Science.gov

Sample records for airborne research test

  1. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  2. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  3. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  4. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  5. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  6. Airborne Reconnoissance Pod Flijht Test

    NASA Astrophysics Data System (ADS)

    Henkel, P.; Sturz, R.

    1987-02-01

    Today's political environment has seen an increasing effort for deficit reduction resulting in defense budget cuts and decreased spending. Military capability is difficult to maintain under these circumstances unless innovation offers a low-cost alternative. One critical military capability is the ability to collect intelligence data efficiently. Tactical aerial reconnaissance its a large part of this capability. The aerial reconnaissance process usually involves dedicated aircraft with a single mission. The aircraft used for this mission are specially outfitted versions of fighter aircraft with avionics modified for the reconnaissance task. The luxury of such aircraft appears to be a thing of the past. This can be seen by recent attempts to designate a next-generation reconnaissance aircraft without success. Stopgap measures have been offered which consist of updating existing reconnaissance aircraft with new sensors and improved avionics. Upgrades definitely have their place, but do not take advantage of the multirole capabilities of modern tactical aircraft. Tactical aircraft avionics suites afford options not found in older aircraft, plus improved maintenance aspects of such systems. One method of overcoming aircraft generation gaps is to include a reconnaissance option in the form of a pod. The reconnaissance pod is not a new concept, but one which may have "found its time." The reconnaissance pod outfitted with modern sensors offers versatility, survivability and economy while reducing logistics, maintenance and training. This paper discusses a pod and sensor suite flight test program performed to verify the design features of the aerial reconnaissance pod.

  7. Airborne seeker evaluation and test system

    NASA Astrophysics Data System (ADS)

    Jollie, William B.

    1991-08-01

    The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.

  8. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  9. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  10. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  11. Safety Performance of Airborne Separation: Preliminary Baseline Testing

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Wing, David J.; Baxley, Brian T.

    2007-01-01

    The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.

  12. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  13. 54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET (LEFT) AND ASSOCIATED GOULD BRUSH CHART RECORDERS (RIGHT). ELAPSED TIME COUNTER SITS ATOP AIRBORNE BEACON EQUIPMENT TEST SET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  15. ARIES: NASA Langley's Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Wusk, Michael S.

    2002-01-01

    In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

  16. Nondestructive testing using air-borne ultrasound.

    PubMed

    Hsu, David K

    2006-12-22

    Over the last two decades, more efficient transducers were developed for the generation and reception of air-borne ultrasound, thus enabling the non-contact, non-contaminating inspection of composite laminates and honeycomb structures widely used in the aerospace industry. This paper presents the fundamentals of making air-borne ultrasonic measurement, and point out special considerations unique to propagating ultrasound in air and through solids. Transducer beam profile characterization, thickness dependence and resonance effects in the transmission of air-coupled ultrasound through plates, and the detection and imaging of defects and damage in solid laminates and honeycomb sandwich will be discussed and illustrated with examples. Finally, a manual scan system developed for implementing air-borne ultrasonic imaging in the field and on aircraft will be introduced.

  17. Airborne Data Link Operational Evaluation Test Plan

    DTIC Science & Technology

    1993-08-01

    Peg* 1. Rep meft .2. Gowe,; , Accessio, No. 3. Recspsent’s Catel " No. DOT/FAA/CT-TN93/30 I 4. Title and Subtite 5. Roep,, .t. AIRBORNE DATA LINK...320 15. Supplementary Notes 16 . Abstract This plan desci. s an end-to-end study of operational concepts and procedures associated with the introduction...4.4 Dependent Measures 9 4.5 ATC Messages 14 4.6 Flight Scenarios 14 4.7 Support Personnel 15 4.8 Data Reduction and Analysis 16 5. SCHEDULE 16 5.1

  18. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  19. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  20. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2008-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.

  1. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2007-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.

  2. Flight Test Safety Considerations for Airborne Science Aircraft

    NASA Technical Reports Server (NTRS)

    Reynolds, Randolph S.

    1997-01-01

    Most of the scientific community that require scientific data or scientific measurements from aircraft do not understand the full implications of putting certain equipment on board high performance aircraft. It is the duty of the NASA Flight Operations personnel to ensure that all Principal Investigators who are given space on NASA flight research aircraft, comply with stringent safety requirements. The attitude of the experienced Flight operations personnel given this duty has been and remains one of insuring that the PI's experiment is allowed to be placed on the aircraft (facility) and can be operated in a manner that will obtain the expected data. This is sometimes a challenge. The success that NASA has in this regard is due to the fact that it is its own authority under public law, to certify its aircraft as airworthy. Airworthiness, fitness for flight, is a complex issue which pulls together all aspects of configuration management, engineering, quality, and flight safety. It is often the case at each NASA Center that is conducting airborne research, that unique solutions to some challenging safety issues are required. These solutions permit NASA to do things that would not be permitted by the Department of Transportation. This paper will use examples of various flight research configurations to show the necessity of a disciplined process leading up to flight test and mission implementation. All new configurations required engineering flight test but many, as noted in this paper, require that the modifications be flight tested to insure that they do not negatively impact on any part of the aircraft operational profiles. The success of these processes has been demonstrated over many years and NASA has accommodated experimental packages that cannot be flown on any other aircraft.

  3. Autonomous Airborne Refueling Demonstration, Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the NASA Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small

  4. Autonomous Airborne Refueling Demonstration: Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small.

  5. Development and testing of a long-range airborne CO2 DIAL chemical detection system

    NASA Astrophysics Data System (ADS)

    Higdon, N. Scott; Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Kelly, Brian T.; Dowling, James A.; Pierrottet, Diego F.; Dean, David R.; Richter, Dale A.; Bousek, Ronald R.

    1998-11-01

    The Air Force Research Laboratory has developed and tested an airborne CO2 differential absorption lidar system for the remote detection of chemicals. The Laser Airborne Remote Sensing DIAL system uses topographic backscatter to provide a long-range measurement of the column-content absorption of chemical plumes in the path of the laser beam. A high-power CO2 laser, capable of operation on multiple isotopes, and a Mersenne telescope constitute the major transceiver components. In addition to the laser, telescope, and transceiver optics, several onboard diagnostic instruments were mounted on the flight bench to monitor and optimize the system performance during airborne operation. The flight bench, electronics racks, and data acquisition and experiment control stations were designed to be integrated onto the AFRL C-135E research aircraft, and to utilize the existing pointing and tracking system on the aircraft.

  6. The National Research Council of Canada`s flight facilities for airborne research

    SciTech Connect

    Marcotte, D.L.; MacPherson, J.I.; Douglas, C.

    1996-10-01

    The NRC maintains a fleet of research aircraft in support of programs in Flight Mechanics and Airborne Research Experiments. Two of these, a Convair-580 and a deHavilland DHC-6 Twin Otter, are equipped for a diverse program in Airborne Research including studies in atmospheric geoscience, airborne system development in resource geoscience and airborne radar development. While both aircraft share some common instrumentation, they have distinct capabilities and have developed different specializations. These capabilities are outlined and current and recent developments are reviewed. 5 refs., 4 figs., 2 tabs.

  7. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  8. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  9. EUFAR the unique portal for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    Created in 2000 and supported by the EU Framework Programmes since then, EUFAR was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to research infrastructures, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geo-sciences. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 18 instrumented aircraft and 3 remote-sensing instruments through the 13 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and research activities focused on providing an enabling environment for and promoting airborne research. The EUFAR2 activities cover three objectives, supported by the internet website www.eufar.net: (I - Institutional) improvement of the access to the research infrastructures and development of the future fleet according to the strategic advisory committee (SAC) recommendations; (ii - Innovation) improvement of the scientific knowledge and promotion of innovating instruments, processes and services for the emergence of new industrial technologies, with an identification of industrial needs by the SAC; (iii - Service) optimisation and harmonisation of the use of the research infrastructures through the development of the community of young researches in airborne science, of the standards and protocols and of the airborne central database. With the launch of a brand new website (www.eufar.net) in mid-November 2015, EUFAR aims to improve user experience on the website, which serves as a source of information and a hub where users are able to collaborate, learn, share expertise and best practices, and apply for transnational access, and education and training funded opportunities within the network. With its newly designed eye-catching interface

  10. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  11. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  12. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  13. AMALi - the Airborne Mobile Aerosol Lidar for Arctic research

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Neuber, R.; Lampert, A.; Ritter, C.; Wehrle, G.

    2010-03-01

    The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.

  14. Sensor integration and testing in an airborne environment

    NASA Astrophysics Data System (ADS)

    Ricks, Timothy P.; Streling, Julie T.; Williams, Kirk W.

    2005-11-01

    The U.S. Army Redstone Technical Test Center (RTTC) has been supporting captive flight testing of missile sensors and seekers since the 1980's. Successful integration and test of sensors in an airborne environment requires attention to a broad range of disciplines. Data collection requirements drive instrumentation and flight profile configurations, which along with cost and airframe performance factors influence the choice of test aircraft. Installation methods used for instrumentation must take into consideration environmental and airworthiness factors. In addition, integration of test equipment into the aircraft will require an airworthiness release; procedures vary between the government for military aircraft, and the Federal Aviation Administration (FAA) for the use of private, commercial, or experimental aircraft. Sensor mounting methods will depend on the type of sensor being used, both for sensor performance and crew safety concerns. Pilots will require navigation input to permit the execution of accurate and repeatable flight profiles. Some tests may require profiles that are not supported by standard navigation displays, requiring the use of custom hardware/software. Test locations must also be considered in their effect on successful data collection. Restricted airspace may also be required, depending on sensor emissions and flight profiles.

  15. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  16. Ground testing and campaign intercomparisons with the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.; Rochette, Luc; Noe, Anna; Oliver, Don; Tian, Jialin

    2014-10-01

    The NASA / JPSS Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 19 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (SNPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, with a primary focus on postmission ground testing and characterization performed subsequent to the recently conducted Suomi NPP (SNPP) airborne field campaign.

  17. NASA/LMSC coherent LIDAR airborne shear sensor: System capabilities and flight test plans

    NASA Technical Reports Server (NTRS)

    Robinson, Paul

    1992-01-01

    The primary objective of the NASA/LMSC Coherent Lidar Airborne Shear Sensor (CLASS) system flight tests is to evaluate the capability of an airborne coherent lidar system to detect, measure, and predict hazardous wind shear ahead of the aircraft with a view to warning flight crew of any impending dangers. On NASA's Boeing 737 Transport Systems Research Vehicle, the CLASS system will be used to measure wind velocity fields and, by incorporating such measurements with real-time aircraft state parameters, identify regions of wind shear that may be detrimental to the aircraft's performance. Assessment is to be made through actual wind shear encounters in flight. Wind shear measurements made by the class system will be compared to those made by the aircraft's in situ wind shear detection system as well as by ground-based Terminal Doppler Weather Radar (TDWR) and airborne Doppler radar. By examining the aircraft performance loss (or gain) due to wind shear that the lidar predicts with that actually experienced by the aircraft, the performance of the CLASS system as a predictive wind shear detector will be assessed.

  18. The State of the Industry and Research in Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Hodges, G.

    2007-12-01

    Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both

  19. Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection

    NASA Astrophysics Data System (ADS)

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent

    2016-06-01

    An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.

  20. Test field for airborne laser scanning in Finland

    NASA Astrophysics Data System (ADS)

    Ahokas, E.; Kaartinen, H.; Kukko, A.; Litkey, P.

    2014-11-01

    Airborne laser scanning (ALS) is a widely spread operational measurement tool for obtaining 3D coordinates of the ground surface. There is a need for calibrating the ALS system and a test field for ALS was established at the end of 2013. The test field is situated in the city of Lahti, about 100 km to the north of Helsinki. The size of the area is approximately 3.5 km × 3.2 km. Reference data was collected with a mobile laser scanning (MLS) system assembled on a car roof. Some streets were measured both ways and most of them in one driving direction only. The MLS system of the Finnish Geodetic Institute (FGI) consists of a navigation system (NovAtel SPAN GNSS-IMU) and a laser scanner (FARO Focus3D 120). In addition to the MLS measurements more than 800 reference points were measured using a Trimble R8 VRS-GNSS system. Reference points are along the streets, on parking lots, and white pedestrian crossing line corners which can be used as reference targets. The National Land Survey of Finland has already used this test field this spring for calibrating their Leica ALS-70 scanner. Especially it was easier to determine the encoder scale factor parameter using this test field. Accuracy analysis of the MLS points showed that the point height RMSE is 2.8 cm and standard deviation is 2.6 cm. Our purpose is to measure both more MLS data and more reference points in the test field area to get a better spatial coverage. Calibration flight heights are planned to be 1000 m and 2500 m above ground level. A cross pattern, southwest-northeast and northwest-southeast, will be flown both in opposite directions.

  1. Preliminary results of the LLNL airborne experimental test-bed SAR system

    SciTech Connect

    Miller, M.G.; Mullenhoff, C.J.; Kiefer, R.D.; Brase, J.M.; Wieting, M.G.; Berry, G.L.; Jones, H.E.

    1996-01-16

    The Imaging and Detection Program (IDP) within Laser Programs at Lawrence Livermore National Laboratory (LLNL) in cooperation with the Hughes Aircraft Company has developed a versatile, high performance, airborne experimental test-bed (AETB) capability. The test-bed has been developed for a wide range of research and development experimental applications including radar and radiometry plus, with additional aircraft modifications, optical systems. The airborne test-bed capability has been developed within a Douglas EA-3B Skywarrior jet aircraft provided and flown by Hughes Aircraft Company. The current test-bed payload consists of an X-band radar system, a high-speed data acquisition, and a real-time processing capability. The medium power radar system is configured to operate in a high resolution, synthetic aperture radar (SAR) mode and is highly configurable in terms of waveforrns, PRF, bandwidth, etc. Antennas are mounted on a 2-axis gimbal in the belly radome of the aircraft which provides pointing and stabilization. Aircraft position and antenna attitude are derived from a dedicated navigational system and provided to the real-time SAR image processor for instant image reconstruction and analysis. This paper presents a further description of the test-bed and payload subsystems plus preliminary results of SAR imagery.

  2. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  3. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  4. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  5. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  6. Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.

    1999-01-01

    To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.

  7. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  8. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  9. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  10. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  11. A flight test design for studying airborne applications of air to ground duplex data link communications

    NASA Astrophysics Data System (ADS)

    Scanlon, Charles H.

    1988-09-01

    The Automatic En Route Air Traffic Control (AERA) and the Advanced Automated System (AAS) of the NAS plan, call for utilization of data links for such items as computer generated flight clearances, enroute minimum safe altitude warnings, sector probes, out of conformance check, automated flight services, and flow management of advisories. A major technical challenge remaining is the integration, flight testing, and validation of data link equipment and procedures in the aircraft cockpit. The flight test organizational chart, was designed to have the airplane side of data link experiments implemented in the NASA Langley Research Center (LaRC) experimental Boeing 737 airplane. This design would enable investigations into implementation of data link equipment and pilot interface, operations, and procedures. The illustrated ground system consists of a work station with links to a national weather database and a data link transceiver system. The data link transceiver system could be a Mode-S transponder, ACARS, AVSAT, or another type of radio system such as the military type HF data link. The airborne system was designed so that a data link transceiver, workstation, and touch panel could be interfaced with an input output processor to the aircraft system bus and thus have communications access to other digital airplane systems.

  12. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; Hardesty, Michael; Brewer, Alan

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  13. A flight test design for studying airborne applications of air to ground duplex data link communications

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1988-01-01

    The Automatic En Route Air Traffic Control (AERA) and the Advanced Automated System (AAS) of the NAS plan, call for utilization of data links for such items as computer generated flight clearances, enroute minimum safe altitude warnings, sector probes, out of conformance check, automated flight services, and flow management of advisories. A major technical challenge remaining is the integration, flight testing, and validation of data link equipment and procedures in the aircraft cockpit. The flight test organizational chart, was designed to have the airplane side of data link experiments implemented in the NASA Langley Research Center (LaRC) experimental Boeing 737 airplane. This design would enable investigations into implementation of data link equipment and pilot interface, operations, and procedures. The illustrated ground system consists of a work station with links to a national weather database and a data link transceiver system. The data link transceiver system could be a Mode-S transponder, ACARS, AVSAT, or another type of radio system such as the military type HF data link. The airborne system was designed so that a data link transceiver, workstation, and touch panel could be interfaced with an input output processor to the aircraft system bus and thus have communications access to other digital airplane systems.

  14. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  15. Airborne remote sensing applications to coastal wave research

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.; Walsh, Edward J.; Krabill, William B.; Swift, Robert N.; Manizade, Serdar S.; Scott, John F.; Earle, Marshall D.

    1998-08-01

    Airborne sensors provide effective coverage of a broad region and are suitable for large-scale experiments. In this paper, two scanning sensors that use the direct ranging technique to measure surface wave displacement are described. On a NASA P-3 aircraft the sensors can complete one run across a 100-km continental shelf in 17 min. A case study is presented using radar-measured, two-dimensional surface topography to derive wave damping due to bottom friction. The results are in good agreement with an analytical model based on a quadratic formulation of bottom shear stress. This study demonstrates that remote sensing measurements can be used for rapid characterization of surface waves on the continental shelf and in coastal regions. Examples illustrated in this paper include the derivation of wavenumber spectra and estimation of the dissipation rate of shoaling ocean swell.

  16. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  17. Low Gravity Guidance System for Airborne Microgravity Research

    NASA Technical Reports Server (NTRS)

    Rieke, W. J.; Emery, E. F.; Boyer, E. O.; Hegedus, C.; ODonoghue, D. P.

    1996-01-01

    Microgravity research techniques have been established to achieve a greater understanding of the role of gravity in the fundamentals of a variety of physical phenomena and material processing. One technique in use at the NASA Lewis Research Center involves flying Keplarian trajectories with a modified Lear Jet and DC-9 aircraft to achieve a highly accurate Microgravity environment by neutralizing accelerations in all three axis of the aircraft. The Low Gravity Guidance System (LGGS) assists the pilot and copilot in flying the trajectories by displaying the aircraft acceleration data in a graphical display format. The Low Gravity Guidance System is a microprocessor based system that acquires and displays the aircraft acceleration information. This information is presented using an electroluminescent display mounted over the pilot's instrument panel. The pilot can select the Microgravity range that is required for a given research event. This paper describes the characteristics, design, calibration and testing of the Low Gravity Guidance System Phase 3, significant lessons from earlier systems and the developmental work on future systems.

  18. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  19. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  20. Airborne test flight of HY-2A satellite microwave scatterometer and data analysis

    NASA Astrophysics Data System (ADS)

    Zou, Juhong; Guo, Maohua; Cui, Songxue; Zhou, Wu

    2017-01-01

    This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer (HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section (NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function (NSCAT GMF), indicating satisfactory HSCAT performance.

  1. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  2. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  3. Specially equipped aircraft used in Florida airborne field mill research

    NASA Technical Reports Server (NTRS)

    2000-01-01

    CO2 study site manager and plant physiologist Graham Hymus (left) examines scrub oak foliage while project engineer David Johnson (right) looks on. The life sciences study is showing that rising levels of carbon dioxide in our atmosphere, caused by the burning of fossil fuels, could spur plant growth globally. The site of KSC's study is a natural scrub oak area near the Vehicle Assembly Building. Twelve-foot areas of scrub oak have been enclosed in 16 open-top test chambers into which CO2 has been blown. Five scientists from NASA and the Smithsonian Environmental Research Center in Edgewater, Md., work at the site to monitor experiments and keep the site running. Scientists hope to continue the study another five to 10 years. More information on this study can be found in Release No. 57- 00. Additional photos can be found at: www- pao.ksc.nasa.gov/captions/subjects/co2study.htm

  4. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  5. The development of an airborne information management system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, Glenn A.

    1992-01-01

    An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.

  6. Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results

    DTIC Science & Technology

    1989-12-01

    Kovacs and J . Scott Holladay PJTIS CRA&I DTIC TAB Unannronced JustiCaton By Distribution I AvaIabilit Cordes AvjII d-dlc, Dist Prepared for U.S...Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results 12. PERSONAL AUTHOR(S) Kovacs, Austin and Holladay, J . Scott 13a...Thickness Measurement System and Field Test Results AUSTIN KOVACS AND J . SCOTT HOLLADAY INTRODUCTION was determined to be desirable. The goals of the 1986-87

  7. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland.

    PubMed

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-06-05

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level.

  8. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  9. Development of Unmanned Airborne System (UAS) instrumentation for air-sea-ice interaction research

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Melville, W. K.

    2011-12-01

    We have developed Unmanned Airborne System (UAS) instrumentation packages to directly measure air-sea momentum transfer, as well as latent, sensible, and radiative heat fluxes, topography, and surface wave kinematics. Two UAS (BAE Manta C1s) flying in vertical formation over the ocean will allow the direct measurement of air-sea fluxes within the marine atmospheric boundary layer, and, with onboard high-resolution video and laser altimetry, simultaneous observation of sea surface kinematics and sea-ice topography. The low altitude required for accurate air-sea or air-ice flux measurements is below the typical safety limit of manned research aircraft; however, with advancements in laser altimeters, small-aircraft flight control, and real-time Differential GPS, it now is within the capability of the UAS platform. Fast response turbulence, hygrometer, and temperature probes in the lower UAS permit surface layer flux measurements, and short and long wave radiometers in the upper UAS allow the determination of net radiation, surface temperature, and albedo. Engineering test flights of the two UAS over land were performed in January 2011 at Camp Roberts, CA. The tests demonstrated the capability of the systems to measure vertical profiles of georeferenced wind, temperature, and moisture content, as well as momentum flux and sensible, latent, and radiative heat fluxes. UAS-derived fluxes from low-altitude (20 -- 30 m) flights are in agreement with fluxes measured by a nearby tower-mounted sonic anemometer-based eddy covariance system. We present a description of the instrumentation, a summary of results from flight tests, and discuss potential applications of these instrumented platforms for air-sea-ice interaction studies.

  10. Flight tests of a simple airborne device for predicting clear air turbulence encounters

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Duller, C. E., III; Kuhn, P. M.

    1978-01-01

    An airborne clear-air turbulence detector is being flight-tested on board NASA's C-141 and Learjet aircraft. The device is an infrared (IR) sensor in the water vapor band and is designed to detect changes in vapor concentrations associated with turbulence in shear conditions. Warnings of about 5 min have been demonstrated at flight altitudes from 9.1 to 13.7 km (30,000 to 45,000 ft). Encounter predictions were obtained 80% of the time, and false alarms were given about 6% of the time. Several simple algorithms were studied for use as signal output analyzers and for alert triggering.

  11. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    NASA Technical Reports Server (NTRS)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  12. Research Applications and Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Hindson, William S.

    1996-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60 Black Hawk helicopter that is being modified by NASA and the US Army for flight systems research. The principal systems that are being installed in the aircraft are a Helmet-Mounted Display (HMD) and associated imaging systems, and a programmable full-authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. This paper describes the design features of this modern rotorcraft in-flight simulation facility and their current state of development. A brief description of initial research applications is included.

  13. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  14. Xyz Airborne Time Domain Em: P-Them Test in Reid Mahaffy

    NASA Astrophysics Data System (ADS)

    Vetrov, A.

    2012-12-01

    The vertical axis transmitter loop and receiver coil combination is widely used in Airborne Time-Domain EM systems. In such configurations the largest portion of the transmitter magnetic moment, which is distributed in a vertical direction, is transmitted to the subsurface, and the strongest vertical response from underground conductors is acquired with a vertical axis (Z) receiver coil. However, the horizontal axis (X and Y) components carry valuable information about target body geometry and their borders/edges. Most Airborne Time Domain systems currently in use are configured such that the X component is aligned with the flight direction. At typical survey speeds (60 to 80 kph) towed bird systems may expect to be subject to vibration that results in movement of horizontal and vertical receiver's axis from its desired nominal position. The mechanical design of the P-THEM transmitter and receiver is based on Bernard Kremer's (THEM Geophysics) developments finished and improved by Pico Envirotec Inc. The P-THEM system consists of a loop-transmitter assembly, powered by a motor generator and a 3-axis (XYZ) coil receiver attached at the midpoint of a tow cable between transmitter and a helicopter. The suspension system of the receiver coils assembly allows the Z-coil to remain horizontal at all the time during the flight. Pico Envirotec has developed methodology to recalculate the data from three axis of the receiver that allows mechanical vibration influence to be eliminated from the acquired data. The recalculated X-component gives very useful information for interpretation of the observation results. The P-THEM system has been test flown over the Reid Mahaffy geological test site located in Northern Ontario in Canada. The test site, created by the Ontario Geological Survey, contains the main conductor formed with three sub-vertical sliced conductive bodies. Three lines (L30, L40 and L50) over the test site have been flown in North and South direction with the P

  15. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  16. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the

  17. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  18. Vehicle Integrated Propulsion Research Tests

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Hunter, Gary W.; Simon, Don; Meredith, Roger; Wrbanek, John; Woike, Mark; Tokars, Roger; Guffanti, Marianne; Lyall, Eric

    2013-01-01

    Overview of the Vehicle Integrated Propulsion Research Tests in the Vehicle Systems Safety Technologies project. This overview covers highlights of the completed VIPR I and VIPR II tests and also covers plans for the VIPR III test.

  19. Development and test of video systems for airborne surveillance of oil spills

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.; Lewis, P. L.

    1975-01-01

    Five video systems - potentially useful for airborne surveillance of oil spills - were developed, flight tested, and evaluated. The systems are: (1) conventional black and white TV, (2) conventional TV with false color, (3) differential TV, (4) prototype Lunar Surface TV, and (5) field sequential TV. Wavelength and polarization filtering were utilized in all systems. Greatly enhanced detection of oil spills, relative to that possible with the unaided eye, was achieved. The most practical video system is a conventional TV camera with silicon-diode-array image tube, filtered with a Corning 7-54 filter and a polarizer oriented with its principal axis in the horizontal direction. Best contrast between oil and water was achieved when winds and sea states were low. The minimum detectable oil film thickness was about 0.1 micrometer.

  20. Issues in Language Testing Research.

    ERIC Educational Resources Information Center

    Oller, John W., Jr., Ed.

    Practical and technical aspects of language testing research are considered in 23 articles. Topical areas include: testing of general proficiency; the hypothesis of a single unitary factor accounting for reliable variance in tests; the structure of language proficiency; pros and cons of cloze testing; a new functional testing approach; and…

  1. Drug Testing. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2007-01-01

    In 2002, the United States Supreme Court confirmed that in the school's role of in loco parentis, drug testing of students who were involved in athletics and extracurricular activities was constitutional. In a state of the union address, George W. Bush stated that drug testing in schools had been effective and was part of "our aggressive…

  2. Drug Testing. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2005-01-01

    The Vernonia School District v. Acton Supreme Court decision in 1995, forever changed the landscape of the legality of drug testing in schools. This decision stated that students who were involved in athletic programs could be drug tested as long as the student's privacy was not invaded. According to some in the medical profession, there are two…

  3. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  4. The United States Army Special Forces--Walter Reed Army Institute of Research Field Epidemiologic Survey Team (Airborne).

    PubMed

    Dorogi, Louis Theodore

    2009-01-01

    The U.S. Army Special Forces--Walter Reed Army Institute of Research Field Epidemiological Survey Team (Airborne) was formed in late 1965 and later deployed to Vietnam in 1966. Funded by Walter Reed Army Institute of Research and staffed by highly trained Special Forces qualified medical personnel from Fort Bragg, North Carolina, the team was attached to the 5th Special Forces Group (Airborne) while in Vietnam. During its short existence, the team conducted extensive and important field studies on diseases of military medical importance, often under combat conditions.

  5. Rotorcraft aircrew systems concepts airborne laboratory (RASCAL) helmet-mounted display flight research

    NASA Astrophysics Data System (ADS)

    Hindson, William S.; Njaka, Chima E.; Aiken, Edwin W.; Barnhart, Warren A.

    1994-06-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. One of the objectives of the research is to develop and integrate technologies for Automated Nap-of-the Earth (ANOE) flight. The principal elements of this system include video imaging sensors, advanced real-time image processing capabilities, a graphics supercomputer, a wide field-of-view color helmet mounted display (HMD), and an advanced fly-by-wire flight control system. The development methodology and the current status of the ANOE Flight Program are summarized, a description of the visionics system is provided, and the plans for the initial applications of the color HMD are presented.

  6. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  7. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests.

    PubMed

    Sanders, Paul G; Xu, Ning; Dalka, Tom M; Maricq, M Matti

    2003-09-15

    Particle size distributions of light-duty vehicle brake wear debris are reported with careful attention paid to avoid sampling biases. Electrical low-pressure impactor and micro-orifice uniform deposit impactor measurements yield consistent size distributions, and the net particulate matter mass from each method is in good agreement with gravimetric filter measurements. The mass mean diameter of wear debris from braking events representative of urban driving is 6 microm, and the number-weighted mean is 1-2 microm for three currently used classes of lining materials: low metallic, semimetallic, and non-asbestos organic (NAO). In contrast, the wear rates are very material dependent, both in number and mass of particles, with 3-4 times higher emissions observed from the low metallic linings as compared to the semimetallic and NAO linings. Wind tunnel and test track measurements demonstrate the appearance of micron size particles that correlate with braking events, with approximately 50% of the wear debris being airborne for the test vehicle in this study. Elemental analysis of the wear debris reveals a consistent presence of the elements Fe, Cu, and Ba in both dynamometer and test track samples.

  8. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR): Airborne Concepts and Ground Prototype Measurements

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Schmid, B.; Flynn, C.; Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Livingston, J.

    2007-12-01

    A collaboration between NASA Ames Research Center and Battelle Pacific Northwest Division is exploring new instrument concepts that combine sky scanning and spectroscopy with the direct sun transmission measurement capabilities of previous instruments like the NASA Ames Airborne Tracking Sunphotometers (AATS). Additional technical goals are to reduce instrument size, weight, and power requirements while increasing autonomy, so as to permit operation on a wider range of aircraft, including unmanned aerial vehicles (UAVs). The overall science goal for the new instruments is to improve knowledge of atmospheric constituents and their links to climate using a variety of airborne measurement approaches including satellite validation. The sky scanning capability will enable retrievals of aerosol type (via complex refractive index and shape) and aerosol size distribution extending to larger sizes than attainable by direct-beam sunphotometry alone. The spectroscopic capability will improve measurements of gas constituents (e.g., H2O, O3, NO2, SO2) . Concepts explored to date for an airborne Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) include using fiber optics to link a spectrometer inside the aircraft to optical entrance ports in a relatively small tracking/scanning head outside the aircraft. 4STAR feasibility depends on overcoming three technological hurdles: 1. Maintaining calibration to 1% stability over a period of months. 2. Demonstrating stray light rejection to permit measuring skylight within a few degrees of the sun. 3. Devising a fiber optic coupling that maintains 1% calibration stability with as many as possible of the following desirable characteristics: detachable during assembly before calibration; detachable between calibration and scientific measurements; rotatable during measurements. To investigate ways to overcome these hurdles we have developed a ground-based prototype, 4STAR-Ground. To date 4STAR-Ground has been

  9. An Airborne Parachute Compartment Test Bed for the Orion Parachute Test Program

    NASA Technical Reports Server (NTRS)

    Moore, James W.; Romero, Leah M.

    2013-01-01

    The test program developing parachutes for the Orion/MPCV includes drop tests with parachutes deployed from an Orion-like parachute compartment at a wide range of dynamic pressures. Aircraft and altitude constraints precluded the use of an Orion boilerplate capsule for several test points. Therefore, a dart-shaped test vehicle with a hi-fidelity mock-up of the Orion parachute compartment has been developed. The available aircraft options imposed constraints on the test vehicle development and concept of operations. Delivery of this test vehicle to the desired velocity, altitude, and orientation required for the test is a di cult problem involving multiple engineering disciplines. This paper describes the development of the test technique. The engineering challenges include extraction from an aircraft, reposition of the extraction parachute, and mid-air separation of two vehicles, neither of which has an active attitude control system. The desired separation behavior is achieved by precisely controlling the release point using on-board monitoring of the motion. The design of the test vehicle is also described. The trajectory simulations and other analyses used to develop this technique and predict the behavior of the test vehicle are reviewed in detail. The application of the technique on several successful drop tests is summarized.

  10. ADS-33C related handling qualities research performed using the NRC Bell 205 airborne simulator

    NASA Technical Reports Server (NTRS)

    Morgan, J. Murray; Baillie, Stewart W.

    1993-01-01

    Over 10 years ago a project was initiated by the U.S. Army AVSCOM to update the military helicopter flying qualities specification MIL-8501-A. While not yet complete, the project reached a major milestone in 1989 with the publication of an Airworthiness Design Standard, ADS-33C. The 8501 update project initially set out to identify critical gaps in the requisite data base and then proceeded to fill them using a variety of directed research studies. The magnitude of the task required that it become an international effort: appropriate research studies were conducted in Germany, the UK and Canada as well as in the USA. Canadian participation was supported by the Department of National Defence (DND) through the Chief of Research and Development. Both ground based and in-flight simulation were used to study the defined areas and the Canadian Bell 205-A1 variable stability helicopter was used extensively as one of the primary research tools available for this effort. This paper reviews the involvement of the Flight Research Laboratory of the National Research Council of Canada in the update project, it describes the various experiments conducted on the Airborne Simulator, it notes significant results obtained and describes ongoing research associated with the project.

  11. Wireless Authentication Protocol Implementation: Descriptions of a Zero-Knowledge Proof (ZKP) Protocol Implementation for Testing on Ground and Airborne Mobile Networks

    DTIC Science & Technology

    2015-01-01

    IMPLEMENTATION FOR TESTING ON GROUND AND AIRBORNE MOBILE NETWORKS 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62702F 6...devices destined for use in AFRL’s in-house small UAV research program . A basic two-node wireless network was set-up in an indoor laboratory to allow for...carried out to determine the reason for protocol inoperability. Program results and lessons-learned are summarized below. • The selected

  12. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikolich, George; Shadel, Craig; Chapman, Jenny; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.; Mizell, Steve

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  13. Simulation tests to assess occupational exposure to airborne asbestos from asphalt-based roofing products.

    PubMed

    Mowat, Fionna; Weidling, Ryan; Sheehan, Patrick

    2007-07-01

    This study sought to evaluate exposure from specific products to evaluate potential risk from roof repair activities. Five asbestos-containing fibered roof coatings and plastic cements, representing a broad range of these types of products, were tested in exposure simulations. These products were applied to representative roof substrates. Release of asbestos fibers during application and sanding of the product shortly thereafter (wet sanding) were tested initially. Other roof substrates were cured to simulate a product that had been on a rooftop for several months and then were tested to evaluate release of fibers during hand sanding and hand scraping activities. Additional tests were also conducted to evaluate asbestos release during product removal from tools and clothing. Two personal (n = 84) and background/clearance (n = 49) samples were collected during each 30-min test and analyzed for total fiber concentration [phase-contrast microscopy (PCM)] and for asbestos fiber count [transmission electron microscopy (TEM)]. PCM concentrations ranged from <0.005 to 0.032 fibers per cubic centimeter (f cc(-1)). Chrysotile fibers were detected in 28 of 84 personal samples collected. TEM concentrations ranged from <0.0021 to 0.056 f cc(-1). Calculated 8-h time-weighted averages (TWAs) ranged from 0.0003 to 0.002 f cc(-1) and were comparable to the background TWA concentration of 0.0002 f cc(-1) measured in this study. Based on these results, it is unlikely that roofers were exposed to airborne asbestos concentrations above the current or historical occupational guidelines during scraping and sanding of these products during roof repair.

  14. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  15. Airborne radionuclides of concern and their measurement in monitoring a Comprehensive Test Ban Treaty

    SciTech Connect

    Perkins, R.W.; Miley, H.S.; Hensley, W.K.; Abel, K.H.

    1995-01-01

    The U.S. Department of Energy (DOE) is conducting radioanalytical developmental programs with the goal of providing near-real-time analysis technology for airborne signature radionuclides which are indicative of a nuclear weapons test in any of the earth`s environments. If a test were conducted in the atmosphere or above the atmosphere, then the full spectrum of fission and activation products, together with residues from the device would be dispersed in the atmosphere. However, if a nuclear test were conducted underground or under water, the emission could range from a major to a very minor vent, and the material released would likely consist mainly of noble gas radionuclides and the radioiodines. Since many of the noble gases decay to form particulate radionuclides, these may serve as the more sensitive signatures. For example, Ba-140 is a daughter of Xe-140 (13.6 s), and Cs-137 is a daughter of Xe-137 (3.82 min). Both of these have been observed in large amounts relative to other fission products in dynamic venting of U.S. underground nuclear detonations. Large amounts of radionuclides are produced from even a comparatively small nuclear detonation. For example, a 10-KT fission device will produce approximately a megacurie of Ba-140 and of several other radionuclides with half-lives of days to weeks. If such a device were detonated in the atmosphere at midlatitude, it would easily be observable at downwind monitoring sites during its first and subsequent circumnavigations of the earth. Efficient and practical methods for the near-real-time analysis of both particulate and gaseous radionuclides are important to an effective monitoring and attribution program in support of a Comprehensive Test Ban Treaty (CTBT); methods for this purpose are being pursued.

  16. The Caater Facility Falcon of the German Aerospace Cente: A multipurpose airborne research Platform

    NASA Astrophysics Data System (ADS)

    Giez, A.; Krautstrunk, M.

    2003-04-01

    The DLR research aircraft Falcon D-CMET was available to scientists through an EC-funded IHP-ARI contract. 9 different research projects have been funded by CAATER on the Falcon with an average of about 10 flight hours per project. More than 20 users from 5 countries have benefited from this access project between 1999--2003. As a fan jet the Falcon covers a wide atmospheric range between the boundary layer and the lower stratosphere. Many modifications have been added to the aircraft to provide suitable interfaces for the scientific payload: openings in the fuselage to house large optical windows and inlets for in situ experiments, hard points under wings and fuselage, additional electrical generators and standardized electrical and mechanical interfaces for the installation of scientific instrumentation onboard. The Falcon is equipped with a data acquisition system and a basic instrumentation providing data on aircraft parameters and meteorology for the scientific users. Additional instrumentation is available from the different DLR institutes in Oberpfaffenhofen and can be added to the aircraft. CAATER users have access to an extensive infrastructure on the ground which includes workshops, calibration setups, an environmental simulation chamber and an own user lab. They are supported by several groups within the Facility who lead them through the different steps of an airborne field experiment such as certification and installation of their instruments on the aircraft, campaign and flight planning and the processing and preparation of aircraft data right after a flight. The users have been stimulated to use DLR's Approved Design Organisation status together with its Airworthiness Office to develop and operate new airborne instrumentation . Several new instrument packages have been installed and certified for the first time on the Falcon within CAATER.

  17. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  18. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data were accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research. Further, this airborne capability can be responsive to first flush rain events that deliver higher concentrations of sediments and pollution to coastal waters via watersheds and overland flow.

  19. Performance characterization and ground testing of an airborne CO2 differential absorption LIDAR system

    NASA Astrophysics Data System (ADS)

    Senft, Daniel C.; Fox, Marsha J.; Bousek, Ronald R.; Dowling, James A.; Richter, Dale A.; Kelly, Brian T.

    1998-01-01

    The Phillips Laboratory Remote Optical Sensors (ROS) program is developing the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based upon a high-power CO(subscript 2) laser which can use either the standard (superscript 12)C(superscript 16)O(subscript 2) or the (superscript 13)C(superscript 16)O(subscript 2) carbon dioxide isotopes as the lasing medium, and has output energies in excess of 4 J on the stronger laser transitions. The laser, transmitter optics, receiver telescope and optics, and monitoring equipment are mounted on a flight-qualified optical breadboard designed to mount in the Argus C-135E optical testbed aircraft operated by Phillips Laboratory. The LARS system is being prepared for initial flight experiments at Kirtland AFB, NM, in August 1997, and for chemical detection flight experiments at the Idaho National Engineering Laboratory (INEL) in September 1997. This paper briefly describes the system characterization, and presents some results from the pre- flight ground testing.

  20. The NASA/NSERC Student Airborne Research Program Land Focus Group - a Paid Training Program in Multi-Disciplinary STEM Research for Terrestrial Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kefauver, S. C.; Ustin, S.; Davey, S. W.; Furey, B. J.; Gartner, A.; Kurzweil, D.; Siebach, K. L.; Slawsky, L.; Snyder, E.; Trammell, J.; Young, J.; Schaller, E.; Shetter, R. E.

    2011-12-01

    The Student Airborne Research Program (SARP) of the National Aeronautics and Space Administration (NASA) and the National Suborbital Education and Research Center (NSERC) is a unique six week multidisciplinary paid training program which directly integrates students into the forefront of airborne remote sensing science. Students were briefly trained with one week of lectures and laboratory exercises and then immediately incorporated into ongoing research projects which benefit from access to the DC-8 airborne platform and the MODIS-ASTER Airborne Simulator (MASTER) sensor. Students were split into three major topical categories of Land, Ocean, and Air for the data collection and project portions of the program. This poster details the techniques and structure used for the student integration into ongoing research, professional development, hypothesis building and results as developed by the professor and mentor of the Land focus group. Upon assignment to the Land group, students were issued official research field protocols and split into four field specialty groups with additional specialty reading assignments. In the field each group spent more time in their respective specialty, but also participated in all field techniques through pairings with UC Davis research team members using midday rotations. After the field campaign, each specialty group then gave summary presentations on the techniques, preliminary results, and significance to overall group objectives of their specialty. Then students were required to submit project proposals within the bounds of Land airborne remote sensing science and encouraging, but not requiring the use of the field campaign data. These proposals are then reviewed by the professor and mentor and students are met with one by one to discuss the skills of each student and objectives of the proposed research project. The students then work under the supervision of the mentor and benefit again from professor feedback in a formal

  1. Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; Dasilva, Arlindo; Benedetti, Angela

    2012-01-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

  2. Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR): In-Flight Performance During AIRTOSS-I/II Research Aircaft Campaigns

    NASA Astrophysics Data System (ADS)

    Smit, Herman G. J.; Rolf, Christian; Kraemer, Martina; Petzold, Andreas; Spelten, Nicole; Rohs, Susanne; Neis, Patrick; Maser, Rolf; Bucholz, Bernhard; Ebert, Volker; Tatrai, David; Bozoki, Zoltan; Finger, Fanny; Klingebiel, Marcus

    2014-05-01

    Water vapour is one of the most important parameters in weather prediction and climate research. Accurate and reliable airborne measurements of water vapour are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. Presently, no airborne water vapour sensor exists that covers the entire range of water vapour content of more than four order of magnitudes between the surface and the UT/LS region with sufficient accuracy and time resolution, not to speak of the technical requirements for quasi-routine operation. In a joint research activity of the European Facility for Airborne Research (EUFAR) programme, funded by the EC in FP7, we have addressed this deficit by the Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR), including the sampling characteristics of different gas/ice inlets. The new instruments using innovative detecting technics based on tuneable diode laser technology combined with absorption spectroscopy (TDLAS) or photoacoustic spectroscopy (PAS): (i) SEALDH based on novel self-calibrating absorption spectroscopy; (ii) WASUL, based on photoacoustic spectroscopy; (iii) commercial WVSS-II, also a TDLAS hygrometer, but using 2f-detection technics. DENCHAR has followed an unique strategy by facilitating new instrumental developments together with conducting extensive testing, both in the laboratory and during in-flight operation. Here, we will present the evaluation of the in-flight performance of the three new hygrometer instruments, which is based on the results obtained during two dedicated research aircraft campaigns (May and September 2013) as part of the AIRTOSS (AIRcraft Towed Sensor Shuttle) experiments. Aboard the Learjet 35A research aircraft the DENCHAR instruments were operated side by side with the well established Fast In-Situ Hygrometer (FISH), which is based on Lyman (alpha) resonance fluorescence detection technics and calibrated to the reference frost point

  3. Airborne MAX-DOAS Measurements Over California: Testing the NASA OMI Tropospheric NO2 Product

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Baidar, Sunil; Krotkov, Nickolay A.; Lamsal, Lok N.; Lechner, Michael; Volkamer, Rainer

    2013-01-01

    Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) measurements of NO2 tropospheric vertical columns were performed over California for two months in summer 2010. The observations are compared to the NASA Ozone Monitoring Instrument (OMI) tropospheric vertical columns (data product v2.1) in two ways: (1) Median data were compared for the whole time period for selected boxes, and the agreement was found to be fair (R = 0.97, slope = 1.4 +/- 0.1, N= 10). (2) A comparison was performed on the mean of coincident AMAX-DOAS measurements within the area of the corresponding OMI pixels with the tropospheric NASA OMI NO2 assigned to that pixel. The effects of different data filters were assessed. Excellent agreement and a strong correlation (R = 0.85, slope = 1.05 +/- 0.09, N= 56) was found for (2) when the data were filtered to eliminate large pixels near the edge of the OMI orbit, the cloud radiance fraction was<50%, the OMI overpass occurred within 2 h of the AMAX-DOAS measurements, the flight altitude was>2 km, and a representative sample of the footprint was taken by the AMAX-DOAS instrument. The AMAX-DOAS and OMI data sets both show a reduction of NO2 tropospheric columns on weekends by 38 +/- 24% and 33 +/- 11%, respectively. The assumptions in the tropospheric satellite air mass factor simulations were tested using independent measurements of surface albedo, aerosol extinction, and NO2 profiles for Los Angeles for July 2010 indicating an uncertainty of 12%.

  4. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2015-01-01

    This paper describes a tunable diode laser-based dual-channel photoacoustic (PA) humidity measuring system primarily designed for aircraft-based environment research. It is calibrated for total pressure and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure-dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range that might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne intercomparisons, which proved that the repeatability, the estimated accuracy and the response time of the system are 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is theoretically about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines, and was experimentally verified up to 20 000 ppmV. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  5. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

    NASA Astrophysics Data System (ADS)

    Newcombe, David A.; La Duc, Myron T.; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2008-10-01

    In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

  6. Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Buchhorn, M.; Cristobal, J.; Kokaly, R. F.; Graham, P. R.; Waigl, C. F.; Hampton, D. L.; Werdon, M.; Guldager, N.; Bertram, M.; Stuefer, M.

    2015-12-01

    Hyperspectral imagery acquired using Hyspex VNIR-1800 and SWIR-384 camera systems have provided unique information on terrestrial and aquatic biogeochemical parameters, and diagnostic mineral properties in exposed outcrops in selected sites in the state of Alaska. The Hyspex system was configured for in-situ and field scanning by attaching it to a gimbal-mounted rotational stage on a robust tripod. Scans of vertical faces of vegetation and rock outcrops were made close to the campus of the University of Alaska Fairbanks, in an abandoned mine near Fairbanks, and on exposures of Orange Hill in Wrangell-St. Elias National Park. Atmospherically corrected integrated VNIR_SWIR spectra were extracted which helped to study varying nitrogen content in the vegetation, and helped to distinguish the various micas. Processed imagery helped to pull out carbonates, clays, sulfates, and alteration-related minerals. The same instrument was also mounted in airborne configuration on two different aircrafts, a DeHavilland Beaver and a Found Bush Hawk. Test flights were flown over urban and wilderness areas that presented a variety of landcover types. Processed imagery shows promise in mapping man-made surfaces, phytoplankton, and dissolved materials in inland water bodies. Sample data and products are available on the University of Alaska Fairbanks Hyperspectral Imaging Laboratory (HyLab) website at http://hyperspectral.alaska.edu.

  7. {open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere

    SciTech Connect

    Hacker, J.M.

    1996-11-01

    {open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally and externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.

  8. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  9. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    PubMed

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers.

  10. Mississippi Test Facility research projects

    NASA Technical Reports Server (NTRS)

    Whitehurst, C. A.

    1974-01-01

    Research capabilities of Louisiana State University are reported for sustaining a program which complements the Mississippi Test Facility. Projects reported during this period are discussed and include the development of a spectral analyzer, and investigations of plant physiology. Papers published during this period are also listed.

  11. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  12. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  13. Research of the coastal zone by the airborne laser scanning data (Verbyanaya bay-bar, sea of Azov)

    NASA Astrophysics Data System (ADS)

    Pogorelov, Anatoliy V.; Antonenko, Mihail; Boyko, Evgeniy

    2015-06-01

    In the area Verbyanaya bay-bar (Sea of Azov) in an attempt to create large-scale cartographic base and subsequent thematic mapping of the geographical environment components airborne laser scanning and aerial photography were conducted. Airborne laser scanning data formed the basis of a comprehensive study of the coastal zone components. Methodical research apparatus includes receiving and processing technology of laser reflection points, constructing highprecision digital elevation model and raster surfaces. Mosaic of aerial photography is converted into a format mosaic - a geometrically correct image of the terrain. Set of high-precision digital surface models and thematic raster images obtained for specific dates, allows to analyze the dynamic adjustment of components of the coastal zone (shoreline, beach, shore dam with surge prism).

  14. An effort to test the embryotoxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells using airborne exposure technique.

    PubMed

    Shen, Shuijie; Yuan, Lingmin; Zeng, Su

    2009-10-01

    Benzene, toluene, xylene, and formaldehyde are well-known indoor air pollutants, especially after house decoration. They are also common pollutants in the working places of the plastic industry, chemical industry, and leather industry. It has been reported that these pollutants cause people to be irritated, sick, experience a headache, and be dizzy. They also have the potential to induce asthma, aplastic anemia, and leukemia, even cause abortion or fetus malformation in humans. In this study, the airborne toxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells (mES cells) were tested using airborne exposure technique to evaluate the mES cell airborne exposure model on embryotoxicity prediction. Briefly, mES cells were cultured on Transwell inserts and were exposed to an airborne surrounding of test chemicals in a chamber for 1 h at 37 degrees C. Cytotoxicity was determined using the MTT assay after further culture for 18 h at 37 degrees C in normal medium. The airborne IC(50) (50% inhibition concentration) of benzene, toluene, xylene, and formaldehyde derived from the fitted dose-response curves were 17,400 +/- 1290, 16,000 +/- 250, 4680 +/- 500, and 620 +/- 310 ppm, respectively. Formaldehyde was found to be the compound most toxic to mES cells compared to benzene homologues. The toxicity data had good correlation with the in vivo data. The results showed that the mES airborne exposure model may be used to predict embryotoxicity of volatile organic compounds.

  15. Network Penetration Testing and Research

    NASA Technical Reports Server (NTRS)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  16. Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings.

    PubMed

    Saffari, Arian; Daher, Nancy; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2014-07-01

    An emerging hypothesis in the field of air pollution is that oxidative stress is one of the important pathways leading to adverse health effects of airborne particulate matter (PM). To advance our understanding of sources and chemical elements contributing to aerosol oxidative potential and provide global comparative data, we report here on the biological oxidative potential associated with size-segregated airborne PM in different urban areas of the world, measured by a biological (cell-based) reactive oxygen species (ROS) assay. Our synthesis indicates a generally greater intrinsic PM oxidative potential as well as higher levels of exposure to redox-active PM in developing areas of the world. Moreover, on the basis of our observations, smaller size fractions are generally associated with higher intrinsic ROS activity compared with larger PM size fractions. Another important outcome of our study is the identification of major species and sources that are associated with ROS activity. Water-soluble transition metals (e.g., Fe, Ni, Cu, Cr, Mn, Zn and V) and water-soluble organic carbon (WSOC) showed consistent correlations with the oxidative potential of airborne PM across different urban areas and size ranges. The major PM sources associated with these chemical species include residual/fuel oil combustion, traffic emissions, and secondary organic aerosol formation, indicating that these sources are major drivers of PM-induced oxidative potential. Moreover, comparison of ROS activity levels across different seasons indicated that photochemical aging increases the intrinsic oxidative potential of airborne PM.

  17. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  18. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  19. A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.

    2012-12-01

    Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites

  20. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  1. Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer.

    PubMed

    Niu, Jianguo; Deeter, Merritt N; Gille, John C; Edwards, David P; Ziskin, Daniel C; Francis, Gene L; Hills, Alan J; Smith, Mark W

    2004-08-20

    The Measurements of Pollution in the Troposphere (MOPITT) Airborne Test Radiometer (MATR) uses gas correlation filter radiometry from high-altitude aircraft to measure tropospheric carbon monoxide. This radiometer is used in support of the ongoing validation campaign for the MOPITT instrument aboard the Earth Observation System Terra satellite. A recent study of MATR CO retrievals that used data from the autumn of 2001 in the western United States is presented. Retrievals of the CO total column were performed and compared to in situ sampling with less than 10% retrieval error. Effects that influence retrieval, such as instrument sensitivity, retrieval sensitivity, and the bias between observations and the radiative transfer model, are discussed. Comparisons of MATR and MOPITT retrievals show promising consistency. A preliminary interpretation of MATR results is also presented.

  2. Evaluation of a chemical spot-test kit for the detection of airborne particulate lead in the workplace.

    PubMed

    Ashley, K; Fischbach, T J; Song, R

    1996-02-01

    A commercial rhodizonate-based test kit was evaluated for its potential use in the detection of lead in airborne particulate samples at work sites. Over 350 air samples were collected at abrasive blasting lead paint abatement sites using cellulose ester membrane filters and personal sampling pumps. The filter samples were tested with the chemical spot test and then analyzed by graphite furnace atomic absorption spectrophotometry. No positive readings were recorded for lead masses below 1.3 micrograms Pb/filter, and no negative readings were observed for lead amounts above 8.1 micrograms Pb/filter. Experimental data were statistically molded in an effort to estimate the performance parameters of the spot test kit. The identification limit of the kit was found to be approximately 3.6 microgram/filter sample. For lead mass values above approximately 10 micrograms Pb/filter, 95% confidence of a positive reading was found, while 95% confidence of a negative reading was found for lead masses below approximately 0.6 micrograms Pb/filter. Based on the results of this study the rhodizonate-based test kit for lead demonstrates potential for use in field screening for lead in personal breathing zone and area air samples.

  3. Progeria Research Foundation Diagnostic Testing Program

    MedlinePlus

    ... Interview with John Tacket Find the Other 150 Medical Research NEW! Lonafarnib Pre-clinical Drug Supply Program What's ... Scientific Publications Grand Rounds Workshop 2010 Videos Home » Medical Research » Diagnostic Testing The PRF Diagnostic Testing Program The ...

  4. Optimal Testing Environment. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2010-01-01

    Even though it often feels like standardized testing is a relatively recent phenomena, it has been around at least since the 1800s, when in China, those that wanted a government job were required to take a test on their expertise of Confucian philosophy and poetry. During the Industrial Revolution, standardized tests were a quick way to test large…

  5. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    SciTech Connect

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  6. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Icing Sensor Performance During the 2003 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Schaffner, Philip R.; Minnis, Patrick; Nguyen, Louis; Delnore, Victor E.; Daniels, Taumi S.; Grainger, C. A.; Delene, D.; Wolff, C. A.

    2004-01-01

    The Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor was deployed onboard the University of North Dakota Citation II aircraft in the Alliance Icing Research Study (AIRS II) from Nov 19 through December 14, 2003. TAMDAR is designed to measure and report winds, temperature, humidity, turbulence and icing from regional commercial aircraft (Daniels et. al., 2004). TAMDAR icing sensor performance is compared to a) in situ validation data from the Citation II sensor suite, b) Current Icing Potential products developed by the National Center for Atmospheric Research (NCAR) and available operationally on the NOAA Aviation Weather Center s Aviation Digital Data Server (ADDS) and c) NASA Advanced Satellite Aviation-weather Products (ASAP) cloud microphysical products.

  7. In vitro tests to assess toxic effects of airborne PM(10) samples. Correlation with metals and chlorinated dioxins and furans.

    PubMed

    Roig, Neus; Sierra, Jordi; Rovira, Joaquim; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-01-15

    Inhalation is an important exposure pathway to airborne pollutants such as heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and particulate matter. Chronic exposure to those chemicals, which form part of complex environmental mixtures, may mean important human health risks. In the present study, the suitability of different in vitro tests to evaluate the toxic effects of air PM(10) pollutants is investigated. In addition, it is also assessed how to distinguish the contribution of chemical pollutants to toxicity. Sixty-three air samples were collected in various areas of Catalonia (Spain), and the levels of ecotoxicity, cytotoxicity and genotoxicity were evaluated. Aqueous acidic extractions of quartz fiber filters, where PM(10) had been retained, were performed. The photo-luminescent bacteria Vibrio fischeri (Microtox®) bioassay was performed to assess ecotoxicity. Moreover, MTT and Comet Assays, both using human lung epithelial cells A549 as target cells, were applied to assess the cytotoxicity and genotoxicity of air samples, respectively. The results show that Microtox® is an excellent screening test to perform a first evaluation of air quality, as it presented a significant correlation with chemical contaminants, contrasting with MTT Assay. Although none of the samples exhibited genotoxicity, a high correlation was found between this in vitro test and carcinogenic agents. Urban samples from traffic-impacted areas would be significantly more toxic. Finally, environmental temperature was identified as a key parameter, as higher values of ecotoxicity were found in winter.

  8. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  9. [A new application for the human whole blood test: development of an assay to assess the health risk of air-borne microbial contaminations].

    PubMed

    Fennrich, S; Zucker, B; Hartung, T

    2001-01-01

    The pathogenic properties of environmental microorganisms as well as pyrogens as fragments of those bacteria (especially endotoxins) for humans is increasingly recognised. Various clinical syndromes are described after contact with airborne microbial contaminants via the respiratory tract: Sick-building-syndrome, humidifier lung (a form of hypersensitive pneumonitis), "Monday sickness" etc. Air-conditioning and ventilation systems intensify this problem as well as storage of compost within the household which represents a considerable source of airborne pollutants. In 1995 a new method for the detection of pyrogenic (fever-inducing) hazardous substances was described by Hartung and Wendel. This whole blood assay utilises the natural reaction of the immune system in order to detect a broad spectrum of pyrogens very sensitively in the relevant species. Injectable drugs are the main area of application in which this innovative test has already proven effective and is currently validated for inclusion into European Pharmacopoeia. In co-operation with the FU Berlin we could demonstrate in ventilation systems in animal stables that the whole blood pyrogen test can also detect airborne environmental microorganisms very sensitively. The filtration technique for collection of these germs is an established method for air-conditioning and ventilation systems. In co-operation with the FU Berlin (Institut für Tier-und Umwelthygiene) and the filter producer Sartorius this method is currently developed for the detection of airborne contaminations.

  10. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  11. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; DiGangi, J. P.; Yang, M. M.; Rana, M.; Slate, T. A.

    2015-12-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight intercomparison data have been obtained and will be discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  12. Flight tests of a range-resolved airborne dial with two min-tea CO2 lasers

    NASA Technical Reports Server (NTRS)

    Itabe, T.; Ishizu, M.; Aruga, T.; Igarashi, T.; Asai, K.

    1986-01-01

    It is important to measure regional distributions of ozone concentrations in a short time for understanding a mechanism of photo-chemical smog development. An airborne Differential Absorption Lidar (DIAL) system with two low-power mini-TEA CO2 lasers was developed for measuring three-dimensional distributions of ozone in the lower troposphere. The CO2 DIAL is a nadir-looking system and is designed to measure ozone profiles between ground and airplane by using atmospheric aerosols as a distributed radar target. First flight test with a single laser were conducted in February 1985 over the Tokyo area. The system was operated at an altitude of 5000 ft. Results of the first flight tests show that the height profiles of the received power in the boundary layer were different between over land and ocean. The received power has to be inverted to an expression of a single optical parameter to see real aerosol distributions. Inversion of the lidar signal to the aerosol extinction was performed by using Klett's solution.

  13. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  14. Design and test of an airborne IR countermeasures hyper-hemispherical silicon dome

    NASA Astrophysics Data System (ADS)

    Bender, Michael J.; Guyer, Robert C.; Fenton, Thomas E.

    2007-09-01

    A 6.5 inch diameter hyper-hemispherical silicon dome was developed on IRAD for an infrared countermeasures aircraft self-protection system. Having passed operational level environmental testing and many hours of flight performance, a prototype dome was subjected to MIL test requirements in simulated crash safety testing at the manufacturer's facility. Although the dome cracked during shock testing, it remained intact preserving aircraft integrity and actually passing safety requirements. This paper describes design requirements, stress analyses of the dome and its mounting, and test results including a forensic cause of failure study of the dome. The results add insight to the margins of safety normally applied to the stress analyses of brittle optical materials and examine actual cause of failure in the prototype part.

  15. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  16. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  17. Computer Testing: Pragmatic Issues and Research Needs.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M.

    1990-01-01

    Three major pragmatic issues in computerized testing are addressed: (1) encouraging teacher use; (2) reporting of information; and (3) test construction. Reference is made to four related articles. Additional areas for research include reporting of test information; item bank standards; validity; and rules for stopping in computerized testing.…

  18. Research on the airborne SINS/CNS integrated navigation system assisted by BD navigation system

    NASA Astrophysics Data System (ADS)

    Xie, Mei-lin; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Yue, Peng; Deng, Xiao-guo; Huang, Wei

    2016-01-01

    When the star navigation system working during the day, the strong sky background radiation lead to a result that the detect target light is too weak, in the field of view, because of the limitation on the number of the navigation star, usually choose the single star navigation work mode. In order to improve the reliability of the airborne SINS/CNS integrated navigation system, meet the demand of the long-endurance and high precision navigation, use the tight combination way, single star patrol algorithm to get the position and attitude. There exists filtering divergence problem because of the model error and the system measurement noise is uncertain, put forward a new fuzzy adaptive kalman filtering algorithm. Adjust the size of measurement noise to prevent the filter divergence; the positioning accuracy of integrated navigation system can be improved through BeiDou satellite. Without the information of BeiDou satellite, based on the level of the virtual reference, the navigation precision of integrated navigation system can be ensured over a period of time.

  19. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  20. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  1. Test plan and preliminary report of airborne electromagentic environment survey over USA urban areas 0.4 to 18.0 GHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1975-01-01

    An airborne electromagnetic environment survey is described of five urban areas where terrestrially-generated radio-frequency interference was measured over the frequency range from 0.4 to 18.0 GHz. A chartered Cessna 402 aircraft contained necessary measurement test equipment, including the receiving antennas mounted beneath the fuselage. Urban areas including Washington, D.C.; Baltimore, MD; Philadelphia, PA; New York, NY; Chicago, ILL; and Palestine, TX were surveyed. A flight test plan and preliminary test results for the 0.4 to 1.4 GHz frequency range, are included; a final test report describes more detailed results.

  2. A review of recent developments in flight test techniques at the Ames Research Center, Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Layton, G. P.

    1984-01-01

    New flight test techniques in use at Ames Dryden are reviewed. The use of the pilot in combination with ground and airborne computational capabilities to maximize data return is discussed, including the remotely piloted research vehicle technique for high-risk testing, the remotely augmented vehicle technique for handling qualities research, and use of ground computed flight director information to fly unique profiles such as constant Reynolds number profiles through the transonic flight regime. Techniques used for checkout and design verification of systems-oriented aircraft are discussed, including descriptions of the various simulations, iron bird setups, and vehicle tests. Some newly developed techniques to support the aeronautical research disciplines are discussed, including a new approach to position-error determination, and the use of a large skin friction balance for the measurement of drag caused by various excrescencies.

  3. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  4. Systems Engineering Management Plan NASA Traffic Aware Planner Integration Into P-180 Airborne Test-Bed

    NASA Technical Reports Server (NTRS)

    Maris, John

    2015-01-01

    NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).

  5. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  6. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  7. A test matrix sequencer for research test facility automation

    NASA Technical Reports Server (NTRS)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  8. Flight test to determine feasibility of a proposed airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Hastings, E. C., Jr.; Patterson, James C., Jr.

    1991-01-01

    This investigation was conducted to determine the radial extent at which aircraft mounted flow vanes or roll rate gyros can sense the circulatory flow field that exists around the lift induced vortex system generated by an aircraft in flight. The probe aircraft was equipped with wingtip sensors for measuring angle of attack and angle of sideslip, and with a fuselage mounted gyroscope for measuring roll rate. Analysis of flight test data indicated that the vortex was detectable at a lateral distance of about 105 feet (best results) using unsophisticated equipment. Measurements were made from the centerline of the probe aircraft to the center of the nearest vortex with the probe aircraft flying between one half and one and one half miles behind the vortex generating aircraft.

  9. Colloid research for the Nevada Test Site

    SciTech Connect

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site.

  10. Summary of flight tests of an airborne lighting locator system and comparison with ground-based measurements of precipitation and turbulence

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Crabill, N. L.

    1981-01-01

    Data from an airborne lightning locator system and data relating to storm intensity obtained by ground-based Doppler radars and the S-band research radar are presented. When comparing lightning locations from the airborne lightning locator system with ground-based Doppler radar measurements of reflectivity and spectrum width, the lightning locations tended to be further from the aircraft position than the Doppler radar contours, but at the same relative bearing from the aircraft as the Doppler contours. The results also show that convective storms generate little or no lightning for a significant part of their life cycle, but can produce at least moderate turbulence. Therefore, it is concluded that a lack of lightning activity cannot be accepted as an inference of a corresponding lack of other hazards to the flight of aircraft through convective storms.

  11. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  12. Airborne prototype instrument suite test flight of a low-light high-dynamic range imager and visible spectrometer

    NASA Astrophysics Data System (ADS)

    Kuester, Michele A.; Lasnik, James K.; Ramond, Tanya; Lin, Tony; Johnson, Brian; Kaptchen, Paul; Good, William

    2007-09-01

    The Airborne Sensors Initiative (ASI) at Ball Aerospace and Technologies Corp. (BATC) specializes in airborne demonstration of internally-developed instrument concepts and innovative remote sensing technologies. In December 2006, ASI flew an environmental remote sensing suite consisting of the Low Light Imager (LLI) and Prototype Airborne Visible Imaging Spectrometer (PAVIS), both of which are operated using a pushbroom approach. LLI is designed for nighttime or high dynamic range imaging. It is capable of yielding 10 7 dynamic range and offers quality images amid illumination extending from a 1/ 4 moon to full sunlight and with autonomous operation. PAVIS is an imaging spectrometer based on the Dyson design and exhibits a 200 nm spectral bandwidth tunable within 400 - 850 nm. Developed internally to demonstrate promising remote sensing capabilities, these small, low-mass and low-power instruments are prepared for aircraft flight and are currently being used in the field to acquire scientific data. The LLI/PAVIS instrument suite has been utilized to collect airborne urban and rural imagery, as well as spectral information about the Great Salt Lake area, western Colorado, and ancient lava flows in southern Idaho. Highlights of the instrument design and ensuing data from previous flights are presented herein.

  13. Airborne measurements of CO2 and CH4 onboard the UK FAAM research aircraft using a, Los Gatos Research Inc, cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    O'Shea, S.; Bauguitte, S.; Muller, J. B.; Le Breton, M.; Gallagher, M. W.; Allen, G.; Percival, C. J.

    2012-12-01

    Airborne measurements of CO2 and CH4 have been made using the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft since spring 2011.The measurement system uses a commercially available analyser, based on the off-axis integrated cavity output spectroscopy technique, from Los Gatos Research Inc (FGGA, Model RMT-200). During the first year of operation (29 flights), 1 Hz measurements were found to be accurate to 0.07 ± 2.48ppbv for CH4 and -0.06± 0.66ppmv for CO2. In summer 2011, as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites), outflow from boreal forest fires was measured in Eastern Canada. A number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements, a widely used tracer for biomass burning. In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 6.9±0.8 g of CH4 and 1551±213 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies in boreal regions. However for aged plumes the correlations between CH4 and other biomass burning tracers were not as robust, most likely due to mixing from other CH4 emission sources, such as the wetland regions. The role of additional emission sources will be investigated using the UK Met Office NAME atmospheric dispersion model and the HYSPLIT trajectory model. Using tailored back trajectory analysis, we will present an interpretation of this new dataset in the context of air mass/fire origin, relating this to MODIS fire maps and source strength.

  14. Airborne Hydromapping - How high-resolution bathymetric surveys will change the research and work focused on waterbody-related topics

    NASA Astrophysics Data System (ADS)

    Steinbacher, Frank; Baran, Ramona; Dobler, Wolfgang; Aufleger, Markus

    2013-04-01

    Repetitive surveying of inshore waters and coastal zones is becoming more and more essential in order to evaluate water-level dynamics, structural and zonal variations of rivers and riparian areas, river degradation, water flow, reservoir sedimentation, delta growth, as well as coastal processes. This can only be achieved in an effective manner by employing hydrographic airborne laser scanning (hydromapping). A new laser scanner is introduced, which has been specifically designed for the acquisition of high-resolution hydrographic data in order to survey and monitor inland waters and shallow coastal zones. Recently, this scanner has been developed within the framework of an Austrian research cooperation between Riegl LMS and the Unit of Hydraulic Engineering at the University of Innsbruck. We present exemplary measurement results obtained with the compact airborne laser-scanning system during our project work. Along the Baltic Sea coast northeast of Kiel city, northern Germany, we obtained measurement depths up to 8 m under clear-water conditions. Moreover, we detect underwater dune-structures and the accumulation of sediment within groin structures. In contrast, under turbid water conditions we obtained depths of approximately 3 m along the Rhine River at Rheinfelden, German-Swiss border east of Basel city. Nevertheless, we were able to map small-scale and complex morphologic features within a fish ramp or bedrock cliffs. The laser data had been combined with sonar measurements displaying the bathymetry at depths of ca. 2-25 m in order to document comprehensively the actual hydrographic setting after the new construction of the hydropower plant Rheinfelden. In summary, a high-resolution spatial view on the ground of various waterbodies is now possible for the first time with point densities in the usual range of approximately 10-20 points/m². However, the combination of these data with high-resolution aerial (approximately < 5 cm/pixel) or spectral images offers

  15. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  16. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  17. Test devices for aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives of the DFVLR in six areas are described: (1) transportation and communication systems; (2) aircraft, space technology, (4) remote sensing, (5) energy and propulsion technology; and (6) research and development. A detailed description of testing devices and other facilities required to carry out the research program is given.

  18. Standardized Tests and Grades. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2005-01-01

    There is decades of research on the correlation between grades and standardized test scores. Much of what the author accessed was published in the 70s and 80s, partly because a scare around "the declining American SAT score" led to an examination of the tests (the drop can easily be explained by the fact that many students who might not…

  19. A flight research program to develop airborne systems for improved terminal area operations

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.

    1974-01-01

    The research program considered is concerned with the solution of operational problems for the approximate time period from 1980 to 2000. The problems are related to safety, weather effects, congestion, energy conservation, noise, atmospheric pollution, and the loss in productivity caused by delays, diversions, and schedule stretchouts. The terminal configured vehicle (TCV) program is to develop advanced flight-control capability. The various aspects of the TCV program are discussed, giving attention to avionics equipment, the piloted simulator, terminal-area environment simulation, the Wallops research facility, flight procedures, displays and human factors, flight activities, and questions of vortex-wake reduction and tracking.

  20. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  1. Characterization of mechanical properties of leather with airborne ultrasonics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nondestructive method to accurately evaluate the quality of hides and leather is urgently needed by leather and hide industries. We previously reported the research results for airborne ultrasonic (AU) testing using non-contact transducers to evaluate the quality of hides and leather. The abilit...

  2. Integrating Assessment and Research Strategies on a Large Development and Research Project: Kids as Airborne Mission Scientists (KaAMS).

    ERIC Educational Resources Information Center

    Grabowski, Barbara L.; Koszalka, Tiffany A.

    Combining assessment and research components on a large development and research project is a complex task. There are many descriptions of how either assessment or research should be conducted, but detailed examples illustrating integration of such strategies in complex projects are scarce. This paper provides definitions of assessment,…

  3. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice.

    PubMed

    Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian

    2015-10-06

    Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the

  4. Helmet-Mounted Display Research Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly

  5. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  6. Revival of test bias research in preemployment testing.

    PubMed

    Aguinis, Herman; Culpepper, Steven A; Pierce, Charles A

    2010-07-01

    We developed a new analytic proof and conducted Monte Carlo simulations to assess the effects of methodological and statistical artifacts on the relative accuracy of intercept- and slope-based test bias assessment. The main simulation design included 3,185,000 unique combinations of a wide range of values for true intercept- and slope-based test bias, total sample size, proportion of minority group sample size to total sample size, predictor (i.e., preemployment test scores) and criterion (i.e., job performance) reliability, predictor range restriction, correlation between predictor scores and the dummy-coded grouping variable (e.g., ethnicity), and mean difference between predictor scores across groups. Results based on 15 billion 925 million individual samples of scores and more than 8 trillion 662 million individual scores raise questions about the established conclusion that test bias in preemployment testing is nonexistent and, if it exists, it only occurs regarding intercept-based differences that favor minority group members. Because of the prominence of test fairness in the popular media, legislation, and litigation, our results point to the need to revive test bias research in preemployment testing.

  7. Continued research on computer-based testing.

    PubMed Central

    Clyman, S. G.; Julian, E. R.; Orr, N. A.; Dillon, G. F.; Cotton, K. E.

    1991-01-01

    The National Board of Medical Examiners has developed computer-based examination formats for use in evaluating physicians in training. This paper describes continued research on these formats including attitudes about computers and effects of factors not related to the trait being measured; differences between paper-administered and computer-administered multiple-choice questions; and the characteristics of simulation formats. The implications for computer-based testing and further research are discussed. PMID:1807703

  8. Calibration of a TCCON FTS at Armstrong Flight Research Center (AFRC) Using Multiple Airborne Profiles

    NASA Astrophysics Data System (ADS)

    Hillyard, P. W.; Iraci, L. T.; Podolske, J. R.; Tanaka, T.; Yates, E. L.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R. T.; Blake, D. R.; Meinardi, S.; Marrero, J. E.; Yang, M. M.; Beyersdorf, A. J.; Wofsy, S. C.; Pittman, J. V.; Daube, B. C.

    2014-12-01

    Satellite missions including GOSAT, OCO-2 and ASCENDS measure column abundances of greenhouse gases. It is crucial to have calibrated ground-based measurements to which these satellite measurements can compare and refine their retrieval algorithms. To this end, a Fourier Transform Spectrometer has been deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON). This location was selected due to its proximity to a highly reflective lakebed. Such surfaces have proven to be difficult for accurate satellite retrievals. This facility has been in operation since July 2013. The data collected to date at this site will be presented. In order to ensure the validity of the measurements made at this site, multiple vertical profiles have been performed using the Alpha jet, DC-8, and ER-2 as part of the AJAX (ongoing), SEAC4RS (August 2013), and SARP (July 2014) field campaigns. The integrated in-situ vertical profiles for CO2 and CH4 have been analyzed and compared with the TCCON FTS measurements, where good agreement between TCCON data and vertically-integrated aircraft in-situ data has been found.

  9. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  10. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  11. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  12. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  13. Fighter agility metrics, research, and test

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.

    1990-01-01

    Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A completed set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available. Simulation documentation and user instructions are provided in an appendix.

  14. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  15. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  16. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  17. The research of remote sensing in karst collapse remote sense based on airborne LiDAR system: taking Meitanba mining area in Hunan Province as an example

    NASA Astrophysics Data System (ADS)

    An, Zhihong; Wang, Hao; Wu, Fang; Guo, Zhaocheng

    2014-11-01

    Taking Meitanba mining area in Hunan Province as an example, by using the achieved high accuracy and high resolution point-cloud data and digital image data by airborne LiDAR system, this research built the 3D landform of the vegetation-covered areas, got the features of micro landform in the areas, and offered quantity factors for research of geo phenomenon which related to regional landforms and geoscience process. Based on the high accuracy data from airborne LiDAR system and combined with the basic data of geology,the forming mechanism of the karst collapse of Meitanba mining area in Hunan Province and the relationship of surface collapse and mining activities are analyzed. The research mentioned that the reason of the karst collapse in Meitanba mining area is with the basic conditions of forming karst landform and plus the increasing water flow and exchange rate of the underground water, and then the water level decrease, finally different degrees of the regional karst collapse have happened.

  18. OTEC research and the seacoast test facility

    NASA Astrophysics Data System (ADS)

    Hallanger, L. W.

    OTEC mariculture, and other developing research programs at the Natural Energy Laboratory at Keahole Point, Hawaii are reviewed. The installation is designed to feature both onshore and offshore facilities, including cold water intakes and discharge pipelines, warm water intake and discharge pipelines, a pumping station, constant head tanks, laboratories, and support facilities. The Seacoast Test Facility for OTEC development is being constructed to have a ten year lifetime, a 50-ft depth warm water intake, 2100-ft cold water intake, uninterrupted flow from the intakes, cold water temperature rise limited to 1 C, degassing capability for the cold water, and biologically inert pipeline materials. An additional 250 gpm cold water pipeline is being fabricated for mariculture experimentation. Heat transfer monitors, biofouling and corrosion test sections are also being constructed.

  19. SEALDH-II—An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design–Setup–Accuracy/Stability Stress Test

    PubMed Central

    Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker

    2016-01-01

    Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal “housekeeping” data to nearly perfectly control SEALDH-II’s health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively. PMID:28042844

  20. SEALDH-II-An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design-Setup-Accuracy/Stability Stress Test.

    PubMed

    Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker

    2016-12-30

    Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal "housekeeping" data to nearly perfectly control SEALDH-II's health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.

  1. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  2. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  3. CASI/SASI airborne hyperspectral remote sensing anomaly extraction of metallogenic prediction research in Gansu Beishan South Beach area

    NASA Astrophysics Data System (ADS)

    Che, Yongfei; Zhao, Yingjun

    2014-11-01

    Hyperspectral remote sensing has one of the technical advantages atlas. The known deposits of Gansu Beishan South Beach deposits as the study area, based on the theory of wall rock alteration, using airborne hyperspectral remote sensing data (CASI/SASI), extracted mineralization alteration information and analysis. Based on airborne hyperspectral remote sensing mineral mapping results in the study area, Combining analysising of possible mineral formation fluid properties, spatial distribution characteristics and time evolution with analysising of mineral formation environment (lithology and tectonic environment), construction of the South Beach gold deposit location model, the deposit location model as a guide, comprehensive analysis of mineralization geological background and surface geochemical data, delineated mineralization favorable areas. The field investigation showed that signs of altered development of strong in the delineation of the mineralization favorable areas and metallogenic potential of better, is worth paying attention to the prospecting target area. Further explanation that the hyperspectral remote sensing can provide accurate and reliable information for the prospecting, and is worthy of further mining the ore prospecting potential.

  4. Field tests of a new, extractive, airborne 1.4 μm -TDLAS hygrometer (SEALDH-I) on a Learjet 35A

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2013-04-01

    the first successful flights of SEALDH-I on board of a Learjet 35A. Further detailed evaluations of the inflight data and discussion on the performance and future application possibilities will be presented at the meeting. The flights, supported by enviscope GmbH, took place during the DENCHAR campaign (Development and Evaluation of Novel Compact Hygrometer for Airborne Research, Grant No 227159), organized by H. G. J. Smit (FZ Jülich) within the framework of the EU-funded EUFAR network. [1] C. Lauer, D. Weber, S. Wagner, and V. Ebert, "Calibration Free Measurement of Atmospheric Methane Background via Tunable Diode Laser Absorption Spectroscopy at 1.6um," Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), St. Petersburg, Florida, USA" vol. LMA2, 2008. [2] V. Ebert and J. Wolfrum, "Absorption spectroscopy," in OPTICAL MEASUREMENTS-Techniques and Applications, ed. F. Mayinger, Springer, 1994, pp. 273-312. [3] B. Buchholz, B. Kühnreich, H. G. J. Smit, and V. Ebert, "Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison," Applied Physics B, pp. DOI 10.1007/s00340-012-5143-1, Sep. 2012. [4] B. J. Murray, T. W. Wilson, S. Dobbie, Z. Cui, S. M. R. K. Al-Jumur, O. Möhler, M. Schnaiter, R. Wagner, S. Benz, M. Niemand, H. Saathoff, V. Ebert, S. Wagner, and B. Kärcher, "Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions," Nature Geoscience, vol. 3, no. 4, pp. 233-237, Mar. 2010.

  5. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  6. Coupled Stochastic Time-Inverted Lagrangian Transport/Weather Forecast and Research/Vegetation Photosynthesis and Respiration Model. Part II; Simulations of Tower-Based and Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Nehrkorn, Thomas; Wofsy, Steven C.; Matross, Daniel; Gerbig, Christoph; Lin, John C.; Freitas, Saulo; Longo, Marcos; Andrews, Arlyn E.; Peters, Wouter

    2007-01-01

    This paper evaluates simulations of atmospheric CO2 measured in 2004 at continental surface and airborne receptors, intended to test the capability to use data with high temporal and spatial resolution for analyses of carbon sources and sinks at regional and continental scales. The simulations were performed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Forecast and Research (WRF) model, and linked to surface fluxes from the satellite-driven Vegetation Photosynthesis and Respiration Model (VPRM). The simulations provide detailed representations of hourly CO2 tower data and reproduce the shapes of airborne vertical profiles with high fidelity. WRF meteorology gives superior model performance compared with standard meteorological products, and the impact of including WRF convective mass fluxes in the STILT trajectory calculations is significant in individual cases. Important biases in the simulation are associated with the nighttime CO2 build-up and subsequent morning transition to convective conditions, and with errors in the advected lateral boundary condition. Comparison of STILT simulations driven by the WRF model against those driven by the Brazilian variant of the Regional Atmospheric Modeling System (BRAMS) shows that model-to-model differences are smaller than between an individual transport model and observations, pointing to systematic errors in the simulated transport. Future developments in the WRF model s data assimilation capabilities, basic research into the fundamental aspects of trajectory calculations, and intercomparison studies involving other transport models, are possible venues for reducing these errors. Overall, the STILT/WRF/VPRM offers a powerful tool for continental and regional scale carbon flux estimates.

  7. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Fennell, Paul; Robins, Alan

    2010-06-01

    Currently, there are no air quality regulations in force in any part of the world to control number concentrations of airborne atmospheric nanoparticles (ANPs). This is partly due to a lack of reliable information on measurement methods, dispersion characteristics, modelling, health and other environmental impacts. Because of the special characteristics of manufactured (also termed engineered or synthesised) nanomaterials or nanoparticles (MNPs), a substantial increase is forecast for their manufacture and use, despite understanding of safe design and use, and health and environmental implications being in its early stage. This article discusses a number of underlining technical issues by comparing the properties and behaviour of MNPs with anthropogenically produced ANPs. Such a comparison is essential for the judicious treatment of the MNPs in any potential air quality regulatory framework for ANPs.

  8. [Comprehensive testing system for cardiorespiratory interaction research].

    PubMed

    Zhang, Zhengbo; Wang, Buqing; Wang, Weidong; Zheng, Jiewen; Liu, Hongyun; Li, Kaiyuan; Sun, Congcong; Wang, Guojing

    2013-04-01

    To investigate the modulation effects of breathing movement on cardiovascular system and to study the physiological coupling relationship between respiration and cardiovascular system, we designed a comprehensive testing system for cardiorespiratory interaction research. This system, comprising three parts, i. e. physiological signal conditioning unit, data acquisition and USB medical isolation unit, and a PC based program, can acquire multiple physiological data such as respiratory flow, rib cage and abdomen movement, electrocardiograph, artery pulse wave, cardiac sounds, skin temperature, and electromyography simultaneously under certain experimental protocols. Furthermore this system can be used in research on short-term cardiovascular variability by paced breathing. Preliminary experiments showed that this system could accurately record rib cage and abdomen movement under very low breathing rate, using respiratory inductive plethysmography to acquire respiration signal in direct-current coupling mode. After calibration, this system can be used to estimate ventilation non-intrusively and correctly. The PC based program can generate audio and visual biofeedback signal, and guide the volunteers to perform a slow and regular breathing. An experiment on healthy volunteers showed that this system was able to guide the volunteers to do slow breathing effectively and simultaneously record multiple physiological data during the experiments. Signal processing techniques were used for off-line data analysis, such as non-invasive ventilation calibration, QRS complex wave detection, and respiratory sinus arrhythmia and pulse wave transit time calculation. The experiment result showed that the modulation effect on RR interval, respiratory sinus arrhythmia (RSA), pulse wave transit time (PWTT) by respiration would get stronger with the going of the slow and regular breathing.

  9. Research-scale melter test report

    SciTech Connect

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  10. Fenestration System Performance Research, Testing, and Evaluation

    SciTech Connect

    Jim Benney

    2009-11-30

    The US DOE was and is instrumental to NFRC's beginning and its continued success. The 2005 to 2009 funding enables NFRC to continue expanding and create new, improved ratings procedures. Research funded by the US DOE enables increased fenestration energy rating accuracy. International harmonization efforts supported by the US DOE allow the US to be the global leader in fenestration energy ratings. Many other governments are working with the NFRC to share its experience and knowledge toward development of their own national fenestration rating process similar to the NFRC's. The broad and diverse membership composition of NFRC allows anyone with a fenestration interest to come forward with an idea or improvement to the entire fenestration community for consideration. The NFRC looks forward to the next several years of growth while remaining the nation's resource for fair, accurate, and credible fenestration product energy ratings. NFRC continues to improve its rating system by considering new research, methodologies, and expanding to include new fenestration products. Currently, NFRC is working towards attachment energy ratings. Attachments are blinds, shades, awnings, and overhangs. Attachments may enable a building to achieve significant energy savings. An NFRC rating will enable fair competition, a basis for code references, and a new ENERGY STAR product category. NFRC also is developing rating methods to consider non specular glazing such as fritted glass. Commercial applications frequently use fritted glazing, but no rating method exists. NFRC is testing new software that may enable this new rating and contribute further to energy conservation. Around the world, many nations are seeking new energy conservation methods and NFRC is poised to harmonize its rating system assisting these nations to better manage and conserve energy in buildings by using NFRC rated and labeled fenestration products. As this report has shown, much more work needs to be done to

  11. PSP Testing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bell, J. H.; Hand, L. A.; Schairer, E. T.; Mehta, R. D.; George, Michael W. (Technical Monitor)

    1997-01-01

    Pressure sensitive paints (PSPs) are now used routinely for measuring surface pressures on wind tunnel models at transonic and supersonic Mach numbers. The method utilizes a surface coating containing fluorescent or phosphorescent materials, the brightness of which varies with the local air pressure on the surface. The present paper will summarize PSP activities (in progress and planned) at the NASA Ames Research Center. One of the main accomplishments at NASA Ames has been the development of a PSP measurement system that is production testing capable. This system has been integrated successfully into the large-scale wind tunnel facilities at Ames. There are several problems related to PSP testing which are unique to large-scale wind tunnel testing. The hardware is often difficult to set-up and must operate under harsh conditions (e.g. high pressures and low temperatures). The data acquisition and reduction times need to be kept to a minimum so that the overall wind tunnel productivity is not compromised. The pressure sensitive paints needs to be very robust; the paints must readily adhere to different surfaces with varying geometries and remain functional for long running times. The paint must have well understood, and preferably minimal, temperature sensitivity since fine control of the tunnel temperature is not easily achievable in the larger wind tunnels. In an effort to improve the overall accuracy of the PSP technique, we are currently evaluating some referenced pressure sensitive paints which contain a pressure- independent luminophor in addition to the one which is affected by the surface pressure. The two luminophors are chosen so that their emission wavelengths are somewhat different. Then by taking two 'wind-on' images with either two cameras (with different filters) or one camera with a rotating filter system, the need for 'wind-off' images can be eliminated. The ratio of the two wind-on images accounts for nonuniform lighting and model motion problems

  12. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  13. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  14. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  15. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  16. Design and performance simulations for an airborne DIAL system for long-range remote sensing applications

    NASA Astrophysics Data System (ADS)

    Dowling, James A.; Kelly, Brian T.; Gonglewski, John D.; Fox, Marsha J.; Shilko, Michael L.; Higdon, Noah S.; Highland, Ronald G.; Senft, Daniel C.; Dean, David R.; Blackburn, John P.; Pierrottet, Diego F.

    1997-01-01

    The U.S. Air Force Phillips Laboratory is evaluating the feasibility of long-standoff-range remote sensing of gaseous species present in trace amounts in the atmosphere. To date, the Phillips Laboratory program has been concerned with the preliminary design and performance analysis of a commercially available CO(subscript 2) laser-based DIAL system operating from mountain-top-observatory and airborne platform and more recently with long-range ground testing using a 21.8 km slant path from 3.05 km ASL to sea level as the initial steps in the design and development of an airborne system capability. Straightforward scaling of the performance of a near-term technology direct-detection LIDAR system with propagation range to a topographic target and with the average atmospheric absorption coefficient along the path has been performed. Results indicate that useful airborne operation of such a system should be possible for slant path ranges between 20 km and 50 km, depending upon atmospheric transmission at the operating wavelengths of the (superscript 13)C(superscript 16)O(subscript 2) source. This paper describes the design of the airborne system which will be deployed on the Phillips Laboratory NC-135 research aircraft for DIAL system performance tests at slant ranges of 20 km to 50 km, scheduled for the near future. Performance simulations for the airborne tests will be presented and related to performance obtained during initial ground-based tests.

  17. An airborne infrared spectrometer for solar eclipse observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; Cheimets, Peter; DeLuca, Edward; Galeros, John; Gauron, Thomas; Golub, Leon; Guth, Giora; Hertz, Edward; Judge, Philip; Koutchmy, Serge; Marquez, Vanessa

    2016-08-01

    This paper presents the design of an innovative solar spectrometer that will y on the NSF/NCAR Gulfstream V High-Performance Instrumented Airborne Platform for Environmental Research (GV HIAPER) during the 2017 solar eclipse. The airborne infrared spectrometer (AIR-Spec) is groundbreaking in two aspects: it will image infrared coronal emission lines that have never been measured, and it will bring high resolution imaging to GV HIAPER. The instrument development faces the challenges of achieving adequate resolution and signal-to-noise ratio in a compact package mounted to a noisy moving platform. To ensure that AIR-Spec meets its research goals, the instrument is undergoing pre-flight modeling and testing. The results are presented with reference to the instrument requirements.

  18. Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-277 Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade) As of...PEO - Program Executive Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected

  19. Airborne Precision Spacing (APS) Dependent Parallel Arrivals (DPA)

    NASA Technical Reports Server (NTRS)

    Smith, Colin L.

    2012-01-01

    The Airborne Precision Spacing (APS) team at the NASA Langley Research Center (LaRC) has been developing a concept of operations to extend the current APS concept to support dependent approaches to parallel or converging runways along with the required pilot and controller procedures and pilot interfaces. A staggered operations capability for the Airborne Spacing for Terminal Arrival Routes (ASTAR) tool was developed and designated as ASTAR10. ASTAR10 has reached a sufficient level of maturity to be validated and tested through a fast-time simulation. The purpose of the experiment was to identify and resolve any remaining issues in the ASTAR10 algorithm, as well as put the concept of operations through a practical test.

  20. Current Research/Development in Language Testing.

    ERIC Educational Resources Information Center

    Oller, John W., Jr.

    A discussion of language testing looks at the relationship between the processes of language learning and language testing, particularly from the point of view of pragmatics theory. It outlines some of the theory of Charles Sanders Pierce and its role in the evolution of linguistic theory, as well as the work of other theorists concerning the…

  1. Development and testing of new upper-limb prosthetic devices: research designs for usability testing.

    PubMed

    Resnik, Linda

    2011-01-01

    The purposes of this article are to describe usability testing and introduce designs and methods of usability testing research as it relates to upper-limb prosthetics. This article defines usability, describes usability research, discusses research approaches to and designs for usability testing, and highlights a variety of methodological considerations, including sampling, sample size requirements, and usability metrics. Usability testing is compared with other types of study designs used in prosthetic research.

  2. A Bibliography of Research on Academic Test Anxiety.

    ERIC Educational Resources Information Center

    Hembree, Ray

    This bibliography identifies reports of research on correlates, causes, effects, and treatment of test anxiety. The listing was developed for a synthesis of research, performed by meta-analysis at Adrian College, Michigan in 1986-87. Guidelines for including studies were applied as follows: (1) the research concerned academic test anxiety, using…

  3. The Use of Randomization Tests in Single-Subject Research

    ERIC Educational Resources Information Center

    Haardorfer, Regine; Gagne, Phill

    2010-01-01

    Some researchers have argued for the use of or have attempted to make use of randomization tests in single-subject research. To address this tide of interest, the authors of this article describe randomization tests, discuss the theoretical rationale for applying them to single-subject research, and provide an overview of the methodological…

  4. 10 CFR 1021.212 - Research, development, demonstration, and testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Research, development, demonstration, and testing. 1021... testing. (a) This section applies to the adoption and application of programs that involve research, development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such...

  5. Airborne measurements of total sulfur gases during NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3

    NASA Astrophysics Data System (ADS)

    Farwell, Sherry O.; MacTaggart, Douglas L.; Chatham, William H.; Everson, Dale O.; Samaranayake, Kumarasiri; Lim, Young Taik

    1995-04-01

    A metal foil collection/flash desorption/flame photometric detection (MFC/FD/FPD) technique was used by investigators from the University of Idaho (UI) to measure ambient total sulfur gas concentrations from an aircraft platform during the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3 (GTE/CITE 3) program. The MFC/FD/FPD technique allowed rapid quantitation of tropospheric background air masses using sample integration times of 1-3 min with little or no gap between measurements. The rapid and continual sampling nature of this technique yielded data covering approximately 75% of the entire CITE 3 program's air track. Ambient air measurement data obtained during northern hemisphere (NH) flights often exhibited relatively high total sulfur gas values (up to 19 ppb) and an extremely high degree of sample heterogeneity, especially in coastal locations. Data from southern hemisphere (SH) flights typically exhibited relatively low total sulfur gas concentrations and a low degree of sample heterogeneity. A bimodal interhemispheric total sulfur gas gradient was observed using data obtained during transit flights between the two CITE 3 program ground bases. Comparisons were made of UI total sulfur gas measurements with composite sulfur gas values generated using speciated sulfur gas measurements from other CITE 3 participants. Only a relatively small number of overlap periods for comparison were obtained from all the available CITE 3 data because of large differences in measurement integration times and lack of synchronization of sample start/stop times for the various investigators. These effects were compounded with extreme sample heterogeneity in the NH and the speed at which the aircraft traversed the air masses being sampled. Despite these constraints, sufficient overlapping data were available for the comparative evaluations. Comparison of NH UI total with composite sulfur gas values showed excellent correlation and linear curve fit

  6. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  7. National center for airborne laser mapping proposed

    NASA Astrophysics Data System (ADS)

    Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill

    Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.

  8. Test-Taking Strategies. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2010-01-01

    Much has been written about student preparation for standardized tests such as: get enough sleep, do not eat sugary food or drinks, eat a well-balanced meal, wear comfortable clothing, bring appropriate supplies especially extra #2 pencils, answer every question, write neatly and legibly, deduce wrong answers immediately and use all of the time…

  9. Development of a test methodology for determining the efficacy of One Atmosphere Uniform Glow Discharge Plasma against airborne contaminants

    NASA Astrophysics Data System (ADS)

    Domitrovic, Ronald Edward

    A method of analysis is developed for an atmospheric plasma reactor in a ducted air stream with the intent of enabling parametric analysis for the multi-variable problem. Industrial uses for atmospheric plasma are numerous and in this case, a particular type of plasma known as "One Atmosphere Uniform Glow Discharge Plasma" (OAUGDP(TM)) was studied for its chemistry generation abilities and its microorganism efficacy properties. The system of an OAUGDP reactor positioned in an air duct of fully-developed turbulent flow is constructed of nineteen pertinent variables and dimensional analysis is applied according to the Buckingham Pi method, yielding fourteen dimensionless variable groups. Important Pi groups are identified, namely those relating electrical power input to chemical generation and microorganism efficacy and experimental data is gathered and presented. Ozone is measured as a representative chemical and generation rates are presented in terms of airflow Reynolds number, geometry of the reactor electrodes and power input to the reactor. A universal generation curve is developed for a parallel electrode reactor in which ozone generation rates can be determined from the known Reynolds number, electrode diameter to electrode gap ratio and plasma power to air flow power ratio. It is shown that ozone generation follows a bell shaped curve with increasing rates of production at a low ratio of plasma power to flow power, reaching a maximum and then decreasing to nearly zero at sufficiently high values of plasma power to flow power ratio. A principal area of development for OAUGDP and other atmospheric plasmas is for their use in destroying microorganisms, both on surfaces and in air streams. The ducted OAUGDP system was experimentally tested for efficacy against Bacillus atrophaeus endospores and results are presented in terms of the Reynolds number, the dimensionless plasma exposure time and the plasma power to airflow power ratio. Higher Reynolds numbers require

  10. From IGY to IPY, the U.S. Antarctic Oversnow and Airborne Geophysical-Glaciological Research Program from 1957 to 1964 from the View of a Young Graduate Student

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2006-12-01

    1958 and continuing to 1964 the oversnow traverses were complimented by an airborne geophysical program comprising widely spaced landings for seismic reflection ice sounding and 75,000 km of widely spaced aeromagnetic and snow surface elevation profiles. The airborne profiles were concentrated over the West Antarctic Ice Sheet (WAIS) and along the length of the Transantarctic Mountains, and approximately defined the vast extent of a late Cenozoic volcanic province beneath the WAIS associated with the unknown West Antarctic rift system. There were numerous hazards encountered using these U.S. Navy planes of opportunity including denting a wing on a hidden mountain and a crash on one occasion killing the geophysicist (Edward Thiel) and four others. There was an aircraft death rate of 3.8 deaths per year in the U.S. program from 1955-66. The oversnow and airborne traverses of the IGY-IGC period employed the inductive method of scientific research with only the general objectives of defining the Antarctic Ice Sheet as to surface elevation, thickness, snow accumulation and temperature. In contrast, Antarctic research today employs deductive logic with narrowly defined objectives and testing of hypotheses. This change has been necessary because of expense, and competition of proposals by many scientists. Nonetheless something has been lost by this approach, and there is still the need for "exploration" types of research is the still unknown vast continent of Antarctica.

  11. An update on the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Smith, William L.; Zhou, Daniel K.; Liu, Xu; Noe, Anna; Oliver, Don; Flood, Michael; Rochette, Luc; Tian, Jialin

    2011-11-01

    The NPOESS / NASA Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 18 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) to fly on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to recent program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, select scientific results, and recent refurbishment activities.

  12. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  13. Systematic observations of Volcán Turrialba, Costa Rica, with small unmanned aircraft and aerostats (UAVs): the Costa Rican Airborne Research and Technology Applications (CARTA) missions

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.; Abtahi, A.; Alan, A., Jr.; Alegria, O.; Azofeifa, S.; Berthold, R.; Corrales, E.; Fuerstenau, S.; Gerardi, J.; Herlth, D.; Hickman, G.; Hunter, G.; Linick, J.; Madrigal, Y.; Makel, D.; Miles, T.; Realmuto, V. J.; Storms, B.; Vogel, A.; Kolyer, R.; Weber, K.

    2014-12-01

    For several years, the University of Costa Rica, NASA Centers (e.g., JPL, ARC, GSFC/WFF, GRC) & NASA contractors-partners have made regular in situ measurements of aerosols & gases at Turrialba Volcano in Costa Rica, with aerostats (e.g., tethered balloons & kites), & free-flying fixed wing UAVs (e.g., Dragon Eye, Vector Wing 100, DELTA 150), at altitudes up to 12.5Kft ASL within 5km of the summit. Onboard instruments included gas detectors (e.g., SO2, CO2), visible & thermal IR cameras, air samplers, temperature pressure & humidity sensors, particle counters, & a nephelometer. Deployments are timed to support bimonthly overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite (26 deployments to date). In situ observations of dilute plume SO2 concentrations (~1-20ppmv), plume dimensions, and associated temperature, pressure, & humidity profiles, validate detailed radiative transfer-based SO2 retrievals, as well as archive-wide ASTER band-ratio SO2 algorithms. Our recent UAV-based CO2 observations confirm high concentrations (e.g., ~3000ppmv max at summit jet), with 1000-1500ppmv flank values, and essentially global background CO2 levels (400ppmv) over distal surroundings. Transient Turrialba He detections (up to 20ppmv) were obtained with a small (~10kg) airborne mass spectrometer on a light aircraft—a UAV version (~3kg) will deploy there soon on the UCR DELTA 500. Thus, these platforms, though small (most payloads <500gm), can perform valuable systematic measurements of potential eruption hazards, as well as of volcano processes. Because they are economical, flexible, and effective, such platforms promise unprecedented capabilities for researchers and responders throughout Central and South America, undertaking volcanic data acquisitions uniquely suited to such small aircraft in close proximity to known hazards, or that were previously only available using full-sized manned aircraft. This work was

  14. Automated Test Outline Development: Research Findings

    DTIC Science & Technology

    1989-11-01

    than zero at X = 05 ) were eliminated from the calculation of R,1 and Rkk (usually less than 10% of sample). returned too late for inclusion in ATO...61 90850 1 2.5 1.61 2.6 1.43 7 90870 1 2.5 1.61 2.6 1 43 .79 ATO weights (the recommended numbers of test items to write for each major duty area...For any given AFS, the number of these major duty areas can vary from as few as 8 to as many as 26. It seems reasonable to assume that the extent to

  15. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms. PMID:27873868

  16. 10 CFR 1021.212 - Research, development, demonstration, and testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Research, development, demonstration, and testing. 1021... ACT IMPLEMENTING PROCEDURES DOE Decisionmaking § 1021.212 Research, development, demonstration, and..., development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such...

  17. 10 CFR 1021.212 - Research, development, demonstration, and testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Research, development, demonstration, and testing. 1021... ACT IMPLEMENTING PROCEDURES DOE Decisionmaking § 1021.212 Research, development, demonstration, and testing. (a) This section applies to the adoption and application of programs that involve...

  18. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  19. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  20. Monitoring marine pollution by airborne remote sensing techniques

    SciTech Connect

    Yuanfu, S.; Quanan, Z.

    1982-06-01

    In order to monitor marine pollution by airborne remote sensing techniques, some comprehensive test of airborne remote sensing, involving monitoring marine oil pollution, were performed at several bay areas of China. This paper presents some typical results of monitoring marine oil pollution. The features associated with the EM spectrum (visible, thermal infrared, and microwave) response of marine oil spills is briefly analyzed. It has been verified that the airborne oil surveillance systems manifested their advantages for monitoring the oil pollution of bay environments.

  1. Airborne Flight Test System (AFTS).

    DTIC Science & Technology

    1981-10-26

    photomultiplier tube has the capability of searching 0.7 inch photocathode with a 7 mil aperture to locate a focussed spot and develop signals related to its...performance could be inferred from the average signal level whereas the communications performance was related to the minimum signal. Even so, designs for...lifetime goal of 3000 hrs. The experience gained in the areas of materials and processes and themodynamics is relevant to subsequent Nd:YAG laser

  2. Assessment of Superflux relative to fisheries research and monitoring. [airborne remote sensing of the Chesapeake bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Thomas, J. P.

    1981-01-01

    Some of the findings of the Superflux program relative to fishery research and monitoring are reviewed. The actual and potential influences of the plume on the shelf ecosystem contiguous to the mouth of Chesapeake Bay are described and insights derived from the combined use of in situ and remotely sensed data are presented.

  3. Research on Educational Measurement and Testing in New Zealand.

    ERIC Educational Resources Information Center

    Reid, Neil A.

    This review of the research on educational measurement and testing in New Zealand uses the institutional setting of the research as its framework. Following an historical overview dating back to the work of Norman McKenzie in 1927, sections of the review deal with research conducted by: (1) university staff; (2) university students; (3) Department…

  4. AGARD Flight Test Techniques Series. Volume 16. Introduction to Airborne Early Warning Radar Flight Test. (Introduction aux essais en vol des Radars Aeroportes d’Alerte Lointaine)

    DTIC Science & Technology

    1999-11-01

    AGARD Publications) 00185 Roma Kentigern House Carretera de Torrej6n a Ajalvir, Pk.4 LUXEMBOURG 65 Brown Street 28850 Torrej6n de Ardoz - Madrid Voir...ICELAND SPAIN Director Research & Development Director of Aviation INTA (RTO/AGARD Publications) Communications & Information c/o Flugrad Carretera

  5. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  6. Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

    PubMed Central

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  7. Validation tests of the thermal analysis research program

    SciTech Connect

    Walton, G.N.; Cavanaugh, K.

    1985-09-01

    In the study analytical and empirical tests were performed using the Thermal Analysis Research Program (TARP). TARP was found to be very accurate relative to the analytical tests (calculations for simplified conditions) which covered steady and transient conduction, internal radiant interchange, latent loads, and clear sky solar gains. Six one-room buildings with different wall constructions provided data for the empirical tests.

  8. Introduction to Psychology and Leadership. Specifications of Research Test Items.

    ERIC Educational Resources Information Center

    Shrage, Jules H.; And Others

    The working guidelines for the development of research test items for the cumulative post-tests of the United States Naval Academy's leadership course developed by the Westinghouse Learning Corporation are presented in this report, including general specifications, content analysis and test construction, and classification of items. EM 010 418…

  9. Conceptualizing Essay Tests' Reliability and Validity: From Research to Theory

    ERIC Educational Resources Information Center

    Badjadi, Nour El Imane

    2013-01-01

    The current paper on writing assessment surveys the literature on the reliability and validity of essay tests. The paper aims to examine the two concepts in relationship with essay testing as well as to provide a snapshot of the current understandings of the reliability and validity of essay tests as drawn in recent research studies. Bearing in…

  10. NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BU

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BUILDING ERB - ALKALI METAL LOW PRESSURE PUMP FACILITY AND ALKALI METAL HIGH PRESSURE PUMP FACILITY IN CELL W-6 OF THE COMPRESSOR & TURBINE WING C&T

  11. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    USGS Publications Warehouse

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.

    2010-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.

  12. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    PubMed Central

    MAXWELL, SUSAN K.; MELIKER, JAYMIE R.; GOOVAERTS, PIERRE

    2015-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps. PMID:19240763

  13. Overview of Recent Flight Flutter Testing Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Lind, Richard C.; Voracek, David F.

    1997-01-01

    In response to the concerns of the aeroelastic community, NASA Dryden Flight Research Center, Edwards, California, is conducting research into improving the flight flutter (including aeroservoelasticity) test process with more accurate and automated techniques for stability boundary prediction. The important elements of this effort so far include the following: (1) excitation mechanisms for enhanced vibration data to reduce uncertainty levels in stability estimates; (2) investigation of a variety of frequency, time, and wavelet analysis techniques for signal processing, stability estimation, and nonlinear identification; and (3) robust flutter boundary prediction to substantially reduce the test matrix for flutter clearance. These are critical research topics addressing the concerns of a recent AGARD Specialists' Meeting on Advanced Aeroservoelastic Testing and Data Analysis. This paper addresses these items using flight test data from the F/A-18 Systems Research Aircraft and the F/A-18 High Alpha Research Vehicle.

  14. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  15. Challenges and Successes Managing Airborne Science Data for CARVE

    NASA Astrophysics Data System (ADS)

    Hardman, S. H.; Dinardo, S. J.; Lee, E. C.

    2014-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission collects detailed measurements of important greenhouse gases on local to regional scales in the Alaskan Arctic and demonstrates new remote sensing and improved modeling capabilities to quantify Arctic carbon fluxes and carbon cycle-climate processes. Airborne missions offer a number of challenges when it comes to collecting and processing the science data and CARVE is no different. The biggest challenge relates to the flexibility of the instrument payload. Within the life of the mission, instruments may be removed from or added to the payload, or even reconfigured on a yearly, monthly or daily basis. Although modification of the instrument payload provides a distinct advantage for airborne missions compared to spaceborne missions, it does tend to wreak havoc on the underlying data system when introducing changes to existing data inputs or new data inputs that require modifications to the pipeline for processing the data. In addition to payload flexibility, it is not uncommon to find unsupported files in the field data submission. In the case of CARVE, these include video files, photographs taken during the flight and screen shots from terminal displays. These need to captured, saved and somehow integrated into the data system. The CARVE data system was built on a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This well-tested and proven infrastructure allows the CARVE data system to be easily adapted in order to handle the challenges posed by the CARVE mission and to successfully process, manage and distribute the mission's science data. This

  16. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  17. Stabilized electro-optical airborne instrumentation platform (SEAIP)

    NASA Astrophysics Data System (ADS)

    Ricks, Timothy P.; Burton, Megan M.; Cruger, William; Reynolds, Robert

    2004-02-01

    Airborne testing of sensors presents unique challenges to the researcher. Prototype sensors are not typically configured for aircraft mounting, and testing requires comparative (truth) data for accurate sensor performance evaluation. The U.S. Army Redstone Technical Test Center (RTTC) has developed a large Stabilized Electro-optical Airborne Instrumentation Platform (SEAIP) for use with rotary wing aircraft as a sensor test bed. This system is designed to accommodate the rapid integration of multiple sensors into the gimbal, greatly reducing the time required to enter a sensor into testing. The SEAIP has been designed for use with UH-1 or UH-60 aircraft. It provides nominal 35 μradian (RMS) line-of-sight stabilization in two axes. Design has been optimized for support of multiple/large prototype (brassboard) sensors. Payload combinations up to 80 lbs can be accommodated. Gimbal angle ranges are large to permit flexibility for sensor pointing. Target acquisition may be done manually, or with the use of a GPS tracker. Non-visible targets may be engaged, and sensor information may be mapped real-time to digitized maps or photographs of the test area. Two SEAIP systems are currently used at RTTC. Numerous sensors have been successfully integrated and tested, including MMW, LADAR, IR, SAL, multi-spectral, visible, and night vision.

  18. Polybrominated diphenyl ethers in airborne particulates collected during a research expedition from the Bohai Sea to the Arctic.

    PubMed

    Wang, Xin-Ming; Ding, Xiang; Mai, Bi-Xian; Xie, Zhou-Qing; Xiang, Cai-Hong; Sun, Li-Guang; Sheng, Guo-Ying; Fu, Jia-Mo; Zeng, Eddy Y

    2005-10-15

    In July to September 2003, particulates in the oceanic atmosphere from the Bohai Sea to the high Arctic (37 degrees N to 80 degrees N) were collected aboard a research expedition icebreaker, Xuelong (Snow Dragon), under the 2003 Chinese Arctic Research Expedition Program (CHINARE 2003). These samples were analyzed to elucidate the atmospheric distributions of polybrominated diphenyl ethers (PBDEs) in the North Pacific Ocean and adjacent Arctic region. The levels of 11 PBDE congeners (BDE-28, -47, -66, -100, -99, -85, -154, -153, -138, -183, and -209; the sum was defined as sigma11PBDE) in the oceanic atmosphere of Far East Asia (34-48 degrees N/122-148 degrees E) ranged from 2.25 to 198.9 pg/m3 with a mean of 58.3 pg/m3. BDE-47, -99, -100, and -209 were the dominant congeners in all the samples, suggesting that the widely used commercial penta- and deca-BDE products were the original sources. The PBDE levels exhibited a decreasing trend from the mid- to high-latitudinal regions of the North Pacific Ocean, probably resulting from dilution, deposition, and decomposition of PBDEs during long-range transport of air masses. On the other hand, no apparent geographical pattern of PBDE distribution was observed within the Arctic, attributable to unstable air circulation and strong air mixing. Correlations among the PBDE congeners suggested that air masses collected from the North Pacific Ocean were relatively fresh, whereas those from the Arctic were aged as a result of photodecompoisiton. The higher average level (17.3 pg/m3) of PBDE congeners in the Arctic than those in the adjacent North Pacific Ocean (12.8 pg/m3) or other remote areas reported in the literature was attributed to the impact of the North American continent and temperature effects, which was consistent with the hypotheses of global fractionation.

  19. Space Chemical Propulsion Test Facilities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Urasek, Donald C.; Calfo, Frederick D.

    1993-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio, has a number of space chemical propulsion test facilities which constitute a significant national space testing resource. The purpose of this paper is to make more users aware of these test facilities and to encourage their use through cooperative agreements between the government, industry, and universities. Research which is of interest to the government is especially encouraged and often can be done in a cooperative manner that best uses the resources of all parties. An overview of the Lewis test facilities is presented.

  20. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  1. a Research on the Hierarchy and Completeness of Roof Topology for Robust Building Reconstruction from Airborne Point Cloud

    NASA Astrophysics Data System (ADS)

    Xu, B.; Jiang, W. S.; Zhu, Q. S.

    2015-05-01

    In this work, we concentrate on the hierarchy and completeness of roof topology, and the aim is to avoid or correct the errors in roof topology. The hierarchy of topology is expressed by the hierarchical roof topology graph (HRTG) in accord with the definition of CityGML LOD (level of details). We decompose the roof topology graph (RTG) with a progressive approach while maintain the integrality and consistency of the data set simultaneously. Common feathers like collinear ridges or boundaries are calculated integrally to maintain their completeness. The roof items will only detected locally to decrease the error caused by data spare or mutual interference. Finally, a topology completeness test is adopted to detect and correct errors in roof topology, which results in a complete and hierarchical building model. Experiments shows that our methods have obvious improvements to the RTG based reconstruction method, especially for sparse data or roof topology with ambiguous.

  2. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  3. Management and Stewardship of Airborne Observational Data for the NSF/NCAR HIAPER (GV) and NSF/NCAR C-130 at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.

    2014-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies. The data collected are an important legacy of these field campaigns. A comprehensive metadata database and integrated cyber-infrastructure, along with a robust data workflow that begins during the field phase and extends to long-term archival (current aircraft data holdings go back to 1967), assures that: all data and associated software are safeguarded throughout the data handling process; community standards of practice for data stewardship and software version control are followed; simple and timely community access to collected data and associated software tools are provided; and the quality of the collected data is preserved, with the ultimate goal of supporting research and the reproducibility of published results. The components of this data system to be presented include: robust, searchable web access to data holdings; reliable, redundant data storage; web-based tools and scripts for efficient creation, maintenance and update of data holdings; access to supplemental data and documentation; storage of data in standardized data formats; comprehensive metadata collection; mature version control; human-discernable storage practices; and procedures to inform users of changes. In addition, lessons learned, shortcomings, and desired upgrades

  4. Solar Energy Research Institute Validation Test House Site Handbook

    SciTech Connect

    Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

    1985-05-01

    The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

  5. Soldier Performance Research Project: Armor Field and SIMNET Tests

    DTIC Science & Technology

    1989-09-01

    Event 5. The crew will react to an ATGM ambush. The TC must issue the contact report and fire command (both timed). The tank should take evasive ...Cammand’s (TEXO34) Armor and Engineer Board who conducted the Soldier Performance Research Project (SPRP) Armor tests: MC Royce Simson, Test Director CPI...the Soldier Performance Research Project (SPP), the Armor portion was conducted in two phases to provide a rigorous assessment of the cognitive skill

  6. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  7. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    ERIC Educational Resources Information Center

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  8. [Statistical tests in medical research: traditional methods vs. multivariate NPC permutation tests].

    PubMed

    Arboretti, Rosa; Bordignon, Paolo; Corain, Livio; Palermo, Giuseppe; Pesarin, Fortunato; Salmaso, Luigi

    2015-01-01

    Statistical tests in medical research: traditional methods vs. multivariate npc permutation tests.Within medical research, a useful statistical tool is based on hypotheses testing in terms of the so-called null, that is the treatment has no effect, and alternative hypotheses, that is the treatment has some effects. By controlling the risks of wrong decisions, empirical data are used in order to possibly reject the null hypotheses in favour of the alternative, so that demonstrating the efficacy of a treatment of interest. The multivariate permutation tests, based on the nonparametric combination - NPC method, provide an innovative, robust and effective hypotheses testing solution to many real problems that are commonly encountered in medical research when multiple end-points are observed. This paper discusses the various approaches to hypothesis testing and the main advantages of NPC tests, which consist in the fact that they require much less stringent assumptions than traditional statistical tests. Moreover, the related results may be extended to the reference population even in case of selection-bias, that is non-random sampling. In this work, we review and discuss some basic testing procedures along with the theoretical and practical relevance of NPC tests showing their effectiveness in medical research. Within the non-parametric methods, NPC tests represent the current "frontier" of statistical research, but already widely available in the practice of analysis of clinical data.

  9. Views of Black Nurses Toward Genetic Research and Testing

    PubMed Central

    Powell-Young, Yolanda M.; Spruill, Ida J.

    2014-01-01

    Purpose To describe views and beliefs that Black nurses hold regarding several conceptual areas of genetic research and testing. Design Data were generated using a descriptive, cross-sectional design. The sample consisted of 384 Black nurses attending the 2009 annual conference of the National Black Nurses Association in Las Vegas, Nevada. Methods The chi-squared test was used to evaluate group differences by education level, functional area, age, and gender. Findings One half of the Black nurses surveyed believed the potential for the discriminative misuse of genetic information against minority populations exists. However, 84% of these nurses believed the possibility of information misuse should not be used as a barrier to participation in genetic research and testing by the Black populace. Conclusions Black nurses expressed concerns about the potential for discriminatory use of genetic information gleaned from research and testing. Yet, Black nurses recognize the importance of racial-ethnic minority participation in genetic research and testing. Clinical Relevance Participation in genetic research and testing by diverse populations will provide opportunities to improve the healthcare delivery system and aid the eradication of health disparities. More research is needed to clarify factors that contribute to the bifurcation of importance for participation, reluctance to participate, and what interventions might reduce reluctance. PMID:23470244

  10. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  11. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  12. Communicative Language Testing: Current Issues and Future Research

    ERIC Educational Resources Information Center

    Harding, Luke

    2014-01-01

    This article discusses a range of current issues and future research possibilities in Communicative Language Testing (CLT) using, as its departure point, the key questions which emerged during the CLT symposium at the 2010 Language Testing Forum. The article begins with a summary of the 2010 symposium discussion in which three main issues related…

  13. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  14. Worldwide Research, Worldwide Participation: Web-Based Test Logger

    NASA Technical Reports Server (NTRS)

    Clark, David A.

    1998-01-01

    Thanks to the World Wide Web, a new paradigm has been born. ESCORT (steady state data system) facilities can now be configured to use a Web-based test logger, enabling worldwide participation in tests. NASA Lewis Research Center's new Web-based test logger for ESCORT automatically writes selected test and facility parameters to a browser and allows researchers to insert comments. All data can be viewed in real time via Internet connections, so anyone with a Web browser and the correct URL (universal resource locator, or Web address) can interactively participate. As the test proceeds and ESCORT data are taken, Web browsers connected to the logger are updated automatically. The use of this logger has demonstrated several benefits. First, researchers are free from manual data entry and are able to focus more on the tests. Second, research logs can be printed in report format immediately after (or during) a test. And finally, all test information is readily available to an international public.

  15. Space chemical propulsion test facilities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Urasek, Donald C.; Calfo, Frederick D.

    1993-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio has a number of space chemical propulsion test facilities which constitute a significant national space testing resource. The purpose of this paper is to make more users aware of these test facilities and to encourage their use through cooperative agreements between the government, industry, and universities. Research which is of interest to the government is especiallly encouraged and often can be done in a cooperative manner that best uses the resources of all parties. This paper presents an overview of the Lewis test facilities. These facilities are clustered into three test areas: the Rocket Engine Test Facilities (RETF), the Rocket Laboratory (RL), and the Cryogenic Components Laboratory (CCL).

  16. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  17. Buried archaeological structures detection using MIVIS hyperspectral airborne data

    NASA Astrophysics Data System (ADS)

    Merola, P.; Allegrini, A.; Guglietta, D.; Sampieri, S.

    2006-08-01

    The identification of buried archaeological structures, using remote sensing technologies (aerophotos or satellite and airborne images) is based on the analysis of surface spectral features changes that overlying underground terrain units, located on the basis of texture variations, humidity and vegetation cover. The study of these anomalies on MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) hyperspectral data is the main goal of a research project that the CNR-IIA has carried on over different archaeological test sites. The major archaeological information were gathered by data analysis in the VIS and NIR spectral region and by use of the apparent thermal inertia image and their different vegetation index.

  18. AiResearch QCGAT engine performance and emissions tests

    NASA Technical Reports Server (NTRS)

    Norgren, W. M.

    1980-01-01

    Results of aerodynamic performance and emission tests, conducted on a specially designed QCGAT engine in the 17,793-N (4,000 lb) thrust class, are presented. Performance of the AiResearch QCGAT engine was excellent throughout all testing. No serious mechanical malfunctions were encountered, and no significant test time was lost due to engine-related problems. Emissions were drastically reduced over similar engines, and the engine exhibited good smoke performance.

  19. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  20. Vibro-Acoustics Modal Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Pritchard, Jocelyn I.; Buehrle, Ralph D.

    1999-01-01

    This paper summarizes on-going modal testing activities at the NASA Langley Research Center for two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by exterior mechanical and acoustic sources. These test results will provide validation databases for interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all-aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. To date, two of seven test configurations of the ATC and all three test configurations of the BSF have been completed. The paper briefly describes the various test configurations, testing procedure, and typical results for frequencies up to 250 Hz.

  1. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  2. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  3. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  4. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  5. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  6. Use of fecal immunochemical tests in the Iowa Research Network.

    PubMed

    Daly, Jeanette M; Bay, Camden; Levy, Barcey T

    2013-09-01

    Although the fecal immunochemical test (FIT) has recently emerged as an effective and affordable colorectal cancer screening option, many family physician offices continue to use guaiac-based tests. The purpose of this study was to assess the use of FITs in the Iowa Research Network and to assess physicians' knowledge about FITs. A cover letter and questionnaire were faxed twice to the 291 physician members followed up by a mailing. One hundred and seven (37%) questionnaires were returned. Participants' mean age was 55 years with 78 male responders. Fifty-two (49%) of the physician's offices were in a nonmetro area. Fifty-one (49%) reported using guaiac-based tests and 39 (39%) reported using FITs. Many physicians were unsure of the answers for the FIT knowledge questions. FIT use is not widespread in Iowa Research Network physician offices, and not all physicians are aware of the type of fecal occult blood test being conducted in their office.

  7. Development of a mobile research flight test support capability

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Moore, Archie L.

    1988-01-01

    This paper presents the approach taken by the NASA Western Aeronautical Test Range (WATR) of the Ames Research Center (ARC) to develop and utilize mobile systems to satisfy unique real-time research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, YAV-8B Harrier, F-18 high-alpha research vehicle (HARV), XV-15, and the UH-60 Black Hawk. The approach taken is cost-effective, staff efficient, technologically current, and provides a safe and effective research flight test environment to support a highly complex set of real-time requirements including the areas of tracking and data acquisition, communications (audio and video) and real-time processing and display, postmission processing, and command uplink. The development of this capability has been in response to the need for rapid deployment at varied site locations with full real-time comutation and display capability. This paper will discuss the requirements, implementation and growth plan for mobile systems development within the NASA Western Aeronautical Test Range.

  8. Development of a mobile research flight test support capability

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Moore, Archie L.

    1988-01-01

    This paper presents the approach taken by the NASA Western Aeronautical Test Range (WATR) of the Ames Research Center to develop and utilize mobile systems to satisfy unique real-time research flight test requirements of research projects such as the advanced fighter technology integration (AFTI)F-16, YAV-8B Harrier, F-18 high-alpha research vehicle (HARV), XV-15, and the UH-60 Black Hawk. The approach taken is cost-effective, staff efficient, technologically current, and provides a safe and effective research flight test environment to support a highly complex set of real-time requirements including the areas of tracking and data acquisition, communications (audio and video) and real-time processing and display, postmission processing, and command uplink. The development of this capability has been in response to the need for rapid deployment at varied site locations with full real-time computations and display capability. This paper will discuss the requirements, implementation and growth plan for mobile systems development within the NASA Western Aeronautical Test Range.

  9. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    ploration Method. CIMM Bulletin, May, pp. 1-12. terpretation of Airborne Electromagnetic Data. Turnross, J., H. F. Morrison, and A. Becker (1984...System. CIMM Bulletin, v. 66, pp. 104-109. Fraser. D. C. (1978). Resistivity Mapping with an Air- report, Office of Naval Research, Washington, DC

  10. Performance Evaluation Tests for Environmental Research (PETER): Collected Papers.

    DTIC Science & Technology

    1981-07-01

    RESEARCH (PETER): COLLECTED PAPERS ,Robert S. Kennedy, Alvah C. Bittner, Jr., Robert C. Carter, Michele Krause, (Mary M. Harbeson, Denise B. McCafferty...EVALUATION TESTS FOR ENVIRONMENTAL RESEARCH (PETER): COLLECTED PAPERS Robert S. Kennedy, Alvah C. Bittner, Jr., Robert C. Carter, Michele Krause, Mary M...characteristics (defined in 1. Alvares, K. M., & Hulin , C. L. Two explana Table 1) for each score. The remaining columns of tions of temporal changes

  11. Monitoring airborne alpha-emitter contamination

    SciTech Connect

    Kerr, P.L.; Koster, J.E.; Conaway, J.G.; Bounds, J.A.; Whitley, C.W.; Steadman, P.A.

    1998-02-01

    Facilities that may produce airborne alpha emitter contamination require a continuous air monitoring (CAM) system. However, these traditional CAMs have difficulty in environments with large quantities of non-radioactive particulates such as dust and salt. Los Alamos has developed an airborne plutonium sensor (APS) for the REBOUND experiment at the Nevada Test Site which detects alpha contamination directly in the air, and so is less vulnerable to the problems associated with counting activity on a filter. In addition, radon compensation is built into the detector by the use of two measurement chambers.

  12. Integrated testing and verification system for research flight software

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.

    1979-01-01

    The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.

  13. Research into Sexism in Language Testing & Its Implications to Language Testing in China

    ERIC Educational Resources Information Center

    Tao, Baiqiang

    2007-01-01

    This paper reviews foreign and domestic sexism research and practice in language testing and reveals that China lags behind in this sociolinguistics perspective in both theoretical study and practice. The paper indicates that sexism is represented in the listening comprehension section in National Matriculation English Test (NMET) after a case…

  14. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  15. Cloud detection using disposable airborne sensors

    NASA Astrophysics Data System (ADS)

    Nicoll, K.; Harrison, R. G.

    2012-04-01

    Measurements from airborne platforms are important for studies of clouds' impact on the radiation balance and on precipitation. A range of small, low cost, disposable sensors has been developed for cloud detection from unmanned balloon or UAS (Unmanned Aerial Systems) platforms (Nicoll and Harrison, 2010). The techniques already deployed include exploiting the associated solar radiation modification, electric charge changes, and optical fluctuations due to cloud droplets. As well as needing to be inexpensive, the sensors are required to be lightweight (mass typically ~ 100g) with low consumption (typical power ~100mW), and have been tested alongside standard meteorological radiosondes, as well as on a small UAS (SUMO - Small Unmanned Meteorological Observer (Reuder et al 2009)). Design criteria for these sensors will be discussed, as well as measurements from the test flights, through a variety of different cloud layers. The advantages of using optical and charge methods of cloud detection over the normal thermodynamic method deployed with conventional radiosondes (capacitative sensing of relative humidity combined with temperature measurements), will also be discussed. Nicoll K.A. and R.G. Harrison. Research Radiosondes, Met. Tech. Int. Nov 2010, 140 (2010). Reuder J., P. Brisset, M. Jonassen, M. Muller, S. Mayer. The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research Meteorologische Zeitschrift, Vol. 18, No. 2, 141-147 (2009).

  16. Temporal variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Hayes, J V; Ogden, E C

    1976-06-01

    Tests were conducted to determine the relationship between concentrations of airborne pollens and sampling time, using sequential rotoslide samplers at urban and rural locations. Short-period data showed an increase in variability with time between samples. Two-hour data showed a stronger trend for the first 12 hours but better agreement as the time between samples approached one day.

  17. AN AIRBORNE COLLISION-WARNING DEVICE,

    DTIC Science & Technology

    A simplified airborne collision- warning device is suggested in which each aircraft transmits its barometric altitude by radio. The likelihood of...signals into ’near’ and ’far’ categories would have to be determined by flight tests, it is felt that the low cost and early availability of the system justifies its consideration. (Author)

  18. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  19. A narrative review of manual muscle testing and implications for muscle testing research

    PubMed Central

    Conable, Katharine M.; Rosner, Anthony L.

    2011-01-01

    Objective Manual muscle testing (MMT) is used for a variety of purposes in health care by medical, osteopathic, chiropractic, physical therapy, rehabilitation, and athletic training professionals. The purpose of this study is to provide a narrative review of variations in techniques, durations, and forces used in MMT putting applied kinesiology (AK) muscle testing in context and highlighting aspects of muscle testing important to report in MMT research. Method PubMed, the Collected Papers of the International College of Applied Kinesiology–USA, and related texts were searched on the subjects of MMT, maximum voluntary isometric contraction testing, and make/break testing. Force parameters (magnitude, duration, timing of application), testing variations of MMT, and normative data were collected and evaluated. Results “Break” tests aim to evaluate the muscle's ability to resist a gradually increasing pressure and may test different aspects of neuromuscular control than tests against fixed resistances. Applied kinesiologists use submaximal manual break tests and a binary grading scale to test short-term changes in muscle function in response to challenges. Many of the studies reviewed were not consistent in reporting parameters for testing. Conclusions To increase the chances for replication, studies using MMT should specify parameters of the tests used, such as exact procedures and instrumentation, duration of test, peak force, and timing of application of force. PMID:22014904

  20. Outlier Detection in High-Stakes Certification Testing. Research Report.

    ERIC Educational Resources Information Center

    Meijer, Rob R.

    Recent developments of person-fit analysis in computerized adaptive testing (CAT) are discussed. Methods from statistical process control are presented that have been proposed to classify an item score pattern as fitting or misfitting the underlying item response theory (IRT) model in a CAT. Most person-fit research in CAT is restricted to…

  1. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  2. The Portable Usability Testing Lab: A Flexible Research Tool.

    ERIC Educational Resources Information Center

    Hale, Michael E.; And Others

    A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…

  3. Alternatives to Animal Use in Research, Testing, and Education. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    With an estimated 17-22 million animals used in laboratories annually in the United States, public interest in animal welfare has sparked an often emotional debate over such uses of animals. Concerns focus on balancing societal needs for continued progress in biomedical and behavioral research, for toxicity testing to safeguard the public, and for…

  4. Consumer Research - Product Testing. USMES Teacher's Resource Book, Preliminary Edition.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    This USMES unit challenges students to determine which brand of a product is the best buy for a certain purpose. The teacher resource book for the Consumer Research - Product Testing unit contains five sections. The first section describes the USMES approach to student-initiated investigations of real problems, including a discussion of the nature…

  5. Sizing up systems: researchers to test performance measures.

    PubMed

    Anderson, H J

    1991-10-20

    Researchers are preparing to test 81 possible performance indicators that health care systems can use to more thoroughly measure how well they are carrying out their missions. In addition to measurements of financial performance and quality, the indicators cover such areas as community service and customer satisfaction.

  6. Summary of airborne chlorine and hydrogen chloride gas measurements for August 20 and September 5, 1977 Voyager launches at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.

    1978-01-01

    Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.

  7. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  8. The researcher and the consultant: from testing to probability statements.

    PubMed

    Hamra, Ghassan B; Stang, Andreas; Poole, Charles

    2015-09-01

    In the first instalment of this series, Stang and Poole provided an overview of Fisher significance testing (ST), Neyman-Pearson null hypothesis testing (NHT), and their unfortunate and unintended offspring, null hypothesis significance testing. In addition to elucidating the distinction between the first two and the evolution of the third, the authors alluded to alternative models of statistical inference; namely, Bayesian statistics. Bayesian inference has experienced a revival in recent decades, with many researchers advocating for its use as both a complement and an alternative to NHT and ST. This article will continue in the direction of the first instalment, providing practicing researchers with an introduction to Bayesian inference. Our work will draw on the examples and discussion of the previous dialogue.

  9. Icing research tunnel test of a model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Bond, Thomas H.

    1989-01-01

    An experimental program has been conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in which an OH-58 tail rotor assembly was operated in a horizontal plane to simulate the action of a typical main rotor. Ice was accreted on the blades in a variety of rotor and tunnel operating conditions and documentation of the resulting shapes was performed. Rotor torque and vibration are presented as functions of time for several representative test runs, and the effects of various parametric variations on the blade ice shapes are shown. This OH-58 test was the first of its kind in the United States and will encourage additional model rotor icing tunnel testing. Although not a scaled representative of any actual full-scale main rotor system, this rig has produced torque and vibration data which will be useful in assessing the quality of existing rotor icing analyses.

  10. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  11. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  12. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  13. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  14. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  15. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  16. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  17. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  18. Deep Borehole Field Test Research Activities at LBNL

    SciTech Connect

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  19. Insights in Hypothesis Testing and Making Decisions in Biomedical Research

    PubMed Central

    Sacha, Varin; Panagiotakos, Demosthenes B.

    2016-01-01

    It is a fact that p values are commonly used for inference in biomedical and other social fields of research. Unfortunately, the role of p value is very often misused and misinterpreted; that is why it has been recommended the use of resampling methods, like the bootstrap method, to calculate the confidence interval, which provides more robust results for inference than does p value. In this review a discussion is made about the use of p values through hypothesis testing and its alternatives using resampling methods to develop confidence intervals of the tested statistic or effect measure. PMID:27733868

  20. Summary of Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    The NASA Glenn Research Center (GRC) has been testing free-piston Stirling convertors for potential use in radioisotope power systems. These convertors tend to be in the 35 to 80 W electric power output range. Tests at GRC have accumulated over 80,000 hr of operation. Test articles have been received from Infinia Corporation of Kennewick, Washington and from Sunpower of Athens, Ohio. Infinia designed and built the developmental Stirling Technology Demonstration Convertors (TDC) in addition to the more advanced Test Bed and Engineering Unit convertors. GRC has eight of the TDC's under test including two that operate in a thermal vacuum environment. Sunpower designed and developed the EE-35 and the Advanced Stirling Convertor (ASC). GRC has six of the EE- 35 s and is preparing for testing multiple ASC s. Free-piston Stirling convertors for radioisotope power systems make use of non-contacting operation that eliminates wear and is suited for long-term operation. Space missions with radioisotope power systems are often considered that extend from three to 14 years. One of the key capabilities of the GRC test facility is the ability to support continuous, unattended operation. Hardware, software, and procedures for preparing the test articles were developed to support these tests. These included the processing of the convertors for minimizing the contaminants in the working fluid, developing a helium charging system for filling and for gas sample analysis, and the development of new control software and a high-speed protection circuit to insure safe, round-the-clock operation. Performance data of Stirling convertors over time is required to demonstrate that a radioisotope power system is capable of providing reliable power for multi-year missions. This paper will discuss the status of Stirling convertor testing at GRC.

  1. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  2. Airborne Chemical Sensing with Mobile Robots

    PubMed Central

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  3. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  4. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  5. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  6. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  7. Airloads research study. Volume 1: Flight test loads acquisition

    NASA Technical Reports Server (NTRS)

    Bartlett, M. D.; Feltz, T. F.; Olsen, A. D., Jr.; Smith, D. B.; Wildermuth, P. F.

    1984-01-01

    The acquisition of B-1 aircraft flight loads data for use in subsequent tasks of the Airloads Research Study is described. The basic intent is to utilize data acquired during B-1 aircraft tests, analyze these data beyond the scope of Air Force requirements, and prepare research reports that will add to the technology base for future large flexible aircraft. Flight test data obtained during the airloads survey program included condition-describing parameters, surface pressures, strain gage outputs, and loads derived from pressure and strain gauges. Descriptions of the instrumentation, data processing, and flight load survey program are included. Data from windup-turn and steady yaw maneuvers cover a Mach number range from 0.7 to 2.0 for a wing sweep position of 67.5 deg.

  8. Helicopter transmission testing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Coy, John J.

    1987-01-01

    The helicopter has evolved into a highly valuable air mobile vehicle for both military and civilian needs. The helicopter transmission requires advanced studies to develop a technology base for future rotorcraft advances. A joint helicopter transmission research program between the NASA Lewis Research Center and the U.S. Army Aviation Systems Command has existed since 1970. Program goals are to reduce weight and noise and to increase life and reliability. The current experimental activities at Lewis consist of full-scale helicopter transmission testing, a base effort in gearing technology, and a future effort in noise reduction technology. The experimental facilities at Lewis for helicopter transmission testing are described. A description of each of the rigs is presented along with some significant results and near-term plans.

  9. Fuels for research and test reactors, status review: July 1982

    SciTech Connect

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  10. J-FLiC UAS Flights for Acoustic Testing Research

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2016-01-01

    The jet-powered flying testbed (J-FLiC) unmanned aircraft system (UAS) successfully completed twenty-six flights at Fort AP Hill, VA, from 27 August until September 3 2015, supporting tests of a microphone array system for aircraft noise measurement. The test vehicles, J-FLiC NAVY2 (N508NU), and J-FLiC 4 (N509NU), were flown under manual and autopiloted control in a variety of test conditions: clean at speeds ranging from 80 to 150 knots; and full landing configuration at speeds ranging from 50 to 95 knots. During the test campaign, autopilot capability was incrementally improved to ultimately provide a high degree of accuracy and repeatability of the critical test requirements for airspeed, altitude, runway alignment and position over the microphone array. Manual flights were performed for test conditions at the both ends of the speed envelope where autopiloted flight would have required flight beyond visual range and more extensive developmental work. The research objectives of the campaign were fully achieved. The ARMD Integrated Systems Research Program (ISRP) Environmentally Responsible Aviation (ERA) Project aims to develop the enabling capabilities/technologies that will allow prediction/reduction of aircraft noise. A primary measurement tool for ascertaining and characterizing empirically the effectiveness of various noise reduction technologies is a microphone phased array system. Such array systems need to be vetted and certified for operational use via field deployments and overflights of the array with test aircraft, in this case with sUAS aircraft such as J-FLiC.

  11. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  12. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  13. Positioning System Accuracy Assessment for the Runway Incursion Prevention System Flight Test at the Dallas/Ft. Worth International Airport

    NASA Technical Reports Server (NTRS)

    Quach, Cuong C.

    2004-01-01

    NASA/Langley Research Center collaborated with the Federal Aviation Administration (FAA) to test a Runway Incursion Prevention System (RIPS) at the Dallas Fort Worth International Airport (DFW) in October 2000. The RIPS combines airborne and ground sensor data with various cockpit displays to improve pilots' awareness of traffic conditions on the airport surface. The systems tested at DFW involved surface radar and data systems that gather and send surface traffic information to a research aircraft outfitted with the RIPS software, cockpit displays, and data link transceivers. The data sent to the airborne systems contained identification and GPS location of traffic. This information was compared with the own-ship location from airborne GPS receivers to generate incursion alerts. A total of 93 test tracks were flown while operating RIPS. This report compares the accuracy of the airborne GPS systems that gave the own-ship position of the research aircraft for the 93 test tracks.

  14. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  15. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  16. Repeating tests: different roles in research studies and clinical medicine.

    PubMed

    Monach, Paul A

    2012-10-01

    Researchers often decide whether to average multiple results in order to produce more precise data, and clinicians often decide whether to repeat a laboratory test in order to confirm its validity or to follow a trend. Some of the major sources of variation in laboratory tests (analytical imprecision, within-subject biological variation and between-subject variation) and the effects of averaging multiple results from the same sample or from the same person over time are discussed quantitatively in this article. This analysis leads to the surprising conclusion that the strategy of averaging multiple results is only necessary and effective in a limited range of research studies. In clinical practice, it may be important to repeat a test in order to eliminate the possibility of a rare type of error that has nothing to do analytical imprecision or within-subject variation, and for this reason, paradoxically, it may be most important to repeat tests with the highest sensitivity and/or specificity (i.e., ones that are critical for clinical decision-making).

  17. The Multi-Center Airborne Coherent Atmospheric Wind Sensor, MACAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1997-01-01

    In 1992 the atmospheric lidar remote sensing groups of the NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS, which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in the troposphere and lower stratosphere. A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise which were developed for previous atmospheric research by the respective institutions. The motivation for the MACAWS program Is three-fold: to obtain fundamental measurements of sub-synoptic scale processes and features which may be used as a basis to improve sub-grid scale parameterizations in large-scale models; to obtain similar datasets in order to improve the understanding and predictive capabilities on the mesoscale; and to validate (simulate) the performance of existing (planned) satellite-borne sensors. Examples of the latter include participation in the validation of the NASA Scatterometer and the assessment of prospective satellite Doppler lidar for global tropospheric wind measurement. Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  18. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    NASA Astrophysics Data System (ADS)

    Halloran, Siobhan; Wexler, Anthony; Ristenpart, William

    2014-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in modulating the pathogen transmission, to date the infectious disease community has paid little attention to the effect of airspeed or turbulence intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of a standard axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We demonstrate that the fan speed counterintuitively has no effect on the downstream plume width, a result replicated with a variety of different fan types and configurations. The results point toward a useful simplification in modeling of airborne disease transmission via fan-generated flows.

  19. Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Calvin, Wendy M.; Seznec, Olivier

    1988-01-01

    Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis.

  20. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  1. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  2. A critique of statistical hypothesis testing in clinical research

    PubMed Central

    Raha, Somik

    2011-01-01

    Many have documented the difficulty of using the current paradigm of Randomized Controlled Trials (RCTs) to test and validate the effectiveness of alternative medical systems such as Ayurveda. This paper critiques the applicability of RCTs for all clinical knowledge-seeking endeavors, of which Ayurveda research is a part. This is done by examining statistical hypothesis testing, the underlying foundation of RCTs, from a practical and philosophical perspective. In the philosophical critique, the two main worldviews of probability are that of the Bayesian and the frequentist. The frequentist worldview is a special case of the Bayesian worldview requiring the unrealistic assumptions of knowing nothing about the universe and believing that all observations are unrelated to each other. Many have claimed that the first belief is necessary for science, and this claim is debunked by comparing variations in learning with different prior beliefs. Moving beyond the Bayesian and frequentist worldviews, the notion of hypothesis testing itself is challenged on the grounds that a hypothesis is an unclear distinction, and assigning a probability on an unclear distinction is an exercise that does not lead to clarity of action. This critique is of the theory itself and not any particular application of statistical hypothesis testing. A decision-making frame is proposed as a way of both addressing this critique and transcending ideological debates on probability. An example of a Bayesian decision-making approach is shown as an alternative to statistical hypothesis testing, utilizing data from a past clinical trial that studied the effect of Aspirin on heart attacks in a sample population of doctors. As a big reason for the prevalence of RCTs in academia is legislation requiring it, the ethics of legislating the use of statistical methods for clinical research is also examined. PMID:22022152

  3. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  4. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  5. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  6. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  7. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  8. Proceedings of the 11th JPL Airborne Earth Science Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2002-01-01

    This publication contains the proceedings of the JPL Airborne Earth Science Workshop forum held to report science research and applications results with spectral images measured by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web http://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html

  9. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  10. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    NASA Astrophysics Data System (ADS)

    Tsai, Su-Jung (Candace); Ada, Earl; Isaacs, Jacqueline A.; Ellenbecker, Michael J.

    2009-01-01

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face velocity

  11. Error Analysis for the Airborne Direct Georeferincing Technique

    NASA Astrophysics Data System (ADS)

    Elsharkawy, Ahmed S.; Habib, Ayman F.

    2016-10-01

    Direct Georeferencing was shown to be an important alternative to standard indirect image orientation using classical or GPS-supported aerial triangulation. Since direct Georeferencing without ground control relies on an extrapolation process only, particular focus has to be laid on the overall system calibration procedure. The accuracy performance of integrated GPS/inertial systems for direct Georeferencing in airborne photogrammetric environments has been tested extensively in the last years. In this approach, the limiting factor is a correct overall system calibration including the GPS/inertial component as well as the imaging sensor itself. Therefore remaining errors in the system calibration will significantly decrease the quality of object point determination. This research paper presents an error analysis for the airborne direct Georeferencing technique, where integrated GPS/IMU positioning and navigation systems are used, in conjunction with aerial cameras for airborne mapping compared with GPS/INS supported AT through the implementation of certain amount of error on the EOP and Boresight parameters and study the effect of these errors on the final ground coordinates. The data set is a block of images consists of 32 images distributed over six flight lines, the interior orientation parameters, IOP, are known through careful camera calibration procedure, also 37 ground control points are known through terrestrial surveying procedure. The exact location of camera station at time of exposure, exterior orientation parameters, EOP, is known through GPS/INS integration process. The preliminary results show that firstly, the DG and GPS-supported AT have similar accuracy and comparing with the conventional aerial photography method, the two technologies reduces the dependence on ground control (used only for quality control purposes). Secondly, In the DG Correcting overall system calibration including the GPS/inertial component as well as the imaging sensor itself

  12. Research on technique of wavefront retrieval based on Foucault test

    NASA Astrophysics Data System (ADS)

    Yuan, Lvjun; Wu, Zhonghua

    2010-05-01

    During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.

  13. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  14. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  15. Psychometric Test Theory and Cognitive Processes: A Theoretical Scrutiny and Empirical Research. Research Bulletin No. 57.

    ERIC Educational Resources Information Center

    Leino, Jarkko

    This report is the third in a series of research projects concerning abilities and performance processes, particularly in school mathematics. A theoretical scrutiny of traditional psychometric testing, cognitive processes, their interrelationships, and an empirical application of the theoretical considerations on the level of junior secondary…

  16. Faculty Rank System, Research Motivation, and Faculty Research Productivity: Measure Refinement and Theory Testing.

    ERIC Educational Resources Information Center

    Tien, Flora F.; Blackburn, Robert T.

    1996-01-01

    A study explored the relationship between the traditional system of college faculty rank and faculty research productivity from the perspectives of behavioral reinforcement theory and selection function. Six hypotheses were generated and tested, using data from a 1989 national faculty survey. Results failed to support completely either the…

  17. Laser airborne remote sensing real-time acquisition, processing, and control system

    NASA Astrophysics Data System (ADS)

    Kelly, Brian T.; Pierson, Robert E.; Dropka, T. J.; Dowling, James A.; Lang, L. M.; Fox, Marsha J.

    1997-10-01

    The US Air Force Phillips Laboratory is evaluating the feasibility of long-standoff-range remote sensing of gaseous species present in trace amounts in the atmosphere. Extensive system integration in the laboratory and an airborne test are leading to remote sensing ground test and airborne missions within the next year. This paper describes the design, external interfaces. and initial performance of the Laser Airborne Remote Sensing acquisition, processing, and control system to be deployed on the Phillips Laboratory NC-135 research aircraft for differential absorption lidar system performance tests. The dual-CPU VME-based real-time computer system synchronizes experiment timing and pulsed CO2 laser operation up to 30 Hz while controlling optical subsystem components such as a laser grating, receiver gain, mirror alignment, and laser shutters. This real-time system acquires high rate detector signals from the outgoing and return laser pulses as well as a low rate health and status signals form the optical bench and the aircraft. Laser pulse and status data are processed and displayed in real time on one of four graphical user interfaces: one devoted to system control, one to remote mirror alignment, and two other interfaces for real-time data analysis and diagnostics. The dual-CPU and multi- layered software decouple time critical and non-critical tasks allowing great flexibility in flight-time display and processing.

  18. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    new system are: - Reduce the size of the system to approximately one third of the volume of the original TAGS and reduce the weight by one half. - Use slip ring technology to eliminate cable drag on the sensor and gimbal platform. - Use a double oven system to further isolate the gravity sensor from large external temperature variations commonly experienced in airborne survey operations. - Completely redesign both the platform control system and data acquisition and recording system to eliminate reliance on standard computer and windows software enhancing reliability and data throughput. - Increase data recording rate to 20 hertz to assist in making GPS corrections to platform levelling. - Use an advanced force feedback system to increase system resolution in turbulent conditions, eliminate dependence on the spring tension counter and the need to clamp the beam during turns. - Enable the system to be used for drape flying and remove the requirement for an operator and hence be suitable for unmanned aerial vehicle (UAV) operations. Prototype testing of the mechanical and electronic components has been ongoing through the first half of 2011. Ground testing and airborne testing began in May of 2011 and will continue through until October of 2011. This paper will present the results of the full hardware testing in different environments and confirmation of the capabilities of the system.

  19. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 17-second clip shows air-to-air shots of the NASA DC-8 airborne laboratory as it passes over the NASA Dryden Flight Research Center at Edwards, California, and the foothills of the Sierra Nevada mountains. On December 29, 1997, NASA Dryden Flight Research Center, Edwards, California, received a DC-8 airborne laboratory from NASA Ames Research Center, Moffett Field, California, where it had flown missions related to airborne science and earth science for many years. This airplane has continued to be used from Dryden for basic research about the Earth's surface and atmosphere as well as sensor development and satellite sensor verification. In mid-February 1998, the DC-8 resumed flying its medium-altitude, science-gathering missions following maintenance and upgrades of its satellite communications system. It flew a variety of missions over widely scattered geographic regions during the rest of the calendar year and beyond to gather data about earth science, including weather and climate. Built by Douglas Aircraft Company, Long Beach, California, in 1966, the DC-8 flew for 20 years with two major airlines before being acquired by NASA and converted to its present role as an airborne laboratory. The four-engine former jetliner was capable of flying extended-duration missions as long as 12 hours over a range of 5,400 nautical miles at cruise altitudes up to 41,000 feet. It was also capable of carrying a payload of multiple experiments weighing up to 30,000 pounds. On some of its missions, up to 30 scientists have worked on as many as 14 different experiments.

  20. DC-8 airborne laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this 26-second clip the NASA DC-8 airborne laboratory is shown making turns over the Sierra Nevada foothills, NASA Dryden Flight Research Center, and Rogers Dry Lakebed at Edwards Air Force Base, California. On December 29, 1997, NASA Dryden Flight Research Center, Edwards, California, received a DC-8 airborne laboratory from NASA Ames Research Center, Moffett Field, California, where it had flown missions related to airborne science and earth science for many years. This airplane has continued to be used from Dryden for basic research about the Earth's surface and atmosphere as well as sensor development and satellite sensor verification. In mid-February 1998, the DC-8 resumed flying its medium-altitude, science-gathering missions following maintenance and upgrades of its satellite communications system. It flew a variety of missions over widely scattered geographic regions during the rest of the calendar year and beyond to gather data about earth science, including weather and climate. Built by Douglas Aircraft Company, Long Beach, California, in 1966, the DC-8 flew for 20 years with two major Airlines before being acquired by NASA and converted to its present role as an airborne laboratory. The four-engine former jetliner was capable of flying extended-duration missions for as long as 12 hours over a range of 5,400 nautical miles at cruise altitudes of up to 41,000 feet. It was also capable of carrying a payload of multiple experiments weighing up to 30,000 pounds. On some of its missions, up to 30 scientists have worked on as many as 14 different experiments.

  1. A New Approach to Testing the Fossorial Rodent Hypothesis of Mima Mound Formation Using Airborne-Based LIDAR and a Diffusive Sediment Transport Model

    NASA Astrophysics Data System (ADS)

    Reed, S. E.; Amundson, R.

    2007-12-01

    Mima mounds are nearly circular soil mounds, found in grassland landscapes. In California, Mima mounds are often associated with vernal pools, seasonal wetlands that harbor rare and endemic plants and animals. The processes that form and maintain the mound-pool complexes have not yet been conclusively identified, even though such information is necessary to understand the effects that land use and climate change may have on the resilience and longevity of these landscapes. One hypothesis for the origin and persistence of Mima mound- vernal pool systems (termed the Fossorial Rodent Hypothesis) proposes that burrowing organisms such as pocket gophers (Rodentia: Geomyidae) maintain and possibly create the mounds by preferentially translocating soils towards mound centers as an adaptive response to high water tables. In order to investigate this hypothesis, the topographic characteristics and aboveground gopher activity of one of the largest remaining Mima mound-vernal pool systems in California were studied. Detailed topographic information for the mound-pool systems was obtained via an airborne-based LIDAR (Light Detection and Ranging) survey of a 25km2 region near Merced, CA. An object-oriented classification scheme, which combined different scale, shape, and spectral parameters, was employed in order to characterize the mounds. Based on the initial classification results, roughly 275,000 mounds were identified, indicating a mound density of 11,000km-2. Within the larger study area, gopher sediment transport was monitored on a 3507m2 site by conducting periodic surveys of sediment mounds created by gopher activity using a Global Positioning System and mass measurements. Downslope erosion rates (off Mima mounds) were estimated using a mass balance model which incorporates a diffusive sediment transport law. The median calculated net downslope erosion rate was 15 cm of soil per 1000 years, while the measured rate of aboveground gopher sediment movement was

  2. Non-animal methodologies within biomedical research and toxicity testing.

    PubMed

    Knight, Andrew

    2008-01-01

    Laboratory animal models are limited by scientific constraints on human applicability, and increasing regulatory restrictions, driven by social concerns. Reliance on laboratory animals also incurs marked - and in some cases, prohibitive - logistical challenges, within high-throughput chemical testing programmes, such as those currently underway within Europe and the US. However, a range of non-animal methodologies is available within biomedical research and toxicity testing. These include: mechanisms to enhance the sharing and assessment of existing data prior to conducting further studies, and physicochemical evaluation and computerised modelling, including the use of structure-activity relationships and expert systems. Minimally-sentient animals from lower phylogenetic orders or early developmental vertebral stages may be used, as well as microorganisms and higher plants. A variety of tissue cultures, including immortalised cell lines, embryonic and adult stem cells, and organotypic cultures, are also available. In vitro assays utilising bacterial, yeast, protozoal, mammalian or human cell cultures exist for a wide range of toxic and other endpoints. These may be static or perfused, and may be used individually, or combined within test batteries. Human hepatocyte cultures and metabolic activation systems offer potential assessment of metabolite activity and organ-organ interaction. Microarray technology may allow genetic expression profiling, increasing the speed of toxin detection, well prior to more invasive endpoints. Enhanced human clinical trials utilising micro- dosing, staggered dosing, and more representative study populations and durations, as well as surrogate human tissues, advanced imaging modalities and human epidemiological, sociological and psycho- logical studies, may increase our understanding of illness aetiology and pathogenesis, and facilitate the development of safe and effective pharmacologic interventions. Particularly when human tissues

  3. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  4. Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination.

    PubMed

    Torre, Michele; Digka, Nikoletta; Anastasopoulou, Aikaterini; Tsangaris, Catherine; Mytilineou, Chryssi

    2016-12-15

    Research studies on the effects of microlitter on marine biota have become more and more frequent the last few years. However, there is strong evidence that scientific results based on microlitter analyses can be biased by contamination from air transported fibres. This study demonstrates a low cost and easy to apply methodology to minimize the background contamination and thus to increase results validity. The contamination during the gastrointestinal content analysis of 400 fishes was tested for several sample processing steps of high risk airborne contamination (e.g. dissection, stereomicroscopic analysis, and chemical digestion treatment for microlitter extraction). It was demonstrated that, using our methodology based on hermetic enclosure devices, isolating the working areas during the various processing steps, airborne contamination reduced by 95.3%. The simplicity and low cost of this methodology provide the benefit that it could be applied not only to laboratory but also to field or on board work.

  5. A new tool for sampling airborne isocyanates

    SciTech Connect

    Sesana, G.; Nano, G.; Baj, A. )

    1991-05-01

    A new sampling system is presented that uses solid sorbent media contained in a tube for the determination of airborne isocyanates (2.4-2.6 toluene diisocyanate, hexamethylene diisocyanate, and 4.4' diaminodiphenylmethane diisocyanate). The method is compared with the National Institute for Occupational Safety and Health (NIOSH) Method P CAM 5505 (Revision {number sign}1). Experimental tests yielded results that were highly concordant with the NIOSH method.

  6. A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.

    2012-12-01

    Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal

  7. Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research.

    PubMed

    Kornum, Birgitte R; Knudsen, Gitte M

    2011-01-01

    Within neuroscience and biobehavioral research, the pig (Sus scrofus) is increasingly being acknowledged as a valuable large animal species. Compared to the rodent brain, the pig brain more closely resembles the human brain in terms of both anatomy and biochemistry, which associates the pig with a higher translational value. Several brain disorders have been fully or partially modeled in the pig and this has further spurred an interest in having access to behavioral tasks for pigs, and in particular to cognitive tasks. Cognitive testing of pigs has been conducted for several years by a small group of farm animal welfare researchers, but it has only recently received interest in the wider neuroscience community. Several behavioral tasks have successfully been adapted to the pig, and valuable results have been produced. However, most tasks have only been established at a single research facility, and would benefit from further validation. This review presents the cognitive tasks that have been developed for pigs, their validation, and their current use.

  8. Swine as models in biomedical research and toxicology testing.

    PubMed

    Swindle, M M; Makin, A; Herron, A J; Clubb, F J; Frazier, K S

    2012-03-01

    Swine are considered to be one of the major animal species used in translational research, surgical models, and procedural training and are increasingly being used as an alternative to the dog or monkey as the choice of nonrodent species in preclinical toxicologic testing of pharmaceuticals. There are unique advantages to the use of swine in this setting given that they share with humans similar anatomic and physiologic characteristics involving the cardiovascular, urinary, integumentary, and digestive systems. However, the investigator needs to be familiar with important anatomic, histopathologic, and clinicopathologic features of the laboratory pig and minipig in order to put background lesions or xenobiotically induced toxicologic changes in their proper perspective and also needs to consider specific anatomic differences when using the pig as a surgical model. Ethical considerations, as well as the existence of significant amounts of background data, from a regulatory perspective, provide further support for the use of this species in experimental or pharmaceutical research studies. It is likely that pigs and minipigs will become an increasingly important animal model for research and pharmaceutical development applications.

  9. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  10. Productivity Measurement and Analysis of Airborne Weapons Maintenance Plans Performed by the Weapons Support Directorate, Pacific Missile Test Center, Pt. Mugu.

    DTIC Science & Technology

    1987-12-01

    productivity measurement technique developed by the Ohio State University Productivity Research Group (1975- 1978) [Ref. 1O:pp. 94]. This method is applicable...structure affected may be updated, without affecting the rest of the structure. In the next chapter the method used in the research and the data obtained...BACKGROUND. ................. 6 B. RESEARCH OBJECTIVES .. ........... 11 C. ORGANIZATION OF STUDY AND SUMMARY OF FINDINGS .. ........... 14 II. LITERATURE

  11. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  12. Using the Integrated Vehicle Health Management Research Test and Integration Plan Wiki to Identify Synergistic Test Opportunities

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Faber, James J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) and the aviation industry have recognized a need for developing a method to identify and combine resources to carry out research and testing more efficiently. The Integrated Vehicle Health Management (IVHM) Research Test and Integration Plan (RTIP) Wiki is a tool that is used to visualize, plan, and accomplish collaborative research and testing. Synergistic test opportunities are developed using the RTIP Wiki, and include potential common resource testing that combines assets and personnel from NASA, industry, academia, and other government agencies. A research scenario is linked to the appropriate IVHM milestones and resources detailed in the wiki, reviewed by the research team members, and integrated into a collaborative test strategy. The scenario is then implemented by creating a test plan when appropriate and the research is performed. The benefits of performing collaborative research and testing are achieving higher Technology Readiness Level (TRL) test opportunities with little or no additional cost, improved quality of research, and increased communication among researchers. In addition to a description of the method of creating these joint research scenarios, examples of the successful development and implementation of cooperative research using the IVHM RTIP Wiki are given.

  13. A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry

    DTIC Science & Technology

    2014-05-29

    development, implementation, and testing/verification of algorithms for airborne telemetry applications. This testbed utilizes both SOQPSK and OFDM for...SOQPSK), Orthogonal Frequency Division Multiplexing ( OFDM ), Bit Error Rate, (BER) 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF...implementation, and testing/verification of algorithms for airborne telemetry applications. This testbed utilizes both SOQPSK and OFDM for its modulation

  14. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  15. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  16. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  17. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  18. 27 CFR 25.196 - Removals for research, development or testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Removals for research... Analysis, Research, Development Or Testing § 25.196 Removals for research, development or testing. (a) A brewer may remove beer, without payment of tax, for use in research, development, or testing (other...

  19. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  20. Airborne infrared spectroscopy of 1994 western wildfires

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07 cm-1 resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  1. NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective

    NASA Astrophysics Data System (ADS)

    Cooper, Beth A.; Akers, James C.; Passe, Paul J.

    2005-09-01

    In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September, 2000, it has developed a comprehensive array of services and products that support hearing conservation goals within NASA and industry. The ATL provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL aggressively supports the vision of a low-noise on-orbit environment, which facilitates mission success as well as crew health, safety, and comfort. In concert with these goals, the ATL also produces and distributes free educational resources and low-noise advocacy tools for hearing conservation education and awareness. Among these are two compact discs of auditory demonstrations (of phenomena in acoustics, hearing conservation, and communication), and presentations, software packages, and other educational materials for use by engineers, audiologists, and other hearing conservation stakeholders. This presentation will highlight ATL's construction, history, technical capabilities, and current projects and will feature demonstrations of some of the unique educational resource materials that are distributed by the ATL.

  2. Allen Newell's Program of Research: The Video-Game Test.

    PubMed

    Gobet, Fernand

    2017-03-20

    Newell (1973) argued that progress in psychology was slow because research focused on experiments trying to answer binary questions, such as serial versus parallel processing. In addition, not enough attention was paid to the strategies used by participants, and there was a lack of theories implemented as computer models offering sufficient precision for being tested rigorously. He proposed a three-headed research program: to develop computational models able to carry out the task they aimed to explain; to study one complex task in detail, such as chess; and to build computational models that can account for multiple tasks. This article assesses the extent to which the papers in this issue advance Newell's program. While half of the papers devote much attention to strategies, several papers still average across them, a capital sin according to Newell. The three courses of action he proposed were not popular in these papers: Only two papers used computational models, with no model being both able to carry out the task and to account for human data; there was no systematic analysis of a specific video game; and no paper proposed a computational model accounting for human data in several tasks. It is concluded that, while they use sophisticated methods of analysis and discuss interesting results, overall these papers contribute only little to Newell's program of research. In this respect, they reflect the current state of psychology and cognitive science. This is a shame, as Newell's ideas might help address the current crisis of lack of replication and fraud in psychology.

  3. Standard test method for airborne asbestos concentration in ambient and indoor atmospheres as determined by transmission electron microscopy direct transfer (TEM). ASTM standard

    SciTech Connect

    1998-10-01

    This test method is under the jurisdiction of ASTM Committee D-22 on Sampling and Analysis of Atmospheres and is the direct responsibility of Subcommittee D22.07 on Asbestos. Current edition approved Jul. 10, 1998. Published October 1998. Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.

  4. Airborne Nanostructured Particles and Occupational Health

    NASA Astrophysics Data System (ADS)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  5. Lunar Landing Research Vehicle (LLRV) engine test firing on ramp

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This 1964 NASA Flight Reserch Center photograph shows a ground engine test underway on the Lunar Landing Research Vehicle (LLRV) number 1. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw

  6. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene

    2011-01-01

    This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.

  7. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  8. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere.

    PubMed

    Podolske, J; Loewenstein, M

    1993-09-20

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of Is and an accuracy ≤ 10%.

  9. Test and Calibration of the Seismic Research Observatory

    USGS Publications Warehouse

    Peterson, Jon; Hutt, Charles R.; Holcomb, L. Gary

    1980-01-01

    seismometer that is capable of resolving both vertical and horizontal components of earth background noise at the quietest sites on earth. Another objective was to accommodate a large range of signla amplitudes. This was achieved by using an advanced digital recording systems which provides at least 110 dB of separation between system noise levels and clipping levels in the principal bands of interest. The broadband capability was not an initial program requirement and is not being fully utilized at present, but it adds significantly to the research potential of the network. The SRO systems have proven to be reliable in operation and the general quality of the data is excellent. Every seismograph has functional limits of accuracy, and the SRO system is no exception. The chief purpose of this report is to define these limits for the SRO system and provide the most accurate calibration data currently available. At the same time we will describe the testing program in sufficient detail so that the data user can make his own judgments regarding the effectiveness and accuracy of the tests. This report is not a final statement; further work is needed in some areas to completely define the SRO system, in some cases purely for academic reasons. Refinements in calibration will appear on the network-day tapes as the new data become available.

  10. Towards research-tested smartphone applications for preventing breast cancer

    PubMed Central

    Coughlin, Steven S.; Thind, Herpreet; Liu, Benyuan; Wilson, Lt Col Candy

    2016-01-01

    Efforts to prevent breast cancer and other chronic illnesses have focused on promoting physical activity, healthy diet and nutrition, and avoidance of excessive alcohol consumption. Smartphone applications (apps) offer a low-cost, effective strategy for breast cancer prevention in women through behavioral change. However, there are currently no research-tested smartphone apps for breast cancer prevention that are suitable for women with varying levels of health literacy and eHealth literacy. In this perspective, we consider modifiable risk factors for breast cancer in women in relation to the development of smartphone apps to promote healthy behaviors associated with breast cancer-risk reduction. First, we provide a summary of breast cancer risk factors that are modifiable through behavioral change including their corresponding relative risk. Second, we discuss scientific issues related to the development of smartphone apps for the primary prevention of breast cancer and offer suggestions for further research. Smartphone apps for preventing breast cancer should be tailored for women at different life stages (e.g., young women, women who are post-menopausal, and older women). Topics such as breastfeeding and oral contraceptives are appropriate for younger women. Weight management, physical activity, avoiding cigarette smoking, and dispelling breast cancer myths are appropriate for women of all ages. As women age, topics such as hormone replacement therapy or comorbid health conditions become more important to address. Apps for breast cancer prevention should be grounded in a behavioral theory or framework and should be suitable for people with varying levels of health literacy. Future developments in smartphone apps for breast cancer prevention should include apps that are tailored for specific cultural, racial, and ethnic groups. PMID:27390745

  11. Design, calibration, and application of an airborne gamma spectrometer system in Switzerland

    SciTech Connect

    Schwarz, G.F.; Rybach, L.; Klingele, E.E.

    1997-09-01

    Airborne radiometric surveys are finding increasingly wider application in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack-mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma-ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power-plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose-rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Goesgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.

  12. The Multi-center Airborne Coherent Atmospheric Wind Sensor.

    NASA Astrophysics Data System (ADS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James N.; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1998-04-01

    In 1992 the atmospheric lidar remote sensing groups of the National Aeronautics and Space Administration Marshall Space Flight Center, the National Oceanic and Atmospheric Administration/Environmental Technology Laboratory (NOAA/ETL), and the Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in three-dimensional volumes in the troposphere and lower stratosphere.A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise that were developed for previous atmospheric research by the respective institutions. For example, the laser transmitter is that of the mobile ground-based Doppler lidar system developed and used in atmospheric research for more than a decade at NOAA/ETL.The motivation for MACAWS is threefold: 1) to obtain fundamental measurements of subsynoptic-scale processes and features to improve subgrid-scale parameterizations in large-scale models, 2) to obtain datasets in order to improve the understanding of and predictive capabilities for meteorological systems on subsynoptic scales, and 3) to validate (simulate) the performance of existing (planned) satellite-borne sensors.Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following system improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  13. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data ( R2 > 0.97), validating the atmospheric correction of the latter.

  14. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-01-01

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557

  15. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  16. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  17. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  18. A spherical gas bearing for airborne application

    NASA Technical Reports Server (NTRS)

    Bouvier, A.; Schmertz, J. C.

    1974-01-01

    A spherical gas bearing is analyzed and tested for an airborne application. The externally pressurized bearing supports an inertially stabilized 36-in aperture, infrared telescope. The bearing provides the isolation of rotary motion from the aircraft and also serves as a seal between the aircraft cabin and cavity condition at 50,000 ft altitude. The accompanying temperature gradient of 135 F across the 16-in.-diam bearing created special design and manufacturing considerations. Test data on the static load under temperature and vacuum environment are presented in support of the analysis.

  19. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  20. Alternatives to animal testing: research, trends, validation, regulatory acceptance.

    PubMed

    Huggins, Jane

    2003-01-01

    Current trends and issues in the development of alternatives to the use of animals in biomedical experimentation are discussed in this position paper. Eight topics are considered and include refinement of acute toxicity assays; eye corrosion/irritation alternatives; skin corrosion/irritation alternatives; contact sensitization alternatives; developmental/reproductive testing alternatives; genetic engineering (transgenic) assays; toxicogenomics; and validation of alternative methods. The discussion of refinement of acute toxicity assays is focused primarily on developments with regard to reduction of the number of animals used in the LD(50) assay. However, the substitution of humane endpoints such as clinical signs of toxicity for lethality in these assays is also evaluated. Alternative assays for eye corrosion/irritation as well as those for skin corrosion/irritation are described with particular attention paid to the outcomes, both successful and unsuccessful, of several validation efforts. Alternative assays for contact sensitization and developmental/reproductive toxicity are presented as examples of methods designed for the examination of interactions between toxins and somewhat more complex physiological systems. Moreover, genetic engineering and toxicogenomics are discussed with an eye toward the future of biological experimentation in general. The implications of gene manipulation for research animals, specifically, are also examined. Finally, validation methods are investigated as to their effectiveness, or lack thereof, and suggestions for their standardization and improvement, as well as implementation are reviewed.

  1. ICESat-2 Simulated Data from Airborne Altimetery

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, T. A.; Markus, T.; Brenner, A. C.; Barbieri, K. A.; Field, C. T.; Sirota, J. M.

    2010-01-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.

  2. Different Tests for a Difference: How Do We Do Research?

    ERIC Educational Resources Information Center

    Drummond, Gordon B.; Vowler, Sarah L.

    2012-01-01

    Most biological scientists conduct experiments to look for effects, and test the results statistically. One of the commonly used test is Student's t test. However, this test concentrates on a very limited question. The authors assume that there is no effect in the experiment, and then estimate the possibility that they could have obtained these…

  3. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  4. Research on testing software for rapid cloud deployment

    NASA Astrophysics Data System (ADS)

    Chen, Yuanjin; Huang, Junfei; Ji, Xin

    2017-01-01

    Software testing is an important way to ensure the quality of software systems and services, but the ever-changing needs of software testing, in particular the size of the dynamic test requirements getting stronger. The traditional deployment way of testing software is complex and it is difficult to scale to meet the dynamic test requirements. With the rapid development of cloud computing technology, traditional testing software after modified can run in the cloud as well. This paper proposed building a cloud service platform based on cloud service provider, which combines several of cloud service to adapt to software testing. With this cloud service platform, software developer can run their testing software in the cloud quickly and test scale can stretch dynamically. Furthermore, it is possible to reduce the cost of testing because of the pay-for-use cloud computing.

  5. Military Airborne Training Injuries and Injury Risk Factors, Fort Bragg North Carolina, June-December 2010

    DTIC Science & Technology

    2011-01-01

    Officer, XVIII Airborne Corps), CW3 Lewis (Division Parachute Officer, 82nd Airborne Division), Mr. Nick Weidler (Natick T-11 Project Manager), and Mr... Hodge , J.G. An enhanced approach to distinguishing public health practice and human subjects research. Journal of Law, Medicine and Ethics. Spring:2

  6. A comparison between different high volume sampling systems for collecting ambient airborne particles for mutagenicity testing and for analysis of organic compounds.

    PubMed

    Alfheim, I; Lindskog, A

    1984-03-15

    Samples of urban air were collected simultaneously using different sampling systems, including electrostatic precipitation (ESP) and high volume filtration (HVF) on various filters for particle sampling and absorption on activated carbon and organic polymers for sampling of volatiles. Acetone extracts of the samples were analyzed for polycyclic aromatic hydrocarbons (PAH) and tested for mutagenicity with the Ames Salmonella/microsome assay. The results show that the concentrations of PAH found in the various particle-samples were in good agreement, whereas the mutagenic activity of these samples showed large variations. The highest mutagenic activity was found in the samples collected by ESP and on the teflon-coated glassfibre filters, whereas samples collected by high volume filtration with size-fractionation showed the lowest mutagenic activity. We do not know whether the higher activity in samples from the teflon-coated filters compared to those from ordinary glassfibre filters represent filter artifacts or if it represents a more pronounced degradation of mutagenic compounds on the non-coated glassfibre filters. Extracts from filter blanks seemed to interfere with the expression of the mutagenic activity of the positive controls, benzo[a]pyrene and nitropyrene. When sampling volatile compounds, two organic polymers, polyurethane (PUR) and XAD-2, were found suitable for collecting PAH, whereas no PAH could be detected in extracts from the activated carbon. The XAD-2 adsorbent was the most effective for sampling bicyclic PAH. None of the adsorbents yielded extracts well suited for mutagenicity testing, since blank extracts were toxic to the test bacteria. Some extracts of the PUR blanks were weakly mutagenic as well. More emphasis should be placed upon developing more efficient and unreactive adsorbents and on the adaptation of such adsorbents in samplers suited for routine use.

  7. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  8. UltraSciencenet: High- Performance Network Research Test-Bed

    SciTech Connect

    Rao, Nageswara S; Wing, William R; Poole, Stephen W; Hicks, Susan Elaine; DeNap, Frank A; Carter, Steven M; Wu, Qishi

    2009-04-01

    The high-performance networking requirements for next generation large-scale applications belong to two broad classes: (a) high bandwidths, typically multiples of 10Gbps, to support bulk data transfers, and (b) stable bandwidths, typically at much lower bandwidths, to support computational steering, remote visualization, and remote control of instrumentation. Current Internet technologies, however, are severely limited in meeting these demands because such bulk bandwidths are available only in the backbone, and stable control channels are hard to realize over shared connections. The UltraScience Net (USN) facilitates the development of such technologies by providing dynamic, cross-country dedicated 10Gbps channels for large data transfers, and 150 Mbps channels for interactive and control operations. Contributions of the USN project are two-fold: (a) Infrastructure Technologies for Network Experimental Facility: USN developed and/or demonstrated a number of infrastructure technologies needed for a national-scale network experimental facility. Compared to Internet, USN's data-plane is different in that it can be partitioned into isolated layer-1 or layer-2 connections, and its control-plane is different in the ability of users and applications to setup and tear down channels as needed. Its design required several new components including a Virtual Private Network infrastructure, a bandwidth and channel scheduler, and a dynamic signaling daemon. The control-plane employs a centralized scheduler to compute the channel allocations and a signaling daemon to generate configuration signals to switches. In a nutshell, USN demonstrated the ability to build and operate a stable national-scale switched network. (b) Structured Network Research Experiments: A number of network research experiments have been conducted on USN that cannot be easily supported over existing network facilities, including test-beds and production networks. It settled an open matter by demonstrating

  9. Virtual Employment Test Bed Operational Research and Systems Analysis to Test Armaments Designs Early in the Life Cycle

    DTIC Science & Technology

    2014-06-01

    Employment Test Bed Configuration 10 Click to edit Master title style Unclassified • Unreal gaming engine is used to create the simulated environment • Vicon...1 Click to edit Master title style U.S. Army Armament Research, Development and Engineering Center Virtual Employment Test Bed Operational Research...as a way of achieving early insight to the capabilities or improvements of a new design. The Virtual Employment Test bed (VETB) allows engineers to

  10. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT E) project by EG G Energy Measurement's (EG G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory's unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  11. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT&E) project by EG&G Energy Measurement`s (EG&G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory`s unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG&G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  12. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  13. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  14. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign

  15. Cathode Research and the Threshold Cathode Test Facility

    DTIC Science & Technology

    2002-09-01

    SYSTEM (LEFT) AND PULSED POWER TANK (RIGHT ) AS ASSEMBLED AT THE AIR FORCE RESEARCH LABORATORY , DIRECTED ENERGY DIRECTORATE AT KIRTLAND AFB, NM...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Directed Energy Directorate 3550 Aberdeen Ave SE... Research Laboratory ( AFRL ), Directed Energy Directorate at Kirtland AFB, NM. In addition, simulations were performed that shed new light on the

  16. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  17. Supervisory Presentation for Research, Information, Integration and Testing (SPRINT)

    DTIC Science & Technology

    2015-03-29

    Testing (SPRINT). 15. SUBJECT TERMS Supervisory Control, Multi-Modal Interfaces, Scalable Interfaces, Advanced Visualization, Augmented Symbology 16...Developing and testing advanced visualization concepts utilizing novel displays, mixed reality , and immersive multi-modal interfaces (full body

  18. Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality.

  19. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  20. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  1. Sensor fusion for airborne landmine detection

    NASA Astrophysics Data System (ADS)

    Schatten, Miranda A.; Gader, Paul D.; Bolton, Jeremy; Zare, Alina; Mendez-Vasquez, Andres

    2006-05-01

    Sensor fusion has become a vital research area for mine detection because of the countermine community's conclusion that no single sensor is capable of detecting mines at the necessary detection and false alarm rates over a wide variety of operating conditions. The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) evaluates sensors and algorithms for use in a multi-sensor multi-platform airborne detection modality. A large dataset of hyperspectral and radar imagery exists from the four major data collections performed at U. S. Army temperate and arid testing facilities in Autumn 2002, Spring 2003, Summer 2004, and Summer 2005. There are a number of algorithm developers working on single-sensor algorithms in order to optimize feature and classifier selection for that sensor type. However, a given sensor/algorithm system has an absolute limitation based on the physical phenomena that system is capable of sensing. Therefore, we perform decision-level fusion of the outputs from single-channel algorithms and we choose to combine systems whose information is complementary across operating conditions. That way, the final fused system will be robust to a variety of conditions, which is a critical property of a countermine detection system. In this paper, we present the analysis of fusion algorithms on data from a sensor suite consisting of high frequency radar imagery combined with hyperspectral long-wave infrared sensor imagery. The main type of fusion being considered is Choquet integral fusion. We evaluate performance achieved using the Choquet integral method for sensor fusion versus Boolean and soft "and," "or," mean, or majority voting.

  2. Employee Drug Testing Policies in Police Departments. Research in Brief.

    ERIC Educational Resources Information Center

    McEwen, J. Thomas; And Others

    1986-01-01

    The development of drug testing policies and the implementation of drug testing procedures involve legal, ethical, medical, and labor relations issues. To learn how police departments are addressing the problem of drug use and drug testing of police officers, the National Institute of Justice sponsored a telephone survey of 33 major police…

  3. Boise Hydrogeophysical Research Site: Control Volume/Test Cell and Community Research Asset

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Bradford, J.; Malama, B.

    2008-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting: (a) development of cost- effective, non- or minimally-invasive quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories and models for groundwater flow and solute transport; and (d) educating and training of students in multidisciplinary subsurface science and engineering. The design of the wells and the wellfield support modular use and reoccupation of wells for a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrologic-geophysical experiments. Efforts to date by Boise State researchers and collaborators have been largely focused on: (a) establishing the 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for jointly inverting hard and soft data to return the 3D K distribution and (b) developing subsurface measurement and imaging methods including tomographic characterization and imaging methods. At this point the hydrostratigraphic framework of the BHRS is known to be a hierarchical multi-scale system which includes layers and lenses that are recognized with geologic, hydrologic, radar, seismic, and EM methods; details are now emerging which may allow 3D deterministic characterization of zones and/or material variations at the meter scale in the central wellfield. Also the site design and subsurface framework have supported a variety of testing configurations for joint hydrologic and geophysical experiments. Going forward we recognize the opportunity to increase the R&D returns from use of the BHRS with additional infrastructure (especially for monitoring the vadose zone and surface water-groundwater interactions

  4. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  5. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  6. MULTIPLY: Development of a European HSRL Airborne Facility

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Serikov, Ilya; Nicolae, Doina; Amiridis, Vassillis; Belegante, Livio; Boscornea, Andrea; Brugmann, Bjorn; Costa Suros, Montserrat; Hellmann, David; Kokkalis, Panagiotis; Linne, Holger; Stachlewska, Iwona; Vajaiac, Sorin-Nicolae

    2016-08-01

    MULTIPLY is a novel airborne high spectral resolution lidar (HSRL) currently under development by a consortium of European institutions from Romania, Germany, Greece, and Poland. Its aim is to contribute to calibration and validations activities of the upcoming ESA aerosol sensing missions like ADM-Aeolus, EarthCARE and the Sentinel-3/-4/-5/-5p which include products related to atmospheric aerosols. The effectiveness of these missions depends on independent airborne measurements to develop and test the retrieval methods, and validate mission products following launch. The aim of ESA's MULTIPLY project is to design, develop, and test a multi-wavelength depolarization HSRL for airborne applications. The MULTIPLY lidar will deliver the aerosol extinction and backscatter coefficient profiles at three wavelengths (355nm, 532nm, 1064nm), as well as profiles of aerosol intensive parameters (Ångström exponents, extinction- to-backscatter ratios, and linear particle depolarization ratios).

  7. Airborne soil particulates as vehicles for Salmonella contamination of tomatoes.

    PubMed

    Kumar, Govindaraj Dev; Williams, Robert C; Al Qublan, Hamzeh M; Sriranganathan, Nammalwar; Boyer, Renee R; Eifert, Joseph D

    2017-02-21

    The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (P<0.0001). Compressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route.

  8. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  9. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  10. Testing primates with joystick-based automated apparatus - Lessons from the Language Research Center's Computerized Test System

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Rumbaugh, Duane M.

    1992-01-01

    Nonhuman primates provide useful models for studying a variety of medical, biological, and behavioral topics. Four years of joystick-based automated testing of monkeys using the Language Research Center's Computerized Test System (LRC-CTS) are examined to derive hints and principles for comparable testing with other species - including humans. The results of multiple parametric studies are reviewed, and reliability data are presented to reveal the surprises and pitfalls associated with video-task testing of performance.

  11. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  12. The use of an airborne lidar for mapping cirrus clouds in FIRE, phase 2

    NASA Technical Reports Server (NTRS)

    Radke, Lawrence F.; Hobbs, Peter V.

    1990-01-01

    The Univ. of Washington (UW) and Georgia Tech have recently built a dual wavelength airborne lidar for operation on the UW's Convair C-131A research aircraft. This lidar was used in studying aerosols and clouds. These studies demonstrated the utility of airborne lidar in a variety of atmospheric research and prompt the suggestion that this facility be included in the next FIRE cirrus experiment. The vertically pointing airborne lidar would be used as a complement to ground based lidars. The airborne lidar would ensure extended coverage of IFO cases that develop upwind of the surface lidars or which miss the ground based lidars while still being the focus of satellite and aircraft in situ studies. The airborne lidar would help assure that cirrus clouds were simultaneously viewed by satellite, sampled by aircraft, and structurally characterized by lidar. System specifications are listed and a schematic is shown of the lidar system aboard the C-131A.

  13. Initial results from the joint NASA-Lewis/U.S. Army icing flight research tests

    NASA Technical Reports Server (NTRS)

    Belte, Daumants; Ranaudo, Richard J.

    1989-01-01

    The U.S. Army/NASA joint testing of the various aspects of in-flight and ground-based icing simulation facilities and instrumentation is reviewed. The NASA DN-6 icing research aircraft, the U.S. Army JU-21A aircraft, the portable spray rig, helicopter icing spray system, and icing research tunnel are examined. Natural and artificial icing tests, turbulence measurements, and calibration and icing research tunnel tests are described and test results are reported.

  14. Airborne Bistatic Radar Limitations and Sample Calculations

    DTIC Science & Technology

    1985-12-01

    Any parameter which maximizes the viewing area of the receiver platform is a prime candidate for change if the transmitter wishes to deny or decrease...AES-19, NO. 4, 513-520 (July 1983) 4. Lorti , D. "Airborne Bistatic RadaL Operation With Non-Cooperative Transmitters," Aeronautical Systems Divi- ’V...nology Center. Contract DASG60-82-C-0014 with McDonnell Douglas Research Labs. Huntsville AL. July 1982. 7. Moreno, C, and D. Lorti . "Tactical

  15. Results From a Pressure Sensitive Paint Test Conducted at the National Transonic Facility on Test 197: The Common Research Model

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.

    2011-01-01

    This report will serve to present results of a test of the pressure sensitive paint (PSP) technique on the Common Research Model (CRM). This test was conducted at the National Transonic Facility (NTF) at NASA Langley Research Center. PSP data was collected on several surfaces with the tunnel operating in both cryogenic mode and standard air mode. This report will also outline lessons learned from the test as well as possible approaches to challenges faced in the test that can be applied to later entries.

  16. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  17. Airborne optical detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1972-01-01

    Airborne measurements were made over controlled oil-spill test sites to evaluate various techniques, utilizing reflected sunlight, for detecting oil on water. The results of these measurements show that (1) maximum contrast between oil and water is in the UV and red portions of the spectrum; (2) minimum contrast is in the blue-green; (3) differential polarization appears to be a very promising technique; (4) no characteristic absorption bands, which would permit one oil to be distinguished from another, were discovered in the spectral regions measured; (5) sky conditions greatly influence the contrast between oil and water; and (6) highest contrast was achieved under overcast sky conditions.

  18. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  19. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  20. Wright Research and Development Center Test Facilities Handbook

    DTIC Science & Technology

    1990-01-01

    DIVISIONS: Defense Avionics (SNA) Aero Propulsion and Configuration (SNP) Structures and Materials (SNS) Technology Demonstration (SNT) TEHNOLOGY ...6553 (513) 255-6622 AV 785-6622 208 t W I: IP- FACILITY TYPE: Mobile Data Acquisition PURPOSE: Mobile data acquisition FACILITY NAME: Mobile Data...inovations FACILITY NAME: Mobility Development Laboratory PRIMARY CAPABILITIES: Dynamic Test Machine - whirling arm capable of testing subsystems

  1. ERDA/Lewis research center photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  2. Applications of the Linear Logistic Test Model in Psychometric Research

    ERIC Educational Resources Information Center

    Kubinger, Klaus D.

    2009-01-01

    The linear logistic test model (LLTM) breaks down the item parameter of the Rasch model as a linear combination of some hypothesized elementary parameters. Although the original purpose of applying the LLTM was primarily to generate test items with specified item difficulty, there are still many other potential applications, which may be of use…

  3. Controversies around the Role of Statistical Tests in Experimental Research.

    ERIC Educational Resources Information Center

    Batanero, Carmen

    2000-01-01

    Describes the logic of statistical testing in the Fisher and Neyman-Pearson approaches. Reviews some common misinterpretations of basic concepts behind statistical tests. Analyzes the philosophical and psychological issues that can contribute to these misinterpretations. Suggests possible ways in which statistical education might contribute to the…

  4. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  5. Experimental Test-Bed for Intelligent Passive Array Research

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Torres, Miguel; David, Sunil; Isom, Adam; Cotto, Jose; Sharaiha, Samer

    2004-01-01

    This document describes the test-bed designed for the investigation of passive direction finding, recognition, and classification of speech and sound sources using sensor arrays. The test-bed forms the experimental basis of the Intelligent Small-Scale Spatial Direction Finder (ISS-SDF) project, aimed at furthering digital signal processing and intelligent sensor capabilities of sensor array technology in applications such as rocket engine diagnostics, sensor health prognostics, and structural anomaly detection. This form of intelligent sensor technology has potential for significant impact on NASA exploration, earth science and propulsion test capabilities. The test-bed consists of microphone arrays, power and signal distribution modules, web-based data acquisition, wireless Ethernet, modeling, simulation and visualization software tools. The Acoustic Sensor Array Modeler I (ASAM I) is used for studying steering capabilities of acoustic arrays and testing DSP techniques. Spatial sound distribution visualization is modeled using the Acoustic Sphere Analysis and Visualization (ASAV-I) tool.

  6. Tropospheric Airborne Meteorological Data and Reporting (TAMDAR) Icing Sensor Performance during the 2003/2004 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Nguyen, Louis A.; Daniels, Taumi; Minnis, Patrick; Schaffner, Phillip R.; Cagle, Melinda F.; Nordeen, Michele L.; Wolff, Cory A.; Anderson, Mark V.; Mulally, Daniel J.

    2005-01-01

    NASA Langley Research Center and its research partners from the University of North Dakota (UND) and the National Center for Atmospheric Research (NCAR) participated in the AIRS II campaign from November 17 to December 17, 2003. AIRS II provided the opportunity to compare TAMDAR in situ in-flight icing condition assessments with in situ data from the UND Citation II aircraft's Rosemont system. TAMDAR is designed to provide a general warning of ice accretion and to report it directly into the Meteorological Data Communications and Reporting System (MDCRS). In addition to evaluating TAMDAR with microphysical data obtained by the Citation II, this study also compares these data to the NWS operational in-flight icing Current Icing Potential (CIP) graphic product and with the NASA Advanced Satellite Aviation-weather Products (ASAP) Icing Severity product. The CIP and ASAP graphics are also examined in this study to provide a context for the Citation II's sorties in AIRS II.

  7. An Overview of the NASA Test Platform Research

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, J.-Y.; Cooper, E. G.; Moerder, D. D.; Khong, T. H.; Smith, M. F.

    2003-01-01

    A methodology for improving attitude stability and control for low-speed and hovering air vehicle is under development. In addition to aerodynamically induced control forces such as vector thrusting, the new approach exploits the use of bias momenta and torque actuators, similar to a class of spacecraft system, for its guidance and control needs. This approach will be validated on a free-flying research platform under development at NASA Langley Research Center. More broadly, this platform also serves as an in-house testbed for research in new technologies aimed at improving guidance and control of a Vertical Take-Off and Landing (VTOL) vehicle.

  8. Statistical Significance Testing in Second Language Research: Basic Problems and Suggestions for Reform

    ERIC Educational Resources Information Center

    Norris, John M.

    2015-01-01

    Traditions of statistical significance testing in second language (L2) quantitative research are strongly entrenched in how researchers design studies, select analyses, and interpret results. However, statistical significance tests using "p" values are commonly misinterpreted by researchers, reviewers, readers, and others, leading to…

  9. Ground truth measurement for the analysis of airborne SAR data recorded over Oberpfaffenhofen, FRG, 1989

    NASA Technical Reports Server (NTRS)

    Bayer, T.; Wieneke, F.; Winter, R.

    1990-01-01

    As a preliminary investigation to the joint multiparameter SIR-C/X-SAR shuttle experiment of NASA/JPL (USA), DLR (FRG), and PSN (Italy) which is scheduled for the year 1992 an airborne SAR campaign was conducted over Oberpfaffenhofen, FRG, in August 1989. Primarily this campaign was planned to test and verify equipment and algorithms developed at the DLR to calibrate multifrequency polarimetric SAR data. Oberpfaffenhofen is designated as one of the super test sites for the SIR-C/X-SAR experiment which will be imaged under all circumstances except severe mission errors. A super test site drives radar parameters and look directions and the recorded SAR data will be calibrated. In addition ancillary data will be available for the site. During the airborne STAR campaign conducted in the week of August 14th 1989 various sensor types were used to record remote sensing data over the calibration test site and its vicinity: the polarimetric DC-8 JPL-SAR (P-, L-, C-band), the DLR airborne SAR (C-, X-band), color infrared aerial photography (DLR), and the truck-mounted scatterometer (C- and X-band) of the Institute for Navigation, University of Stuttgart (INS). Because of this variety of different sensor types used and out of the fact that sufficiently large forested and agriculturally used areas were planned to be covered by these sensors, the interest of several German research groups involved in investigations concerning SAR land applications arose. The following groups carried out different ground-truth measurements: University of Bonn, Institute for plant cultivation (plant morphology and moisture content); University of Braunschweig, Institute for Geography (soil moisture and surface roughness); University of Freiburg, Institute for Geography (dielectric soil properties, landuse); and University of Munich, Institute for Geography (landuse inventory, plant, surface, and soil parameters). This paper presents the joint ground truth activities of the Institute for Geography

  10. 27 CFR 25.196 - Removals for research, development or testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Analysis, Research, Development Or Testing § 25.196 Removals for research, development or testing. (a) A... consumer testing or other market analysis) of processes, systems, materials, or equipment relating to beer... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Removals for...

  11. Airborne Emissions from Si/FeSi Production

    NASA Astrophysics Data System (ADS)

    Kero, Ida; Grådahl, Svend; Tranell, Gabriella

    2017-02-01

    The management of airborne emissions from silicon and ferrosilicon production is, in many ways, similar to the management of airborne emissions from other metallurgical industries, but certain challenges are highly branch-specific, for example the dust types generated and the management of NO X emissions by furnace design and operation. A major difficulty in the mission to reduce emissions is that information about emission types and sources as well as abatement and measurement methods is often scarce, incomplete and scattered. The sheer diversity and complexity of the subject presents a hurdle, especially for new professionals in the field. This article focuses on the airborne emissions from Si and FeSi production, including greenhouse gases, nitrogen oxides, airborne particulate matter also known as dust, polyaromatic hydrocarbons and heavy metals. The aim is to summarize current knowledge in a state-of-the-art overview intended to introduce fresh industry engineers and academic researchers to the technological aspects relevant to the reduction of airborne emissions.

  12. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    PubMed

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  13. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  14. 10 CFR 1021.212 - Research, development, demonstration, and testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... (if otherwise required by this part) as soon as environmental effects can be meaningfully...

  15. 10 CFR 1021.212 - Research, development, demonstration, and testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... (if otherwise required by this part) as soon as environmental effects can be meaningfully...

  16. Direct sunlight facility for testing and research in HCPV

    SciTech Connect

    Sciortino, Luisa Agnello, Simonpietro Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa; Barbera, Marco; Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo; Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  17. Space shuttle pilot-induced-oscillation research testing

    NASA Technical Reports Server (NTRS)

    Powers, B. G.

    1984-01-01

    The simulation requirements for investigation of pilot-induced-oscillation (PIO) characteristics during the landing phase are discussed. Orbiters simulations and F-8 digital fly-by-wire aircraft tests are addressed.

  18. Direct sunlight facility for testing and research in HCPV

    NASA Astrophysics Data System (ADS)

    Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

    2014-09-01

    A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  19. Field Testing Research at the NWTC (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    The National Wind Technology Center (NWTC) at the National Renewable Laboratory (NREL) has extensive field testing capabilities that have been used in collaboration with the wind industry to accelerate wind technology development and deployment for more than 30 years.

  20. [Clinical research IV. Relevancy of the statistical test chosen].

    PubMed

    Talavera, Juan O; Rivas-Ruiz, Rodolfo

    2011-01-01

    When we look at the difference between two therapies or the association of a risk factor or prognostic indicator with its outcome, we need to evaluate the accuracy of the result. This assessment is based on a judgment that uses information about the study design and statistical management of the information. This paper specifically mentions the relevance of the statistical test selected. Statistical tests are chosen mainly from two characteristics: the objective of the study and type of variables. The objective can be divided into three test groups: a) those in which you want to show differences between groups or inside a group before and after a maneuver, b) those that seek to show the relationship (correlation) between variables, and c) those that aim to predict an outcome. The types of variables are divided in two: quantitative (continuous and discontinuous) and qualitative (ordinal and dichotomous). For example, if we seek to demonstrate differences in age (quantitative variable) among patients with systemic lupus erythematosus (SLE) with and without neurological disease (two groups), the appropriate test is the "Student t test for independent samples." But if the comparison is about the frequency of females (binomial variable), then the appropriate statistical test is the χ(2).

  1. Airborne Ultrasonics for Nondestructive Evaluation of Leather Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent research has shown that besides Acoustic Emission (AE), Airborne Ultrasonics (AU) can also be applied for the nondestructive evaluation (NDE) of leather quality. Implementation of these methods in the manufacturing process could save a considerable amount of money, decrease the use of ch...

  2. Research on the application of multifunctional firearm test equipment in range testing technology

    NASA Astrophysics Data System (ADS)

    Zhang, Chijun; Ma, Hong; Zhai, Xuhua

    2007-12-01

    This paper studies on the application of multifunctional firearm test equipment in range testing technology. Its objevtive is to improve the level of firearm test technology in conventional range, to fill the gap of the test technology in our country. In this paper, it mainly discusses the principle and method of measurement on firearm size, sighting angle, locking force and loading force. Furthermore, it comprehensively analyzes test accuracy of sighting angle and the locking force. In addition, it finds out the problems in the current experimentation, which makes a good technical basis for improving the range test ability.

  3. Tunable Infrared Laser Instruments for Airborne Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Fried, A.; Diskin, G.; Weibring, P.; Richter, D.; Walega, J. G.; Sachse, G.; Slate, T.; Rana, M.; Podolske, J.

    2008-01-01

    Tunable infrared laser-based instruments on airborne platforms have provided invaluable contributions to atmospheric studies over the past several decades. This paper presents an overview of some recent studies and developments using this approach that were presented at the 2007 Field Laser Applications in Industry and Research (FLAIR, http://www.inoa.it/flair/) conference in Florence, Italy. The present overview only covers select in situ absorption-based instruments that were presented in the airborne session at this conference. In no case are comprehensive details presented. These details can be found in the numerous references given. Additional approaches based upon cavity-enhanced and photoacoustic measurements, which are also making invaluable contributions in airborne atmospheric studies, are not discussed in this brief overview.

  4. Airborne backscatter lidar measurements at three wavelengths during ELITE

    NASA Astrophysics Data System (ADS)

    Schreiber, H. G.; Wirth, Martin; Moerl, P.; Renger, Wolfgang

    1995-09-01

    The German Aerospace Establishment (DLR) operates an airborne backscatter lidar based on a Nh:YAG laser which is flashlamp-pumped at 10 Hz. It works on the wavelengths 1064, 532, and 354 nm. It is mounted downward-looking on the research aircraft Falcon 20, flying at about 12 km altitude at speeds of 200 m/s. We present airborne measurements correlated with the orbit tracks of the shuttle-borne LITE-instrument (lidar in-space technology experiment). The emphasis in data evalution is on the comparison between the airborne and the shuttle- borne lidars. First results show excellent agreement between the two instruments even on details of cirrus clouds. The results comprise cloud geometrical and optical depths, as well as profiles of aerosol backscattering coefficients at three wavelengths.

  5. Airborne testing of three antimotion sickness preparations

    NASA Technical Reports Server (NTRS)

    Johnson, W. H.; Money, K. E.; Graybiel, A.

    1976-01-01

    Thirteen human volunteers were exposed to weekly flights in which standardized, steep turns were used to produce motion sickness. A combination of promethazine hydrochloride (25 mg) plus ephedrine sulphate (25 mg) was found to be equally as effective as the combination of 1-scopolamine hydrobromide (0.35 mg) plus d-amphetamine sulphate (5 mg). Droperidol (2.5 mg) was indistinguishable from the placebo. It was concluded that the treatment of choice for motion sickness is promethazine plus ephedrine.

  6. Reliability Analysis for the Internationally Administered 2002 Series GED Tests. GED Testing Service[R] Research Studies, 2009-3

    ERIC Educational Resources Information Center

    Setzer, J. Carl; He, Yi

    2009-01-01

    Reliability Analysis for the Internationally Administered 2002 Series GED (General Educational Development) Tests Reliability refers to the consistency, or stability, of test scores when the authors administer the measurement procedure repeatedly to groups of examinees (American Educational Research Association [AERA], American Psychological…

  7. Comparison of Black and Nonminority Validities for the General Aptitude Test Battery. USES Test Research Report No. 51.

    ERIC Educational Resources Information Center

    Synk, David J.; Swarthout, David

    Meta-analytic research techniques were used to compare the General Aptitude Test Battery (GATB) validities of blacks and non-minorities. The sample consisted of 7,854 black and 15,769 non-minority subjects from 113 Specific Aptitude Test Battery (SATB) validation studies analyzed since 1972. The first approach was to compare average validities…

  8. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    NASA Astrophysics Data System (ADS)

    Halloran, Siobhan; Ristenpart, William

    2013-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in pathogen transmission between the animals, to date the infectious disease community has paid little attention to the effect of airspeed or turbulent intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of an axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We show that for fan-generated turbulence the plume width is invariant with the mean airspeed and, close to the point source, increases linearly with downstream position. Importantly, the turbulent dispersivity is insensitive to the presence of meshes placed downstream from the point source, indicating that the fan length scale dictates the turbulent intensity and corresponding dispersivity.

  9. Development of a Low-Cost Airborne Ultrasound Sensor for the Detection of Brick Joints behind a Wall Painting

    PubMed Central

    García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel

    2012-01-01

    Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XVth century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research. PMID:22438711

  10. Low cost airborne microwave landing system receiver, task 3

    NASA Technical Reports Server (NTRS)

    Hager, J. B.; Vancleave, J. R.

    1979-01-01

    Work performed on the low cost airborne Microwave Landing System (MLS) receiver is summarized. A detailed description of the prototype low cost MLS receiver is presented. This detail includes block diagrams, schematics, board assembly drawings, photographs of subassemblies, mechanical construction, parts lists, and microprocessor software. Test procedures are described and results are presented.

  11. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  12. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  13. Women and Educational Testing: A Selective Review of the Research Literature and Testing Practices.

    ERIC Educational Resources Information Center

    Tittle, Carol Kehr; And Others

    This report provides an exploratory survey of several aspects of educational testing, with a view toward identifying discrimination against women. Two major ways in which discrimination can occur are examined in educational testing: reinforcement of sex-role stereotypes and restriction of individual choice. Major educational achievement tests are…

  14. Identification of landslides in clay terrains using Airborne Thematic Mapper (ATM) multispectral imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, Malcolm; Giles, David; Murphy, William

    2002-01-01

    The slopes of the Cotswolds Escarpment in the United Kingdom are mantled by extensive landslide deposits, including both relict and active features. These landslides pose a significant threat to engineering projects and have been the focus of research into the use of airborne remote sensing data sets for landslide mapping. Due to the availability of extensive ground investigation data, a test site was chosen on the slopes of the Cotswolds Escarpment above the village of Broadway, Worcestershire, United Kingdom. Daedalus Airborne Thematic Mapper (ATM) imagery was subsequently acquired by the UK Natural Environment Research Council (NERC) to provide high-resolution multispectral imagery of the Broadway site. This paper assesses the textural enhancement of ATM imagery as an image processing technique for landslide mapping at the Broadway site. Results of three kernel based textural measures, variance, mean euclidean distance (MEUC) and grey level co-occurrence matrix (GLCM) entropy are presented. Problems encountered during textural analysis, associated with the presence of dense woodland within the project area, are discussed and a solution using Principal Component Analysis (PCA) is described. Landslide features in clay dominated terrains can be identified through textural enhancement of airborne multispectral imagery. The kernel based textural measures tested in the current study were all able to enhance areas of slope instability within ATM imagery. Additionally, results from supervised classification of the combined texture-principal component dataset show that texture based image classification can accurately classify landslide regions and that by including a Principal Component image, woodland and landslide classes can be differentiated successfully during the classification process.

  15. Research Issues in Genetic Testing of Adolescents for Obesity

    PubMed Central

    Segal, Mary E.; Sankar, Pamela; Reed, Danielle R.

    2006-01-01

    Obesity is often established in adolescence, and advances are being made in identifying its genetic underpinnings. We examine issues related to the eventual likelihood of genetic tests for obesity targeted to adolescents: family involvement; comprehension of the test’s meaning; how knowledge of genetic status may affect psychological adaptation; minors’ ability to control events; parental/child autonomy; ability to make informed medical decisions; self-esteem; unclear distinctions between early/late onset for this condition; and social stigmatization. The public health arena will be important in educating families about possible future genetic tests for obesity. PMID:15478685

  16. Operational and research aspects of a radio-controlled model flight test program

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D.; Gilman, Ronald L.; Eichstedt, David

    1993-01-01

    The operational and research aspects of a subscale, radio-controlled model flight test program are presented. By using low-cost free-flying models, an approach was developed for obtaining research-quality vehicle performance and aerodynamic information. The advantages and limitations learned by applying this approach to a specific flight test program are described. The research quality of the data acquired shows that model flight testing is practical for obtaining consistent and repeatable flight data.

  17. Respiratory protection against airborne nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Shaffer, Ronald E.; Rengasamy, Samy

    2009-10-01

    As a precautionary measure, it is often recommended that workers take steps to reduce their exposure to airborne nanoparticles through the use of respiratory protective devices. The purpose of this study was to provide a review and analysis of the research literature and current recommendations on respirators used for protection against nanoparticles. Key research findings were that studies with particles as small as 4 nm have shown that conventional single-fiber filtration theory can be used to describe the filtration performance of respirators and that the most penetrating particle size for respirators equipped with commonly used electrostatic filter media is in the range of 30-100 nm. Future research needs include human laboratory and workplace protection factor studies to measure the respirator total inward leakage of nanoparticles. Industrial hygienists and safety professionals should continue to use traditional respirator selection guidance for workers exposed to nanoparticles.

  18. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  19. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  20. Handling Trajectory Uncertainties for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  1. Effects of Total SAT® Test Time on Performance and Fatigue. Research Notes. RN-37

    ERIC Educational Resources Information Center

    Ackerman, Phillip L.; Kanfer, Ruth; Wolman, Stacey D.

    2005-01-01

    The current study was designed to examine performance effects and fatigue effects associated with different total SAT testing times. In addition, the researchers examined personality, motivation, and other determinants of individual differences in examinee fatigue before, during, and after testing.

  2. [Clinical research II. Studying the process (the diagnosis test)].

    PubMed

    Talavera, Juan O; Wacher-Rodarte, Niels H; Rivas-Ruiz, Rodolfo

    2011-01-01

    A diagnosis test is carried out to establish the presence of health or illness. In the latter it could grade the severity. Due to its importance in clinical decisions, the diagnosis test is evaluated by mathematical strategies. We estimate the sensitivity and specificity once we know the existence or not of the disease, but we act in the reverse direction; with the presence "X" test positive or negative we estimate the presence of the disease, therefore, we use the positive and negative predictive values. Mathematical strategy allow us to quantify the observation, but it requires judgment to determine the quality making use of a minimum of features: a) selection under the same criteria for cases and controls; b) the inclusion of the full spectrum of disease severity (from mild to the most serious, ensuring that all levels have an enough number of subjects); c) the interpretation of both, the gold standard and the new tool of diagnosis, it must be blind and conducted by experts; d) the interpretation of results should show us what is their application in everyday clinical practice; e) the reproducibility must be checked. Do not forget that usually, we treat only one patient at once, what enforce us to have full knowledge of the performance of the diagnostic test, and to consider all clinical aspects for its proper implementation.

  3. The John Deere E diesel Test & Research Project

    SciTech Connect

    Fields, Nathan; Mitchell, William E.

    2008-09-23

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  4. Photon Counting Airborne Laser Swath Mapping

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, K. C.

    2004-05-01

    During the past decade airborne laser swath mapping (ALSM) has brought topographic mapping to the forefront of geodesy. ALSM has made it possible, for the first time, to study natural geo-surficial processes on spatial scales extending from meters to hundreds of kilometers, all in a consistent geodetic frame of reference. The conventional approach to ALSM has been to use lasers with enough energy per pulse, and optics with large enough collecting areas, to obtain returns of thousands of photons per shot. This approach minimizes the impact of spurious range values caused by noise, such as background solar radiation and sensor thermal noise, but also constrains the minimum size, weight and power consumption of the hardware. Current systems typically operate at rates approaching 100,000 pulses per second, and another order of magnitude increase would be needed to provide contiguous coverage with a spatial resolution of 30 cm or better. This high signal-to-noise ratio approach affords little scalability for significantly downsizing the hardware, or reducing the costs. University of Florida (UF) researchers are developing an ALSM unit based on a different paradigm, which we refer to as photon counting ALSM, or simply PC-ALSM. The approach is to transmit relatively low energy laser pulses, and to illuminate a surface `patch' about an order of magnitude larger than the typical footprint of a conventional ALSM system. The returning signal will have far fewer photons per unit area of the receive optics, making it more difficult to discriminate between return signal and noise. If a single channel detector were used, the spatial resolution would also be degraded. However, by using a multi-channel photomultiplier tube to detect the returns, the surface patch can be divided into an array of groundals, and by using a multi-stop timing system false ranges can be filtered out of the data during post flight processing. Researchers at NASA GSFC have already tested a first generation

  5. Airborne Trailblazer: Two decades with NASA Langley's 737 flying laboratory

    NASA Technical Reports Server (NTRS)

    Wallace, Lane E.

    1994-01-01

    This book is the story of a very unique aircraft and the contributions it has made to the air transportation industry. NASA's Boeing 737-100 Transport Systems Research Vehicle started life as the prototype for Boeing's 737 series of aircraft. The airplane was acquired by LaRC in 1974 to conduct research into advanced transport aircraft technologies. In the twenty years that followed, the airplane participated in more than twenty different research projects, evolving from a research tool for a specific NASA program into a national airborne research facility. It played a critical role in developing and gaining acceptance for numerous significant transport technologies including 'glass cockpits,' airborne windshear detection systems, data links for air traffic control communications, the microwave landing system, and the satellite-based global positioning system (GPS).

  6. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  7. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  8. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  9. STATISTICAL ISSUES IN THE STUDY OF AIR POLLUTION INVOLVING AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Epidemiological research in the early 1990s focusing on health effects of airborne particulate matter pointed to a statistical association between increases in concentration of particulate in ambient air and increases in daily nonaccidental mortality, particularly among the eld...

  10. Visualization tools for comprehensive test ban treaty research

    SciTech Connect

    Edwards, T.L.; Harris, J.M.; Simons, R.W.

    1997-08-01

    This paper focuses on tools used in Data Visualization efforts at Sandia National Laboratories under the Department of Energy CTBT R&D program. These tools provide interactive techniques for the examination and interpretation of scientific data, and can be used for many types of CTBT research and development projects. We will discuss the benefits and drawbacks of using the tools to display and analyze CTBT scientific data. While the tools may be used for everyday applications, our discussion will focus on the use of these tools for visualization of data used in research and verification of new theories. Our examples focus on uses with seismic data, but the tools may also be used for other types of data sets. 5 refs., 6 figs., 1 tab.

  11. Airborne mapping of earth-atmosphere exchange processes and remote sensing of surface characteristics over heterogeneous areas

    SciTech Connect

    Schuepp, P.H.; Ogunjemiyo, S.; Mitic, C.M.

    1996-10-01

    Given the spatial heterogeneity of much of the biosphere, and the difficulty in establishing representative observation points at the surface, airborne flux observations coupled with airborne and satellite-based remote sensing plays an increasing role in the description of surface-atmosphere exchange processes. Our paper summarizes flux mapping procedures based on low level airborne sampling by the Canadian Twin Otter research aircraft, over three ecosystems with different degrees of spatial heterogeneity (grassland, mixed agricultural land and boreal forest). Observations show that the degree to which flux maps for heat, moisture and trace gases are correlated, among themselves and with maps of radiometrically observable surface features, cannot be generalized. This means that, wherever possible, algorithms for the prediction of surface-atmosphere exchange processes based on remote sensing observations should be developed for - and tested in - each structurally different ecosystem. The flexibility of deployment of aircraft serves well, both for the gathering of data to develop such algorithms, as well as for their testing at scales that integrate over an adequate sample of the various components that constitute a spatially heterogeneous ecosystem. 23 refs., 4 figs.

  12. Antimycobacterial susceptibility testing methods for natural products research

    PubMed Central

    Sánchez, Juan Gabriel Bueno; Kouznetsov, Vladimir V.

    2010-01-01

    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need of continuous developments on new and efficient methods to determine the susceptibility of isolates of M. tuberculosis in the search for novel antimicrobial agents. Natural products constitute an important source of new drugs, but design and implementation of antimycobacterial susceptibility testing methods are necessary for evaluate the different extracts and compounds. A number of biological assay methodologies are in current use, ranging from the classical disk diffusion and broth dilution assay format, to radiorespirometric (BACTEC), dye-based, and fluorescent/luminescence reporter assays. This review presents an analysis on the in vitro susceptibility testing methods developed for determinate antitubercular activity in natural products and related compounds (semi-synthetic natural products and natural products-derived compounds) and the criteria to select the adequate method for determination of biological activity of new natural products. PMID:24031490

  13. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  14. The Testing Divide: New Research on the Intended and Unintended Impact of High-Stakes Testing.

    ERIC Educational Resources Information Center

    Amrein, Audrey L.; Berliner, David C.

    2003-01-01

    Found, based on data from 28 states, that there is scant evidence to support the proposition that high-stakes tests, including high-stakes high school graduation exams, increase student achievement. Also found that adoption of high-stakes testing policies leads to increased dropout rates, decreased graduation rates, and higher rates of younger…

  15. Comparison of Airborne Electromagnetic Induction and Subsurface Radar Sounding of Freshwater Bathymetry

    DTIC Science & Technology

    1993-05-01

    AD-A268 703 Comparison of Airborne * Electromagnetic Induction and Subsurface Radar Sounding of Freshwater Bathymetry Austin Kovacs and J , Scott Holladay...Laboratory Comparison of Airborne Electromagnefic Induction and Subsurface Radar Sounding of Freshwater Bcdhymetry Austin Kovacs and J . Scott Holladay May 1993...Engineer, of the Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory, and J . Scott Holladay

  16. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  17. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  18. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  19. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  20. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  1. Qualitative research on point-of-care testing strategies and programs for HIV.

    PubMed

    Engel, Nora; Pant Pai, Nitika

    2015-01-01

    Point-of-care (POC) testing in communities, home settings and primary healthcare centers plays an important role in cutting delays in HIV diagnosis and in the uptake of voluntary testing and counseling. Qualitative research methods have important potential to overcome the current challenges in expanding HIV POC testing programs and strategies, by examining the diagnostic processes, complex inter-relationships and patterns involved in making POC diagnostics work in real-world settings. This article reviews existing qualitative studies on POC testing strategies and programs for HIV. Qualitative research on POC diagnostics around the uptake of POC tests, the actual diagnostic and testing processes involved, the influence of POC tests on clinical decision-making, communication of decisions and decisions exercised by patients are limited. Equally limited are studies that explore adaptation of POC programs to various socio-cultural contexts. More qualitative research is needed to inform test developers, funders and policymakers.

  2. Language Research Center's Computerized Test System (LRC-CTS) - Video-formatted tasks for comparative primate research

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Washburn, David A.; Savage-Rumbaugh, E. S.; Hopkins, William D.; Richardson, W. K.

    1991-01-01

    Automation of a computerized test system for comparative primate research is shown to improve the results of learning in standard paradigms. A mediational paradigm is used to determine the degree to which criterion in the learning-set testing reflects stimulus-response associative or mediational learning. Rhesus monkeys are shown to exhibit positive transfer as the criterion levels are shifted upwards, and the effectiveness of the computerized testing system is confirmed.

  3. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  4. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  5. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  6. 48 CFR 225.7016 - Restriction on Ballistic Missile Defense research, development, test, and evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Acquisition 225.7016 Restriction on Ballistic Missile Defense research, development, test, and evaluation. ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on Ballistic Missile Defense research, development, test, and evaluation. 225.7016 Section 225.7016 Federal...

  7. Testing of a high capacity research heat pipe

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests were performed on a high-capacity channel-wick heat pipe to assess the transport limitations of v-grooves and the effects of boiling. The results showed that transport can vary significantly (less than 50 W) under similar conditions and the continuous boiling was observed at power levels as low as 40 W. In addition, some evidence was found to support the predictions using a groove transport model which shows that transport increases with lower groove densities and longer evaporators. However, due to transport variations, these results were not consistent throughout the program. When a glass fiber wick was installed over the grooves, a relatively low transport level was achieved (80 to 140 W). Based on these results and the identification of some potential causes for them, several design suggestions were recommended for reducing the possibility of boiling and improving groove transport.

  8. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  9. Comparison of Airborne and Ground-Based Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.; Chamberlain, James P.; Chartrand, Ryan C.; Consiglio, Maria C.; Palmer, Michael T.

    2010-01-01

    This paper presents an air/ground functional allocation experiment conducted by the National Aeronautics and Space Administration (NASA) using two human-in-the-Loop simulations to compare airborne and ground-based approaches to NextGen separation assurance. The approaches under investigation are two trajectory-based four-dimensional (4D) concepts; one referred to as "airborne trajectory management with self-separation" (airborne) the other as "ground-based automated separation assurance" (ground-based). In coordinated simulations at NASA's Ames and Langley Research Centers, the primary operational participants -controllers for the ground-based concept and pilots for the airborne concept - manage the same traffic scenario using the two different 4D concepts. The common scenarios are anchored in traffic problems that require a significant increase in airspace capacity - on average, double, and in some local areas, close to 250% over current day levels - in order to enable aircraft to safely and efficiently traverse the test airspace. The simulations vary common independent variables such as traffic density, sequencing and scheduling constraints, and timing of trajectory change events. A set of common metrics is collected to enable a direct comparison of relevant results. The simulations will be conducted in spring 2010. If accepted, this paper will be the first publication of the experimental approach and early results. An initial comparison of safety and efficiency as well as operator acceptability under the two concepts is expected.

  10. Impact detection on airborne multilayered structures

    NASA Astrophysics Data System (ADS)

    Noharet, Bertrand; Chazelas, Jean; Bonniau, Philippe; Lecuellet, Jerome; Turpin, Marc J.

    1995-04-01

    This paper reviews the progress of an ongoing research program at Thomson-CSF and Bertin & Cie which addresses an optical fiber system dedicated to the assessment of impact induced damages on airborne multilayered structures. The method is based on the use of embedded high birefringence optical fiber sensors and distributed white light interfero-polarimetry. The first part is devoted to the transduction process efficiency within optical fibers depending on the applied force intensity, direction versus the fiber eigen axes and the interaction length. To understand the behavior of these optical fibers and calibrate the detection system, experiments have been conducted on elliptical core fibers, `bow-tie' fibers and side-hole fibers and showed a wide range of available sensitivities. The second step is related to the inclusion of optical fibers in a sandwich structure representative of an airborne dome, and composed of foam between glass/epoxy composite skins. Different designs of grooves in the foam and tube sheathings have been investigated to support and protect the optical fiber. Impacts have been performed on the structure in the 1 to 10 Joules energy range. Experimental impact location and energy measurements have been achieved for a variety of stress fields.

  11. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  12. Configuration management issues and objectives for a real-time research flight test support facility

    NASA Technical Reports Server (NTRS)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  13. Airborne infrared low level wind shear predictor

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Kurkowski, R. L.

    1984-01-01

    The operating principles and test performance of an airborne IR (13-16 micron) temperature-sensing detection and warning system for low-level wind shear (LLWS) are presented. The physics of LLWS phenomena and of the IR radiometer are introduced. The cold density-current outflow or gust front related to LLWS is observed in the IR spectrum of CO2 by a radiometer with + or - 0.5-C accuracy at 0.5-Hz sampling rate; LLWS alerts are given on the basis of specific criteria. Test results from the JAWS experiments conducted at Denver in July 1982, are presented graphically and discussed. The feasibility of the passive IR system is demonstrated, with an average warning time of 51 sec, corresponding to a distance from touchdown of about 2 miles.

  14. SGA-WZ: a new strapdown airborne gravimeter.

    PubMed

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  15. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  16. Preliminary assessment of night vision goggles in airborne forest fire suppression

    NASA Astrophysics Data System (ADS)

    Jennings, Sion; Craig, Greg; Erdos, Rob; Filiter, Don; Crowell, Bob; Macuda, Todd

    2007-04-01

    Helicopters are widely used in daytime forest fire suppression, conducting diverse tasks such as spotting, re-supply, medical evacuation and airborne delivery. However, they are not used at night for forest fire suppression operations. There would be many challenges when operating in the vicinity of forest fires at night, including scene obscuration from smoke and dynamic changes in lighting conditions. There is little data on the use of Night Vision Goggles (NVGs) for airborne forest fire suppression. The National Research Council of Canada (NRC), in collaboration with the Ontario Ministry of Natural Resources (OMNR), performed a preliminary flight test to examine the use of NVGs while operating near forest fires. The study also simulated limited aspects of night time water bucketing. The preliminary observations from this study suggest that NVGs have potential to improve the safety and efficiency of airborne forest fire suppression, including forest fire perimeter mapping and take-off and landing in the vicinity of open fires. NVG operations at some distance from the fire pose minimal risk to flight, and provide an enhanced capability to identify areas of combustion at greater distances and accuracy. Closer to the fire, NVG flight becomes more risk intensive as a consequence of a reduction in visibility attributable to the adverse effects on NVG performance of the excess radiation and smoke emitted by the fire. The preliminary results of this study suggest that water bucketing at night is a difficult operation with elevated risk. Further research is necessary to clarify the operational limitations and implementation of these devices in forest fire suppression.

  17. [Experimental research of gaits based on young plantar pressure test].

    PubMed

    Meng, Qingyun; Tan, Shili; Yu, Hongliu; Shen, Lixing; Zhuang, Jianhai; Wang, Jinwu

    2014-10-01

    The present paper is to study the center line of the plantar pressure of normal young people, and to find the relation between center line of the plantar pressure and gait stability and balance. The paper gives the testing principle and calculating methods for geometric center of plantar pressure distribution and the center of pressure due to the techniques of footprint frame. The calculating formulas in both x direction and y direction are also deduced in the paper. In the experiments carried out in our laboratory, the gait parameters of 131 young subjects walking as usual speed were acquired, and 14 young subjects of the total were specially analyzed. We then provided reference data for the walking gait database of young people, including time parameters, space parameters and plantar pressure parameters. We also obtained the line of geometry center and pressure center under the foot. We found that the differences existed in normal people's geometric center line and the pressure center line. The center of pressure trajectory revealed foot movement stability. The length and lateral changes of the center line of the plantar pressure could be applied to analysis of the plantar pressure of all kinds of people. The results in this paper are useful in clinical foot disease diagnosis and evaluation of surgical effect.

  18. Test and evaluation report of the Catalyst Research Oxygen Monitor, Model Miniox 3

    NASA Astrophysics Data System (ADS)

    Bruckart, James E.; Quattlebaum, Martin; Licina, Joseph R.; Olding, Bill

    1992-07-01

    The Catalyst Research Oxygen Monitor, Model Miniox 3, was tested for electromagnetic interference/compatibility in the UH-60A helicopter under the U.S. Army Program for Testing and Evaluation of Equipment for Aeromedical Operations. The tests were conducted using current military and industrial standards and procedures for electromagnetic interference/compatibility and human factors. The Catalyst Research Oxygen Monitor, Model Miniox III, was found to be compatible with U.S. Army MEDEVAC UH-60 Black Hawk.

  19. The EX-SHADWELL-Full Scale Fire Research and Test Ship

    DTIC Science & Technology

    1988-01-20

    protection through expansion of the USCG fire and Safety Test Detachment ( F &STD) in Mobile, Alabama, and to include joint research projects, information...utilized under this JRA: 3.la The USN will supplement the F &STD facility at Little Sand Island, Mobile, Alabama by incorporating a retired surface combatant...and performing tests, but will closely coordinate all testing with the USCG Research and Development Center, Groton, Connecticut. The overall F &STD

  20. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.