real-time computerized annotation of pictures.

    PubMed

    Li, Jia; Wang, James Z

    2008-06-01

    Developing effective methods for automated annotation of digital pictures continues to challenge computer scientists. The capability of annotating pictures by computers can lead to breakthroughs in a wide range of applications, including Web image search, online picture-sharing communities, and scientific experiments. In this work, the authors developed new optimization and estimation techniques to address two fundamental problems in machine learning. These new techniques serve as the basis for the Automatic Linguistic Indexing of Pictures - Real Time (ALIPR) system of fully automatic and high speed annotation for online pictures. In particular, the D2-clustering method, in the same spirit as k-means for vectors, is developed to group objects represented by bags of weighted vectors. Moreover, a generalized mixture modeling technique (kernel smoothing as a special case) for non-vector data is developed using the novel concept of Hypothetical Local Mapping (HLM). ALIPR has been tested by thousands of pictures from an Internet photo-sharing site, unrelated to the source of those pictures used in the training process. Its performance has also been studied at an online demo site where arbitrary users provide pictures of their choices and indicate the correctness of each annotation word. The experimental results show that a single computer processor can suggest annotation terms in real-time and with good accuracy. PMID:18421105

  4. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  5. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  6. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  7. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  8. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  9. Wi-Fi real time location systems

    NASA Astrophysics Data System (ADS)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  10. Exploding Nitromethane in Silico, in Real Time.

    PubMed

    Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V

    2014-10-01

    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes. PMID:26278455

  11. Real Time Monitor of Grid job executions

    NASA Astrophysics Data System (ADS)

    Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.

    2010-04-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  12. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  13. Passive Global, Real-Time TEC Monitoring

    NASA Astrophysics Data System (ADS)

    Pongratz, M. B.

    2002-12-01

    Sensors are being developed to provide a satellite-based VHF global lightning monitor (e.g. Suszcynsky, et al., "VHF Global Lightning and Severe Storm Monitoring from Space: Storm-level Characterization of VHF Lightning Emissions," EOS Trans. AGU 2001 Fall Mt. Prog. And Abstr. 82, No. 47, F143, 2001). Dispersive effects of propagation of the lightning electromagnetic wave through the ionospheric and plasmaspheric plasmas cause the higher frequency components to arrive at the satellite before lower frequency components. From the time-of-arrival at several frequencies we can derive the TEC between the satellite and the lightning. Using multi-satellite techniques we can geolocate the lightning and the ionospheric penetration point quite accurately. A single ground station could provide essentially real-time regional TEC coverage. Four ground stations could provide global, real-time TEC measurements to supplement existing ground-based systems, especially over broad ocean areas. We expect several lightning detections per satellite per minute. Temporal resolution will be limited only by ground segment processing. Spatial coverage and resolution will be limited by lightning occurrence, but many commercial sector TEC requirements are also correlated to lightning occurrence. With our FORTE (Fast On-orbit Recording of Transient Events) satellite we sense lightning over most of the globe including the oceans. We expect to determine TEC spatial gradients with tens of km resolution. This capability should be especially useful in severe convective weather to aircraft using GPS-based navigation, e.g. the FAA's Wide Area Augmentation System (WAAS).

  14. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-03-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.

  15. A real-time prediction of UTC

    NASA Astrophysics Data System (ADS)

    Thomas, Claudine; Allan, David W.

    1994-05-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  16. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  17. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  18. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  19. Filming protein fibrillogenesis in real time

    NASA Astrophysics Data System (ADS)

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-12-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures.

  20. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Matthies, Larry H.; Anderson, Charles H.

    1991-12-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  1. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Anderson, Charles H.; Matthies, Larry H.

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  2. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  3. Real-time slicing of data space

    SciTech Connect

    Crawfis, R.A.

    1996-07-01

    Real-time rendering of iso-contour surfaces is problematic for large complex data sets. In this paper, an algorithm is presented that allows very rapid representation of an interval set surrounding a iso-contour surface. The algorithm draws upon three main ideas. A fast indexing scheme is used to select only those data points near the contour surface. Hardware assisted splatting is then employed on these data points to produce a volume rendering of the interval set. Finally, by shifting a small window through the indexing scheme or data space, animated volumes are produced showing the changing contour values. In addition to allowing fast selection and rendering of the data, the indexing scheme allows a much compressed representation of the data by eliminating ``noise`` data points.

  4. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  5. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  6. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  7. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  8. Filming protein fibrillogenesis in real time

    PubMed Central

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-01-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures. PMID:25519825

  9. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  10. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  11. A operational real time flood forecasting chain

    NASA Astrophysics Data System (ADS)

    Arena, N.; Cavallo, A.; Giannoni, F.; Turato, B.

    2003-04-01

    Extreme floods forecast represent an important modeling challenge for which it is crucial to utilize the simplest model representations that capture the dominant controls of extreme flood response. For extreme floods, the spatio-temporal structure of rainfall and drainage network structure often play a fundamental role. The integrated meteo-hydrologic real time forecasting chain in use at the Hydrometorological Center of Liguria Region is presented with particular regard to a specific case study. The meteorological forecasts are performed through the use of traditional means as Numerical Weather Predictions models at different resolutions and an innovative tool for the now-casting prediction as the meteorological Radar. The elements of the hydrologic model are a Hortonian infiltration model and a GIUH-based network response model. The basin scales of interest range from approximately 50 - 1,000 km2. The case study is the November 23-26, 2002 event.

  12. Real-time snapshot hyperspectral imaging endoscope

    PubMed Central

    Kester, Robert T.; Bedard, Noah; Gao, Liang; Tkaczyk, Tomasz S.

    2011-01-01

    Hyperspectral imaging has tremendous potential to detect important molecular biomarkers of early cancer based on their unique spectral signatures. Several drawbacks have limited its use for in vivo screening applications: most notably the poor temporal and spatial resolution, high expense, and low optical throughput of existing hyperspectral imagers. We present the development of a new real-time hyperspectral endoscope (called the image mapping spectroscopy endoscope) based on an image mapping technique capable of addressing these challenges. The parallel high throughput nature of this technique enables the device to operate at frame rates of 5.2 frames per second while collecting a (x, y, λ) datacube of 350 × 350 × 48. We have successfully imaged tissue in vivo, resolving a vasculature pattern of the lower lip while simultaneously detecting oxy-hemoglobin. PMID:21639573

  13. A Measure of Real-Time Intelligence

    NASA Astrophysics Data System (ADS)

    Gavane, Vaibhav

    2013-03-01

    We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.

  14. Real-Time Inspection Of Currency

    NASA Astrophysics Data System (ADS)

    Blazek, Henry

    1986-12-01

    An automatic inspection machine, designed and manufactured by the Perkin-Elmer Corporation for the U.S. Bureau of Engraving and Printing, is capable of real-time inspection of currency at rates compatible with the output of modern high-speed printing presses. Inspection is accomplished by comparing test notes (in 32-per-sheet format) with reference notes stored in the memory of a digital computer. This paper describes the development of algorithms for detecting defective notes, one of the key problems solved during the development of the inspection system. Results achieved on an analytical model, used for predicting probability of false alarms and probability of detecting typically defective notes, are compared to those obtained by system simulation.

  15. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  16. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  17. Compact snapshot real-time imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2011-11-01

    The described spectral imaging system, referred to as a Snapshot Hyperspectral Imaging Fourier Transform (SHIFT) spectrometer, is capable of acquiring spectral image data of a scene in a single integration of a camera, is ultra-compact, inexpensive (commercial off-the-shelf), has no moving parts, and can produce datacubes (x, y, λ) in real time. Based on the multiple-image FTS originally developed by A. Hirai [1], the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. By combining a birefringent interferometer with a lenslet array, the entire spectrometer consumes approximately 15×15×20 mm3, excluding the imaging camera. The theory of the birefringent FTS is provided, followed by details of its specific embodiment and a laboratory proof of concept of the sensor. Post-processing is currently accomplished in Matlab, but progress is underway in developing real-time reconstruction capabilities with software programmed on a graphics processing unit (GPU). It is anticipated that processing of >30 datacubes per second can be achieved with modest GPU hardware, with spatial/spectral data of or exceeding 256×256 spatial resolution elements and 60 spectral bands over the visible (400-800 nm) spectrum. Data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions as well as retinal imaging.

  18. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated. PMID:25903875

  19. INTERNAL DOSE AND RESPONSE IN REAL-TIME.

    EPA Science Inventory

    Abstract: Rapid temporal fluctuations in exposure may occur in a number of situations such as accidents or other unexpected acute releases of airborne substances. Often risk assessments overlook temporal exposure patterns under simplifying assumptions such as the use of time-wei...

  20. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  1. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  2. Mapping Wildfires In Nearly Real Time

    NASA Technical Reports Server (NTRS)

    Nichols, Joseph D.; Parks, Gary S.; Denning, Richard F.; Ibbott, Anthony C.; Scott, Kenneth C.; Sleigh, William J.; Voss, Jeffrey M.

    1993-01-01

    Airborne infrared-sensing system flies over wildfire as infrared detector in system and navigation subsystem generate data transmitted to firefighters' camp. There, data plotted in form of map of fire, including approximate variations of temperature. System, called Firefly, reveals position of fires and approximate thermal intensities of regions within fires. Firefighters use information to manage and suppress fires. Used for other purposes with minor modifications, such as to spot losses of heat in urban areas and to map disease and pest infestation in vegetation.

  3. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  4. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  5. Real-time multi-view deconvolution

    PubMed Central

    Schmid, Benjamin; Huisken, Jan

    2015-01-01

    Summary: In light-sheet microscopy, overall image content and resolution are improved by acquiring and fusing multiple views of the sample from different directions. State-of-the-art multi-view (MV) deconvolution simultaneously fuses and deconvolves the images in 3D, but processing takes a multiple of the acquisition time and constitutes the bottleneck in the imaging pipeline. Here, we show that MV deconvolution in 3D can finally be achieved in real-time by processing cross-sectional planes individually on the massively parallel architecture of a graphics processing unit (GPU). Our approximation is valid in the typical case where the rotation axis lies in the imaging plane. Availability and implementation: Source code and binaries are available on github (https://github.com/bene51/), native code under the repository ‘gpu_deconvolution’, Java wrappers implementing Fiji plugins under ‘SPIM_Reconstruction_Cuda’. Contact: bschmid@mpi-cbg.de or huisken@mpi-cbg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26112291

  6. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  7. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  8. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  9. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  10. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  11. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  12. Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC)

    PubMed Central

    Wood, Robin; Morrow, Carl; Barry, Clifton E.; Bryden, Wayne A.; Call, Charles J.; Hickey, Anthony J.; Rodes, Charles E.; Scriba, Thomas J.; Blackburn, Jonathan; Issarow, Chacha; Mulder, Nicola; Woodward, Jeremy; Moosa, Atica; Singh, Vinayak; Mizrahi, Valerie; Warner, Digby F.

    2016-01-01

    Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis (Mtb) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb, as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose

  13. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  14. Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC).

    PubMed

    Wood, Robin; Morrow, Carl; Barry, Clifton E; Bryden, Wayne A; Call, Charles J; Hickey, Anthony J; Rodes, Charles E; Scriba, Thomas J; Blackburn, Jonathan; Issarow, Chacha; Mulder, Nicola; Woodward, Jeremy; Moosa, Atica; Singh, Vinayak; Mizrahi, Valerie; Warner, Digby F

    2016-01-01

    Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis (Mtb) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb, as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose

  15. Real-time accumulative computation motion detectors.

    PubMed

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  16. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  17. Real-Time Accumulative Computation Motion Detectors

    PubMed Central

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  18. Real-time neural coding of memory.

    PubMed

    Tsien, Joe Z

    2007-01-01

    Recent identification of network-level functional coding units, termed neural cliques, in the hippocampus has allowed real-time patterns of memory traces to be mathematically described, intuitively visualized, and dynamically deciphered. Any given episodic event is represented and encoded by the activation of a set of neural clique assemblies that are organized in a categorical and hierarchical manner. This hierarchical feature-encoding pyramid is invariantly composed of the general feature-encoding clique at the bottom, sub-general feature-encoding cliques in the middle, and highly specific feature-encoding cliques at the top. This hierarchical and categorical organization of neural clique assemblies provides the network-level mechanism the capability of not only achieving vast storage capacity, but also generating commonalities from the individual behavioral episodes and converting them to the abstract concepts and generalized knowledge that are essential for intelligence and adaptive behaviors. Furthermore, activation patterns of the neural clique assemblies can be mathematically converted to strings of binary codes that would permit universal categorizations of the brain's internal representations across individuals and species. Such universal brain codes can also potentially facilitate the unprecedented brain-machine interface communications. PMID:17925242

  19. Real-time pricing's hidden surprise

    SciTech Connect

    Siddiqi, R.; Woodley, J.

    1994-03-01

    The electric utility industry in the United States and the rest of the world is in the midst of profound change, with various models of regulation and nonregulation being tested. The United States has opted for an incremental approach to changes in fundamental aspects of the industry. Other countries, most notably the United Kingdom, are in the process of deregulation. These different structures rely on and result in dramatically different markets. While market structures may differ, similar approaches to service designs are evolving. Specifically, service options based on pricing are proliferating, and customers are being given the opportunity to select from a menu of options. This is in marked contrast to the rigid tariff structures that presuppose monopoly status to achieve utility goals. Strong parallels may be drawn between the pool-pricing options and associated hedging mechanisms offered in England and Wales, and the two-part tariff-based real-time pricing (RTP) programs in the United States. The latter service design, which is undergoing experimentation at Georgia Power Co., and in pilot operation at Niagara Mohawk Power Corp., has been criticized as too complex and not reflecting a competitive pricing structure. However, the similarity between two-part tariff programs and pool-pricing services (offered in the U.K. to a significantly larger customer base, under greater competition) undercuts these criticisms.

  20. Real-time DIRCM system modeling

    NASA Astrophysics Data System (ADS)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  1. Near Real Time Ship Detection Experiments

    NASA Astrophysics Data System (ADS)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  2. Recommendations for real-time speech MRI.

    PubMed

    Lingala, Sajan Goud; Sutton, Brad P; Miquel, Marc E; Nayak, Krishna S

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  3. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  4. Optimizing near real time accountability for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2010-06-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  5. Real-time holographic camera system

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail Y.; Grabovski, Vitaly V.; Stolyarenko, Alexandr V.; Zahaykevich, George A.

    1997-04-01

    The holographic camera system for surface-relief hologram multiple reversible registration is presented. Photosensitive media is a single-layer photothermoplastic polymer on a glass substrate with conductive layer. This exclude a charges accumulation in the polymer volume and permits to realize an efficient enhancement of latent electrostatic image and its fast pulse heating development. The processes of charging, photogeneration, carriers transport, fast development and erasing, image enhancement were studied in detail and optimized. In order to improve some defects of photothermoplastic recording, originating from influences of circumstances and recording conditions, some new processes were developed: (1) fast charging with pulses corona in closed dielectric volume, (2) optoelectronic enhancement of electrostatic image, and (3) fast pulsed development with automatically controlled temperature rate. The dust-proof recording camera with built-in highvoltage power supply, thermo- and photosensors was designed to meet the needs of real-time or multiple- exposure interferometry, holographic training recording, holographic storage systems, correlation investigations and pattern recognition.

  6. Handheld real-time PCR device.

    PubMed

    Ahrberg, Christian D; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-02-01

    Here we report one of the smallest real-time polymerase chain reaction (PCR) systems to date with an approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in the form of virtual reaction chambers (VRCs) where a ≈200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate the PCR performance. The standard curve slope was -3.02 ± 0.16 cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of 0.91 ± 0.05 per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics. PMID:26753557

  7. Towards real-time image quality assessment

    NASA Astrophysics Data System (ADS)

    Geary, Bobby; Grecos, Christos

    2011-03-01

    We introduce a real-time implementation and evaluation of a new fast accurate full reference based image quality metric. The popular general image quality metric known as the Structural Similarity Index Metric (SSIM) has been shown to be an effective, efficient and useful, finding many practical and theoretical applications. Recently the authors have proposed an enhanced version of the SSIM algorithm known as the Rotated Gaussian Discrimination Metric (RGDM). This approach uses a Gaussian-like discrimination function to evaluate local contrast and luminance. RGDM was inspired by an exploration of local statistical parameter variations in relation to variation of Mean Opinion Score (MOS) for a range of particular distortion types. In this paper we out-line the salient features of the derivation of RGDM and show how analyses of local statistics of distortion type necessitate variation in discrimination function width. Results on the LIVE image database show tight banding of RGDM metric value when plotted against mean opinion score indicating the usefulness of this metric. We then explore a number of strategies for algorithmic speed-up including the application of Integral Images for patch based computation optimisation, cost reduction for the evaluation of the discrimination function and general loop unrolling. We also employ fast Single Instruction Multiple Data (SIMD) intrinsics and explore data parallel decomposition on a multi-core Intel Processor.

  8. Real time inverse filter focusing through iterative time reversal.

    PubMed

    Montaldo, Gabriel; Tanter, Mickaël; Fink, Mathias

    2004-02-01

    In order to achieve an optimal focusing through heterogeneous media we need to build the inverse filter of the propagation operator. Time reversal is an easy and robust way to achieve such an inverse filter in nondissipative media. However, as soon as losses appear in the medium, time reversal is not equivalent to the inverse filter anymore. Consequently, it does not produce the optimal focusing and beam degradations may appear. In such cases, we showed in previous works that the optimal focusing can be recovered by using the so-called spatiotemporal inverse filter technique. This process requires the presence of a complete set of receivers inside the medium. It allows one to reach the optimal focusing even in extreme situations such as ultrasonic focusing through human skull or audible sound focusing in strongly reverberant rooms. But, this technique is time consuming and implied fastidious numerical calculations. In this paper we propose a new way to process this inverse filter focusing technique in real time and without any calculation. The new process is based on iterative time reversal process. Contrary to the classical inverse filter technique, this iteration does not require any computation and achieves the inverse filter in an experimental way using wave propagation instead of computational power. The convergence from time reversal to inverse filter during the iterative process is theoretically explained. Finally, the feasibility of this iterative technique is experimentally demonstrated for ultrasound applications. PMID:15000188

  9. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  10. A Fast-Time Simulation Environment for Airborne Merging and Spacing Research

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Doble, Nathan A.; Barmore, Bryan E.; Singer, Sharon

    2005-01-01

    As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.

  11. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  12. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  13. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  14. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  15. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  16. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering

  17. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings

    PubMed Central

    Schmid, Silvan; Dohn, Søren; Boisen, Anja

    2010-01-01

    Micro- and nanomechanical resonators are widely being used as mass sensors due to their unprecedented mass sensitivity. We present a simple closed-form expression which allows a fast and quantitative calculation of the position and mass of individual particles placed on a micro or nano string by measuring the resonant frequency shifts of the first two bending modes. The method has been tested by detecting the mass spectrum of micro particles placed on a micro string. This method enables real-time mass spectrometry necessary for applications such as personal monitoring devices for the assessment of the exposure dose of airborne nanoparticles. PMID:22163642

  18. Real-Time Monitoring of Alpha Emissions. Final report, FY 1994

    SciTech Connect

    Gritzo, R.; Fowler, M.; Wouters, J.

    1994-12-31

    A technology is being developed for on-line, real-time monitoring of mixed and low-level incinerator stacks for levels of airborne alpha activity. The Large-Volume Flow Thru Detector System uses a detector composed of multiple parallel plates of scintillating material fabricated so that the entire stack gas stream flows directly through the inter-plate volume. This report is largely a compilation of 3 reports on background reduction, once-through flow tests, and the aeronautical/mechanical engineering work. The full text of each report is included as an appendix.

  19. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time

  20. Space-time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain.

    PubMed

    Iftimi, Adina; Montes, Francisco; Santiyán, Ana Míguez; Martínez-Ruiz, Francisco

    2015-01-01

    Airborne diseases are one of humanity's most feared sicknesses and have regularly caused concern among specialists. Varicella is an airborne disease which usually affects children before the age of 10. Because of its nature, varicella gives rise to interesting spatial, temporal and spatio-temporal patterns. This paper studies spatio-temporal exploratory analysis tools to detect specific behaviour of varicella in the city of Valencia, Spain, from 2008 to 2013. These methods have shown a significant association between the spatial and the temporal component, confirmed by the space-time models applied to the data. High relative risk of varicella is observed in economically disadvantaged regions, areas less involved in vaccination programmes. PMID:26530821

  1. WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)

    NASA Astrophysics Data System (ADS)

    Stellman, Christopher M.; Olchowski, Frederick M.; Michalowicz, Joseph V.

    2001-10-01

    In recent years the Optical Sciences Division, Naval Research Laboratory (NRL) has been involved in the development of real-time hyperspectral detection, cueing, target location, and target designation capabilities. Under the Dark HORSE program it was demonstrated that a hyperspectral sensor could be used for the autonomous, real- time detection of airborne and military ground targets. This work has culminated in WAR HORSE, an autonomous real-time visible hyperspectral target detection system that has been configured for us on a Predator Unmanned Air Vehicle (UAV). The sensor system provides Predator with the ability to detect manmade objects in areas of natural background. The system consists of a visible hyperspectral imaging sensor, a real-time signal processor, a high-resolution visible line scan camera, an interface and control software application, and a data storage medium. The system is coupled to an on- board GPS/INS to provide target geo-location information and relevant data is transmitted to a ground station using line- of-sight down-link capabilities. The presented paper will provide an overview of the WAR HORSE sensor system hardware components and their integration aboard a Predator UAV. In addition, the results of a recently completed demonstration aboard the Predator UAV will be provided. This demonstration represents the first autonomous real-time hyperspectral target detection system to flown aboard a Predator UAV.

  2. Real time UAV autonomy through offline calculations

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  3. The Real Time Mission Monitor: A Platform for Real Time Environmental Data Integration and Display during NASA Field Campaigns

    NASA Astrophysics Data System (ADS)

    He, M.; Hardin, D. M.; Goodman, M.; Blakeslee, R.

    2008-05-01

    The Real Time Mission Monitor (RTMM) is an interactive visualization application based on Google Earth, that provides situational awareness and field asset management during NASA field campaigns. The RTMM can integrate data and imagery from numerous sources including GOES-12, GOES-10, and TRMM satellites. Simultaneously, it can display data and imagery from surface observations including Nexrad, NPOL and SMART- R radars. In addition to all these it can display output from models and real-time flight tracks of all aircraft involved in the experiment. In some instances the RTMM can also display measurements from scientific instruments as they are being flown. All data are recorded and archived in an on-line system enabling playback and review of all sorties. This is invaluable in preparing for future deployments and in exercising case studies. The RTMM facilitates pre-flight planning, in-flight monitoring, development of adaptive flight strategies and post- flight data analyses and assessments. Since the RTMM is available via the internet - during the actual experiment - project managers, scientists and mission planners can collaborate no matter where they are located as long as they have a viable internet connection. In addition, the system is open so that the general public can also view the experiment, in-progress, with Google Earth. Predecessors of RTMM were originally deployed in 2002 as part of the Altus Cumulus Electrification Study (ACES) to monitor uninhabited aerial vehicles near thunderstorms. In 2005 an interactive Java-based web prototype supported the airborne Lightning Instrument Package (LIP) during the Tropical Cloud Systems and Processes (TCSP) experiment. In 2006 the technology was adapted to the 3D Google Earth virtual globe and in 2007 its capabilities were extended to support multiple NASA aircraft (ER-2, WB-57, DC-8) during Tropical Composition, Clouds and Climate Coupling (TC4) experiment and 2007 Summer Aerosonde field study. In April 2008

  4. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  5. Real Time Seismic Loss Estimation in Italy

    NASA Astrophysics Data System (ADS)

    Goretti, A.; Sabetta, F.

    2009-04-01

    By more than 15 years the Seismic Risk Office is able to perform a real-time evaluation of the earthquake potential loss in any part of Italy. Once the epicentre and the magnitude of the earthquake are made available by the National Institute for Geophysiscs and Volca-nology, the model, based on the Italian Geographic Information Sys-tems, is able to evaluate the extent of the damaged area and the consequences on the built environment. In recent years the model has been significantly improved with new methodologies able to conditioning the uncertainties using observa-tions coming from the fields during the first days after the event. However it is reputed that the main challenges in loss analysis are related to the input data, more than to methodologies. Unlike the ur-ban scenario, where the missing data can be collected with enough accuracy, the country-wise analysis requires the use of existing data bases, often collected for other purposed than seismic scenario evaluation, and hence in some way lacking of completeness and homogeneity. Soil properties, building inventory and population dis-tribution are the main input data that are to be known in any site of the whole Italian territory. To this end the National Census on Popu-lation and Dwellings has provided information on the residential building types and the population that lives in that building types. The critical buildings, such as Hospital, Fire Brigade Stations, Schools, are not included in the inventory, since the national plan for seismic risk assessment of critical buildings is still under way. The choice of a proper soil motion parameter, its attenuation with distance and the building type fragility are important ingredients of the model as well. The presentation will focus on the above mentioned issues, highlight-ing the different data sets used and their accuracy, and comparing the model, input data and results when geographical areas with dif-ferent extent are considered: from the urban scenarios

  6. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  7. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  8. Fast Simulation of Tsunamis in Real Time

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Wang, D.; Becker, N. C.; Weinstein, S. A.; Walsh, D.

    2011-12-01

    The U.S. Tsunami Warning Centers primarily base their wave height forecasts on precomputed tsunami scenarios, such as the SIFT model (Standby Inundation Forecasting of Tsunamis) developed by NOAA's Center for Tsunami Research. In SIFT, tsunami simulations for about 1600 individual earthquake sources, each 100x50 km, define shallow subduction worldwide. These simulations are stored in a database and combined linearly to make up the tsunami from any great earthquake. Precomputation is necessary because the nonlinear shallow-water wave equations are too time consuming to compute during an event. While such scenario-based models are valuable, they tacitly assume all energy in a tsunami comes from thrust at the décollement. The thrust assumption is often violated (e.g., 1933 Sanriku, 2007 Kurils, 2009 Samoa), while a significant number of tsunamigenic earthquakes are completely unrelated to subduction (e.g., 1812 Santa Barbara, 1939 Accra, 1975 Kalapana). Finally, parts of some subduction zones are so poorly defined that precomputations may be of little value (e.g., 1762 Arakan, 1755 Lisbon). For all such sources, a fast means of estimating tsunami size is essential. At the Pacific Tsunami Warning Center, we have been using our model RIFT (Real-time Inundation Forecasting of Tsunamis) experimentally for two years. RIFT is fast by design: it solves only the linearized form of the equations. At 4 arc-minutes resolution calculations for the entire Pacific take just a few minutes on an 8-processor Linux box. Part of the rationale for developing RIFT was earthquakes of M 7.8 or smaller, which approach the lower limit of the more complex SIFT's abilities. For such events we currently issue a fixed warning to areas within 1,000 km of the source, which typically means a lot of over-warning. With sources defined by W-phase CMTs, exhaustive comparison with runup data shows that we can reduce the warning area significantly. Even before CMTs are available, we routinely run models

  9. Development of a Real-Time Beryllium Air Monitor Utilizing Microwave Induced Plasma Spectroscopy (MIPAES)

    SciTech Connect

    Abeln, S.; Duan, Y.-a.; Olivares, J.A.; Koby, M.; Scopsick, R.C.

    1999-07-16

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) Program Development project at the Los Alamos National laboratory (LANL). The focus of this development has been an innovative beryllium air monitor for on-site' real-time continuous monitoring which overcomes limitations of the previous techniques for beryllium monitoring. A bench-top instrument has been set up and the performance of the instrument has been tested based on a solution aerosol. The sensitivity obtained with the instrument is sufficient to ensure workers can respond at airborne levels well below current exposure regulations. With this versatile, real-time monitor, worker exposure can be greatly reduced.

  10. Global meteorological data facility for real-time field experiments support and guidance

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.

    1988-01-01

    A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.

  11. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  12. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  13. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    SciTech Connect

    Schlager, R.J.; Sappey, A.D.; French, P.D.

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  14. Real-time and postprocessing holographic effects in dichromated pullulan.

    PubMed

    Savić, Svetlana; Pantelić, Dejan; Jakovijević, Dragica

    2002-08-01

    Experimental results concerning both real-time and postprocessing (after-development) behavior of a novel photosensitive material, dichromate-sensitized pullulan (DCP), are investigated. The exposure mechanism and possibilities for controlling holographic grating properties are discussed. We have shown that it is possible to maximize the diffraction efficiency of interference gratings after development by controlling diffraction efficiency in real time. Stronger real-time effects of DCP compared with those of dichromated gelatin are achieved. PMID:12153075

  15. Severe storms measurement system real time data processing and displays

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.

    1980-01-01

    The objectives of the system are to provide the system operator with real time system performance check and to provide data recording of all SSMS data. Meteorologists are provided with real time indication of meteorological data measurements including aid for directing flight profiles in real time and aid for directing SSMS operations. A day-to-day feedback is provided to meteorologists, system operators, and flight crews for flight planning on subsequent flight tests days.

  16. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  17. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  18. Real time simulation using position sensing

    NASA Technical Reports Server (NTRS)

    Studor, George F. (Inventor); Womack, Robert W. (Inventor); Hilferty, Michael F. (Inventor); Isbell, William B. (Inventor); Taylor, Jason A. (Inventor); Bacon, Bruce R. (Inventor)

    2000-01-01

    An interactive exercise system including exercise equipment having a resistance system, a speed sensor, a controller that varies the resistance setting of the exercise equipment, and a playback device for playing pre-recorded video and audio. The controller, operating in conjunction with speed information from the speed sensor and terrain information from media table files, dynamically varies the resistance setting of the exercise equipment in order to simulate varying degrees of difficulty while the playback device concurrently plays back the video and audio to create the simulation that the user is exercising in a natural setting such as a real-world exercise course.

  19. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  20. A real-time photogrammetry system based on embedded architecture

    NASA Astrophysics Data System (ADS)

    Zheng, S. Y.; Gui, L.; Wang, X. N.; Ma, D.

    2014-06-01

    In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  1. Estimating correlation for a real-time measure of connectivity.

    PubMed

    Arunkumar, Akhil; Panday, Ashish; Joshi, Bharat; Ravindran, Arun; Zaveri, Hitten P

    2012-01-01

    There has recently been considerable interest in connectivity analysis of fMRI and scalp and intracranial EEG time-series. The computational requirements of the pair-wise correlation (PWC), the core time-series measure used to estimate connectivity, presents a challenge to the real-time estimation of the PWC between all pairs of multiple time-series. We describe a parallel algorithm for computing PWC in real-time for streaming data from multiple channels. The algorithm was implemented on the Intel Xeon™ and IBM Cell Broadband Engine™ platforms. We evaluated time to estimate correlation for signals recorded with different acquisition parameters as a comparison to real-time constraints. We demonstrate that the execution time of these efficient implementations meet real-time constraints in most instances. PMID:23367098

  2. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  3. 75 FR 68418 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... successful real-time information program. A Request for Comments was published on May 4, 2006, at 71 FR 26399... 14, 2009, at 74 FR 1993. The purpose was to propose the establishment of minimum parameters and... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management...

  4. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document also... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... available and share traffic and travel conditions information via real-time information programs as...

  5. REAL-TIME PCR ASSAY DEVELOPMENT FOR MULTIPLE MAIZE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This talk presents updates on the development of real-time PCR assays for two seedborne pathogens of maize, Pantoea (Erwinia) stewartii, the causal agent of Stewart's bacterial wilt, and Stenocarpella (Diplodia) maydis, the causal agent of Diplodia ear rot. We developed primers and a real-time PCR p...

  6. COMPUTER-CONTROLLED, REAL-TIME AUTOMOBILE EMISSIONS MONITORING SYSTEM

    EPA Science Inventory

    A minicomputer controlled automotive emissions sampling and analysis system (the Real-Time System) was developed to determine vehicular modal emissions over various test cycles. This data acquisition system can sample real-time emissions at a rate of 10 samples/s. A buffer utiliz...

  7. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  8. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  9. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  10. Information display and interaction in real-time environments

    NASA Technical Reports Server (NTRS)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  11. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  12. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  13. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  14. REAL-TIME AND INTEGRATED MEASUREMENT OF POTENTIAL HUMAN EXPOSURE TO PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) FROM AIRCRAFT EXHAUST

    EPA Science Inventory

    Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...

  15. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  16. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  17. PC-based artificial neural network inversion for airborne time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Zhu, Kai-Guang; Ma, Ming-Yao; Che, Hong-Wei; Yang, Er-Wei; Ji, Yan-Ju; Yu, Sheng-Bao; Lin, Jun

    2012-03-01

    Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.

  18. Overview of real-time computer systems technical analysis of the Modcomp implementation of a proprietary system MAX IV'' and real-time UNIX system REAL/IX''

    SciTech Connect

    Cummings, J.

    1990-10-01

    There many applications throughout industry and government requiring real-time computing. Any application that monitors and/or controls a process would fit into this category. Some examples are: Nuclear power plants, Steel mills, Space program, etc. General Atomics uses eight real-time computer systems for control and high speed data acquisition required to run the nuclear fusion experiments. Real-Time computing can be defined as the ability to respond to asynchronous external events in a predictable (preferably fast) time frame. Real-Time computer systems are similar to other computers in many ways and may by used for general computing requirements such as Time-Sharing. However special hardware, operating systems and software had to be developed to meet the requirement for real-time computing. Traditionally, real-time computing has been a realm of proprietary operating systems with real-time applications written in FORTRAN and assembly language. In the past, these systems adequately served the needs of the real-time world. Many of these systems that were developed 15 years ago are still being used today. However the real-time world is now changing, demanding new systems to be developed. This paper gives a description of general real-time computer systems and how they differ from other systems. However, the main purpose of this paper is to give a detailed technical description of the hardware and operating systems of an existing proprietary system and a real-time UNIX system. The two real-time computer systems described in detail are Modcomp Classic III/95 with the MAX IV operating system and Modcomp TRI-D 9750 with the REAL/IX.2 operating system.

  19. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  20. Real-Time Geospatial Data Viewer (RETIGO)

    EPA Science Inventory

    This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...

  1. Real-time atmospheric chemistry field instrumentation.

    PubMed

    Farmer, Delphine K; Jimenez, Jose L

    2010-10-01

    Quantifying the concentrations of trace atmospheric species in complex, reactive, and constantly changing gas and particle mixtures is challenging. This article provides a broad overview of recent advances in instrumentation used for analyzing ambient gases and particles continuously and with fast time resolution during field campaigns. PMID:20722374

  2. Real time chemical dynamics at surfaces

    NASA Astrophysics Data System (ADS)

    Bonn, M.; Kleyn, A. W.; Kroes, G. J.

    2002-03-01

    It is a major goal in surface science to make movies of molecules on surfaces, in which the reaction of the molecules on the surface can be followed on a femtosecond time scale, with sub-nanometer resolution. By moving the actors (the molecules) to precisely determined positions on the stage (the surface) at some well-defined moment in time, and subsequently making a space- and time-resolved documentary of what happens next, we would be able to understand the reactive interactions between molecules on surfaces in the greatest possible detail. This would enable us to set the stage and bring together the actors in such a way as to produce the chemical outcomes our society needs, by improving existing catalysts and designing novel catalysts, and by engineering novel reactions on surfaces. Any future director of such movies needs to know which techniques (i.e., which theoretical and experimental methods) hold promise for movie making, what has been done with these techniques, and what can be done with appropriate extensions. The methods we discuss are: (i) the time-dependent wave packet method, which is a theoretical method for simulating molecule-surface reactions with sub-nanometer resolution on a femtosecond time scale, (ii) molecular beam experiments, which allow detailed investigation of the molecule-surface interaction at a molecular level, and (iii) time-resolved laser pump-probe experiments, which allow reactions to be studied with femtosecond resolution. In particular, we discuss (i) theoretical studies of the dissociation reaction of hydrogen on metal surfaces, the reactive system presently understood at the greatest level of detail, (ii) the reactive and non-reactive scattering of heavy diatomics (NO,CO) from metal surfaces, and (iii) the competition between reaction of coadsorbed CO with O and desorption of CO, again on a metal surface. We examine possibilities to extend these methods to make movies at the desired level of detail. We also discuss which

  3. Toward Real Time Uavs' Image Mosaicking

    NASA Astrophysics Data System (ADS)

    Mehrdad, S.; Satari, M.; Safdary, M.; Moallem, P.

    2016-06-01

    Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs' data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs' image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV's sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.

  4. 17 CFR 43.3 - Method and timing for real-time public reporting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMISSION (CONTINUED) REAL-TIME PUBLIC REPORTING § 43.3 Method and timing for real-time public reporting. (a) Responsibilities of parties to a swap to report swap transaction and pricing data in real-time—(1) In general. A... repositories in providing the public dissemination of swap transaction and pricing data in...

  5. 17 CFR 43.3 - Method and timing for real-time public reporting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMISSION REAL-TIME PUBLIC REPORTING § 43.3 Method and timing for real-time public reporting. (a) Responsibilities of parties to a swap to report swap transaction and pricing data in real-time—(1) In general. A... repositories in providing the public dissemination of swap transaction and pricing data in...

  6. 17 CFR 43.3 - Method and timing for real-time public reporting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMISSION REAL-TIME PUBLIC REPORTING § 43.3 Method and timing for real-time public reporting. (a) Responsibilities of parties to a swap to report swap transaction and pricing data in real-time—(1) In general. A... repositories in providing the public dissemination of swap transaction and pricing data in...

  7. Space Shuttle Main Engine real time stability analysis

    NASA Astrophysics Data System (ADS)

    Kuo, F. Y.

    1993-06-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  8. High-density FPGAs for real-time video processing

    NASA Astrophysics Data System (ADS)

    Nordhauser, Steven; Beckstead, Jeffrey A.; Castracane, James; Koltai, Peter J.; Mouzakes, Jason; Simkulet, Michelle D.

    1997-04-01

    The use of an off-the-shelf general purpose processing system supplied by Giga Operations as applied to real-time video applications is described. The system is modular enough to be used in many scientific and industrial applications and powerful enough to maintain the throughput required for real-time video processing. This hardware and the associated programming environment has enabled InterScience to pursue research in real-time data compression, real-time Electronic Speckle Pattern Interferometry (ESPI) image processing, and industrial quality control and manufacturing. The system is based on Xilinx 4000 series field programmable gate arrays with associated static and dynamic random access memory in an architecture optimized for video processing on either the VL-Bus or PCI. This paper will focus on the design and development of a real-time frame subtractor for ESPI using this technology. Examples of the improvement in research capability provided by real-time frame subtraction are shown, including images from biomedical experiments. Further applications, based on this system are described. These include real-time data compression, quality control for production lines as part of an automated inspection system and a multi-camera security system allowing motion estimation to automatically prioritize camera selection.

  9. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  10. Real Time Telemetry Data Capture and Storage

    1997-05-14

    This program is used to capture telemetry data from remote instrumentation systems. The data can be captured at the rate of 1M bit per second. The data can come in one of several formats, NRZ, RZ, and Bi-Phase. The DECOM software takes the serial data stream and locks on to a unique code word. By tracking the code word the software can strip out the information. Thus the program can display the incoming data realmore » time while saving the data to disk.« less

  11. Fast-Time Evaluations of Airborne Merging and Spacing in Terminal Arrival Operations

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Karthik; Barmore, Bryan; Bussink, Frank; Weitz, Lesley; Dahlene, Laura

    2005-01-01

    NASA researchers are developing new airborne technologies and procedures to increase runway throughput at capacity-constrained airports by improving the precision of inter-arrival spacing at the runway threshold. In this new operational concept, pilots of equipped aircraft are cleared to adjust aircraft speed to achieve a designated spacing interval at the runway threshold, relative to a designated lead aircraft. A new airborne toolset, prototypes of which are being developed at the NASA Langley Research Center, assists pilots in achieving this objective. The current prototype allows precision spacing operations to commence even when the aircraft and its lead are not yet in-trail, but are on merging arrival routes to the runway. A series of fast-time evaluations of the new toolset were conducted at the Langley Research Center during the summer of 2004. The study assessed toolset performance in a mixed fleet of aircraft on three merging arrival streams under a range of operating conditions. The results of the study indicate that the prototype possesses a high degree of robustness to moderate variations in operating conditions.

  12. Black Hole Formation in Real Time

    NASA Astrophysics Data System (ADS)

    Nissanke, Samaya

    2015-08-01

    Gravity plays a fundamental role in the formation, evolution and fate of stars. However, it remains unclear how massive stars, almost always in pairs, end their lives as extreme gravity objects (neutron stars and black holes) and what their eventual fate is. The physics driving these events in strong-field gravity are complex, rich but still remain elusive. Theoretical work in general relativity has long predicted that the formation of black holes through neutron star mergers emit vast amounts of gravitational radiation, through gravitational waves (GWs), and conventional electromagnetic (EM) radiation. Observing GWs and EM radiation from these elusive short-lived mergers remains one of the holy grails of modern astronomy and is only now possible with a suite of new time-domain telescopes and experiments. I will first review the most recent advances in this blossoming field of EM+GW astronomy, which combines three active disciplines: time-domain astronomy, computational astrophysics and general relativity. I will discuss the promises of this new convergence by illustrating the wealth of astrophysical information that a combined EM+GW measurement would immediately bring. I will then outline the main challenges that lie ahead for this new field in pinpointing the sky location of neutron star mergers using GW detectors and optical and radio wide-field synoptic surveys.

  13. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  14. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  15. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  16. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  17. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  18. Noninvasive real-time imaging of apoptosis.

    PubMed

    Laxman, Bharathi; Hall, Daniel E; Bhojani, Mahaveer Swaroop; Hamstra, Daniel A; Chenevert, Thomas L; Ross, Brian D; Rehemtulla, Alnawaz

    2002-12-24

    Strict coordination of proliferation and programmed cell death (apoptosis) is essential for normal physiology. An imbalance in these two opposing processes results in various diseases including AIDS, neurodegenerative disorders, myelodysplastic syndromes, ischemiareperfusion injury, cancer, autoimmune disease, among others. Objective and quantitative noninvasive imaging of apoptosis would be a significant advance for rapid and dynamic screening as well as validation of experimental therapeutic agents. Here, we report the development of a recombinant luciferase reporter molecule that when expressed in mammalian cells has attenuated levels of reporter activity. In cells undergoing apoptosis, a caspase-3-specific cleavage of the recombinant product occurs, resulting in the restoration of luciferase activity that can be detected in living animals with bioluminescence imaging. The ability to image apoptosis noninvasively and dynamically over time provides an opportunity for high-throughput screening of proapoptotic and antiapoptotic compounds and for target validation in vivo in both cell lines and transgenic animals. PMID:12475931

  19. Real time control for NASA robotic gripper

    NASA Technical Reports Server (NTRS)

    Salter, Carole A.; Baras, John S.

    1990-01-01

    The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.

  20. Xyz Airborne Time Domain Em: P-Them Test in Reid Mahaffy

    NASA Astrophysics Data System (ADS)

    Vetrov, A.

    2012-12-01

    The vertical axis transmitter loop and receiver coil combination is widely used in Airborne Time-Domain EM systems. In such configurations the largest portion of the transmitter magnetic moment, which is distributed in a vertical direction, is transmitted to the subsurface, and the strongest vertical response from underground conductors is acquired with a vertical axis (Z) receiver coil. However, the horizontal axis (X and Y) components carry valuable information about target body geometry and their borders/edges. Most Airborne Time Domain systems currently in use are configured such that the X component is aligned with the flight direction. At typical survey speeds (60 to 80 kph) towed bird systems may expect to be subject to vibration that results in movement of horizontal and vertical receiver's axis from its desired nominal position. The mechanical design of the P-THEM transmitter and receiver is based on Bernard Kremer's (THEM Geophysics) developments finished and improved by Pico Envirotec Inc. The P-THEM system consists of a loop-transmitter assembly, powered by a motor generator and a 3-axis (XYZ) coil receiver attached at the midpoint of a tow cable between transmitter and a helicopter. The suspension system of the receiver coils assembly allows the Z-coil to remain horizontal at all the time during the flight. Pico Envirotec has developed methodology to recalculate the data from three axis of the receiver that allows mechanical vibration influence to be eliminated from the acquired data. The recalculated X-component gives very useful information for interpretation of the observation results. The P-THEM system has been test flown over the Reid Mahaffy geological test site located in Northern Ontario in Canada. The test site, created by the Ontario Geological Survey, contains the main conductor formed with three sub-vertical sliced conductive bodies. Three lines (L30, L40 and L50) over the test site have been flown in North and South direction with the P

  1. Time series predictions with neural nets: Application to airborne pollen forecasting

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. M.; Sanchez, J. R.; Ramos, N. E.; Ramos, G. I.

    1993-09-01

    Pollen allergy is a common disease causing rhinoconjunctivitis (hay fever) in 5 10% of the population. Medical studies have indicated that pollen related diseases could be highly reduced if future pollen contents in the air could be predicted. In this work we have developed a new forecasting method that applies the ability of neural nets to predict the future behaviour of chaotic systems in order to make accurate predictions of the airborne pollen concentration. The method requires that the neural net be fed with non-zero values, which restricts the method predictions to the period following the start of pollen flight. The operational method outlined here constitutes a different point of view with respect to the more generally used forecasts of time series analysis, which require input of many meteorological parameters. Excellent forecasts were obtained training a neural net by using only the time series pollen concentration values.

  2. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  3. Real-time and reliable human detection in clutter scene

    NASA Astrophysics Data System (ADS)

    Tan, Yumei; Luo, Xiaoshu; Xia, Haiying

    2013-10-01

    To solve the problem that traditional HOG approach for human detection can not achieve real-time detection due to its time-consuming detection, an efficient algorithm based on first segmentation then identify method for real-time human detection is proposed to achieve real-time human detection in clutter scene. Firstly, the ViBe algorithm is used to segment all possible human target regions quickly, and more accurate moving objects is obtained by using the YUV color space to eliminate the shadow; secondly, using the body geometry knowledge can help to found the valid human areas by screening the regions of interest; finally, linear support vector machine (SVM) classifier and HOG are applied to train for human body classifier, to achieve accurate positioning of human body's locations. The results of our comparative experiments demonstrated that the approach proposed can obtain high accuracy, good real-time performance and strong robustness.

  4. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  5. Real Time Observation of DNA Nanotube Assembly

    NASA Astrophysics Data System (ADS)

    Verde, Lisa Val

    2006-03-01

    DNA nanotubes are of interest for applications ranging from nanofabrication to biophysical studies. The DNA Nanotubes used in this research are self-assembling structures composed of DNA double-crossover tiles. These tiles are simply two connected helices composed of five single stranded DNA oligomers. Each tile exposes four sticky ends responsible for the linkage between neighboring tiles. This linkage creates the nanotube lattice, with intrinsic curvature. The curvature orients each tile with a 60^o angle from the previous one so that six tiles make up the circumference of a nanotube. Nanotube stability depends on conditions such as ionic strength and temperature. A PCR machine is used to anneal the strands into nanotubes. A duplicated annealing process was constructed under a light microscope. PVP (polyvinyl prolidone) coated glass both confined the DNA nanotubes to a 2-3 μm focal plane and prevented them from sticking to the sample surface. By the time the tubes were long enough to track (>= 3 μm), they continued to lengthen primarily via end-to-end joining with some reaching lengths greater than 100 μm. These observations helped define more efficient annealing protocols that resulted in tubes with fewer imperfections.

  6. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  7. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback. © 2015 Wiley Periodicals, Inc. PMID:26678030

  8. Building flexible real-time systems using the Flex language

    NASA Technical Reports Server (NTRS)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  9. Reference genes in real-time PCR.

    PubMed

    Kozera, Bartłomiej; Rapacz, Marcin

    2013-11-01

    This paper aims to discuss various aspects of the use of reference genes in qPCR technique used in the thousands of present studies. Most frequently, these are housekeeping genes and they must meet several criteria so that they can lay claim to the name. Lots of papers report that in different conditions, for different organisms and even tissues the basic assumption—the constant level of the expression is not maintained for many genes that seem to be perfect candidates. Moreover, their transcription can not be affected by experimental factors. Sounds simple and clear but a great number of designed protocols and lack of consistency among them brings confusion on how to perform experiment properly. Since during selection of the most stable normalizing gene we can not use any reference gene, different ways and algorithms for their selection were developed. Such methods, including examples of best normalizing genes in some specific cases and possible mistakes are presented based on available sources. Numerous examples of reference genes applications, which are usually in too few numbers in relevant articles not allowing to make a solid fundament for a reader, will be shown along with instructive compilations to make an evidence for presented statements and an arrangement of future qPCR experiments. To include all the pitfalls and problems associated with the normalization methods there is no way not to begin from sample preparation and its storage going through candidate gene selection, primer design and statistical analysis. This is important because numerous short reviews available cover the topic only in lesser extent at the same time giving the reader false conviction of complete topic recognition. PMID:24078518

  10. Delivery performance of conventional aircraft by terminal-area, time-based air traffic control: A real-time simulation evaluation

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Houck, Jacob A.; Capron, William R.; Lohr, Gary W.

    1990-01-01

    A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors.

  11. The First Real-Time Tsunami Animation

    NASA Astrophysics Data System (ADS)

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  12. An Evaluation of Real-Time Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Teferle, F. N.; Bingley, R.; Laurichesse, D.

    2012-12-01

    The use of modern low-latency Numerical Weather Prediction (NWP) models by meteorological institutions to improve nowcasting operations requires the accurate and timely estimation of the Zenith Total Delay (ZTD). Observations from Global Navigation Satellite Systems (GNSS) can be processed to obtain such ZTD estimates. As of now, meeting the established requirements on the latency (as low as 5 min) and accuracy (up to few millimeters) of the ZTD for its use in nowcasting applications stands as a challenge. However, using, for example, the real-time orbit and clock products from the recently established IGS Real-Time Service, it is possible to estimate the ZTD by different processing strategies and each strategy can result in a different level of accuracy. The Bundesamt für Kartographie und Geodäsie Ntrip Client (BNC) can provide ZTD estimates in real-time using precise point positioning (PPP) without integer ambiguity resolution. Recently, the Centre National d'Etudes Spatiales (CNES) has released a modified version of BNC which produces ZTD estimates in real-time with integer-PPP, i.e. PPP with integer ambiguity resolution using their integer-recovery clock and widelane phase bias information. trackRT from MIT and RTNet from GPS Solutions Inc are also capable of providing real-time estimates of the ZTD. In this study, we present an evaluation of the real-time ZTD estimates obtained from different GNSS processing systems. Furthermore, we compare the real-time estimates to those from a near real-time system and the IGS Final Troposphere products.

  13. Head movement compensation in real-time magnetoencephalographic recordings

    PubMed Central

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps. PMID:26150963

  14. Distributed real-time model-based diagnosis

    NASA Technical Reports Server (NTRS)

    Barrett, A. C.; Chung, S. H.

    2003-01-01

    This paper presents an approach to onboard anomaly diagnosis that combines the simplicity and real-time guarantee of a rule-based diagnosis system with the specification ease and coverage guarantees of a model-based diagnosis system.

  15. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Kao, Simon M.

    1987-01-01

    A multiprocessing architecture for performing real time monitoring and analysis using knowledge-based problem solving techniques is discussed. To handle asynchronous inputs and perform in real time, the system consists of three or more separate processes which run concurrently on one or more processors and communicate via a message passing scheme. The Data Management Process gathers, compresses, scales and sends the incoming telemetry data to other tasks. The Inference Process consists of a proprietary high performance inference engine that runs at 1000 rules per second using telemetry data to perform real time analysis on the state and health of the Space Telescope. The multiprocessing architecture has been interfaced to a simulator and is able to process the incoming telemetry in real time.

  16. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  17. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  18. Real-time holography on bacteriorhodopsin-based materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.

    1998-09-01

    The main properties and mechanisms of photoresponse of the bacteriohodopsin-based materials are presented. Fields of their potential applications in the real-time holography and nonlinear optics are discussed.

  19. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  20. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  1. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  2. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  3. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  4. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  5. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  6. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1999-01-01

    A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

  7. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  8. Real-time lossy compression of hyperspectral images using iterative error analysis on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sánchez, Sergio; Plaza, Antonio

    2012-06-01

    Hyperspectral image compression is an important task in remotely sensed Earth Observation as the dimensionality of this kind of image data is ever increasing. This requires on-board compression in order to optimize the donwlink connection when sending the data to Earth. A successful algorithm to perform lossy compression of remotely sensed hyperspectral data is the iterative error analysis (IEA) algorithm, which applies an iterative process which allows controlling the amount of information loss and compression ratio depending on the number of iterations. This algorithm, which is based on spectral unmixing concepts, can be computationally expensive for hyperspectral images with high dimensionality. In this paper, we develop a new parallel implementation of the IEA algorithm for hyperspectral image compression on graphics processing units (GPUs). The proposed implementation is tested on several different GPUs from NVidia, and is shown to exhibit real-time performance in the analysis of an Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) data sets collected over different locations. The proposed algorithm and its parallel GPU implementation represent a significant advance towards real-time onboard (lossy) compression of hyperspectral data where the quality of the compression can be also adjusted in real-time.

  9. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  10. Real-time transesophageal echocardiography facilitates antegrade balloon aortic valvuloplasty

    PubMed Central

    Ito, Kazato; Yano, Kentaro; Tanaka, Chiharu; Nakashoji, Tomohiro; Tonomura, Daisuke; Takehara, Kosuke; Kino, Naoto; Yoshida, Masataka; Kurotobi, Toshiya; Tsuchida, Takao; Fukumoto, Hitoshi

    2016-01-01

    We report two cases of severe aortic stenosis (AS) where antegrade balloon aortic valvuloplasty (BAV) was performed under real-time transesophageal echocardiography (TEE) guidance. Real-time TEE can provide useful information for evaluating the aortic valve response to valvuloplasty during the procedure. It was led with the intentional wire-bias technique in order to compress the severely calcified leaflet, and consequently allowed the balloon to reach the largest possible size and achieve full expansion of the aortic annulus. PMID:27054107

  11. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  12. Real-time shipboard orbit determination using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.

  13. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  14. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  15. Real-time laser holographic Interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil presssure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  16. Real-time laser holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  17. A Formal Model for Real-Time Parallel Computation

    SciTech Connect

    Hui, Peter SY; Chikkagoudar, Satish

    2012-12-29

    The imposition of real-time constraints on a parallel computing environment--- specifically high-performance, cluster-computing systems--- introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we briefly motivate the need for such a system, and we introduce an automaton-based method for performing such formal verification. We define the concept of a consistent parallel timing system: a hybrid system consisting of a set of timed automata (specifically, timed Buechi automata as well as a timed variant of standard finite automata), intended to model the timing properties of a well-behaved real-time parallel system. Finally, we give a brief case study to demonstrate the concepts in the paper: a parallel matrix multiplication kernel which operates within provable upper time bounds. We give the algorithm used, a corresponding consistent parallel timing system, and empirical results showing that the system operates under the specified timing constraints.

  18. A Scheduling Algorithm for Replicated Real-Time Tasks

    NASA Technical Reports Server (NTRS)

    Yu, Albert C.; Lin, Kwei-Jay

    1991-01-01

    We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.

  19. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  20. Real-Time Data Use for Operational Space Weather Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Nobis, T. E.

    2010-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Division of the Space and Missile Systems Center (AFSPC SYAG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command’s (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products were developed to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems in real/near-real time. This real-time attribute is the primary factor in allowing for actual operational product output, but it’s also responsible for a variety of detrimental effects that need to be considered, researched, mitigated, or otherwise eliminated in future/upgrade product applications. This presentation will provide brief overviews of the SEEFS products, along with information and recommendations concerned with their near/real-time data acquisition and use, to include: input data requirements, inputs/outputs ownership, observation cadence, transmission/receipt links and cadence, data latency, quality control, error propagation and associated confidence level applications, and ensemble model run potentials. Validation issues related to real-time data will also be addressed, along with recommendations for new real-time data archiving that should prove operationally beneficial.

  1. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  2. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  3. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    PubMed

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-01

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens. PMID:27327938

  4. Real-time modeling of complex atmospheric releases in urban areas

    SciTech Connect

    Baskett, R.L.; Ellis, J.S.; Sullivan, T.J.

    1994-08-01

    If a nuclear installation in or near an urban area has a venting, fire, or explosion, airborne radioactivity becomes the major concern. Dispersion models are the immediate tool for estimating the dose and contamination. Responses in urban areas depend on knowledge of the amount of the release, representative meteorological data, and the ability of the dispersion model to simulate the complex flows as modified by terrain or local wind conditions. A centralized dispersion modeling system can produce realistic assessments of radiological accidents anywhere in a country within several minutes if it is computer-automated. The system requires source-term, terrain, mapping and dose-factor databases, real-time meteorological data acquisition, three-dimensional atmospheric transport and dispersion models, and experienced staff. Experience with past responses in urban areas by the Atmospheric Release Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory illustrate the challenges for three-dimensional dispersion models.

  5. Real-time geo-spatial registration of target images from the WAR HORSE sensor

    NASA Astrophysics Data System (ADS)

    Kendall, William B.

    2002-08-01

    The Naval Research Laboratory's airborne WAR HORSE sensor incorporates a hyperspectral line-scan sensor, a high- resolution video line-scanner, and a CMIGITS INS/GPS unit. Targets are detected in real time from the hyperspectral data, and images of the detected targets are chipped from the high-resolution video data for presentation to an operator. The INS/GPS data are used to geo-spatially register (georegister) both the hyperspectral data and the video chips. In this paper we show detection results for processing the hyperspectral data both before and after geo- spatial registration when assumed target size is incorporated into the detection algorithms. Then we illustrate the utility of presenting target image chips which are geo-spatially registered and fused with the hyperspectral data.

  6. Utilizing real-time and near real-time data in the iNtegrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Mullinix, R. E.; Rastaetter, L.; Pulkkinen, A.; Zheng, Y.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Taktakishvili, A.; Chulaki, A.; Shim, J.; Bakshi, S. S.; Patel, K. D.; Jain, P.

    2010-12-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Desk at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 250 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities and also discuss some of the challenges and lessons-learned in dealing with diverse real-time and near-real time space

  7. Real-time processing of radar return on a parallel computer

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1992-01-01

    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.

  8. Real-time data and communications services of NCAR's Earth Observing Laboratory

    NASA Astrophysics Data System (ADS)

    Webster, C. J.; Daniels, M.; Stossmeister, G.

    2011-12-01

    Near real-time information is critical for mission management of atmospheric observing systems. Advances in satellite communications and Internet distribution have allowed the Earth Observing Laboratory (EOL) of NCAR to provide data, information and imagery to the scientists during evolving weather situations. Real-time data are necessary for updating interactive displays that show products from forecast models and many disparate observation systems (e.g. satellite, soundings, surface radars and aircraft in-situ observations). At the same time, network-based collaborative tools such as chat and web conferencing facilitate interactive participation between remote groups of scientists, engineers, operations centers and the observing platforms. In the recent PREDICT deployment of the NSF/NCAR GV research aircraft, dropsondes were released from the aircraft at 45,000 ft over a 1000 km x 1000 km area to give profiles of pressure, temperature, humidity and wind below the aircraft. Real-time data from the sondes was collected by the aircraft and relayed by satcom into the Global Telecommunications System (GTS) and assimilated into forecast models. The model forecast results were then fed back into ground-based and airborne displays (along with a multitude of observations) for enhanced decision-making and mission guidance. This environment of streaming data in real-time also allows more experts to look at data and compare it with other measurements. One particular benefit is that it alerts instrument operators on the ground and in the air to instrument problems, which can then be addressed very rapidly. The resulting communications and collaborations infrastructure results in unprecedented improvements to our data quality and rapid targeting of mission resources to important weather events. Using several examples, this presentation will provide an overview of current tools and processes in use at EOL, and future needs will be discussed.

  9. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  10. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  11. Real-time attitude determination and gyro calibration

    NASA Technical Reports Server (NTRS)

    Challa, M.; Filla, O.; Sedlak, J.; Chu, D.

    1993-01-01

    We present results for two real-time filters prototyped for the Compton Gamma Ray Observatory (GRO), the Extreme Ultraviolet Explorer (EUVE), the Cosmic Background Explorer (COBE), and the next generation of Geostationary Operational Environmental Satellites (GOES). Both real and simulated data were used to solve for attitude and gyro biases. These filters promise advantages over single-frame and batch methods for missions like GOES, where startup and transfer-orbit operations require quick knowledge of attitude and gyro biases.

  12. Distributed RTEMS Prototyping for Hard Real-Time Systems

    NASA Astrophysics Data System (ADS)

    Bossard, F.; Jouanneau, S.

    2009-05-01

    This paper presents a software prototyping to accommodate RTEMS to any embedded multiprocessor architecture. It outlines the development effort to move this free kernel to a distributed system. The concern of such an approach is to uncouple application software from underlying hardware including network. A real test platform consists of two ERC32 boards linked through an Ethernet network. RTEMS validation is achieved thanks to functional tests and a hard real-time application.

  13. Safe Runtime Verification of Real-Time Properties

    NASA Astrophysics Data System (ADS)

    Colombo, Christian; Pace, Gordon J.; Schneider, Gerardo

    Introducing a monitor on a system typically changes the system’s behaviour by slowing the system down and increasing memory consumption. This may possibly result in creating new bugs, or possibly even ‘fixing’ bugs, only to reappear as the monitor is removed. Properties written in a real-time logic, such as duration calculus, can be particularly sensitive to such changes induced through monitoring. The same problem occurs in other scenarios such as when a system is ported to a faster machine. In this paper, we identify a class of real-time properties, in duration calculus, which are monotonic under the slowing down (speeding up) of the underlying system. We apply this approach to the real-time runtime monitoring tool Larva, where we use duration calculus as a monitoring property specification language, so we automatically identify properties which can be shown to be monotonic with respect to system re-timing.

  14. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  15. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  16. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  17. A framework for building real-time expert systems

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1991-01-01

    The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.

  18. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  19. A real-time VLC to UART protocol conversion system

    NASA Astrophysics Data System (ADS)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  20. The JPL GRIP Portal - Serving Near Real-time Observation and Model Forecast for Hurricane Study

    NASA Astrophysics Data System (ADS)

    Li, P.; Hristova-Veleva, S. M.; Turk, F. J.; Vu, Q.; Knosp, B. W.; Lambrigtsen, B.; Poulsen, W. L.; Shen, T. J.; Licata, S. J.

    2010-12-01

    NASA conducted a field experiment, the Genesis and Rapid Intensification Processes (GRIP), in the summer of 2010 to better understand how tropical storms form and develop into major hurricanes. The DC-8 aircraft and the Global Hawk Unmanned Airborne System (UAS) were deployed loaded with instruments for measurements including lightning, temperature, 3D wind, precipitation, liquid and ice water contents, aerosol and cloud profiles. JPL created a web portal to collect, process and display both the satellite and the airborne observations in near real-time (NRT) and integrated then with the hurricane forecast models. The objective of the JPL GRIP portal is to provide environmental context and temporal continuity for the field campaign observations to help: (1) mission planning, (2) understanding of the physical processes, and (3) improving models through validation and data assimilation. Built on top of the JPL Tropical Cyclone Information System (TCIS) infrastructure, we developed a GRIP portal presenting a near-real time (NRT) basin-scale view of the atmospheric and surface conditions over the Atlantic, characterizing large-scale and storm-scale processes, as depicted by satellites and models. Using Google Earth embedded in the web browser and two independent calendars, we provide 3D visualization of a comprehensive collection of observations and model results as overlapping image overlays, wind vectors, curtain plots, or clickable tracks. We also provide Google Earth time animations of multiple data and model variables. In the portal, we offer more than two dozen NRT satellite products from a wide variety of instruments, model forecasts from four large-scale models (i.e., NOGAPS, GFS, ECMWF, and UKMET), and the best tracks and the forecast tracks from National Hurricane Center’s ATCF models. As they become available, we also display the airborne observations from HAMSR, APR2 and Dropsonde. It is a great challenge to set up a reliable infrastructure to collect data

  1. Handling Flight-Research Data In Real Time

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.

    1988-01-01

    Researchers at widely separated locations able to participate in tests and analyze data immediately. Basic data-handling needs common: Communicates with vehicle, pilot, and test team; Acquires, computes, and displays data; knows exact location of research vehicle at all times. Continuing challenge for designers and operators of ground support facilities to perform tasks in real time and present integrated results to research team in real time. Paper presents several approaches to satisfaction of requirements of representative types of aircraft research programs at NASA Western Aeronautical Test Range of Ames Research Center.

  2. Real-Time Holographic Image Correction Using Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1994-01-01

    We present experimental results of one-way coherent imaging through a thin phase-aberrating medium using a holographic technique with bacteriorhodopsin as a real-time holographic material. Bacteriorhodopsin is well suited for the application when the aberration is time varying because of its real-time writing and erasing characteristics, sensitivity, and spatial resolution. We show results with final image resolution of greater than 20 line pairs/mm and high signal-to-noise ratio using a polarization-holography approach.

  3. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  4. High-fidelity real-time maritime scene rendering

    NASA Astrophysics Data System (ADS)

    Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin

    2011-06-01

    The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.

  5. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  6. Operational real-time GPS-enhanced earthquake early warning

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Johanson, I. A.; Allen, R. M.

    2014-10-01

    Moment magnitudes for large earthquakes (Mw≥7.0) derived in real time from near-field seismic data can be underestimated due to instrument limitations, ground tilting, and saturation of frequency/amplitude-magnitude relationships. Real-time high-rate GPS resolves the buildup of static surface displacements with the S wave arrival (assuming nonsupershear rupture), thus enabling the estimation of slip on a finite fault and the event's geodetic moment. Recently, a range of high-rate GPS strategies have been demonstrated on off-line data. Here we present the first operational system for real-time GPS-enhanced earthquake early warning as implemented at the Berkeley Seismological Laboratory (BSL) and currently analyzing real-time data for Northern California. The BSL generates real-time position estimates operationally using data from 62 GPS stations in Northern California. A fully triangulated network defines 170+ station pairs processed with the software trackRT. The BSL uses G-larmS, the Geodetic Alarm System, to analyze these positioning time series and determine static offsets and preevent quality parameters. G-larmS derives and broadcasts finite fault and magnitude information through least-squares inversion of the static offsets for slip based on a priori fault orientation and location information. This system tightly integrates seismic alarm systems (CISN-ShakeAlert, ElarmS-2) as it uses their P wave detections to trigger its processing; quality control runs continuously. We use a synthetic Hayward Fault earthquake scenario on real-time streams to demonstrate recovery of slip and magnitude. Reanalysis of the Mw7.2 El Mayor-Cucapah earthquake tests the impact of dynamic motions on offset estimation. Using these test cases, we explore sensitivities to disturbances of a priori constraints (origin time, location, and fault strike/dip).

  7. Spatio-temporal modeling for real-time ozone forecasting

    PubMed Central

    Paci, Lucia; Gelfand, Alan E.; Holland, David M.

    2013-01-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts. PMID:24010052

  8. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  9. IGS Real-Time Service - Status And Future Developments

    NASA Astrophysics Data System (ADS)

    Rülke, Axel; Agrotis, Loukis; Caissy, Mark; Habrich, Heinz; Neumaier, Peter; Söhne, Wolfgang; Weber, Georg

    2014-05-01

    The International GNSS Service (IGS) provides high quality products for a large variety of scientific and engineering GNSS applications. Well known post-processing results are satellite ephemeris and station coordinates in a global reference frame, Earth orientation and atmospheric parameters. With its Real-Time Service now the IGS extends its capability to support applications requiring real-time access to products. In this paper we introduce the latest status of the IGS Real-Time Service (IGS RTS) and describe its Initial Operational Capability (IOC). Components of the implemented infrastructure are described and an overview on available products and their usage is presented. The product quality is evaluated in view of applications such as real-time Precise Point Positioning (PPP). The plan is to declare Full Operational Capability (FOC) in 2014, as soon as the IGS Governing Board is satisfied with the accuracy and availability of the GNSS products. Hence the presentation closes with an outlook on progress towards real-time multi-GNSS in IGS.

  10. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  11. Real-time multispectral imaging application for poultry safety inspection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, Matthew P.

    2006-02-01

    The ARS imaging research group in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses for poultry industry. The industrial scale system includes a common aperture camera with three visible wavelength optical trim filters. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were presented. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line. The test results of industrial sacle real-time system showed that the multispectral imaging technique performed well for detecting fecal contaminants with a commercial processing speed (currently 140 birds per minute). The accuracy for the detection of fecal and ingesta contaminates was approximately 96%.

  12. Real-time operating systems at higher control

    SciTech Connect

    Jensen, E.D.

    1995-01-01

    Although virtually all development of real-time operating systems focuses on the lowest of the three traditional control levels, sheet economics demands higher level real-time OSs. Meeting this demand requires a major change in the mindset of the people who have been focusing on the lowest level of control. {open_quotes}These people are trying to deal with an elephant`s tail, but they don`t realize that there is an elephant attached to it.{close_quotes} For more than three decades, the historical real-time mindset, concepts and techniques have been driven by a particular pair of contexts. First is the application context, which can be characterized as {open_quotes}small, simple, centralized, static subsystems for low-level, sampled data, monitoring and first-order control.{close_quotes} Second is the hardware context, characterized by a scarcity of hardware resources due to size, weight, power and cost considerations. Both of these contexts are changing dramatically in ways that {open_quotes}have a significant impact on the concepts and techniques of real-time computing.{close_quotes} Hardware now offers much higher performance and the real-time domain is expanding upward in the application control hierarchy.

  13. Real-time pair-feeding of animals

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Connolly, J. P.; Hitchman, M. J.; Humbert, J. E.

    1972-01-01

    Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag.

  14. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  15. Toward real-time performance benchmarks for Ada

    NASA Technical Reports Server (NTRS)

    Clapp, Russell M.; Duchesneau, Louis; Volz, Richard A.; Mudge, Trevor N.; Schultze, Timothy

    1986-01-01

    The issue of real-time performance measurements for the Ada programming language through the use of benchmarks is addressed. First, the Ada notion of time is examined and a set of basic measurement techniques are developed. Then a set of Ada language features believed to be important for real-time performance are presented and specific measurement methods discussed. In addition, other important time related features which are not explicitly part of the language but are part of the run-time related features which are not explicitly part of the language but are part of the run-time system are also identified and measurement techniques developed. The measurement techniques are applied to the language and run-time system features and the results are presented.

  16. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  17. Distributed simulation using a real-time shared memory network

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.

    1993-01-01

    The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.

  18. Real-time measurement of mental workload: A feasibility study

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur; Humphrey, Darryl; Sirevaag, Erik; Mecklinger, Axel

    1990-01-01

    The primary goal of the study was to explore the utility of event-related brain potentials (ERP) as real-time measures of workload. To this end, subjects performed two different tasks both separately and together. One task required that subjects monitor a bank of constantly changing gauges and detect critical deviations. Difficulty was varied by changing the predictability of the gauges. The second task was mental arithmetic. Difficulty was varied by requiring subjects to perform operations on either two or three columns of numbers. Two conditions that could easily be distinguished on the basis of performance measures were selected for the real-time evaluation of ERPs. A bootstrapping approach was adopted in which one thousand samples of n trials (n = 1, 3, 5 ...65) were classified using several measures of P300 and Slow Wave amplitude. Classification accuracies of 85 percent were achieved with 25 trials. Results are discussed in terms of potential enhancements for real-time recording.

  19. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  20. Training recurrent neurocontrollers for real-time applications.

    PubMed

    Prokhorov, Danil V

    2007-07-01

    In this paper, we introduce a new approach to train recurrent neurocontrollers for real-time applications. We begin with training a recurrent neurocontroller for robustness on high-fidelity models of physical systems. For training, we use a recently developed derivative-free Kalman filter method which we enhance for controller training. After training, we fix weights of our recurrent neurocontroller and deploy it in an embedded environment. Then, we carry out additional training of the neurocontroller by adapting in real time its internal state (short-term memory), rather than its weights (long-term memory). Such real-time training is done with a new combination of simultaneous perturbation stochastic approximation (SPSA) and adaptive critic. Our critic is also a recurrent neural network (RNN), and it is trained by stochastic meta-descent (SMD) for increased efficiency. Our approach is applied to two important practical problems, electronic throttle control and hybrid electric vehicle control, with apparent performance improvement. PMID:17668657

  1. Test applications for heterogeneous real-time network testbed

    SciTech Connect

    Mines, R.F.; Knightly, E.W.

    1994-07-01

    This paper investigates several applications for a heterogeneous real-time network testbed. The network is heterogeneous in terms of network devices, technologies, protocols, and algorithms. The network is real-time in that its services can provide per-connection end-to-end performance guarantees. Although different parts of the network use different algorithms, all components have the necessary mechanisms to provide performance guarantees: admission control and priority scheduling. Three applications for this network are described in this paper: a video conferencing tool, a tool for combustion modeling using distributed computing, and an MPEG video archival system. Each has minimum performance requirements that must be provided by the network. By analyzing these applications, we provide insights to the traffic characteristics and performance requirements of practical real-time loads.

  2. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  3. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  4. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  5. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  6. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  7. Continuous focus tracking for real-time optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cobb, Michael J.; Liu, Xiumei; Li, Xingde

    2005-07-01

    We report an approach to achieving continuous focus tracking and a depth-independent transverse resolution for real-time optical coherence tomography (OCT) imaging. Continuous real-time focus tracking is permitted by use of a lateral-priority image acquisition sequence in which the depth-scanning rate is equivalent to the imaging frame rate. Real-time OCT imaging with continuous focus tracking is performed at 1 frame/s by reciprocal translation of a rapid lateral-scanning miniature imaging probe (e.g., an endoscope). The optical path length in the reference arm is scanned synchronously to ensure that the coherence gate coincides with the imaging beam focus. The image quality improvement is experimentally demonstrated by imaging a tissue phantom embedded with polystyrene microspheres and rabbit esophageal tissues.

  8. Real-Time Statistical Modeling of Blood Sugar.

    PubMed

    Otoom, Mwaffaq; Alshraideh, Hussam; Almasaeid, Hisham M; López-de-Ipiña, Diego; Bravo, José

    2015-10-01

    Diabetes is considered a chronic disease that incurs various types of cost to the world. One major challenge in the control of Diabetes is the real time determination of the proper insulin dose. In this paper, we develop a prototype for real time blood sugar control, integrated with the cloud. Our system controls blood sugar by observing the blood sugar level and accordingly determining the appropriate insulin dose based on patient's historical data, all in real time and automatically. To determine the appropriate insulin dose, we propose two statistical models for modeling blood sugar profiles, namely ARIMA and Markov-based model. Our experiment used to evaluate the performance of the two models shows that the ARIMA model outperforms the Markov-based model in terms of prediction accuracy. PMID:26303151

  9. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  10. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW. PMID:26628130

  11. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  12. Real-time inverse scattering for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ralston, Tyler S.; Marks, Daniel L.; Carney, P. Scott; Boppart, Stephen A.

    2007-02-01

    We have developed and implemented a system which can acquire, process, and display the inverse scattering solution for optical coherence tomography (OCT) in real-time at frame rates of 2.25 fps for 512 X 1024 images. Frames which previously required 60 s, now take under 500 ms, an improvement in processing speed by a factor of over 120 times. An efficient routine was designed which requires two interpolations of the columns, one one-dimensional real-to-complex fast Fourier transform (FFT) of the columns, and two two-dimensional FFTs. The limits to speed are now reliant on the parallelizability of the processing hardware. Our system provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future real-time systems.

  13. Effective Product Recommendation using the Real-Time Web

    NASA Astrophysics Data System (ADS)

    Esparza, Sandra Garcia; O'Mahony, Michael P.; Smyth, Barry

    The so-called real-time web (RTW) is a web of opinions, comments, and personal viewpoints, often expressed in the form of short, 140-character text messages providing abbreviated and highly personalized commentary in real-time. Today, Twitter is undoubtedly the king of the RTW. It boasts 190 million users and generates in the region of 65m tweets per day1. This RTW data is far from the structured data (movie ratings, product features, etc.) that is familiar to recommender systems research but it is useful to consider its applicability to recommendation scenarios. In this paper we consider harnessing the real-time opinions of users, expressed through the Twitter-like short textual reviews available on the Blippr service (www.blippr.com). In particular we describe how users and products can be represented from the terms used in their associated reviews and describe experiments to highlight the recommendation potential of this RTW data-source and approach.

  14. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  15. Real-Time WINDMI Predictions of Geomagnetic Storm and Substorms

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Horton, W.; Spencer, E.; Kozyra, J. U.

    2008-12-01

    Real-Time WINMDI is plasma physics-based, nonlinear dynamical model of the coupled solar WIND Magentosphere-Ionosphere system. Using upstream solar wind particle and field data, a system of nonlinear ordinary differential equations is solved numerically to describe the energy transfer from the solar wind to the magnetosphere-ionosphere system. The physics model WINMDI divides the incoming power into energy stored in multiple regions of M-I system and has been verified on GEM storm data in Spencer et al. (2007). The system of nonlinear ordinary differential equations, which describes energy transfer into, and between dominant components of the nightside magnetosphere and ionosphere, is solved numerically to determine the state of each component. The low-dimensional model characterizes the energy stored in the ring current and the region 1 field-aligned current which are use to compute model Dst and AL values. Real-time solar wind plasma parameters, available from ACE, are downloaded every 10 minutes to compute the input solar wind driving voltage for the model. Real-Time WINDMI computes model Dst and AL values about 1-2 hours before index data is available at the Kyoto WDC Quicklook website. Results are shown on the Real-Time WINDMI website. We present statistics for Real-Time WINDMI performance from 2006 to present and also compare the results for different input driving voltages. We plan to compare the database of Real-Time WINDMI Dst predictions with other ring current models which contain different loss and energization processes. The work is supported by NSF grant ATM-0638480.

  16. Simultaneous real-time monitoring of multiple cortical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  17. Geologic hazard monitoring with real-time GPS (Invited)

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Poland, M. P.; Hudnut, K. W.; Cervelli, P. F.; King, N. E.

    2009-12-01

    The USGS Earthquake and Volcano Hazards Science Centers are developing a high-rate (1-s epoch), real-time ground deformation monitoring system using data streamed from continuously recording GPS stations. We began by evaluating the ability of GPS data reduction software to recover offsets in a displacement test data set generated by offsetting a GPS antenna by measured amounts. We found that offsets as large as several meters and as small as 1 cm could be reliably resolved. Our methods and initial results were summarized in USGS Open File Report 1235 (http://pubs.usgs.gov/of/2006/1235/of2006-1235.pdf). Further evaluation of GPS software using raw data from the report and real-time GPS data were conducted after publication of the report. Based upon these results, we selected software that could produce both double difference (baseline) and single difference (point positioning) solutions. Using this software, we are now running real-time, 1-s, fixed-ambiguity, double-difference solutions for USGS deformation monitoring networks in Southern California, the San Francisco Bay Area, Long Valley, and at several Cascades volcanoes. GPS data are streamed over the Internet to processing centers in Pasadena, CA, and Vancouver, WA. Solutions are generally reliable, but we note solution gaps caused by the breakdown in the GPS data streams and intervals when baseline ambiguities are not resolved in some of the longer (>50 km) baselines. We have not yet attempted real-time point-position solutions because we lack accurate real-time satellite clock corrections. We plan to implement this technique in the future by either calculating satellite clock corrections using a network of stations or by applying corrections produced by JPL. We currently generate alarms for data gaps in the real-time GPS solutions and plan to automate displacement anomaly detection using an algorithm that removes common-mode and multi-path noise.

  18. The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Hall, John; Goodman, Michael; Parker, Philip; Freudinger, Larry; He, Matt

    2007-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, airborne and surface data sets; weather information; model and forecast outputs; and vehicle state data (e.g., aircraft navigation, satellite tracks and instrument field-of-views) for field experiment management RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses experiment during summer 2006 in Cape Verde, Africa. The integration and delivery of this information is made possible through data acquisition systems, network communication links and network server resources built and managed by collaborators at NASA Dryden Flight Research Center (DFRC) and Marshall Space Flight Center (MSFC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols.

  19. Compact real-time image processor for moving object tracking

    NASA Astrophysics Data System (ADS)

    Kinoshita, Noboru

    1996-03-01

    Latency time and hardware compactness are two important problems of real-time image processors for moving object tracking. We have developed a compact self-contained real-time image processor that is implemented on a single double-height VME board. The processor can execute major processing steps for moving object tacking during a single video field time. These steps are preprocessing, binarizing, labeling, feature extraction, and feature evaluation. We can obtain sorted feature vectors simultaneously when image data is read out from a sensor. Here a feature vector represents areas, centroid, and maximum intensity of each connected region in a binarized image. Some conventional image processors can execute the above steps individually in real-time and thread some steps in a pixel pipeline manner. However it is difficult to integrate feature extraction and feature evaluation in a pixel pipeline path. For real-time execution of all steps we focused on new architecture particularly for the latter three steps. To minimize the hardware we have developed three ASICs: labeler, feature accumulator, and sorter. To make our processor self-contained and scalable, it has an on- board micro processor, a digital video bus interface, and an RS232C port, and it is VME compatible in bus interface and mechanical dimension.

  20. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  1. Real-time monitoring for low-level pollution

    SciTech Connect

    Kishkovich, O.P.; Joffe, M.A.

    1997-11-01

    Real-time monitors provide a valuable addition to the arsenal of air-sampling methods used for IAQ applications. They are accurate, dependable, flexible, and provide IAQ professionals with more detailed quantitative information. RTM improves efficiency of many IAQ sampling applications and, in some cases, cannot be matched by other sampling techniques. Adequate instrumentation for demanding IAQ applications is available today. Future needs are expanding the range of pollutants that can be monitored with real-time instruments, improving reliability and portability of monitoring instrumentation, and devising cost-effective multiplexing schemes for multi-point RTM sampling.

  2. Spectral decontamination of a real-time helicopter simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.

  3. Optoelectronic radar receiver for real-time radar imaging

    NASA Astrophysics Data System (ADS)

    Wasilousky, Peter A.; Pape, Dennis R.; Carter, James A., III; Sunderlin, Tim A.

    1995-08-01

    We have previously presented the architecture and basic analytic results for a functional 1D pipelined hybrid optical/digital processing concept capable of generating a target range- doppler profile in real time. Here we address the fundamental system processing algorithm and hardware development issues in some detail. The approach to performing real-time phase correction of the individual range profiles is outlined, along with the basic system operational runtime algorithms and system processing pipeline. A description of the receiver hardware and its component functionality in terms of the presented operational theory is given as well.

  4. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  5. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  6. Infrared Signature Analysis: Real Time Monitoring Of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Bangs, Edmund R.

    1988-01-01

    The ability to monitor manufacturing processes in an adaptive control mode and perform an inspection in real time is of interest to fabricators in the pressure vessel, aerospace, automotive, nuclear and shipbuilding industries. Results of a series of experiments using infrared thermography as the principal sensing mode are presented to show how artificial intelligence contained in infrared isotherm, contains vast critical process variables. Image processing computer software development has demonstrated in a spot welding application how the process can be monitored and controlled in real time. The IR vision sensor program is now under way. Research thus far has focused on fusion welding, resistance spot welding and metal removal.

  7. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M.; Riblett, Jr., Loren E.; Green, Karl L.; Hunter, John A.; Cook, III, Robert N.; Stevens, James R.

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  8. Integrating Real-time Earthquakes into Natural Hazard Courses

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  9. A heterogeneous hierarchical architecture for real-time computing

    SciTech Connect

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  10. Rapid Real-Time SpaceWire Emulation

    NASA Astrophysics Data System (ADS)

    Mudie, Stephen; Parkes, Steve; Dunstan, Martin

    2015-09-01

    The SpaceWire Electronic Ground Support Equipment (EGSE) test and development unit from STAR-Dundee can be used to very rapidly emulate real-time behaviour of SpaceWire equipment. The behaviour of the equipment to emulate is described in a script using a SpaceWire specific scripting language. Once configured the SpaceWire EGSE unit operates independent of software. This paper describes three camera emulation scripts to demonstrate the rapid real-time SpaceWire emulation possible using the SpaceWire EGSE.

  11. Real-time pseudocolor coding thermal ghost imaging.

    PubMed

    Duan, Deyang; Xia, Yunjie

    2014-01-01

    In this work, a color ghost image of a black-and-white object is obtained by a real-time pseudocolor coding technique that includes equal spatial frequency pseudocolor coding and equal density pseudocolor coding. This method makes the black-and-white ghost image more conducive to observation. Furthermore, since the ghost imaging comes from the intensity cross-correlations of the two beams, ghost imaging with the real-time pseudocolor coding technique is better than classical optical imaging with the same technique in overcoming the effects of light interference. PMID:24561954

  12. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  13. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  14. Apollo experience report: Real-time display system

    NASA Technical Reports Server (NTRS)

    Sullivan, C. J.; Burbank, L. W.

    1976-01-01

    The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems.

  15. Photoacoustic monitoring of real time blood and hemolymph sedimentation

    NASA Astrophysics Data System (ADS)

    Landa, A.; Alvarado-Gil, J. J.; Gutíerrez-Juárez, G.; Vargas-Luna, M.

    2003-01-01

    The dynamics of blood and hemolymph sedimentation is studied in real time using the photoacoustic technique. A modified configuration of a conventional photoacoustic cell is used, where the advantage of this methodology is that the sample is not illuminated directly and that the process can be monitored through the measurement of the thermal contact between a reference material and the blood. It is demonstrated that during the process the thermal effusivity decreases at the region of contact between the sample and the reference materials. The usefulness of these results in real time monitoring using photothermal techniques is discussed.

  16. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    NASA Astrophysics Data System (ADS)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  17. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  18. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  19. Real-time optical holographic tracking of multiple objects

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

  20. Principles of real-time sonography in modern obstetrics

    SciTech Connect

    Perone, N.

    1984-01-01

    Introductory chapters assist the obstetrician in establishing an office-based ultrasound facility and choosing real-time ultrasound equipment. The author then offers step-by-step, superbly illustrated instructions on evaluation of the fetus in utero. Special attention is devoted to use of ultrasound in early pregnancy, antenatal assessment of fetal growth, evaluation of the placenta, diagnosis of congenital defects, and monitoring of fetal activity. Also included are chapters on the use of real-time sonography in invasive procedures such as amniocentesis and on sonographic study of gallbladder function in pregnancy.