Science.gov

Sample records for airborne sar system

  1. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  2. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  3. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  4. CASMSAR: the first Chinese airborne SAR mapping system

    NASA Astrophysics Data System (ADS)

    Zhang, Jixian; Wang, Zhang; Huang, Guoman; Zhao, Zheng; Lu, Lijun

    2010-09-01

    In this paper, we present an overall description of the newest Chinese airborne SAR mapping system CASMSAR, which is developed by a group led by Chinese Academy of Surveying and Mapping (CASM). Since CASMSAR is equipped with two independent high-resolution SAR sensors (X-band and P-band), it allows the integration of interferometric and fully polarimetric functions. Another novel feature of CASMSAR is the software control of system monitoring and flight navigation display, which makes the whole system very intelligent and operational. The data processing software systems of CASMSAR consists of five subsystems. CASMSAR works in several modes. The most important two of them are used for mapping in scale of 1:10,000 and 1:50,000. Initial data were acquired during several testing flight campaigns in last year, and experimental results have proved that the system works well and the performance is better than expectation.

  5. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  6. MM wave SAR sensor design: Concept for an airborne low level reconnaissance system

    NASA Astrophysics Data System (ADS)

    Boesswetter, C.

    1986-07-01

    The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.

  7. Preliminary results of the LLNL airborne experimental test-bed SAR system

    SciTech Connect

    Miller, M.G.; Mullenhoff, C.J.; Kiefer, R.D.; Brase, J.M.; Wieting, M.G.; Berry, G.L.; Jones, H.E.

    1996-01-16

    The Imaging and Detection Program (IDP) within Laser Programs at Lawrence Livermore National Laboratory (LLNL) in cooperation with the Hughes Aircraft Company has developed a versatile, high performance, airborne experimental test-bed (AETB) capability. The test-bed has been developed for a wide range of research and development experimental applications including radar and radiometry plus, with additional aircraft modifications, optical systems. The airborne test-bed capability has been developed within a Douglas EA-3B Skywarrior jet aircraft provided and flown by Hughes Aircraft Company. The current test-bed payload consists of an X-band radar system, a high-speed data acquisition, and a real-time processing capability. The medium power radar system is configured to operate in a high resolution, synthetic aperture radar (SAR) mode and is highly configurable in terms of waveforrns, PRF, bandwidth, etc. Antennas are mounted on a 2-axis gimbal in the belly radome of the aircraft which provides pointing and stabilization. Aircraft position and antenna attitude are derived from a dedicated navigational system and provided to the real-time SAR image processor for instant image reconstruction and analysis. This paper presents a further description of the test-bed and payload subsystems plus preliminary results of SAR imagery.

  8. Design criteria and comparison between conventional and subaperture SAR processing in airborne systems

    NASA Astrophysics Data System (ADS)

    Prats, Pau; Bara, Marc; Broquetas, Antoni

    2002-02-01

    This paper compares two different approaches for designing airborne SAR systems. The first one is the most common where conventional processing is employed, and therefore wide antenna beams are to be used in order to avoid ambiguities in the final image due to attitude variations. A second approach is proposed to lower the requirements such system imposes based on subaperture processing. The idea is to follow the azimuth variations of the Doppler centroid, without increasing the hardware requirements of the system. As it is shown in this paper, this processing procedure must be complemented with precise radiometric corrections, because the platform may experience small attitude variations, which could increase/decrease the target observation time, inducing a significant azimuth modulation in the final image. This leads to the definition of a new criterion concerning maximum attitude deviations for an airborne platform.

  9. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of

  10. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  11. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  12. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  13. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  14. EARSEC SAR processing system

    NASA Astrophysics Data System (ADS)

    Protheroe, Mark; Sloggett, David R.; Sieber, Alois J.

    1994-12-01

    Traditionally, the production of high quality Synthetic Aperture Radar imagery has been an area where a potential user would have to expend large amounts of money in either the bespoke development of a processing chain dedicated to his requirements or in the purchase of a dedicated hardware platform adapted using accelerator boards and enhanced memory management. Whichever option the user adopted there were limitations based on the desire for a realistic throughput in data load and time. The user had a choice, made early in the purchase, for either a system that adopted innovative algorithmic manipulation, to limit the processing time of the purchase of expensive hardware. The former limits the quality of the product, while the latter excludes the user from any visibility into the processing chain. Clearly there was a need for a SAR processing architecture that gave the user a choice into the methodology to be adopted for a particular processing sequence, allowing him to decide on either a quick (lower quality) product or a detailed slower (high quality) product, without having to change the algorithmic base of his processor or the hardware platform. The European Commission, through the Advanced Techniques unit of the Joint Research Centre (JRC) Institute for Remote Sensing at Ispra in Italy, realizing the limitations on current processing abilities, initiated its own program to build airborne SAR and Electro-Optical (EO) sensor systems. This program is called the European Airborne Remote Sensing Capabilities (EARSEC) program. This paper describes the processing system developed for the airborne SAR sensor system. The paper considers the requirements for the system and the design of the EARSEC Airborne SAR Processing System. It highlights the development of an open SAR processing architecture where users have full access to intermediate products that arise from each of the major processing stages. It also describes the main processing stages in the overall

  15. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    NASA Technical Reports Server (NTRS)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  16. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  17. Geometric accuracy in airborne SAR images

    NASA Technical Reports Server (NTRS)

    Blacknell, D.; Quegan, S.; Ward, I. A.; Freeman, A.; Finley, I. P.

    1989-01-01

    Uncorrected across-track motions of a synthetic aperture radar (SAR) platform can cause both a severe loss of azimuthal positioning accuracy in, and defocusing of, the resultant SAR image. It is shown how the results of an autofocus procedure can be incorporated in the azimuth processing to produce a fully focused image that is geometrically accurate in azimuth. Range positioning accuracy is also discussed, leading to a comprehensive treatment of all aspects of geometric accuracy. The system considered is an X-band SAR.

  18. Forest stand structure from airborne polarimetric InSAR

    NASA Astrophysics Data System (ADS)

    Balzter, H.; Saich, P.; Luckman, A. J.; Skinner, L.; Grant, J.

    2002-01-01

    Interferometric SAR at short wavelengths can be used to retrieve stand height of forests. We evaluate the precision of tree height estimation from airborne single-pass interferometric E-SAR data at X-band VV polarisation and repeat-pass L-band polarimetric data. General yield class curves were used to estimate tree height from planting year, tree species and yield class data provided by the Forest Enterprise. The data were compared to tree height estimates from X-VV single-pass InSAR and repeat-pass polarimetric InSAR at L-band acquired by DLR's E-SAR during the SHAC campaign 2000. The effect of gap structure and incidence angle on retrieval precision of tree height from interferometric SAR is analysed. Appropriate correction methods to improve tree height retrieval are proposed. The coherent microwave model CASM is used with a Lindenmayer system tree model to simulate the observed underestimation of stand height in the presence of gaps.

  19. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  20. Ground moving target indication via multi-channel airborne SAR

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2011-06-01

    We consider moving target detection and velocity estimation for multi-channel synthetic aperture radar (SAR) based ground moving target indication (GMTI). Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Furthermore, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. An iterative adaptive approach (IAA), which is robust and user parameter free, is used to form velocity versus cross-range images for each range bin of interest. Moreover, we discuss calibration techniques to combat near-field coupling problems encountered in practical systems. Furthermore, we present a sparse signal recovery approach for stationary clutter cancellation. We conclude by demonstrating the effectiveness of our approaches by using the Air Force Research Laboratory (AFRL) publicly-released Gotcha airborne SAR based GMTI data set.

  1. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  2. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units.

    PubMed

    Booth, Timothy F; Kournikakis, Bill; Bastien, Nathalie; Ho, Jim; Kobasa, Darwyn; Stadnyk, Laurie; Li, Yan; Spence, Mel; Paton, Shirley; Henry, Bonnie; Mederski, Barbara; White, Diane; Low, Donald E; McGeer, Allison; Simor, Andrew; Vearncombe, Mary; Downey, James; Jamieson, Frances B; Tang, Patrick; Plummer, Frank

    2005-05-01

    Severe acute respiratory syndrome (SARS) is characterized by a risk of nosocomial transmission; however, the risk of airborne transmission of SARS is unknown. During the Toronto outbreaks of SARS, we investigated environmental contamination in SARS units, by employing novel air sampling and conventional surface swabbing. Two polymerase chain reaction (PCR)-positive air samples were obtained from a room occupied by a patient with SARS, indicating the presence of the virus in the air of the room. In addition, several PCR-positive swab samples were recovered from frequently touched surfaces in rooms occupied by patients with SARS (a bed table and a television remote control) and in a nurses' station used by staff (a medication refrigerator door). These data provide the first experimental confirmation of viral aerosol generation by a patient with SARS, indicating the possibility of airborne droplet transmission, which emphasizes the need for adequate respiratory protection, as well as for strict surface hygiene practices. PMID:15809906

  3. Calibration of airborne SAR interferograms using multisquint-processed image pairs

    NASA Astrophysics Data System (ADS)

    Prats, Pau; Mallorqui, Jordi J.; Reigber, Andreas; Broquetas, Antoni

    2004-01-01

    This paper presents two different approaches to detect and correct phase errors appearing in interferometric airborne SAR sensors due to the lack of precision in the navigation system. The first one is intended for interferometric pairs with high coherence, and the second one for low coherent ones. Both techniques are based on a multisquint processing approach, i.e., by processing the same image pairs with different squint angles we can combine the information of different interferograms to obtain the desired phase correction. Airborne single- and repeat-pass interferometric data from the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Experimental airborne SAR is used to validate the method.

  4. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  5. Mapping Slumgullion Landslide in Colorado, USA Using Airborne Repeat-Pass InSAR

    NASA Astrophysics Data System (ADS)

    Lee, H.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Fernandez-Diaz, J. C.; Cao, N.; Zaugg, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) uses two or more SAR images over the same area to determine landscape topography or ground deformation. An interferogram, generated by the phase components of two coherent SAR images, depicts range changes between the radar and the ground resolution elements, and can be used to derive both landscape topography and subtle changes in surface elevation. However, spaceborne repeat-pass interferometry has two main drawbacks: effects due to differences in atmospheric temperature, pressure, and water vapour at two observation times, and loss of coherence due to long spatial and temporal baselines between observations. Airborne repeat-pass interferometry does not suffer from these drawbacks. The atmospheric effect in case of airborne DInSAR becomes negligible due to smaller swath coverage, and the coherence can be maintained by using smaller spatial and temporal baselines. However, the main technical limitation concerning airborne DInSAR is the need of precise motion compensation with an accurate navigation system to correct for the significant phase errors due to typical flight instability from air turbulence. Here, we present results from a pilot study conducted on July 2015 using both X-band and L-band SlimSAR airborne system over the Slumgullion landslide in Colorado in order to (1) acquire the differential interferograms from the airborne platform, (2) understand their source of errors, and (3) pave a way to improve the precision of the derived surface deformation. The landslide movement estimated from airborne DInSAR is also compared with coincident GPS, terrestrial laser scanning (TLS), airborne LiDAR, and spaceborne DInSAR measurements using COSMO-SkyMed images. The airborne DInSAR system has a potential to provide time-transient variability in land surface topography with high-precision and high-resolution, and provide researchers with greater flexibility in selecting the temporal and spatial baselines of the data

  6. First Results from an Airborne Ka-band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Hensley, Scott

    2012-01-01

    NASA/JPL has developed SweepSAR technique that breaks typical Synthetic Aperture Radar (SAR) trade space using time-dependent multi-beam DBF on receive. Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept. Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz). Validated calibration and antenna pattern data sufficient for beam forming in elevation. (1) Provides validation evidence that the proposed Deformation Ecosystem Structure Dynamics of Ice (DESDynI) SAR architecture is sound. (2) Functions well even with large variations in receiver gain / phase. Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

  7. Image quality specification and maintenance for airborne SAR

    NASA Astrophysics Data System (ADS)

    Clinard, Mark S.

    2004-08-01

    Specification, verification, and maintenance of image quality over the lifecycle of an operational airborne SAR begin with the specification for the system itself. Verification of image quality-oriented specification compliance can be enhanced by including a specification requirement that a vendor provide appropriate imagery at the various phases of the system life cycle. The nature and content of the imagery appropriate for each stage of the process depends on the nature of the test, the economics of collection, and the availability of techniques to extract the desired information from the data. At the earliest lifecycle stages, Concept and Technology Development (CTD) and System Development and Demonstration (SDD), the test set could include simulated imagery to demonstrate the mathematical and engineering concepts being implemented thus allowing demonstration of compliance, in part, through simulation. For Initial Operational Test and Evaluation (IOT&E), imagery collected from precisely instrumented test ranges and targets of opportunity consisting of a priori or a posteriori ground-truthed cultural and natural features are of value to the analysis of product quality compliance. Regular monitoring of image quality is possible using operational imagery and automated metrics; more precise measurements can be performed with imagery of instrumented scenes, when available. A survey of image quality measurement techniques is presented along with a discussion of the challenges of managing an airborne SAR program with the scarce resources of time, money, and ground-truthed data. Recommendations are provided that should allow an improvement in the product quality specification and maintenance process with a minimal increase in resource demands on the customer, the vendor, the operational personnel, and the asset itself.

  8. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-03-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.

  9. Using airborne and satellite SAR for wake mapping offshore

    NASA Astrophysics Data System (ADS)

    Christiansen, Merete B.; Hasager, Charlotte B.

    2006-09-01

    Offshore wind energy is progressing rapidly around Europe. One of the latest initiatives is the installation of multiple wind farms in clusters to share cables and maintenance costs and to fully exploit premium wind resource sites. For siting of multiple nearby wind farms, the wind turbine wake effect must be considered. Synthetic aperture radar (SAR) is an imaging remote sensing technique which offers a unique opportunity to describe spatial variations of wind speed offshore. For the first time an airborne SAR instrument was used for data acquisition over a large offshore wind farm. The aim was to identify the turbine wake effect from SAR-derived wind speed maps as a downstream region of reduced wind speed. The aircraft SAR campaign was conducted on 12 October 2003 over the wind farm at Horns Rev in the North Sea. Nearly simultaneous measurements were acquired over the area by the SAR on board the ERS-2 satellite. In addition, meteorological data were collected. Both aircraft and satellite SAR-derived wind speed maps showed significant velocity deficits downstream of the wind farm. Wind speed maps retrieved from aircraft SAR suggested deficits of up to 20% downstream of the last turbine, whereas satellite SAR-derived maps showed deficits of the order of 10%. The difference originated partly from the two different reference methods used for normalization of measured wind speeds. The detected region of reduced wind speed had the same width as the wind turbine array, indicating a low degree of horizontal wake dispersion. The downstream wake extent was approximately 10 km, which corresponds well with results from previous studies and with wake model predictions. Copyright

  10. Monitoring of viable airborne SARS virus in ambient air

    NASA Astrophysics Data System (ADS)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  11. First Demonstration of Agriculture Height Retrieval with PolInSAR Airborne Data

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Juan M.; Ballester-Berman, J. David; Hajnsek, Irena

    2011-03-01

    A set of three quad-pol images acquired at L-band in interferometric repeat-pass mode by DLR with the E-SAR system, in parallel with the AgriSAR2006 campaign, have been used to provide a first demonstration with airborne data of the retrieval of vegetation height from agricultural crops by means of PolInSAR based techniques.We have obtained accurate estimates of vegetation height over winter rape and maize fields, when compared with the availabe ground measurements. The same procedure yields a clear overestimation and larger variance over wheat fields.Results demonstrate that, although the frequency band is low, the model employed for the inversion is very simple, and the backscattered signal contains an important contribution from the ground, the volume information provided by interferometry is present and enables the application of PolInSAR-based retrieval approaches for agriculture monitoring practices.

  12. Hierarchical classifier design for airborne SAR images of ships

    NASA Astrophysics Data System (ADS)

    Gagnon, Langis; Klepko, Robert

    1998-09-01

    We report about a hierarchical design for extracting ship features and recognizing ships from SAR images, and which will eventually feed a multisensor data fusion system for airborne surveillance. The target is segmented from the image background using directional thresholding and region merging processes. Ship end-points are then identified through a ship centerline detection performed with a Hough transform. A ship length estimate is calculated assuming that the ship heading and/or the cross-range resolution are known. A high-level ship classification identifies whether the target belongs to Line (mainly combatant military ships) or Merchant ship categories. Category discrimination is based on the radar scatterers' distribution in 9 ship sections along the ship's range profile. A 3-layer neural network has been trained on simulated scatterers distributions and supervised by a rule- based expert system to perform this task. The NN 'smoothes out' the rules and the confidence levels on the category declaration. Line ship type (Frigate, Destroyer, Cruiser, Battleship, Aircraft Carrier) is then estimated using a Bayes classifier based on the ship length. Classifier performances using simulated images are presented.

  13. Block adjustment of airborne InSAR based on interferogram phase and POS data

    NASA Astrophysics Data System (ADS)

    Yue, Xijuan; Zhao, Yinghui; Han, Chunming; Dou, Changyong

    2015-12-01

    High-precision surface elevation information in large scale can be obtained efficiently by airborne Interferomatric Synthetic Aperture Radar (InSAR) system, which is recently becoming an important tool to acquire remote sensing data and perform mapping applications in the area where surveying and mapping is difficult to be accomplished by spaceborne satellite or field working. . Based on the study of the three-dimensional (3D) positioning model using interferogram phase and Position and Orientation System (POS) data and block adjustment error model, a block adjustment method to produce seamless wide-area mosaic product generated from airborne InSAR data is proposed in this paper. The effect of 6 parameters, including trajectory and attitude of the aircraft, baseline length and incline angle, slant range, and interferometric phase, on the 3D positioning accuracy is quantitatively analyzed. Using the data acquired in the field campaign conducted in Mianyang county Sichuan province, China in June 2011, a mosaic seamless Digital Elevation Model (DEM) product was generated from 76 images in 4 flight strips by the proposed block adjustment model. The residuals of ground control points (GCPs), the absolute positioning accuracy of check points (CPs) and the relative positioning accuracy of tie points (TPs) both in same and adjacent strips were assessed. The experimental results suggest that the DEM and Digital Orthophoto Map (DOM) product generated by the airborne InSAR data with sparse GCPs can meet mapping accuracy requirement at scale of 1:10 000.

  14. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  15. A videoSAR mode for the x-band wideband experimental airborne radar

    NASA Astrophysics Data System (ADS)

    Damini, A.; Balaji, B.; Parry, C.; Mantle, V.

    2010-04-01

    DRDC has been involved in the development of airborne SAR systems since the 1980s. The current system, designated XWEAR (X-band Wideband Experimental Airborne Radar), is an instrument for the collection of SAR, GMTI and maritime surveillance data at long ranges. VideoSAR is a land imaging mode in which the radar is operated in the spotlight mode for an extended period of time. Radar data is collected persistently on a target of interest while the aircraft is either flying by or circling it. The time span for a single circular data collection can be on the order of 30 minutes. The spotlight data is processed using synthetic apertures of up to 60 seconds in duration, where consecutive apertures can be contiguous or overlapped. The imagery is formed using a back-projection algorithm to a common Cartesian grid. The DRDC VideoSAR mode noncoherently sums the images, either cumulatively, or via a sliding window of, for example, 5 images, to generate an imagery stream presenting the target reflectivity as a function of viewing angle. The image summation results in significant speckle reduction which provides for increased image contrast. The contrast increases rapidly over the first few summed images and continues to increase, but at a lesser rate, as more images are summed. In the case of cumulative summation of the imagery, the shadows quickly become filled in. In the case of a sliding window, the summation introduces a form of persistence into the VideoSAR output analogous to the persistence of analog displays from early radars.

  16. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  17. Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR

    PubMed Central

    Frey, Othmar; Morsdorf, Felix; Meier, Erich

    2008-01-01

    In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourier-based focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR).

  18. Challenges and Potentials Using Multi Aspect Coverage of Urban Scenes by Airborne SAR on Circular Trajectories

    NASA Astrophysics Data System (ADS)

    Palm, S.; Pohl, N.; Stilla, U.

    2015-03-01

    Airborne SAR on small and flexible platforms guarantees the evaluation of local damages after natural disasters and is both weather and daylight independent. The processing of circular flight trajectories can further improve the reconstruction of target scenes especially in complex urban scenarios as shadowing and foreshortening effects can be reduced by multiple views from different aspect angles (hyper- or full- aspect). A dataset collected with the Miranda 35 GHz radar system with 1 GHz bandwidth on a small ultralight aircraft on a circular trajectory over an urban scene was processed using a time domain approach. The SAR processing chain and the effects of the navigational data for such highly nonlinear trajectories and unstable platforms are described. The generated SAR image stack over the entire trajectory consists of 240 individual SAR images, each image visualizing the scene from a slightly different aspect angle. First results for the fusion of multiple aspect views to create one resulting image with reduced shadow areas and the possibility to find hidden targets are demonstrated. Further potentials of such particular datasets like moving target indication are discussed.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  20. The X-SAR System

    NASA Technical Reports Server (NTRS)

    Oettl, Herwig

    1986-01-01

    During the past few years, there has been significant progress made in the planning for an X-band SAR, designed to fly in the shuttle together with the SIR-C system of NASA/JPL. New work and studies have been initiated to enable the goal of two missions in 1990 to be met. The antennas of X-SAR and SIR-C will be placed side-by-side on a pivoted steerable foldable structure, which will allow antenna movement without changing the attitude of the shuttle. This figure also shows the pallet, underneath the antenna structure, which houses the electronic sub-systems of both radars. Although the two radar systems, X-band SAR and the L- and C-band SAR of SIR-C, have different technical designs, their overall system performance, in terms of image quality, is expected to be similar. The current predicted performance of the X-SAR system based on results of the continuing Phase B studies is detailed. Differences between the performance parameters of X-SAR and those of SIR-C are only detailed in as far as they affect planning decisions to be made by experimenters.

  1. Classification And Monitoring Of Salt Marsh Habitats With Multi-Polarimetric Airborne SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2013-12-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi- frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  2. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  3. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  4. A comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery - The value of archived multiple data sets

    NASA Technical Reports Server (NTRS)

    Hanson, Bradford C.; Dellwig, Louis F.

    1988-01-01

    In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.

  5. Earth observing SAR data processing systems at the Jet Propulsion Laboratory - Seasat to EOS SAR

    NASA Technical Reports Server (NTRS)

    Nichols, David A.; Curlander, John C.

    1991-01-01

    The evolution of SAR digital data processing and management ground systems developed at the JPL for earth science missions is discussed. Attention is given to the SAR ground data system requirements, the early data processing systems, the Seasat SAR system, and the SIR-B data processing system. Special consideration is given to two currently operational SAR data systems: the JPL aircraft SAR processing system that flies on the NASA DC-8 and the Alaska SAR Facility at Fairbanks.

  6. Design of a monopulse SAR system to determine elevation angles

    NASA Technical Reports Server (NTRS)

    Oettl, H.; Zink, M.; Zeller, K. H.; Freeman, A.

    1992-01-01

    Terrain height variations in mountainous areas cause problems in radiometric corrections of synthetic aperture radar (SAR) images. To determine the elevation angle and the height at the different parts of an image, an application of the monopulse principle is proposed. From the ratios of images radiometrically modulated by the difference and sum antenna pattern in range it is possible to calculate the appropriate elevation angle at any point in the image. Design considerations for a corresponding airborne SAR-system are presented, and some estimates of error influences (e.g., ambiguities), expected performance and precision in topographic mapping are given.

  7. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  8. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  9. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  10. Airborne precursor missions in support of SIR-C/X-SAR

    NASA Technical Reports Server (NTRS)

    Evans, D.; Oettl, H.; Pampaloni, P.

    1991-01-01

    The NASA DC-8 and DLR E-SAR airborne imaging radars have been deployed over several sites in Europe and the U.S. in support of SIR-C/X-SAR (Shuttle Imaging Radar-C/X-Synthetic Aperture Radar) science team investigations. To date, data have been acquired in support of studies of alpine glaciers, forests, geology, oceanography, and calibration. An experimental campaign with airborne sensors will take place in Europe in June to July 1991 which will allow multitemporal surveys of several Europeans sites. Current plans are for calibration and ecology experiments to be undertaken in Germany, the Netherlands, Italy, France, and the United Kingdom. Coordinated multitemporal aircraft and ground campaigns are planned in support of hydrology experiments in Italy, the United Kingdom, and Austria. Data will also be acquired in support of oceanogrqhy in the Gulf of Genova, North Atlantic, Straits of Messina and the North Sea. Geology sites will include Campi Flegrei and Vesuvio, Italy.

  11. Merging Airborne LIDAR Data and Satellite SAR Data for Building Classification

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Nakagawa, M.

    2015-05-01

    A frequent map revision is required in GIS applications, such as disaster prevention and urban planning. In general, airborne photogrammetry and LIDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, these approaches classify geometrical attributes. Moreover, ground survey and manual editing works are finally required in attribute data classification. On the other hand, although geometrical data extraction is difficult, SAR data have a possibility to automate the attribute data acquisition and classification. The SAR data represent microwave reflections on various surfaces of ground and buildings. There are many researches related to monitoring activities of disaster, vegetation, and urban. Moreover, we have an opportunity to acquire higher resolution data in urban areas with new sensors, such as ALOS2 PALSAR2. Therefore, in this study, we focus on an integration of airborne LIDAR data and satellite SAR data for building extraction and classification.

  12. The Danish SAR system - Design and initial tests

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Christensen, Erik L.; Skou, Niels; Dall, Jorgen

    1991-01-01

    In January 1986, the design of a high-resolution airborne C-band SAR started at the Electromagnetics Institute of the Technical University of Denmark. The initial system test flights took place in November and December 1989. The authors describe the design of the system, its implementation, and its performance. They show how digital technology has been utilized to realize a very flexible radar with variable resolution, swath-width, and imaging geometry. The motion-compensation algorithms implemented to obtain the high resolution and the special features built into the system to ensure proper internal calibration are outlined. The data processing system, developed for image generation and quality assurance, is sketched, with special emphasis on the flexibility of the system. Sample images and a preliminary performance evaluation are presented, demonstrating that the design goals have been met. The ongoing system upgrades and the planned scientific utilization of the C-band SAR are described.

  13. Estimation of bare soil evaporation using multifrequency airborne SAR

    NASA Technical Reports Server (NTRS)

    Soares, Joao V.; Shi, Jiancheng; Van Zyl, Jakob; Engman, E. T.

    1992-01-01

    It is shown that for homogeneous areas soil moisture can be derived from synthetic aperture radar (SAR) measurements, so that the use of microwave remote sensing can given realistic estimates of energy fluxes if coupled to a simple two-layer model repesenting the soil. The model simulates volumetric water content (Wg) using classical meterological data, provided that some of the soil thermal and hydraulic properties are known. Only four parameters are necessary: mean water content, thermal conductivity and diffusitivity, and soil resistance to evaporation. They may be derived if a minimal number of measured values of Wg and surface layer temperature (Tg) are available together with independent measurements of energy flux to compare with the estimated values. The estimated evaporation is shown to be realistic and in good agreement with drying stage theory in which the transfer of water in the soil is in vapor form.

  14. Imaging fault slip variation along the central San Andreas fault from satellite, airborne InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Lundgren, P.; Fielding, E. J.; Hensley, S.

    2011-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides great potential to improve our understanding of faulting processes and earthquake hazard for a given fault system. A major plate boundary fault in central California, the central San Andreas fault (CSAF) displays a spectrum of complex fault slip behaviors with creeping in its central segment that decreases towards its northwest and southeast ends where the fault transitions to being locked. In the north the CSAF branches into two sub-parallel faults that are both actively accommodating plate motion. To the south, near the Parkfield transition, large earthquakes have occurred with at least six Mw ~6.0 events since 1857, most recently in 2004. To understand the complexity and variety of fault slip behaviors and fault mechanics, we integrate satellite and airborne synthetic aperture radar (SAR) repeat pass interferometry (RPI) observations, with GPS measurements from the Plate Boundary Observatory (PBO) and regional campaign networks to estimate fault slip and shallow slip deficits along the CSAF. Existing C-band ERS-1/2, Envisat and Radarsat SAR data provide long archives of SAR data over the region but are subject to severe decorrelation. The Japan Aerospace Exploration Agency's ALOS satellite has made less frequent acquisitions (5-6/yr per track) since 2006 but its PALSAR L-band sensor provides much improved coherence compared to shorter wavelength radar data. More recently, the NASA UAVSAR airborne SAR has repeated fault perpendicular adjacent swaths imaged from opposing look directions and fault parallel swath flights over the CSAF over the past three years and provides an improved imaging of fault slip related deformation at finer spatial resolution than previous platforms (~6m at 12 azimuth x 3 range looks). Compared to C-band instruments, the UAVSAR provides nearly complete spatial coverage. Compared to the ALOS mission, the UAVSAR

  15. SAR and InSAR georeferencing algorithms for inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Greco, M.; Kulpa, K.; Pinelli, G.; Samczynski, P.

    2011-10-01

    This paper presents the concept of Synthetic Aperture Radar (SAR) and Interferemetric SAR (InSAR) georeferencing algorithms dedicated for SAR based augmented Inertial Navigation Architecture (SARINA). The SARINA is a novel concept of the Inertial Navigation System (INS), which utilized the SAR radar as an additional sensor to provide information about the platform trajectory position and compensate an aircraft drift due to Inertial Measurement Unit (IMU) errors, Global Positioning System (GPS) lack of integrity, etc.

  16. Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2014-10-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  17. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  18. Multisensor airborne imagery collection and processing onboard small unmanned systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale; Anderson, Scott A.; Bird, Alan; Holt, Niel; Kruer, Melvin; Walls, Thomas J.; Wilson, Michael L.

    2010-04-01

    FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) is an ONR funded effort to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). This program is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL). FEATHAR has developed and integrated EyePod, a combined long-wave infrared (LWIR) and visible to near infrared (VNIR) optical survey & inspection system, with NuSAR, a combined dual band synthetic aperture radar (SAR) system. These sensors are being tested in conjunction with other ground and airborne sensor systems to demonstrate intelligent real-time cross-sensor cueing and in-air data fusion. Results from test flights of the EyePod and NuSAR sensors will be presented.

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. Airborne & SAR Synergy Reveals the 3D Structure of Air Bubble Entrainment in Internal Waves and Frontal Zones

    NASA Astrophysics Data System (ADS)

    da Silva, J. C. B.; Magalhaes, J. M.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A. L.

    2013-03-01

    spectral range 8-12 μm. With a nominal ground resolution of approximately 1.5 meters (at an altitude of 500 meters) it is capable to detect fine structure associated to turbulence. The LiDAR system that has been used is the Leica ALS50-II (1064nm) with a hit rate greater than 1 hit per square meter and a vertical resolution of approximately 15 cm. Both systems were available simultaneously, together with the hyperspectral system and the RCD105 39Mpx digital camera, integrated with the LiDAR navigation system. We analyse the airborne data together with a comprehensive dataset of satellite Synthetic Aperture Radar (SAR) that includes ENVISAT and TerraSAR-X images. In addition, in situ observations in the near-shore zone were obtained in a previous experiment (Project SPOTIWAVE-II POCI/MAR/57836/2004 funded by the Portuguese FCT) during the summer period in 2006. These included thermistor chain measurements along the water column that captured the vertical structure of shoaling internal (tidal) waves and ISWs close to the breaking point. The SAR and airborne images were obtained in light wind conditions, in the near-shore zone, and in the presence of ISWs. The LiDAR images revealed sub-surface structures (some 1-2 m below the sea surface) that were co-located with surface films. These film slicks were induced by the convergent fields of internal waves and upwelling fronts. Some of the sub-surface features were located over the front slopes of the internal waves, which coincides with the internal wave slick band visible in the aerial photos and hyperspectral systems. Our flight measurements revealed thermal features similar to “boils” of cold water within the wake of (admittedly breaking) internal waves. These features are consistent with the previous in situ measurements of breaking ISWs. In this paper we will show coincident multi-sensor airborne and satellite SAR observations that reveal the 3D structure of air bubble entrainment in the internal wave field and frontal

  1. Realtime processor of SAR systems

    NASA Astrophysics Data System (ADS)

    Schotter, R.

    Attention is given to potential applications of a synthetic aperture radar (SAR) real time processor which was developed for Space Shuttle-based earth sensing, and which may prove useful in military surveillance, ocean wave studies, ship movements in territorial waters, land conservation, geology, and mineralogical prospecting. The SAR processor's signal processing task is characterized by complex algorithms and large quantities of raw data/time unit. A 'pipeline' configuration has been judged optimal for this type of processing, and it will consist of digital hardware modules for Fourier transform, digital filtering, two-dimensional image memory, and complex multiplication.

  2. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  3. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Schumann, Guy; Moller, Delwyn; Mentgen, Felix

    2015-12-01

    Digital elevation models (DEMs) are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  4. GeoEarthScope Airborne LiDAR and Satellite InSAR Imagery

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Jackson, M. E.; Meertens, C.

    2008-12-01

    UNAVCO has successfully acquired a significant volume of aerial and satellite geodetic imagery as part of GeoEarthScope, a component of the EarthScope Facility project funded by the National Science Foundation. All GeoEarthScope acquisition activities are now complete. Airborne LiDAR data acquisitions took place in 2007 and 2008 and cover a total area of more than 5000 square kilometers. The primary LiDAR survey regions cover features in Northern California, Southern/Eastern California, the Pacific Northwest, the Intermountain Seismic Belt (including the Wasatch and Teton faults and Yellowstone), and Alaska. We have ordered and archived more than 28,000 scenes (more than 81,000 frames) of synthetic aperture radar (SAR) data suitable for interferometric analyses covering most of the western U.S. and parts of Alaska and Hawaii from several satellite platforms, including ERS-1/2, ENVISAT and RADARSAT. In addition to ordering data from existing archives, we also tasked the ESA ENVISAT satellite to acquire new SAR data in 2007 and 2008. GeoEarthScope activities were led by UNAVCO, guided by the community and conducted in partnership with the USGS and NASA. Processed imagery products, in addition to formats intended for use in standard research software, can also be viewed using general purpose tools such as Google Earth. We present a summary of these vast geodetic imagery datasets, totaling tens of terabytes, which are freely available to the community.

  5. Lineaments from airborne SAR images and the 1988 Saguenay earthquake, Quebec, Canada

    SciTech Connect

    Roy, D.W.; Schmitt, L.; Woussen, G.; Duberger, R. )

    1993-08-01

    Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineament orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.

  6. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  7. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  8. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  9. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  10. SAR Product Control Software

    NASA Astrophysics Data System (ADS)

    Meadows, P. J.; Hounam, D.; Rye, A. J.; Rosich, B.; Börner, T.; Closa, J.; Schättler, B.; Smith, P. J.; Zink, M.

    2003-03-01

    As SAR instruments and their operating modes become more complex, as new applications place more and more demands on image quality and as our understanding of their imperfections becomes more sophisticated, there is increasing recognition that SAR data quality has to be controlled more completely to keep pace. The SAR product CONtrol software (SARCON) is a comprehensive SAR product control software suite tailored to the latest generation of SAR sensors. SARCON profits from the most up-to-date thinking on SAR image performance derived from other spaceborne and airborne SAR projects and is based on the newest applications. This paper gives an overview of the structure and the features of this new software tool, which is a product of a co-operation between teams at BAE SYSTEMS Advanced Technology Centre and DLR under contract to ESA (ESRIN). Work on SARCON began in 1999 and is continuing.

  11. Ambiguity noise analysis of a SAR system

    NASA Astrophysics Data System (ADS)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang

    2015-12-01

    The presence of range and azimuth (or Doppler) ambiguities in synthetic aperture radars (SARs) is well known. The ambiguity noise is related to the antenna pattern and the value of pulse repetition frequency (PRF). Because a new frequency modulated continuous wave (FMCW) SAR has the characters of low cost and small size, and the capacity of real-time signal processing, the antenna will likely vibrate or deform due to a lack of the stabilized platform. And the value of PRF cannot be much high because of the high computation burden for the real-time processing. The aim of this study is to access and improve the performance of a new FMCW SAR system based on the ambiguity noise. First, the quantitative analysis of the system's ambiguity noise level is performed; an antenna with low sidelobes is designed. The conclusion is that the range ambiguity noise is small; the azimuth ambiguity noise is somewhat increased, however, it is sufficiently small to have marginal influence on the image quality. Finally, the ambiguity noise level is measured using the imaging data from a Ku-band FMCW SAR. The results of this study show that the measured noise level coincides with the theoretical noise level.

  12. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  13. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign

    NASA Astrophysics Data System (ADS)

    Martin, Adrien C. H.; Gommenginger, Christine; Marquez, Jose; Doody, Sam; Navarro, Victor; Buck, Christopher

    2016-03-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) senses the motion of the ocean surface by measuring the Doppler shift of reflected signals. Measurements are affected by a Wind-wave-induced Artifact Surface Velocity (WASV) which was modeled theoretically in past studies and has been estimated empirically only once before with Envisat ASAR by Mouche et al. (2012). An airborne campaign in the tidally dominated Irish Sea served to evaluate this effect and the current retrieval capabilities of a dual-beam SAR interferometer known as Wavemill. A comprehensive collection of Wavemill airborne data acquired in a star pattern over a well-instrumented validation site made it possible for the first time to estimate the magnitude of the WASV, and its dependence on azimuth and incidence angle from data alone. In light wind (5.5 m/s) and moderate current (0.7 m/s) conditions, the wind-wave-induced contribution to the measured ocean surface motion reaches up to 1.6 m/s upwind, with a well-defined second-order harmonic dependence on direction to the wind. The magnitude of the WASV is found to be larger at lower incidence angles. The airborne WASV results show excellent consistency with the empirical WASV estimated from Envisat ASAR. These results confirm that SAR and ATI surface velocity estimates are strongly affected by WASV and that the WASV can be well characterized with knowledge of the wind knowledge and of the geometry. These airborne results provide the first independent validation of Mouche et al. (2012) and confirm that the empirical model they propose provides the means to correct airborne and spaceborne SAR and ATI SAR data for WASV to obtain accurate ocean surface current measurements. After removing the WASV, the airborne Wavemill-retrieved currents show very good agreement against ADCP measurements with a root-mean-square error (RMSE) typically around 0.1 m/s in velocity and 10° in direction.

  14. International collaboration in SAR ground data systems

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    A set of considerations that are pertinent to future international cooperation in the area of synthetic aperture radar (SAR) ground data systems are presented. The considerations are as follows: (1) success of future spaceborne SAR missions will require multi-agency and/or multi-national collaboration; (2) ground processing is typically performed by each agency for their user base; (3) international standards are required to achieve a uniform data product independent of the processing center; (4) to reduce the aggregate cost of the ground data systems, collaboration is required in design and development; (5) effective utilization of the data by an international user community; (6) commercialization of data products; and (7) security of data systems.

  15. Fault and anthropogenic processes in central California constrained by satellite and airborne InSAR and in-situ observations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Lundgren, Paul

    2016-07-01

    The San Andreas Fault (SAF) system is the primary plate boundary in California, with the central SAF (CSAF) lying adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The CSAF displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where the fault transitions to being fully locked. At least six Mw ~6.0 events since 1857 have occurred near the Parkfield transition, most recently in 2004. Large earthquakes also occurred on secondary faults parallel to the SAF, the result of distributed deformation across the plate boundary zone. Recent studies have revealed the complex interaction between anthropogenic related groundwater depletion and the seismic activity on adjacent faults through stress interaction. Despite recent progress, many questions regarding fault and anthropogenic processes in the region still remain. For example, how is the relative plate motion accommodated between the CSAF and off-fault deformation? What is the distribution of fault creep and slip deficit at shallow depths? What are the spatiotemporal variations of fault slip? What are the spatiotemporal characteristics of anthropogenic and lithospheric processes and how do they interact with each other? To address these, we combine satellite InSAR and NASA airborne UAVSAR data to image on and off-fault deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using ERS-1/2, Envisat, ALOS and UAVSAR interferograms. The combined C-band ERS-1/2 and Envisat data provide a long time interval of SAR data over the region

  16. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  17. Design of integrated ship monitoring system using SAR, RADAR, and AIS

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho; Hong, Danbee; Ahn, Hyung-Wook

    2013-06-01

    When we talk about for the ship detection, identification and its classification, we need to go for the wide area of monitoring and it may be possible only through satellite based monitoring approach which monitors and covers coastal as well as the oceanic zone. Synthetic aperture radar (SAR) has been widely used to detect targets of interest with the advantage of the operating capability in all weather and luminance free condition (Margarit and Tabasco, 2011). In EU waters, EMSA(European Maritime Safety Agency) is operating the SafeSeaNet and CleanSeaNet systems which provide the current positions of all ships and oil spill monitoring information in and around EU waters in a single picture to Member States using AIS, LRIT and SAR images. In many countries, a similar system has been developed and the key of the matter is to integrate all available data. This abstract describes the preliminary design concept for an integration system of RADAR, AIS and SAR data for vessel traffic monitoring. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should be also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Land-based RADAR can provide ships positions detected and tracked in near real time. In general, SAR are used to acquire image data over large coverage area, AIS reports are obtained from ship based transmitter, and RADAR can monitor continuously ships for a limited area. In this study, we developed individual ship monitoring algorithms using RADAR(FMCW and Pulse X-band), AIS and SAR(RADARSAT-2 Full-pol Mode). We conducted field experiments two times for displaying the RADAR, AIS and SAR integration over the Pyeongtaek Port, South Korea.

  18. Utilizing feedback in adaptive SAR ATR systems

    NASA Astrophysics Data System (ADS)

    Horsfield, Owen; Blacknell, David

    2009-05-01

    Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.

  19. Quantification of L-band InSAR decorrelation in volcanic terrains using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Sedze, M.; Heggy, E.; Jacquemoud, S.; Bretar, F.

    2011-12-01

    Repeat-pass InSAR LOS measurements of the Piton de La Fournaise (La Reunion Island, France) suffer from substantial phase decorrelation due to the occurrence of vegetation and ash deposits on the caldera and slopes of the edifice. To correct this deficiency, we combine normalized airborne LiDAR (Light Detection and Ranging) intensity data with spaceborne InSAR coherence images from ALOS PALSAR L-band acquired over the volcano in 2008 and 2009, following the 2007 major eruption. The fusion of the two data sets improves the calculation of coherence and the textural classification of different volcanic surfaces. For future missions considering both InSAR and/or LiDAR such as DESDynI (Deformation, Ecosystem Structure and Dynamics of Ice), such data fusion studies can provide a better analysis of the spatiotemporal variations in InSAR coherence in order to enhance the monitoring of pre-eruptive ground displacements. The airborne surveys conducted in 2008 and 2009, cover different types of vegetation and terrain roughness on the central and western parts of the volcano. The topographic data are first processed to generate a high-resolution digital terrain model (DTM) of the volcanic edifice with elevation accuracy better than 1 m. For our purposes, the phase variations caused by the surface relief can be eliminated using the LiDAR-derived DTM. Then normalized LiDAR intensities are correlated to the L-band polarimetric coherence for different zones of the volcano to assess the LiDAR-InSAR statistical behavior of different lava flows, pyroclastics, and vegetated surfaces. Results suggest that each volcanic terrain type is characterized by a unique LiDAR-InSAR histogram pattern. We identified four LiDAR-InSAR distinguished relations: (1) pahoehoe lava flow surfaces show an agglomerate histogram pattern which may be explained by low surface scattering and low wave penetration into the geological medium; (2) eroded a'a lava surfaces is characterized by high standard deviation

  20. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  1. Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests

    NASA Technical Reports Server (NTRS)

    Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark

    2012-01-01

    The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.

  2. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  3. A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data

    PubMed Central

    Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian

    2016-01-01

    Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959

  4. A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data.

    PubMed

    Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian

    2016-01-01

    Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959

  5. Auxiliary DCP data acquisition system. [airborne system

    NASA Technical Reports Server (NTRS)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  6. Classification of fully polarimetric F-SAR ( X / S ) airborne radar images using decomposition methods. (Polish Title: Klasyfikacja treści polarymetrycznych obrazów radarowych z wykorzystaniem metod dekompozycji na przykładzie systemu F-SAR ( X / S ))

    NASA Astrophysics Data System (ADS)

    Mleczko, M.

    2014-12-01

    Polarimetric SAR data is not widely used in practice, because it is not yet available operationally from the satellites. Currently we can distinguish two approaches in POL - In - SAR technology: alternating polarization imaging (Alt - POL) and fully polarimetric (QuadPol). The first represents a subset of another and is more operational, while the second is experimental because classification of this data requires polarimetric decomposition of scattering matrix in the first stage. In the literature decomposition process is divided in two types: the coherent and incoherent decomposition. In this paper the decomposition methods have been tested using data from the high resolution airborne F - SAR system. Results of classification have been interpreted in the context of the land cover mapping capabilities

  7. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  8. Digital Intermediate Frequency Receiver Module For Use In Airborne Sar Applications

    DOEpatents

    Tise, Bertice L.; Dubbert, Dale F.

    2005-03-08

    A digital IF receiver (DRX) module directly compatible with advanced radar systems such as synthetic aperture radar (SAR) systems. The DRX can combine a 1 G-Sample/sec 8-bit ADC with high-speed digital signal processor, such as high gate-count FPGA technology or ASICs to realize a wideband IF receiver. DSP operations implemented in the DRX can include quadrature demodulation and multi-rate, variable-bandwidth IF filtering. Pulse-to-pulse (Doppler domain) filtering can also be implemented in the form of a presummer (accumulator) and an azimuth prefilter. An out of band noise source can be employed to provide a dither signal to the ADC, and later be removed by digital signal processing. Both the range and Doppler domain filtering operations can be implemented using a unique pane architecture which allows on-the-fly selection of the filter decimation factor, and hence, the filter bandwidth. The DRX module can include a standard VME-64 interface for control, status, and programming. An interface can provide phase history data to the real-time image formation processors. A third front-panel data port (FPDP) interface can send wide bandwidth, raw phase histories to a real-time phase history recorder for ground processing.

  9. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  10. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  11. New observations of Bolivian wind streaks by JPL Airborne SAR: Preliminary results

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    In 1993 NASA's Jet Propulsion Laboratory Airborne Synthetic Aperture Radar system (AIRSAR) was deployed to South America to collect multi-parameter radar data over pre-selected targets. Among the sites targeted was a series of wind streaks located in the Altiplano of Bolivia. The objective of this investigation is to study the effect of wavelength, polarization, and incidence angle on the visibility of wind streaks in radar data. Because this is a preliminary evaluation of the recently acquired data we will focus on one scene and, thus, only on the effects of wavelength and polarization. Wind streaks provide information on the near-surface prevailing winds and on the abundance of winderodible material, such as sand. The potential for a free-flyer radar system that could provide global radar images in multiple wavelengths, polarizations, and incidence angles requires definition of system parameters for mission planning. Furthermore, thousands of wind streaks were mapped from Magellan radar images of Venus; their interpretation requires an understanding of the interaction of radar with wind streaks and the surrounding terrain. Our experiment was conducted on wind streaks in the Altiplano of Bolivia to address these issues.

  12. Ice cauldron formation during the initial phase of the Eyjafjallajökull eruption observed with an airborne SAR

    NASA Astrophysics Data System (ADS)

    Magnusson, E.; Gudmundsson, M. T.; Hognadottir, T.; Hoskuldsson, F.; Oddsson, B.

    2010-12-01

    We present images obtained by the Icelandic Coast Guard with an airborne Synthetic Aperture Radar (SAR) during the first hours and days of the subglacial eruption in Eyjafjallajökull. Cloud cover obscured the summit from view in the first three days of the eruption. Under these circumstances the SAR, being weather independent and able to see through ash plumes, was a particularly valuable tool. It provided a record of temporal development of ice cauldrons formed in the 200 m thick ice cover in the caldera, the 50-100 m thick ice on the southern slopes and disruption due to flooding in the northward facing outlet glacier Gígjökull. The eruption started 14 April, 2010, at 1:30 AM. The eruption apparently remained subglacial for some hours but a small plume was observed by aircraft around 6 AM. The first SAR radar images were obtained at 8:55 and a record of images obtained until 10:42 reveal the early development of ice cauldrons providing unique detail in how the eruption breaks new holes in the ice surface, allowing accurate estimates of ice melting rates in an explosive eruption. Widening of the cauldron around the most active crater on the first day of the eruption was 20-25 m/hour, indicating that heat transfer from magma to the ice walls of the cauldron was of order 2 x 106 W m-2. This heat transfer rate reduced fast as the cauldrons reached a width of 300-400 m. The eruption site was repeatedly surveyed with the same SAR during the next days. The images demonstrate how the surface cauldrons evolved and how the center of the eruption activity moved during the second day of the eruption. During the first days of the eruption holes formed in the surface of the Gígjökull glacier outlet, where the roof of flood water channels collapsed. The SAR images allows further understanding on the flood water mechanism by revealing that many of these holes were formed by an intensive flash flood on the second day of the eruption, presumably by hydraulic fracturing when

  13. First airborne pathogen direct analysis system.

    PubMed

    Liu, Qi; Zhang, Yuxiao; Jing, Wenwen; Liu, Sixiu; Zhang, Dawei; Sui, Guodong

    2016-03-01

    We report a portable "sample to answer" system for the rapid detection of airborne pathogens for the first time. The system contains a key microfluidic chip which fulfills both pathogen enrichment and biological identification functions. The system realizes simple operation and less human intervention as well as minimum reagent contamination. The operation is user-friendly and suitable for field and point-of-care applications. The system is capable of handling detection of different pathogens by changing the primers. PMID:26854120

  14. Airborne electronics for automated flight systems

    NASA Technical Reports Server (NTRS)

    Graves, G. B., Jr.

    1975-01-01

    The increasing importance of airborne electronics for use in automated flight systems is briefly reviewed with attention to both basic aircraft control functions and flight management systems for operational use. The requirements for high levels of systems reliability are recognized. Design techniques are discussed and the areas of control systems, computing and communications are considered in terms of key technical problems and trends for their solution.

  15. Materiel requirements for airborne minefield detection system

    NASA Astrophysics Data System (ADS)

    Bertsche, Karl A.; Huegle, Helmut

    1997-07-01

    Within the concept study, Material Requirements for an airborne minefield detection systems (AMiDS) the following topics were investigated: (i) concept concerning airborne minefield detection technique sand equipment, (ii) verification analysis of the AMiDS requirements using simulation models and (iii) application concept of AMiDS with regard o tactics and military operations. In a first approach the problems concerning unmanned airborne minefield detection techniques within a well-defined area were considered. The complexity of unmanned airborne minefield detection is a result of the following parameters: mine types, mine deployment methods, tactical requirements, topography, weather conditions, and the size of the area to be searched. In order to perform the analysis, a simulation model was developed to analyze the usability of the proposed remote controlled air carriers. The basic flight patterns for the proposed air carriers, as well as the preparation efforts of military operations and benefits of such a system during combat support missions were investigated. The results of the conceptual study showed that a proposed remote controlled helicopter drone could meet the stated German MOD scanning requirements of mine barriers. Fixed wing air carriers were at a definite disadvantage because of their inherently large turning loops. By implementing a mine detection system like AMiDS minefields can be reconnoitered before an attack. It is therefore possible either to plan, how the minefields can be circumvented or where precisely breaching lanes through the mine barriers are to be cleared for the advancing force.

  16. FlexSAR, a high-quality, flexible, cost-effective, prototype SAR system

    NASA Astrophysics Data System (ADS)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2015-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible prototype instrument. Many radar researchers and practitioners desire the ability to efficiently prototype novel configurations. However, the cost and time required to modify existing radar systems is a challenging hurdle that can be prohibitive. The FlexSAR system couples an RF design that leverages connectorized components with digital commercial-off-the-shelf (COTS) cards. This design allows for a scalable system that supports software defined radio (SDR) capabilities. This paper focuses on the RF and digital system design, discussing the advantages and disadvantages. The FlexSAR system design objective was to support diverse configurations with minimal non-recurring engineering (NRE) costs. Multiple diverse applications are examined, demonstrating the flexible system nature. The configurations discussed utilize different system parameters (e.g., number of phase-centers, transmit configurations, etc.). The resultant products are examined, illustrating that high-quality data products are still attained.

  17. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  18. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  19. FlexSAR, a high quality, flexible, cost effective, prototype SAR system

    NASA Astrophysics Data System (ADS)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2016-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible research prototype instrument. Radar researchers and practitioners often desire the ability to prototype new or advanced configurations, yet the ability to enhance or upgrade existing radar systems can be cost prohibitive. FlexSAR answers the need for a flexible radar system that can be extended easily, with minimal cost and time expenditures. The design approach focuses on reducing the resources required for developing and validating new advanced radar modalities. Such an approach fosters innovation and provides risk reduction since actual radar data can be collected in the appropriate mode, processed, and analyzed early in the development process. This allows for an accurate, detailed understanding of the corresponding trade space. This paper is a follow-on to last years paper and discusses the advancements that have been made to the FlexSAR system. The overall system architecture is discussed and presented along with several examples illustrating the system utility.

  20. Developing an interactive teleradiology system for SARS diagnosis

    NASA Astrophysics Data System (ADS)

    Sun, Jianyong; Zhang, Jianguo; Zhuang, Jun; Chen, Xiaomeng; Yong, Yuanyuan; Tan, Yongqiang; Chen, Liu; Lian, Ping; Meng, Lili; Huang, H. K.

    2004-04-01

    Severe acute respiratory syndrome (SARS) is a respiratory illness that had been reported in Asia, North America, and Europe in last spring. Most of the China cases of SARS have occurred by infection in hospitals or among travelers. To protect the physicians, experts and nurses from the SARS during the diagnosis and treatment procedures, the infection control mechanisms were built in SARS hospitals. We built a Web-based interactive teleradiology system to assist the radiologists and physicians both in side and out side control area to make image diagnosis. The system consists of three major components: DICOM gateway (GW), Web-based image repository server (Server), and Web-based DICOM viewer (Viewer). This system was installed and integrated with CR, CT and the hospital information system (HIS) in Shanghai Xinhua hospital to provide image-based ePR functions for SARS consultation between the radiologists, physicians and experts inside and out side control area. The both users inside and out side the control area can use the system to process and manipulate the DICOM images interactively, and the system provide the remote control mechanism to synchronize their operations on images and display.

  1. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  2. SAR imaging for a forward-looking GPR system

    NASA Astrophysics Data System (ADS)

    Liu, Guoqing; Wang, Yanwei; Li, Jian; Bradley, Marshall R.

    2003-09-01

    We investigate both two-dimensional (2-D) and three-dimensional (3-D) synthetic aperture radar (SAR) imaging techniques for a forward-looking ground penetrating radar (FLGPR) system. In particular, we consider SAR imaging using the delay-and-sum (DAS), phase-shift migration, and spectral estimation (joint APES (Amplitude and Phase EStimation) and RCB (Robust Capon Beamforming)) approaches with the PSI (Planning Systems Inc.) FLGPR Phase II system. For the DAS and phase-shift migration approaches, we use shading in both frequency and cross-track aperture dimensions to reduce sidelobe leakages and clutter. We perform both coherent and non-coherent multi-look processing as well as smoothing to improve the SAR imaging quality and landmine detection capability of the system. The effectiveness of the approaches are demonstrated with an experimental data set collected by the PSI FLGPR Phase II system.

  3. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  4. Airborne HCl - CO sensing system

    NASA Technical Reports Server (NTRS)

    Bartle, E. R.; Hall, G.

    1977-01-01

    A system for measuring air pollutants in-situ using an aircraft was designed, fabricated, and tested. The system is based upon a technique called Gas Filter Correlation (GFC) which provides for high sensitivity and specificity in the presence of interfering species. This particular system was designed for measuring hydrochloric acid and carbon monoxide gases emitted from rocket exhaust effluents.

  5. High-Level Performance Modeling of SAR Systems

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  6. Mapping Fault Slip in Central California Using Satellite, Airborne InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Lundgren, Paul; Hensley, Scott

    2015-05-01

    The central San Andreas fault is accommodating relative motion between the Sierra Nevada-Great Valley block and the Pacific plate in central California. It is creeping along the ~60 km long central segment while changing to locking towards the northwest and southeast. Characterizing its creeping nature and on and off-fault deformation are crucial for improved earthquake hazard assessment in the region. We use L-band ALOS PALSAR, NASA airborne UAVSAR data and geodetic measurements to map the fault slip variation. Our results show a distinct change in shallow fault creep and fault slip at depth from the central creeping to the transitional segment. Our work demonstrates that airborne UAVSAR provides useful constraints on shallow creep and near fault deformation. Continuing observations would be essential in capturing time-varying faulting behaviours and their implication towards present and future earthquake activities.

  7. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  8. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  9. Sandia Airspace Recording System (SARS) software reference manual

    SciTech Connect

    Tenney, J.L.

    1996-04-01

    SARS is a data acquisition system designed to gather and process radar data from aircraft flights. A database of flight trajectories has been developed for Albuquerque, NM, and Amarillo, TX. The data is used for safety analysis and risk assessment reports. To support this database effort, Sandia developed a collection of hardware and software tools to collect and post process the aircraft radar data. This document describes the data reduction tools which comprise the SARS, and maintenance procedures for the hardware and software system.

  10. Onboard FPGA-based SAR processing for future spaceborne systems

    NASA Technical Reports Server (NTRS)

    Le, Charles; Chan, Samuel; Cheng, Frank; Fang, Winston; Fischman, Mark; Hensley, Scott; Johnson, Robert; Jourdan, Michael; Marina, Miguel; Parham, Bruce; Rogez, Francois; Rosen, Paul; Shah, Biren; Taft, Stephanie

    2004-01-01

    We present a real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images in future spaceborne system. In particular, we will discuss the integrated design approach, from top-level algorithm specifications and system requirements, design methodology, functional verification and performance validation, down to hardware design and implementation.

  11. Laser Systems For Use With Airborne Platforms

    NASA Astrophysics Data System (ADS)

    Jepsky, Joseph

    1984-10-01

    This paper describes a family of airborne laser systems in use for terrain profiling, surveying, mapping, altimetry, collision avoidance and shipboard landing systems using fixed and rotary wing aircraft as the platforms. The laser altimeter has also been used in systems compatible with the Army T-16 and. T-22 carrier missiles (platform). Both pulsed gallium arsenide and Nd:YAG (neodymium-doped, yttrium-aluminum-garnet) laser rangefinders have been used for these applications. All of these systems use ACCI's advanced measurement techniques that permit range accuracies of 8 cm, single shot, 1 cm averaged, to be achieved. Pulse rates up to 4 Khz are employed for airborne profiling. This high data density rate provides 1 data point every 2" along the aircraft flight line at aircraft speed of 500 knots. Scanning modes for some applications are employed. Systems have been integrated with all current inertial navigation systems (Litton, Ferranti and Honeywell), as well as a number of microwave positioning systems. Removal of aircraft motion from the laser range measurements by use of an accelerometer is described. Flight data from a number of program performed by U.S. and Canadian Federal Agencies, in addition to those of commercial surveying and mapping companies are described.

  12. An automated system for mosaicking spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1990-01-01

    An automated system has been developed for mosaicking spaceborne synthetic aperture radar (SAR) imagery. The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending passes. The system requires no operator interaction and is capable of achieving high registration accuracy. The output product is a geocoded mosaic on a standard map grid such as UTM or polar stereographic. The procedure described in detail in this paper consists essentially of remapping the individual image frames into these standard grids, frame-to-frame image registration and radiometric smoothing of the seams. These procedures are directly applicable to both the Magellan Venus Mapper and a scanning SAR design such as Radarsat, Eos SAR in addition to merging image frames from traditional SAR systems such as SEASAT and SIR-B. With minor modifications, it may also be applied to spaceborne optical sensor data to generate large-scale mosaics efficiently and with a high degree of accuracy. The system has been tested with SEASAT, SIR-B and Landsat TM data. Examples presented in this paper include a 38-frame mosaic of the Yukon River basin in central Alaska, a 33-frame mosaic of southern California and a three-frame terrain-corrected geocoded mosaic of the Wind River basin in Wyoming.

  13. Windshear detection and avoidance - Airborne systems survey

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.

    1990-01-01

    Functional requirements for airborne windshear detection and warning systems are discussed in terms of the threat posed to civil aircraft operations. A preliminary set of performance criteria for predictive windshear detection and warning systems is defined. Candidate airborne remote sensor technologies based on microwave Doppler radar, Doppler laser radar (lidar), and infrared radiometric techniques are discussed in the context of overall system requirements, and the performance of each sensor is assessed for representative microburst environments and ground clutter conditions. Preliminary simulation results demonstrate that all three sensors show potential for detecting windshear, and provide adequate warning time to allow flight crews to avoid the affected area or escape from the encounter. Radar simulation and analysis show that by using bin-to-bin automatic gain control, clutter filtering, limited detection range, and suitable antenna tilt management, windshear from wet microbursts can be accurately detected. Although a performance improvement can be obtained at higher radar frequency, the baseline X-band system also detected the presence of windshear hazard for a dry microburst. Simulation results of end-to-end performance for competing coherent lidar systems are presented.

  14. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  15. Advanced Airborne CO2 LAS System

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M. G.; McGregor, D. P.; Erxleben, W. H.; Browell, E. V.; Harrison, F. W.

    2009-12-01

    A unique airborne Laser Absorption Spectroscopy (LAS) system has been developed by ITT Space Systems, LLC to address the needs of the National Research Council Decadal Survey Tier 2 mission for Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS). This instrument has undergone multiple airborne field tests in cooperation with our partners at NASA Langley Research Center (LaRC). The instrument was built largely with off-the-shelf components and uses high reliability telecom components, including lasers, modulators and fiber amplifiers as the transmitter. Multiple wavelengths are transmitted simultaneously from a single collimator and the return signal is collected by a simple 8” telescope that is fiber coupled to a HgCdTe APD. The analog signal is sampled with a high resolution scope card housed in a National Instruments PXI chassis and the digitized signal is then passed through our custom-built software-based lock-in processing system which allows separation of the signals from the individual wavelengths. The separated signals are then used in the standard Differential Absorption Lidar (DIAL) relations to determine the integrated column differential optical depth. This presentation will give a detailed overview of this multi-frequency, single-beam, synchronous lock-in LAS instrument including the basic methodology of the measurement. Recent improvements in the lock-in methodology designed to eliminate the effects of multi- path fading and frequency dependence of the electronic components will also be discussed.

  16. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  17. Similarity measures of full polarimetric SAR images fusion for improved SAR image matching

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-06-01

    China's first airborne SAR mapping system (CASMSAR) developed by Chinese Academy of Surveying and Mapping can acquire high-resolution and full polarimetric (HH, HV, VH and VV) Synthetic aperture radar (SAR) data. It has the ability to acquire X-band full polarimetric SAR data at a resolution of 0.5m. However, the existence of speckles which is inherent in SAR imagery affects visual interpretation and image processing badly, and challenges the assumption that conjugate points appear similar to each other in matching processing. In addition, researches show that speckles are multiplicative speckles, and most similarity measures of SAR image matching are sensitive to them. Thus, matching outcomes of SAR images acquired by most similarity measures are not reliable and with bad accuracy. Meanwhile, every polarimetric SAR image has different backscattering information of objects from each other and four polarimetric SAR data contain most basic and a large amount of redundancy information to improve matching. Therefore, we introduced logarithmically transformation and a stereo matching similarity measure into airborne full polarimetric SAR imagery. Firstly, in order to transform the multiplicative speckles into additivity ones and weaken speckles' influence on similarity measure, logarithmically transformation have to be taken to all images. Secondly, to prevent performance degradation of similarity measure caused by speckles, measure must be free or insensitive of additivity speckles. Thus, we introduced a stereo matching similarity measure, called Normalized Cross-Correlation (NCC), into full polarimetric SAR image matching. Thirdly, to take advantage of multi-polarimetric data and preserve the best similarity measure value, four measure values calculated between left and right single polarimetric SAR images are fused as final measure value for matching. The method was tested for matching under CASMSAR data. The results showed that the method delivered an effective

  18. Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1997-01-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.

  19. Advanced algorithms and high-performance testbed for large-scale site characterization and subsurface target detection using airborne ground-penetrating SAR

    NASA Astrophysics Data System (ADS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1999-08-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, JPL, Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field, in Colorado, by using SRI airborne, ground penetrating, SAR. The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance testbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and maximum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accuracy UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data. In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma Proving Ground, AZ, acquired by SRI SAR.

  20. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  1. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from...

  2. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  3. Temporal multiparameter airborne DLR E-SAR images for crop monitoring: summary of the CLEOPATRA campaign 1992

    NASA Astrophysics Data System (ADS)

    Schmullius, Christiane C.; Nithack, Juergen

    1997-01-01

    From May 11 to July 31, 1992 the Cloud Experiment OberPfaffenhofen And Transports took place as a field experimental contribution to the global energy and water cycle experiment. The DLR Institute of Radio Frequency Technology participated with its experimental SAR system E- SAR. Multitemporal X-, C- and L-band data from 8 dates and three ERS-1 images between May 20 and July 30, 1992 are analyzed in regard to the influence of changing plant backscatter constituents and to investigate the impact of increasing ground cover in the different wavelength on soil moisture mapping. Backscatter curves of four crops are shown, which indicate the possibility for crop monitoring and preferred times for crop classification. Detection of soil moisture changes is only possible with L-band and only under grain crops. Maximum likelihood and isocluster classifications were applied on several single- and multifrequency, mono- and multitemporal channel combinations. The overall classification accuracies were higher than with supervised methods. Maximum likelihood classification allowed identification of ten crop types with accuracies of up to 84 percent, when a temporal multifrequency data set was used.

  4. A multiprocessor airborne lidar data system

    NASA Astrophysics Data System (ADS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  5. A multiprocessor airborne lidar data system

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    1988-01-01

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  6. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  7. The NCAR Airborne Infrared Lidar System (NAILS)

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Lightsey, P. A.

    1986-01-01

    A planned airborne lidar system is presented which is intended to provide a remote sensing facility for a variety of applications. The eventual goal of the system development is a Doppler wind measurement capability for boundary layer dynamics and cloud physics applications. The first stage of development is focused initially on a direct detection lidar to measure aerosol profiles and depolarization from cloud backscatter. Because of the Doppler goal, interest in larger particles to define the top of the mixed layer, and eye safety, the first stage of the system is based on a pulsed CO2 laser. A compact, relatively simple and inexpensive system that achieves flexibility to meet the data requirements of a variety of investigators by being easily modified rather than having many different capabilities built in is the goal. Although the direct detection sensitivity is less than that for heterodyne detection, the simpler system allows the achievement of useful scientific results and operating experience towards more complex lidars while staying within budget and time constraints.

  8. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  9. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  10. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  11. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  12. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  13. Image synthesis for SAR system, calibration and processor design

    NASA Technical Reports Server (NTRS)

    Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.

    1978-01-01

    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.

  14. Assessment of documentation requirements under DOE 5481. 1, Safety Analysis and Review System (SARS)

    SciTech Connect

    Browne, E.T.

    1981-03-01

    This report assesses the requirements of DOE Order 5481.1, Safety Analysis and Review System for DOE Operations (SARS) in regard to maintaining SARS documentation. Under SARS, all pertinent details of the entire safety analysis and review process for each DOE operation are to be traceable from the initial identification of a hazard. This report is intended to provide assistance in identifying the points in the SARS cycle at which documentation is required, what type of documentation is most appropriate, and where it ultimately should be maintained.

  15. Development of an airborne remote sensing system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizi...

  16. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  17. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    SciTech Connect

    Alonzo, G M; Sanford, N M

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  18. Using TerraSAR-X and hyperspectral airborne data to monitor surface deformation and physical properties of the Barrow permafrost landscape, Alask

    NASA Astrophysics Data System (ADS)

    Haghshenas-Haghighi, M.; Motagh, M.; Heim, B.; Sachs, T.; Kohnert, K.; Streletskiy, D. A.

    2014-12-01

    In this study, we assess seasonal subsidence/heaving due to thawing/freezing of the permafrost in Barrow (71.3 N, 156.5 W) at the northernmost point of Alaska. The topographic relief in this area is low. Thick Permafrost underlies the entire area, with large ice volumes in its upper layer. With a large collection of field measurements during the past decades at the Barrow Environmental Observatory (BEO), it is an ideal site for permafrost investigation. There are long term systematic geocryological investigations within the Global Terrestrial Network (GTN-P) of the Circumpolar Active Layer Monitoring (CALM) programme. We use 28 TerraSAR-X images, acquired between December 2012 and December 2013 and analyze them using the Small BAseline Subset (SBAS) technique to extract time-series of ground surface deformation. We also analyze hyperspectral images acquired by the airborne AISA sensor over Barrow area, within the AIRMETH2013 programme, to assess physical characteristics such as vegetation biomass and density, surface moisture, and water bodies. Finally, we combine the information derived from both InSAR and hyperspectral analysis, with field measurements to investigate the link between physical characteristics of the permafrost and surface displacement.

  19. Flight demonstration of image fix-taking with SAR

    SciTech Connect

    Gibbs, R.; Bottkol, M.; Owen, T.

    1993-06-11

    Airborne Synthetic Aperture Radar (SAR) uses coherent radar processing techniques to image ground reflectors. After processing, range and Doppler can be associated with any feature of interest in the final image. The location of any imaged feature can be estimated using a Kalman filter to combine these data with GPS and INS navigation data. This paper reports on the results of a flight demonstration of such a system, using an airborne SAR developed at Sandia. Collected data consisted of multiple SAR images containing surveyed reflectors. GPS/INS output taken aboard the aircraft, and GPS output recorded at surveyed ground stations. These data were post-processed at Sandia and at Draper Laboratory to obtain a navigation solution based on differential GPS and to demonstrate SAR fix-taking performance. This study successfully demonstrates accuracy of about 1 meter for fixing the position of a point imaged with SAR from an airborne platform. Because differential GPS was used, the navigation error was of about the same magnitude as the SAR range measurement error. Consequently, the measurements served primarily to fix the SAR image rather than to update the navigator.

  20. Data System for HS3 Airborne Field Campaign

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Mceniry, M.; Berendes, T.; Bugbee, K.; Conover, H.; Ramachandran, R.

    2014-12-01

    Hurricane and Severe Storm Sentinel (HS3) is a NASA airborne field campaign aimed at better understanding the physical processes that control hurricane intensity change. HS3 will help answer questions related to the roles of environmental conditions and internal storm structures to storm intensification. Due to the nature of the questions that HS3 mission is addressing, it involves a variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data. This variety of datasets presents numerous data management challenges for HS3. The methods used for airborne data management differ greatly from the methods used for space-borne data. In particular, metadata extraction, spatial and temporal indexing, and the large number of instruments and subsequent variables are a few of the data management challenges unique to airborne missions. A robust data system is required to successfully help HS3 scientist achieve their mission goals. Furthermore, the data system also needs to provide for data management that assists in broader use of HS3 data to enable future research activities. The Global Hydrology Resource Center (GHRC) is considering all these needs and designing a data system for HS3. Experience with past airborne field campaign puts GHRC in a good position to address HS3 needs. However, the scale of this mission along with science requirements separates HS3 from previous field campaigns. The HS3 data system will include automated services for geo-location, metadata extraction, discovery, and distribution for all HS3 data. To answer the science questions, the data system will include a visual data exploration tool that is fully integrated into the data catalog. The tool will allow visually augmenting airborne data with analyses and simulations. Satellite data will provide contextual information during such data explorations. All HS3 tools will be supported by an enterprise service architecture that will allow scaling, easy integration

  1. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  2. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  3. Formal methods and digital systems validation for airborne systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1993-01-01

    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992.

  4. Airborne tracking sunphotometer apparatus and system

    NASA Technical Reports Server (NTRS)

    Matsumoto, Yutaka (Inventor); Mina, Cesar (Inventor); Russell, Philip B. (Inventor); Vanark, William B. (Inventor)

    1987-01-01

    An airborne tracking Sun photometer apparatus has a rotatable dome. An azimuth drive motor is connected to rotate the dome. The dome has an equatorial slot. A cylindrical housing is pivotally mounted inside the dome at the equatorial slot. A photometer is mounted in the housing to move in the equatorial slot as the housing pivots. The photometer has an end facing from the slot with an optical flat transparent window. An elevation drive motor is connected to pivot the cylindrical housing. The rotatable dome is mounted in the bulkhead of an aircraft to extend from the interior of the aircraft. A Sun sensor causes the photometer to track the Sun automatically. Alternatively, the photometer may be oriented manually or by computer.

  5. Low cost airborne microwave landing system receiver, task 3

    NASA Technical Reports Server (NTRS)

    Hager, J. B.; Vancleave, J. R.

    1979-01-01

    Work performed on the low cost airborne Microwave Landing System (MLS) receiver is summarized. A detailed description of the prototype low cost MLS receiver is presented. This detail includes block diagrams, schematics, board assembly drawings, photographs of subassemblies, mechanical construction, parts lists, and microprocessor software. Test procedures are described and results are presented.

  6. Assess program: Interactive data management systems for airborne research

    NASA Technical Reports Server (NTRS)

    Munoz, R. M.; Reller, J. O., Jr.

    1974-01-01

    Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.

  7. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%. PMID:26560615

  8. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  9. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  10. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    NASA Astrophysics Data System (ADS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-03-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation.

  11. Indoor Unmanned Airship System Airborne Control Module Design

    NASA Astrophysics Data System (ADS)

    YongXia, Gao; YiBo, Li

    By adopting STC12C5A60S2 SCM as a system control unit, assisted by appropriate software and hardware resources, we complete the airborne control module's design of unmanned airship system. This paper introduces hardware control module's structure, airship-driven composition and software realization. Verified by the China Science and Technology Museum special-shaped airship,this control module can work well.

  12. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  13. Single Baseline Tomography SAR for Forest Above Ground Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Wang, Xinshuang; Feng, Qi

    2013-01-01

    Single baseline tomography SAR is used for forest height estimation as its little restriction on the number of baselines and configurations of tracks in recent years. There existed two kinds of single baseline tomography SAR techniques, the polarimetric coherence tomography (PCT) and the sum of Kronecker product (SKP), algebraic synthesis (AS) and Capon spectral estimator approach (SKP-AS-Capon). Few researches on forest above ground biomass (AGB) estimation are there using single baseline tomography SAR. In this paper, PCT and SKP-AS-Capon approaches are proposed for forest AGB estimation. L-band data set acquired by E-SAR airborne system in 2003 for the forest test site in Traunstein, is used for this experiment. The result shows that single baseline polarimetric tomography SAR can obtain forest AGB in forest stand scale, and SKP-AS-Capon method has better detailed vertical structure information, while the Freeman 3-component combined PCT approach gets a homogenous vertical structure in forest stand.

  14. Maritime surveillance with synthetic aperture radar (SAR) and automatic identification system (AIS) onboard a microsatellite constellation

    NASA Astrophysics Data System (ADS)

    Peterson, E. H.; Zee, R. E.; Fotopoulos, G.

    2012-11-01

    New developments in small spacecraft capabilities will soon enable formation-flying constellations of small satellites, performing cooperative distributed remote sensing at a fraction of the cost of traditional large spacecraft missions. As part of ongoing research into applications of formation-flight technology, recent work has developed a mission concept based on combining synthetic aperture radar (SAR) with automatic identification system (AIS) data. Two or more microsatellites would trail a large SAR transmitter in orbit, each carrying a SAR receiver antenna and one carrying an AIS antenna. Spaceborne AIS can receive and decode AIS data from a large area, but accurate decoding is limited in high traffic areas, and the technology relies on voluntary vessel compliance. Furthermore, vessel detection amidst speckle in SAR imagery can be challenging. In this constellation, AIS broadcasts of position and velocity are received and decoded, and used in combination with SAR observations to form a more complete picture of maritime traffic and identify potentially non-cooperative vessels. Due to the limited transmit power and ground station downlink time of the microsatellite platform, data will be processed onboard the spacecraft. Herein we present the onboard data processing portion of the mission concept, including methods for automated SAR image registration, vessel detection, and fusion with AIS data. Georeferencing in combination with a spatial frequency domain method is used for image registration. Wavelet-based speckle reduction facilitates vessel detection using a standard CFAR algorithm, while leaving sufficient detail for registration of the filtered and compressed imagery. Moving targets appear displaced from their actual position in SAR imagery, depending on their velocity and the image acquisition geometry; multiple SAR images acquired from different locations are used to determine the actual positions of these targets. Finally, a probabilistic inference

  15. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  16. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  17. Airborne change detection system for the detection of route mines

    NASA Astrophysics Data System (ADS)

    Donzelli, Thomas P.; Jackson, Larry; Yeshnik, Mark; Petty, Thomas E.

    2003-09-01

    The US Army is interested in technologies that will enable it to maintain the free flow of traffic along routes such as Main Supply Routes (MSRs). Mines emplaced in the road by enemy forces under cover of darkness represent a major threat to maintaining a rapid Operational Tempo (OPTEMPO) along such routes. One technique that shows promise for detecting enemy mining activity is Airborne Change Detection, which allows an operator to detect suspicious day-to-day changes in and around the road that may be indicative of enemy mining. This paper presents an Airborne Change Detection that is currently under development at the US Army Night Vision and Electronic Sensors Directorate (NVESD). The system has been tested using a longwave infrared (LWIR) sensor on a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) and a midwave infrared (MWIR) sensor on a fixed wing aircraft. The system is described and results of the various tests conducted to date are presented.

  18. An airborne system for detection of volcanic surface deformations

    NASA Technical Reports Server (NTRS)

    Lunine, J.

    1980-01-01

    A technique is proposed for measuring volcanic deformation on the order of centimeters per day to centimeters per year. An airborne multifrequency pulsed radar, tracking passive ground reflectors spaced at 1 kilometer intervals over a 50 square kilometer area is employed. Identification of targets is accomplished by Doppler and range resolution techniques, with final relative position measurements accomplished by phase comparison of multifrequency signals. Atmospheric path length errors are corrected by an airborne refractometer, meteorological instruments, or other refractive index measuring devices. Anticipated system accuracy is 1-2 cm, with measuring times on the order of minutes. Potential problems exist in the high intrinsic data assimilation rate required of the system to overcome ground backscatter noise.

  19. Age and thickness distribution of polynya sea ice in the Laptev Sea determined by satellite SAR imagery and airborne EM

    NASA Astrophysics Data System (ADS)

    Rabenstein, L.; Krumpen, T.; Hendricks, S.; Hoelemann, J.

    2012-04-01

    The importance and annual amount of sea ice volume produced during polyna opening events in the Siberian Laptev Sea is still controversially discussed. So far, published information about sea ice volume production are purely based on indirect thickness measurements of thin ice using remote sensing techniques or on computer simulations of sea ice growth based on reanalysis climate data. We recorded a sea ice thickness transect of approximately 160 km length using helicopter electromagnetics (HEM) in the region of the so called West New Siberian (WNS) Polynya located directly north of the Lena delta in April 2008. In addition, a time series of synthetic aperture radar (SAR) images covering the complete polynya region was analyzed and ice area fragments were tracked from their origin to the moment when we recorded their thickness. Both data sets together, HEM and SAR, provide the opportunity to classify overflown ice areas in terms of age, area and thickness and therefore in terms of volume. From December 2007 to April 2008 approximately 50.000 km2 of sea-ice area was produced in the WNS polynya, which is more than the size of Switzerland. The youngest surveyed sea-ice was 6 days old and had a mean total and a mean level-ice thickness of 0.2 m. The oldest surveyed ice floe had an age of 104 days and a mean total thickness of 2.4 +/- 0.3 m and a mean level ice thickness of 1.8 +/- 0.3 m. The error is based on the HEM instrument accuracy and a lag of snow thickness data. Assuming that ice thickness along the HEM transect was representative for entire overflown ice areas, our calculations result that the produced sea ice area contained a volume of approximately 86 km3. This is about 1.8 % of the Arctic wide ice production between October 2007 and March 2008, as it was published by Kwok et al. 2009 on the basis of ICE-Sat ice thickness data. The combined HEM and SAR study enabled us furthermore to analyze thickness vs. age relations of first year ice floes. Mean thickness

  20. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  1. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinge, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  2. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-01-01

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  3. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    PubMed

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-01

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance. PMID:23939244

  4. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  5. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  6. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  7. Airborne water vapor DIAL system development

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Grossmann, Benoist E.

    1990-01-01

    A differential absorption lidar (DIAL) system developed at NASA Langley Research Center for the remote measurement of atmospheric H2O and aerosols from an aircraft is briefly discussed. This DIAL system utilizes a Nd:YAG laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. A 1-m monochromator and a multipass absorption cell are used to position the on-line laser to the center of the H2O line. The receiver system has a 14-in. diameter, f/7 Celestron telescope to collect the backscattered laser light and focus in into the detector optics. Return signals are converted to electrical signals by the optical detector and are digitalized and stored on magnetic tape. The results of fligh tests of the system are shown.

  8. Airborne multispectral detecting system for marine mammals survey

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Sofianos, James; Schoonmaker, Jon; Medeiros, Dustin; Boucher, Cynthia; Oakley, Daniel; Saggese, Steve

    2010-04-01

    This work presents an electro-optical multispectral capability that detects and monitors marine mammals. It is a continuance of Whale Search Radar SBIR program funded by PMA-264 through NAVAIR. A lightweight, multispectral, turreted imaging system is designed for airborne and ship based platforms to detect and monitor marine mammals. The system tests were conducted over the Humpback whale breeding and calving area in Maui, Hawaii. The results of the tests and the system description are presented. The development of an automatic whale detection algorithm is discussed as well as methodology used to turn raw survey data into quantifiable data products.

  9. Clear air turbulence - An airborne alert system

    NASA Technical Reports Server (NTRS)

    Stearns, L. P.; Caracena, F.; Kuhn, P. M.; Kurkowski, R. L.

    1981-01-01

    An infrared radiometer system has been developed that can alert a pilot of an aircraft 2 to 9 minutes in advance of an encounter with clear air turbulence. The time between the warning and the clear air turbulence event varies with the flight altitude of the aircraft. In turbulence-free areas, the incidence of false alarms is found to be less than one in 3.4 hours of flight time compared to less than one per 10 hours of flight time in areas with turbulence.

  10. Fully polarimetric data from the ARL RailSAR

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Kirose, Getachew; Phelan, Brian; Sherbondy, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has recently upgraded the indoor, rail-mounted synthetic aperture radar (SAR) system, RailSAR, to enable collection of large amounts of low-frequency, ultrawideband (UWB) data. Our intent is to provide a research tool that is capable of emulating airborne SAR configuration and associated data collection geometries against surrogate explosive hazard threat deployments. By having such a capability, ARL's facility will afford a more rapid response to the ever changing improvised characteristics associated with explosive hazards today and in the future. Therefore, upgrades to this RailSAR tool to improve functionality and performance are needed to meet the potential rapid response assessments to be carried out. The new, lighter RailSAR cart puts less strain on the radar positioning hardware and allows the system to move smoothly along a specified portion of the rail. In previous papers, we have presented co-polarized SAR data collected using the ARL RailSAR. Recently, however, researchers at ARL have leveraged this asset to collect polarimetric data against multiple targets. This paper presents the SAR imagery resulting from these experiments and documents characteristics of certain target signatures that should be of interest to developers of automatic target detection (ATD) algorithms.

  11. Airborne Use of Night Vision Systems

    NASA Astrophysics Data System (ADS)

    Mepham, S.

    1990-04-01

    Mission Management Department of the Royal Aerospace Establishment has won a Queen's Award for Technology, jointly with GEC Sensors, in recognition of innovation and success in the development and application of night vision technology for fixed wing aircraft. This work has been carried out to satisfy the operational needs of the Royal Air Force. These are seen to be: - Operations in the NATO Central Region - To have a night as well as a day capability - To carry out low level, high speed penetration - To attack battlefield targets, especially groups of tanks - To meet these objectives at minimum cost The most effective way to penetrate enemy defences is at low level and survivability would be greatly enhanced with a first pass attack. It is therefore most important that not only must the pilot be able to fly at low level to the target but also he must be able to detect it in sufficient time to complete a successful attack. An analysis of the average operating conditions in Central Europe during winter clearly shows that high speed low level attacks can only be made for about 20 per cent of the 24 hours. Extending this into good night conditions raises the figure to 60 per cent. Whilst it is true that this is for winter conditions and in summer the situation is better, the overall advantage to be gained is clear. If our aircraft do not have this capability the potential for the enemy to advance his troops and armour without hinderance for considerable periods is all too obvious. There are several solutions to providing such a capability. The one chosen for Tornado GR1 is to use Terrain Following Radar (TFR). This system is a complete 24 hour capability. However it has two main disadvantages, it is an active system which means it can be jammed or homed into, and is useful in attacking pre-planned targets. Second it is an expensive system which precludes fitting to other than a small number of aircraft.

  12. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  13. Roads Centre-Axis Extraction in Airborne SAR Images: AN Approach Based on Active Contour Model with the Use of Semi-Automatic Seeding

    NASA Astrophysics Data System (ADS)

    Lotte, R. G.; Sant'Anna, S. J. S.; Almeida, C. M.

    2013-05-01

    Research works dealing with computational methods for roads extraction have considerably increased in the latest two decades. This procedure is usually performed on optical or microwave sensors (radar) imagery. Radar images offer advantages when compared to optical ones, for they allow the acquisition of scenes regardless of atmospheric and illumination conditions, besides the possibility of surveying regions where the terrain is hidden by the vegetation canopy, among others. The cartographic mapping based on these images is often manually accomplished, requiring considerable time and effort from the human interpreter. Maps for detecting new roads or updating the existing roads network are among the most important cartographic products to date. There are currently many studies involving the extraction of roads by means of automatic or semi-automatic approaches. Each of them presents different solutions for different problems, making this task a scientific issue still open. One of the preliminary steps for roads extraction can be the seeding of points belonging to roads, what can be done using different methods with diverse levels of automation. The identified seed points are interpolated to form the initial road network, and are hence used as an input for an extraction method properly speaking. The present work introduces an innovative hybrid method for the extraction of roads centre-axis in a synthetic aperture radar (SAR) airborne image. Initially, candidate points are fully automatically seeded using Self-Organizing Maps (SOM), followed by a pruning process based on specific metrics. The centre-axis are then detected by an open-curve active contour model (snakes). The obtained results were evaluated as to their quality with respect to completeness, correctness and redundancy.

  14. Modular airborne remote sampling and sensing system (MARSSS)

    SciTech Connect

    Woods, R.O.

    1982-04-01

    Sandia is developing a modular airborne instrumentation system for the Environmental Protection Agency. This system will allow flexibility in the choice of instruments by standardizing mountings, power supplies and sampling modes. The objective is to make it possible to perform aerial surveys from chartered aircraft that have not been adapted in a more than superficial manner. It will also allow the experimenter to tailor his choice of instruments to the specific problem. Since the equipment will have a stand-alone capability, it can be applied to other problems such as long-term unattended use at remote locations or in toxic or otherwise hazardous environments.

  15. A Method of Forest Type Classification Using PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Wang, Xinshuang; Chen, Erxue; Li, Zengyuan; Yao, Wangqiang; Li, Wenmei; Li, Xiao

    2013-01-01

    Forest type mapping is of great significance for regional forest carbon estimation as forest types distribution information is always the critical prior input information to forest carbon stock mapping model using remote sensing. Polarimetric interferometric synthetic aperture radar (Pol-InSAR) data acquired by DLR airborne SAR system (ESAR) in the Traunstein test site in Germany was used to study forest type classification method in this paper. A new unsupervised PolInSAR classification method based on coherent optimization R matrix was proposed to distinguish coniferous forest, deciduous forest and other land cover types. It not only considers the full polarimetric information of single Polarimetric SAR (PolSAR) data set but also the coherent information of a pair of PolSAR data. The results show that the classification algorithm proposed in this paper is the best method with higher accuracy comparing with the classical method based on T6 matrix.

  16. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell

    PubMed Central

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-01-01

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.

  17. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection

    PubMed Central

    Ng, Lisa FP; Hibberd, Martin L; Ooi, Eng-Eong; Tang, Kin-Fai; Neo, Soek-Ying; Tan, Jenny; Krishna Murthy, Karuturi R; Vega, Vinsensius B; Chia, Jer-Ming; Liu, Edison T; Ren, Ee-Chee

    2004-01-01

    Background The molecular basis of severe acute respiratory syndrome (SARS) coronavirus (CoV) induced pathology is still largely unclear. Many SARS patients suffer respiratory distress brought on by interstitial infiltration and frequently show peripheral blood lymphopenia and occasional leucopenia. One possible cause of this could be interstitial inflammation, following a localized host response. In this study, we therefore examine the immune response of SARS-CoV in human peripheral blood mononuclear cells (PBMCs) over the first 24 hours. Methods PBMCs from normal healthy donors were inoculated in vitro with SARS-CoV and the viral replication kinetics was studied by real-time quantitative assays. SARS-CoV specific gene expression changes were examined by high-density oligonucleotide array analysis. Results We observed that SARS-CoV was capable of infecting and replicating in PBMCs and the kinetics of viral replication was variable among the donors. SARS-CoV antibody binding assays indicated that SARS specific antibodies inhibited SARS-CoV viral replication. Array data showed monocyte-macrophage cell activation, coagulation pathway upregulation and cytokine production together with lung trafficking chemokines such as IL8 and IL17, possibly activated through the TLR9 signaling pathway; that mimicked clinical features of the disease. Conclusions The identification of human blood mononuclear cells as a direct target of SARS-CoV in the model system described here provides a new insight into disease pathology and a tool for investigating the host response and mechanisms of pathogenesis. PMID:15357874

  18. Airborne multisensor system for the autonomous detection of land mines

    NASA Astrophysics Data System (ADS)

    Scheerer, Klaus

    1997-07-01

    A concept of a modular multisensor system for use on an airborne platform is presented. THe sensor system comprises two high resolution IR sensors working in the mid and far IR spectral regions, a RGB video camera with its sensitivity extended to the near IR in connection with a laser illuminator, and a radar with a spatial resolution adapted to the expected mine sizes. The sensor concept emerged from the evaluation of comprehensive static and airborne measurements on numerous buried and unburied mines. The measurements were performed on single mines and on minefields, layed down according to military requirements. The system has an on-board realtime image processing capability and is intended to operate autonomously with a data link to a mobile groundstation. Data from a navigation unit serve to transform the location of identified mines into a geodetic coordinate system. The system will be integrated into a cylindrical structure of about 40 cm diameter. This may be a drone or simply a tube which can be mounted on any carrier whatever. The realization of a simplified demonstrator for captive flight tests is planned by 1998.

  19. On the Implementation of a Land Cover Classification System for SAR Images Using Khoros

    NASA Technical Reports Server (NTRS)

    Medina Revera, Edwin J.; Espinosa, Ramon Vasquez

    1997-01-01

    The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.

  20. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  1. A digital system to produce imagery from SAR data. [Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1976-01-01

    This paper describes a digital processing algorithm and its associated system design for producing images from Synthetic Aperture Radar (SAR) data. The proposed system uses the Fast Fourier Transform (FFT) approach to perform the two-dimensional correlation process. The range migration problem, which is often a major obstacle to efficient processing, can be alleviated by approximating the locus of echoes from a point target by several linear segments. SAR data corresponding to each segment is correlated separately, and the results are coherently summed to produce full-resolution images. This processing approach exhibits greatly improved computation efficiency relative to conventional digital processing methods.

  2. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  3. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  4. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... cancel TSO-C129a, Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS... Global Positioning System Equipment Using Aircraft-Based Augmentation; an updated minimum performance... system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  5. PacRIM II: A review of AirSAR operations and system performance

    NASA Technical Reports Server (NTRS)

    Moller, D.; Chu, A.; Lou, Y.; Miller, T.; O'Leary, E.

    2001-01-01

    In this paper we briefly review the AirSAR system, its expected performance, and quality of data obtained during that mission. We discuss the system hardware calibration methodologies, and present quantitative performance values of radar backscatter and interferometric height errors (random and systematic) from PACRIM II calibration data.

  6. A Real-Time Advisory System For Airborne Early Warning

    NASA Astrophysics Data System (ADS)

    Kirk, D. B.; Cromwell, M. E.; Donnell, M. L.; Barrett, C. L.

    1987-05-01

    Decision speed and quality can be greatly enhanced by the use of decision augmentation software to assist operators in information analysis and tactical problem solving, dynamic resource allocation, and in determining strategies which optimize overall system performance. One example of such software is the real-time advisory system (RTAS) being constructed to assist in tactical decision-making for airborne early warning (AEW) aircraft, particularly the carrier-based Navy E-2C. Using a vector logic approach, the current AEW RTAS is a real-time backward chaining expert system which provides advice for both threat interception and refueling in the complex Outer Air Battle Scenario. This paper describes the current system, discusses a number of design issues for such a system, and describes ongoing modifications to the current AEW RTAS using SAIC's frame-based knowledge repre-sentation language (KRL).

  7. Two Hundred Field Per Second Airborne Video System

    NASA Astrophysics Data System (ADS)

    Newkirk, David L.

    1990-01-01

    The Naval Weapons Evaluation Facility (NWEF), Albuquerque, New Mexico, conducted flight tests in November of 1983 to evaluate the NAC HVRB-200 high speed airborne video system for operation and structural integrity in the external military flight environment. The flight tests were successful, but due to budget restraints, shortage of manpower and required design changes, the upgrade to video was placed on hold. Finally in 1986. additional MAC high speed video equipment was procured and by November, NWEF had finished design, built the required control units and instrumentated the first A-7 aircraft. The NWEF system has been the primary data collection media used since then on all project missions conducted by NWEF. With many hours of flight time and extensive experience using the A-7 system, NWEF has designed, built and installed the F/A-18 high speed video system. The first system test flight was conducted on 10 July 1989 and again proved successful.

  8. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  9. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  10. SiSAR: advanced SAR simulation

    NASA Astrophysics Data System (ADS)

    Klaus, Ferdinand

    1995-11-01

    SiSAR was planned as a realistic as possible, modular, user-friendly and fast SAR raw data simulator running on ordinary workstations. Interest in (interferometric) SAR products is growing on an international scale. There is a concentration of manpower and financial resources. Dead ends, respectively failures, have to be avoided during design and mission of every SAR project by simulating the system thoroughly before the experiment. Another reason to make use of extensive reproducible simulations during design and development is the reduction of time and manpower costs. As it comes down to verifying and comparing different processing algorithms we see that (interferometric) SAR simulation is an indispensable tool for testing individual processing steps. SiSAR is a modular SAR raw data simulator for realistic description of the functions of a SAR-system. It contains an implementation of diverse models to characterize radar targets, various approaches to describe the trajectory and the motion of the footprint on the target surface and different raw data formation algorithms. Beyond there is a wide supply of tools for manipulation, analysis and user-friendly simulation handling. Results obtained by SiSAR and some first simulated interferometric SAR raw data are shown in the paper.

  11. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  12. Airborne experiment results for spaceborne atmospheric synchronous correction system

    NASA Astrophysics Data System (ADS)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  13. Alaska SAR Facility (ASF5) SAR Communications (SARCOM) Data Compression System

    NASA Technical Reports Server (NTRS)

    Mango, Stephen A.

    1989-01-01

    The real-time operational requirements for SARCOM translation into a high speed image data handler and processor to achieve the desired compression ratios and the selection of a suitable image data compression technique with as low as possible fidelity (information) losses and which can be implemented in an algorithm placing a relatively low arithmetic load on the system are described.

  14. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  15. Potential scientific research which will benefit from an airborne Doppler lidar measurement system

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1980-01-01

    Areas of research which can be significantly aided by the Doppler lidar airborne system are described. The need for systematic development of the airborne Doppler lidar is discussed. The technology development associated with the systematic development of the system will have direct application to satellite systems for which the lidar also promises to be an effective instrument for atmospheric research.

  16. Testing of CMA-2000 Microwave Landing System (MLS) airborne receiver

    NASA Astrophysics Data System (ADS)

    Labreche, L.; Murfin, A. J.

    1989-09-01

    Microwave landing system (MLS) is a precision approach and landing guidance system which provides position information and various air to ground data. Position information is provided on a wide coverage sector and is determined by an azimuth angle measurement, an elevation angle measurement, and a range measurement. MLS performance standards and testing of the MLS airborne receiver is mainly governed by Technical Standard Order TSO-C104 issued by the Federal Aviation Administration. This TSO defines detailed test procedures for use in determining the required performance under standard and stressed conditions. It also imposes disciplines on software development and testing procedures. Testing performed on the CMA-2000 MLS receiver and methods used in its validation are described. A computer automated test system has been developed to test for compliance with RTCA/DO-177 Minimum Operation Performance Standards. Extensive software verification and traceability tests designed to ensure compliance with RTCA/DO-178 are outlined.

  17. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  18. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  19. Interferometric aligment of the X-SAR antenna system on the space shuttle radar topography mission

    NASA Technical Reports Server (NTRS)

    Geudtner, D.; Zink, M.; Gierull, C.; Shaffer, S.

    2002-01-01

    The on-orbit alignment of the antenna beams of both the X-band and C-band radar systems during operations of the shuttle radar topography mission/X-band synthetic aperture radar (SRTM/X-SAR)was a key requirement for achieving best interferometric performance.

  20. A Scheme of Intelligent Oil Spill Monitoring System by SAR for Operational Application

    NASA Astrophysics Data System (ADS)

    Zeng, Kan; Ma, Youjun; Ding, Xingtao; Zhao, Chaofang; He, Mingxia

    2014-11-01

    A scheme of intelligent oil spill monitoring system by SAR for operational application is presented. The system includes four key techniques. 1) Picking out dark targets from SAR images using a new adaptive threshold segmentation algorithm based on evaluating the trends of background of SAR image along the range direction. The algorithm is applicable for SAR images of different satellites. 2) Filtering out some of look-alikes from dark targets by a chain of rules. 3) Extracting features from all the remained dark targets, selecting the most useful features and then discriminating the targets between oil spill and look-alikes by an artificial neural network (ANN). The feature extraction is based on lots of targets. The ANN experiences enough training. 4) Using an intelligent feedback with expert knowledge and relevant environment parameters to continually optimize system and improve the detection rate. So far, the test on 1448 oil spill and look-alike targets from Envisat/ASAR images shows that the correct recognition rate of the system can reach 88 % without the intelligent feedback.

  1. Airborne system for detection and location of radio interference sources

    NASA Astrophysics Data System (ADS)

    Audone, Bruno; Pastore, Alberto

    1992-11-01

    The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.

  2. Rapid extraction of water bodies from SAR imagery assisted by InSAR DEMs

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Ming; Zmuda, Andy

    1998-08-01

    In China, detailed flood maps are produced in near real time using an airborne SAR and data transmission system. Water bodies are extracted and the information is integrated with other thematic data to facilitate the rapid response to economic and humanitarian relief. One problem has been that terrain shadow on SAR images is classified as water and this proves difficult to eliminate without detailed elevation data. However interferometric processing of ERS Tandem Mission data has been used to produce a digital elevation model for a test area in China. This has been used to mask areas of terrain shadow on SAR images therefore improving the automatic classification of water bodies. The result is promising compared with the previously used method that relied on manual elimination of shadow areas.

  3. A new MIMO SAR system based on Alamouti space-time coding scheme and OFDM-LFM waveform design

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojin; Zhang, Yunhua

    2015-10-01

    In recent years, multi-input and multi-output (MIMO) radar has attracted much attention of many researchers and institutions. MIMO radar transmits multiple signals, and receives the backscattered signals reflected from the targets. In contrast with conventional phased array radar and SAR system, MIMO radar system has significant potential advantages for achieving higher system SNR, more accurate parameter estimation, or high resolution of radar image. In this paper, we propose a new MIMO SAR system based on Alamouti space-time coding scheme and orthogonal frequency division multiplexing linearly frequency modulated (OFDM-LFM) for obtaining higher system signal-to-noise ratio (SNR) and better range resolution of SAR image.

  4. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA`s, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  5. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA's, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  6. Windshear avoidance - Requirements and proposed system for airborne lidar detection

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1988-01-01

    A generalized windshear hazard index is derived from considerations of wind conditions and an aircraft's present and potential altitude. Based on a systems approach to the windshear threat, lidar appears to be a viable methodology for windshear detection and avoidance, even in conditions of moderately heavy precipitation. The airborne CO2 and Ho:YAG lidar windshear detection systems analyzed can each give the pilot information about the line-of-sight component of windshear threat from his present position to a region extending 1 to 3 km in front of the aircraft. This constitutes a warning time of 15 to 45 s. The technology necessary to design, build and test such a brassboard 10.6-micron CO2 lidar is at hand.

  7. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  8. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  9. Progress in Development of an Airborne Turbulence Detection System

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    Aircraft encounters with turbulence are the leading cause of in-flight injuries (Tyrvanas 2003) and have occasionally resulted in passenger and crew fatalities. Most of these injuries are caused by sudden and unexpected encounters with severe turbulence in and around convective activity (Kaplan et al 2005). To alleviate this problem, the Turbulence Prediction and Warning Systems (TPAWS) element of NASA s Aviation Safety program has investigated technologies to detect and warn of hazardous in-flight turbulence. This effort has required the numerical modeling of atmospheric convection: 1) for characterizing convectively induced turbulence (CIT) environments, 2) for defining turbulence hazard metrics, and 3) as a means of providing realistic three-dimensional data sets that can be used to test and evaluate turbulence detection sensors. The data sets are being made available to industry and the FAA for certification of future airborne turbulence-detection systems (ATDS) with warning capability. Early in the TPAWS project, a radar-based ATDS was installed and flight tested on NASA s research aircraft, a B-757. This ATDS utilized new algorithms and hazard metrics that were developed for use with existing airborne predictive windshear radars, thus avoiding the installation of new hardware. This system was designed to detect and warn of hazardous CIT even in regions with weak radar reflectivity (i.e. 5-15 dBz). Results from an initial flight test of the ATDS were discussed in Hamilton and Proctor (2002a; 2002b). In companion papers (Proctor et al 2002a; 2002b), a numerical simulation of the most significant encounter from that flight test was presented. Since the presentation of these papers a second flight test has been conducted providing additional cases for examination. In this paper, we will present results from NASA s flight test and a numerical model simulation of a turbulence environment encountered on 30 April 2002. Progress leading towards FAA certification of

  10. Clocks for airborne systems. [performance of rubidium oscillators

    NASA Technical Reports Server (NTRS)

    Houlding, N.

    1982-01-01

    The potential performance of compact oscillators, needed for the development of accurate clocks for future airborne systems (such as Identification Friend or Foe schemes), is addressed. In particular, extensive testing of rubidium oscillators manufactured by Efratom is discussed. The results indicate that an accuracy of better than 10 microseconds should be achievable in tactical aircraft provided that appropriate measures are adopted to counter the many environmental factors. In a favorable environment a stability of better than 5 x 10 to the -13th power for one day is achievable with present commercial units, but improvements are required to suit operation in an aircraft. With further development of rubidium controlled clocks the ultimate limitation on time accuracy in aircraft will probably be associated with time dissemination, maintenance difficulties and doctrinal hurdles.

  11. An ice-motion tracking system at the Alaska SAR facility

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  12. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    NASA Astrophysics Data System (ADS)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  13. Automatic decision support system based on SAR data for oil spill detection

    NASA Astrophysics Data System (ADS)

    Mera, David; Cotos, José M.; Varela-Pet, José; Rodríguez, Pablo G.; Caro, Andrés

    2014-11-01

    Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several decision support systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above 25% of the system processing time.

  14. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  15. A system concept for wide swath constant incident angle coverage. [for SAR environmental monitoring from space

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Eckerman, J.

    1978-01-01

    The multiple beam SAR system concept is developed and shown to readily overcome the radar ambiguity constraints associated with orbital systems, thus permitting imagery over swaths much wider than 100 km. The antenna technique permits imagery at nearly constant incidence angles. When frequency scanning is used, the center angle may be programmed. The redundant use of the antenna aperture during reception results in lower transmitted power and in shorter antenna lengths in comparison with conventional designs.

  16. Cost effective, weight sensitive design for military airborne electronic systems

    SciTech Connect

    Peck, W.M.

    1996-12-31

    Thermal management of Military airborne electronic systems is governed by many trade-offs. While the trade-offs may change depending on the customer and system requirements, minimizing weight is usually the primary engineering concern because it saves aircraft fuel. Fuel savings provides increased range and time aloft for the aircraft. The most common approach to achieving meaningful reductions in equipment weight is to reduce system volume. Reduced volume is achieved by increasing electronic packaging density which is accomplished by incorporating new materials, processes, and technologies into the system design. The following four considerations are currently under study in the development of an 8 KW high altitude Military electronic system in order to reduce system volume: (1) identifying design parameters and performing trade-off studies between the use of liquid vs. forced air for system cooling; (2) modeling the total system thermal resistance path to identify possible areas for reducing component temperature rise in order to provide enhanced system reliability; (3) substituting commercial plastic integrated circuits (ICs) for Mil ceramic components to reduce material cost while still meeting system requirements; and (4) using TC1050 material technology in: Militarizing Commercial Off The Shelf (COTS) Circuit Card Assemblies (CCAs), developing high conductivity ceramic packaging for Multi Chip Modules (MCMs), and for developing low coefficient of thermal expansion (CTE) composites for use at both the chip and chassis level. Current results from these studies have yielded a design that has a 2:1 reduction in system volume and a weight reduction of 480 lbs from a currently fielded system.

  17. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  18. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  19. The Airborne Laser Ranging System - Its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1983-01-01

    The Airborne Laser Ranging System is a proposed multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the earth's surface. Depending on the host aircraft and terrain characteristics, the system can interrogate hundreds of targets distributed over an area as large as 60,000 sq. km in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a 6 hr flight. The precision of these range measurements is approximately 1 cm. These measurements are then used in a procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  20. Exposure to airborne particulate matter in the subway system.

    PubMed

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. PMID:25616190

  1. First Experiment of IECAS P-Band Quad-Pol SAR System in Circular Imaging Mode

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Li, Yang; Yin, Qiang; Lin, Yun; Chen, Erxue; Pottier, Eric

    2013-01-01

    Within the framework of the DRAGON2 project, the Institute of Electronics, Chinese Academy of Sciences (IECAS) continuously had a tight collaboration with the European and the Chinese partners. Our contribution to the joint research, separated by 4 working packages: land cover analysis, earth surface deformation monitoring and DEM extraction, forest vertical structure parameters extraction, and PolSARpro software continued development, is reviewed in the beginning. Furthermore, a joint study between IECAS - NKLMIT and University of Rennes-1 -Institute of Electronics and Telecommunications, about DEM based soil moisture inversion using POLSAR data is reviewed. Besides, a compact-pol calibration algorithm for a wide-band ground-based SAR system and a supervised land cover classification method are proposed here. Finally, the first experiment of IECAS P-band quad-pol SAR system in circular imaging mode is introduced.

  2. Development of a calibration system for airborne (131)I monitoring devices.

    PubMed

    Zhao, C; Tang, F; He, L; Xu, Y; Lu, X

    2016-03-01

    A prototype calibration system for airborne (131)I monitoring devices was developed at the Shanghai Institute of Measurement and Testing Technology (SIMT). This system consists of a gaseous (131)I2 generator, an airborne storage chamber, an airborne iodine sampler, and an HPGe spectrometer. With this system, (131)I reference samples in the form of charcoal filters and charcoal cartridges, with activities ranging from 100 to 10,000Bq, were produced with overall relative standard uncertainties of 2.8% (for filter samples) and 3.5% (for cartridge samples); the activities range could be extended according to need. PMID:26682896

  3. Medium altitude airborne Geiger-mode mapping LIDAR system

    NASA Astrophysics Data System (ADS)

    Clifton, William E.; Steele, Bradley; Nelson, Graham; Truscott, Antony; Itzler, Mark; Entwistle, Mark

    2015-05-01

    Over the past 15 years the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL), Defense Advanced Research Projects Agency (DARPA) and private industry have been developing airborne LiDAR systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors capable of detecting a single photon. The extreme sensitivity of GmAPD detectors allows operation of LiDAR sensors at unprecedented altitudes and area collection rates in excess of 1,000 km2/hr. Up until now the primary emphasis of this technology has been limited to defense applications despite the significant benefits of applying this technology to non-military uses such as mapping, monitoring critical infrastructure and disaster relief. This paper briefly describes the operation of GmAPDs, design and operation of a Geiger-mode LiDAR, a comparison of Geiger-mode and traditional linear mode LiDARs, and a description of the first commercial Geiger-mode LiDAR system, the IntelliEarth™ Geospatial Solutions Geiger-mode LiDAR sensor.

  4. Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B. 13Lawrie, Ken C.

    2012-07-01

    The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.

  5. Software for Generating Strip Maps from SAR Data

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto

    2004-01-01

    Jurassicprok is a computer program that generates strip-map digital elevation models and other data products from raw data acquired by an airborne synthetic-aperture radar (SAR) system. This software can process data from a variety of airborne SAR systems but is designed especially for the GeoSAR system, which is a dual-frequency (P- and X-band), single-pass interferometric SAR system for measuring elevation both at the bare ground surface and top of the vegetation canopy. Jurassicprok is a modified version of software developed previously for airborne-interferometric- SAR applications. The modifications were made to accommodate P-band interferometric processing, remove approximations that are not generally valid, and reduce processor-induced mapping errors to the centimeter level. Major additions and other improvements over the prior software include the following: a) A new, highly efficient multi-stage-modified wave-domain processing algorithm for accurately motion compensating ultra-wideband data; b) Adaptive regridding algorithms based on estimated noise and actual measured topography to reduce noise while maintaining spatial resolution; c) Exact expressions for height determination from interferogram data; d) Fully calibrated volumetric correlation data based on rigorous removal of geometric and signal-to-noise decorrelation terms; e) Strip range-Doppler image output in user-specified Doppler coordinates; f) An improved phase-unwrapping and absolute-phase-determination algorithm; g) A more flexible user interface with many additional processing options; h) Increased interferogram filtering options; and i) Ability to use disk space instead of random- access memory for some processing steps.

  6. Migration-based SAR imaging for ground-penetrating radar systems

    NASA Astrophysics Data System (ADS)

    Gu, Kunlong; Wang, Gang; Li, Jian

    2003-09-01

    We consider migration based synthetic aperture radar (SAR) imaging of surfaced or shallowly buried objects using both down-looking and forward-looking ground penetrating radar (GPR). The well-known migration approaches devised to image the interior of the earth are based on wave equations and have been widely and successfully used in seismic signal processing for oil exploration for decades. They have exhibited great potentials and convenience to image the underground objects buried in complicated propagation medium. Compared to the ray-tracing based SAR imaging methods, the migration based SAR imaging approaches are more suited for the imaging of the underground objects due to their simple and direct treatment of the oblique incidence at the air-ground interface and the propagation velocity variation in the soil. In this paper, we apply the phase-shift migration approach to both the constant-offset and the common-shot experimental data collected by the PSI (Planning Systems Inc.) GPR systems. We will address the spatial aliasing problems related to the application of migration to the GPR data and the spatial zero-padding approach to circumvent the problem successfully.

  7. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  8. Next-Generation NASA Airborne Oceanographic Lidar System.

    PubMed

    Wright, C W; Hoge, F E; Swift, R N; Yungel, J K; Schirtzinger, C R

    2001-01-20

    The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer-detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands. PMID:18357006

  9. Next-Generation NASA Airborne Oceanographic Lidar System

    NASA Astrophysics Data System (ADS)

    Wright, C. Wayne; Hoge, Frank E.; Swift, Robert N.; Yungel, James K.; Schirtzinger, Carl R.

    2001-01-01

    The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer -detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands.

  10. SAR calibration: A technology review

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Politis, D. T.; Shuchman, R. A.

    1983-01-01

    Various potential applications of amplitude-calibrated SAR systems are briefly described, along with an estimate of calibration performance requirements. A review of the basic SAR calibration problem is given. For background purposes and to establish consistent definition of terms, various conventional SAR performance parameters are reviewed along with three additional parameters which are directly related to calibrated SAR systems. Techniques for calibrating a SAR are described. Included in the results presented are: calibration philosophy and procedures; review of the calibration signal generator technology development with results describing both the development of instrumentation and internal calibration measurements for two SAR systems; summary of analysis and measurements required to determine optimum retroreflector design and configuration for use as a reference for the absolute calibration of a SAR system; and summary of techniques for in-flight measurements of SAR antenna response.

  11. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  12. Nyamulagira’s magma plumbing system inferred from 15 years of InSAR

    USGS Publications Warehouse

    Wauthier, Christelle; Cayol, Valerie; Poland, Michael; Kervyn, François; D'Oreye, Nicolas; Hooper, Andrew; Samsonov, Sergei; Tiampo, Kristy; Smets, Benoit

    2013-01-01

    Nyamulagira, located in the east of the Democratic Republic of Congo on the western branch of the East African rift, is Africa’s most active volcano, with an average of one eruption every 3 years since 1938. Owing to the socio-economical context of that region, the volcano lacks ground-based geodetic measurements but has been monitored by interferometric synthetic aperture radar (InSAR) since 1996. A combination of 3D Mixed Boundary Element Method and inverse modelling, taking into account topography and source interactions, is used to interpret InSAR ground displacements associated with eruptive activity in 1996, 2002, 2004, 2006 and 2010. These eruptions can be fitted by models incorporating dyke intrusions, and some (namely the 2006 and 2010 eruptions) require a magma reservoir beneath the summit caldera. We investigate inter-eruptive deformation with a multi-temporal InSAR approach. We propose the following magma plumbing system at Nyamulagira by integrating numerical deformation models with other available data: a deep reservoir (c. 25 km depth) feeds a shallower reservoir (c. 4 km depth); proximal eruptions are fed from the shallow reservoir through dykes while distal eruptions can be fed directly from the deep reservoir. A dyke-like conduit is also present beneath the upper southeastern flank of Nyamulagira.

  13. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    PubMed

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  14. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools

    PubMed Central

    Burdett, Garry J.; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml−1) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml−1. Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  15. Water depth measurement using an airborne pulsed neon laser system

    SciTech Connect

    Hoge, F.E.; Swift, R.N.; Frederick, E.B.

    1980-03-15

    Initial base-line field test performance results of the National Aeronautics and Space Administration's airborne oceanographic lidar (AOL) in the bathymetry mode are presented. Flight tests over the Atlantic Ocean yielded water depth measurements to 10 m. Water depths to 4.6 m were measured in the more turbid Chesapeake Bay. Water-truth measurements of depth and beam attenuation coefficients by boat were taken at the same time as the air craft overflights to aid in determining the system's operational performance. Beam attenuation coefficient and depth d product d was established early in the program as the performance criterion index. A performance product of 6 was determined to be the goal. This performance goal was successfully met or exceeded in the large number of field tests executed. Included are selected data from nadir-angle tests conducted at 0, 5, 10, and 15. Field-of-view data chosen from the 2-, 5-, 10-, and 20-mrad tests are also presented. Depth measurements obtained to altitudes of 456 m are given for additional comparison. This laser bathymetry system represents a significant improvement over prior models in that (1) the complete surface-to-bottom pulse waveform is digitally recorded on magnetic tape at a rate of 400 pulse waveforms/sec, and (2) wide-swath mapping data may be routinely acquired using the 30 full-angle conical scanner. Space does not allow all the 5,000,000 laser soundings to be included. Qualified interested users may obtain complete data sets for their own in-depth analysis. 15 references, 9 figures, 1 table.

  16. Rapid System to Quantitatively Characterize the Airborne Microbial Community

    NASA Technical Reports Server (NTRS)

    Macnaughton, Sarah J.

    1998-01-01

    Bioaerosols have been linked to a wide range of different allergies and respiratory illnesses. Currently, microorganism culture is the most commonly used method for exposure assessment. Such culture techniques, however, generally fail to detect between 90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting airborne microorganisms is essential. In this Phase II proposal, a portable air sampling device his been developed for the collection of airborne microbial biomass from indoor (and outdoor) environments. Methods were evaluated for extracting and identifying lipids that provide information on indoor air microbial biomass, and automation of these procedures was investigated. Also, techniques to automate the extraction of DNA were explored.

  17. Detection of Perfectly-Conducting Targets with Airborne Electromagnetic Systems

    NASA Astrophysics Data System (ADS)

    Smiarowski, Adam

    A significant problem with exploring for electrically conductive mineral deposits with airborne electromagnetic (AEM) methods is that many of the most valuable sulphide deposits are too conductive to be detected with conventional systems. High-grade sulphide deposits with bulk electrical conductivities on the order of 100,000 S/m can appear as "perfect conductors" to most EM systems because the decay of secondary fields (the "time constant" of the deposit) generated in the target by the system transmitter takes much longer than the short measuring time of EM systems. Their EM response is essentially undetectable with off-time measurements. One solution is to make measurements during the transmitter on-time when the secondary field of the target produced by magnetic flux exclusion is large. The difficulty is that the secondary field must be measured in the presence of a primary field which is orders of magnitude larger. The goal of this thesis is to advance the methodology of making AEM measurements during transmitter on-time by analysing experimental data from three different AEM systems. The first system analysed is a very large separation, two helicopter system where geometry is measured using GPS sensors. In order to calculate the primary field at the receiver with sufficient accuracy, the very large (nominally 400 m) separation requires geometry to be known to better than 1 m. Using the measured geometry to estimate and remove the primary field, I show that a very conductive target can be detected at depths of 200m using the total secondary field. I then used fluxgate magnetometers to correct for receiver rotation which allowed the component of the secondary field to be determined. The second system I examined was a large separation fixed-wing AEM system. Using a towed receiver bird with a smaller (≈ 135m) separation, the geometry must be known much more accurately. In the absence of direct measurement of this geometry, I used a least-squares prediction

  18. Characterization of spatial statistics of distributed targets in SAR data. [applied to sea-ice data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Kwok, R.

    1993-01-01

    A statistical approach to the analysis of spatial statistics in polarimetric multifrequency SAR data, which is aimed at extracting the intrinsic variability of the target by removing variability from other sources, is presented. An image model, which takes into account three sources of spatial variability, namely, image speckle, system noise, and the intrinsic spatial variability of the target or texture, is described. It is shown that the presence of texture increases the image variance-to-mean square ratio and introduces deviations of the image autocovariance function from the expected SAR system response. The approach is exemplified by sea-ice SAR imagery acquired by the Jet Propulsion Laboratory three-frequency polarimetric airborne SAR. Data obtained indicate that, for different sea-ice types, the spatial statistics seem to vary more across frequency than across polarization and the observed differences increase in magnitude with decreasing frequency.

  19. Application of pixel segmentation to the low rate compression of complex SAR imagery

    SciTech Connect

    Ives, R.W.; Eichel, P.; Magotra, N.

    1998-03-01

    This paper describes a technique to identify pixels within a subregion (chip) of a complex or detected SAR image which are to be losslessly compressed while the remainder of the image is subjected to a high compression ratio. This multi-modal compression is required for the intelligent low rate compression of SAR imagery, which addresses the problem of transmitting massive amounts of high resolution complex SAR data from a remote airborne sensor to a ground station for exploitation by an automatic target recognition (ATR) system, in a real time environment, over a narrow bandwidth. The ATR system results might then be presented to an image analyst who, using the contextual information from the SAR image, makes final target determination.

  20. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  1. Airborne fibre and asbestos concentrations in system built schools

    NASA Astrophysics Data System (ADS)

    Burdett, Garry; Cottrell, Steve; Taylor, Catherine

    2009-02-01

    This paper summarises the airborne fibre concentration data measured in system built schools that contained asbestos insulation board (AIB) enclosed in the support columns by a protective steel casing. The particular focus of this work was the CLASP (Consortium of Local Authorities Special Programme) system buildings. A variety of air monitoring tests were carried out to assess the potential for fibres to be released into the classroom. A peak release testing protocol was adopted that involved static sampling, while simulating direct impact disturbances to selected columns. This was carried out before remediation, after sealing gaps and holes in and around the casing visible in the room (i.e. below ceiling level) and additionally round the tops of the columns, which extended into the suspended ceiling void. Simulated and actual measurements of worker exposures were also undertaken, while sealing columns, carrying out cleaning and maintenance work in the ceiling voids. Routine analysis of these air samples was carried out by phase contrast microscopy (PCM) with a limited amount of analytical transmission electron microscopy (TEM) analysis to confirm whether the fibres visible by PCM were asbestos or non-asbestos. The PCM fibre concentrations data from the peak release tests showed that while direct releases of fibres to the room air can occur from gaps and holes in and around the column casings, sealing is an effective way of minimising releases to below the limit of quantification (0.01 f/ml) of the PCM method for some 95% of the tests carried out. Sealing with silicone filler and taping any gaps and seams visible on the column casing in the room, also gave concentrations below the limit of quantification (LOQ) of the PCM method for 95% of the tests carried out. The data available did not show any significant difference between the PCM fibre concentrations in the room air for columns that had or had not been sealed in the ceiling void, as well as in the room

  2. Airborne hyperspectral systems for solving remote sensing problems

    NASA Astrophysics Data System (ADS)

    Rodionov, I. D.; Rodionov, A. I.; Vedeshin, L. A.; Vinogradov, A. N.; Egorov, V. V.; Kalinin, A. P.

    2014-12-01

    A retrospective of airborne hyperspectrometer projects carried out in the ZAO Reagent Scientific Technical Center is presented. Hyperspectral devices developed during the period since the end of 1990s to the present day are described. The line of hyperspectrometers designed in recent times covers the ranges from ultraviolet (0.2 μm) to near infrared (1.0 μm). These devices can be mounted on airborne and automobile carriers, including small-size ones. By now, the developments of hyperspectral devices in ZAO Reagent have reached the finished state and have been prepared for serial production. Their technical characteristics permit one to speak of the creation of wide-range high-aperture ultraspectral high spatial resolution equipment with a possibility of real-time data processing on board.

  3. Airborne spectrograph for the thermal IR: Broadband Array Spectrograph System

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Hackwell, John; Lynch, David; Mazuk, Ann

    1995-01-01

    Spectroscopic studies in the 'fingerprint' region of the thermal IR from 3 to 14 microns of celestial dust components and the overall energy distribution of the sources are best served by moderate spectral resolution (R = lambda/Delta lambda approximately 30 to 200), high sensitivity observations. Spectral purity and the reproducibility of the spectral shape are critical as well, when using the spectral shape to assign temperatures to dust grains or to gas clouds based on the wavelength and shape of molecular bands. These sensor attributes are also important to the use of wavelengths and ratios of solid state features to derive compositions of dust grains in celestial sources. The advent of high quality linear arrays of blocked impurity band (BIB) detectors of Si:As permitted the development of a state-of-the-art, patented, cooled prism spectrograph. Developed at The Aerospace Corporation largely with in-house funds, the Broadband Array Spectrograph System (BASS) has been used for a variety of remote sensing applications, but especially for IR astronomical studies on the Kuiper Airborne Observatory and at the NASA Infrared Telescope Facility (IRTF). The attributes of the spectrograph, specifically having the pupil imaged onto the 2 linear 58 element detector arrays so that the effects of guiding errors are minimized, being able to maximally exploit the limited observing time by acquiring all 116 spectral channels simultaneously, and having all spectral channels imaged through the same aperture so that spectral mapping is readily and reliably accomplished, afford the scientist with a unique opportunity to conduct both surveys of examples of many different types of sources as well as in-depth studies of a given class of object by thoroughly sampling the class members. This duality was demonstrated with the BASS through a combination of KAO flights where spectral maps were obtained as part of in-depth studies of specific source regions (such as Orion and W3) and

  4. Concept of operation and preliminary experimental results of the DRDC through-wall SAR system

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Chan, Brigitte; Fournier, Jonathan; Roy, Simon; Ricard, Benoît; Maheux, Jean

    2010-04-01

    Mapping the interior of buildings is of great interest to military forces operating in an urban battlefield. Throughwall radars have the potential of mapping interior room layout, including the location of walls, doors and furniture. They could provide information on the in-wall structure, and detect objects of interest concealed in buildings, such as persons and arms caches. We are proposing to provide further context to the end user by fusing the radar data with LIDAR (Light Detection and Ranging) images of the building exterior. In this paper, we present our system concept of operation, which involves a vehicle driven along a path in front of a building of interest. The vehicle is equipped with both radar and LIDAR systems, as well as a motion compensation unit. We describe our ultra wideband through-wall L-band radar system which uses stretch processing techniques to obtain high range resolution, and synthetic aperture radar (SAR) techniques to achieve good azimuth resolution. We demonstrate its current 2-D capabilities with experimental data, and discuss the current progress in using array processing in elevation to provide a 3-D image. Finally, we show preliminary data fusion of SAR and LIDAR data.

  5. Canada`s commercially oriented Radarsat returns SAR data for oil, gas exploration

    SciTech Connect

    Tack, R.E.

    1996-07-15

    Canada in November 1995 launched the world`s first commercially oriented remote sensing satellite to carry a synthetic aperture radar (SAR) imaging system. Radarsat provides the oil and gas industry with a unique variety of exploration and mapping capabilities not previously offered by an operational imaging satellite. Radarsat`s SAR data became commercially available in March 1996 at a cost ranging between 2{cents} to $1.60/sq km for most products--a fraction of the cost of airborne SAR imagery. The paper discusses the exploration and production benefits of SAR (all-weather imaging, varied orbits, and sensitivity to terrain) and Radarsat advantages variable incidence angle, multiple beam modes, onboard tape recorders, processing and delivery, and cost effectiveness.

  6. Mangrove Canopy Height and Biomass Estimations by means of Pol-InSAR Techniques

    NASA Astrophysics Data System (ADS)

    Lee, S. K.; Fatoyinbo, T. E.; Trettin, C.; Simard, M.; Bandeira, S.

    2014-12-01

    Mangrove forests cover only about 1% of the Earth's terrestrial surface, but they are amongst the highest carbon-storing and carbon-exporting ecosystems globally. Estimating 3-D mangrove forest parameters has been challenging due to the complex physical environment of the forests. In previous works, remote sensing techniques have proven an excellent tool for the estimation of mangrove forests. Recent experiments have successfully demonstrated the global scale estimation of mangrove structure using spaceborne remote sensing data: SRTM (InSAR), ICESat/GLAS (lidar), Landsat ETM+ (passive optical). However, those systems had relatively low spatial and temporal resolutions. Polarimetric SAR Interferometry (Pol-InSAR) is a Synthetic Aperture Radar (SAR) remote sensing technique based on the coherent combination of both Polarimetric and interferometric observables. The Pol-InSAR has provided a step forward in quantitative 3D forest structure parameter estimation (e.g. forest canopy height and biomass) over a variety of forests. Recent developments of Pol-InSAR technique with TanDEM-X (TDX) data in mangroves have proven that TDX data can be used to produce global-scale mangrove canopy height and biomass maps at accuracies comparable to airborne lidar measurements. In this study we propose to generate 12m-resolution mangrove canopy height and biomass estimates for the coastline of Mozambique using Pol-InSAR techniques from single-/dual-pol TDX data and validated with commercial airborne lidar. To cover all of the mangroves in the costal area of Mozambique, which is about 3000 km, about 200 TDX data sets are selected and processed. The TDX height data are calibrated with commercial airborne lidar data acquired over 150 km2 of mangroves in the Zambezi delta of Mozambique while height and Biomass estimates are validated using in-situ forest inventory measurements and biomass. The results from the study will be the first country-wide, wall-to-wall estimate of mangrove structure

  7. Application of multimode airborne digital camera system in Wenchuan earthquake disaster monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Li, Qingting; Fang, Junyong; Tong, Qingxi; Zheng, Lanfen

    2009-06-01

    Remote sensing, especially airborne remote sensing, can be an invaluable technique for quick response to natural disasters. Timely acquired images by airborne remote sensing can provide very important information for the headquarters and decision makers to be aware of the disaster situation, and make effective relief arrangements. The image acquisition and processing of Multi-mode Airborne Digital Camera System (MADC) and its application in Wenchuan earthquake disaster monitoring are presented in this paper. MADC system is a novel airborne digital camera developed by Institute of Remote Sensing Applications, Chinese Academy of Sciences. This camera system can acquire high quality images in three modes, namely wide field, multi-spectral (hyper-spectral) and stereo conformation. The basic components and technical parameters of MADC are also presented in this paper. MADC system played a very important role in the disaster monitoring of Wenchuan earthquake. In particular, the map of dammed lakes in Jianjiang river area was produced and provided to the front line headquarters. Analytical methods and information extraction techniques of MADC are introduced. Some typical analytical and imaging results are given too. Suggestions for the design and configuration of the airborne sensors are discussed at the end of this paper.

  8. Velocity estimation of slow moving targets in AT-InSAR systems

    NASA Astrophysics Data System (ADS)

    Budillon, A.; Pascazio, V.; Schirinzi, G.

    2007-10-01

    Along Track Interferometric Synthetic Aperture Radar (AT-InSAR) systems use more than one SAR antennas (typically two), mounted on the same platform and displaced along the platform moving direction, to detect slow ground moving targets. The phase of the ATI signal is related to the target motion parameters and may thus be used to estimate the radial velocity. In this paper we approach the velocity estimation problem using statistical techniques based on the statistical distribution of the measured interferometric phases. We analyze the radial velocity estimation with respect to ATI system parameters, such as velocity values, the signal to clutter ratio (SCR), the clutter to noise ratio (CNR), considering a deterministic target whose velocity is estimated using a Gaussian model. This model allows to take into account the lack of knowledge of the target radar cross section (RCS) values and provides an analytical form for the interferometric phase probability density function. Simulations results show that the adoption of Maximum Likelihood (ML) techniques, to perform a joint estimation of velocity and SCR, and multi-channel configurations, to overcome ambiguities problems, provide very good velocity estimation accuracy.

  9. Airborne sensor systems under development at the NASA/NSTL/Earth Resources Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, James E.; Meeks, Gerald R.

    1988-01-01

    The operational characteristics of the Airborne Bathymetric System (ABS) MSS and the Airborne Multispectral Pushbroom Scanner (AMPS), which are currently being developed at NASA's Earth Resources Laboratory (ERL), are described. The ABS MSS system scans through a swath width of + or - 40 deg from nadir and the sensor incorporates onboard calibration references for the visible and short-wavelength IR channels. The AMPS uses five separate f/1.8 refractive telecentric lens systems, each incorporating nine optical elements, and a replaceable fixed bandwidth filter.

  10. Processing of polarimetric SAR data for soil moisture estimation over Mahantango watershed area

    NASA Technical Reports Server (NTRS)

    Rao, K. S.; Teng, W. L.; Wang, J. R.

    1992-01-01

    Microwave remote sensing technique has a high potential for measuring soil moisture due to the large contrast in dielectric constant of dry and wet soils. Recent work by Pults et al. demonstrated the use of X/C-band data for quantitative surface soil moisture extraction from Airborne Synthetic Aperture Radar (SAR) system. Similar technique was adopted using polarimetric SAR data acquired with the JPL-AIRSAR system over the Mahantango watershed area in central Pennsylvania during July 1990. The data sets reported include C-, L-, and P-bands of 10, 13, 15, and 17 July 1990.

  11. Polarization effects and multipolarization SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Imaging radar polarimeters are usually implemented using a Synthetic Aperture Radar (SAR) approach to give a high resolution image in two dimensions: range and azimuth. For each pixel in the image a polarimetric SAR gives sufficient information to characterize the polarimetric scattering properties of the imaged area (or target) as seen by the radar. Using a polarimetric SAR system as opposed to a single-polarization SAR system provides significantly more information about the target scattering mechanisms and allows better discrimination between different types of surfaces. In these notes a brief overview of SAR polarimetry is offered. The notes are intended as a text to accompany a lecture on SAR polarimetry as part of an AGARD-NATO course. Covered in the notes are the following: the polarization properties of electromagnetic waves; the concepts of radar scattering and measuring radar backscatter with a SAR; polarization synthesis; scattering matrix, Stokes matrix, and covariance matrix representations of polarimetric SAR data; polarization signature plots; design and calibration of polarimetric SAR systems; polarization filtering for target detection; fitting a simple model to polarimetric SAR measurements of naturally occurring features; and supervised classification of polarimetric SAR data.

  12. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  13. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  14. A post-processing system for automated rectification and registration of spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Kwok, Ronald; Pang, Shirley S.

    1987-01-01

    An automated post-processing system has been developed that interfaces with the raw image output of the operational digital SAR correlator. This system is designed for optimal efficiency by using advanced signal processing hardware and an algorithm that requires no operator interaction, such as the determination of ground control points. The standard output is a geocoded image product (i.e. resampled to a specified map projection). The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending passes over the same target area. The output products have absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 per cent relative to local variations from the assumed geoid.

  15. Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin

    2016-10-01

    Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.

  16. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ɛ, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ɛ. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ɛ in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  17. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  18. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  19. A high-resolution airborne four-camera imaging system for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  20. High resolution Michelson interferometer for airborne infrared astronomical observations. 2: System design.

    PubMed

    Langlet, A; Delage, C; Stefanovitch, D; Talureau, B; Tualy, J; Verveer, J; Fischer, W P; Gilles, J M; Scheper, R; Leblanc, J; Dambier, G

    1977-07-01

    A Michelson interferometer for high resolution (lambda/Deltalambda approximately 10(4)) spectroscopic observations of astronomical ir ionic line emission has been built and flown on the NASA 91-cm airborne ir telescope facility (G. P. Kuiper Airborne Observatory). In Part 1 of this paper the requirements for such a system were outlined, and the scientific basis for the choice of instrumental parameters and the rapid scan mode of operation were discussed. In this paper design details of the instrument are presented. These include the optics, control He-Ne laser interferometer, helium-cooled bolometer detector, and cooled passband filters. In addition, the on-line computer software which enables the operator to interact rapidly with the system to produce inflight spectra and control accordingly the observational parameters is described, as are elements of the electronics hardware developed specially for airborne observations. PMID:20168820

  1. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  2. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  3. Bistatic SAR: Proof of Concept.

    SciTech Connect

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  4. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  5. Determining snow depth using Ku-band interferometric synthetic aperture radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Kruse, F. A.; Bickel, D. L.; Dunkel, Ralf

    2014-05-01

    Monitoring seasonal snow accumulation is important for evaluation of snow models, for short- and long-term snow cover monitoring, and for both military and civilian activities in cold climates. Improved spatial analysis of snow depth and volume can help decision makers plan for future events and mitigate risk. Current snow depth measurement methods fall short of operational requirements. This research explored a new approach for determining snow depth using Ku-band multi-pass (monostatic) airborne interferometric synthetic aperture radar (InSAR). A perturbation method that isolated and compared high frequency terrain phase to elevation was used to generate Snow-Off and Snow-On DEMs from the InSAR phase data. Differencing the InSAR DEMs determined elevation change caused by accumulated snow. Comparison of InSAR snow depths to manual snow depth measurements indicated average InSAR snow depth errors of -8cm, 95cm, -49cm, 176cm, 87cm, and 42cm for six SAR pairs. The source of these errors appears to be mostly related to uncorrected slope and tilt in fitted low frequency planes. Results show that this technique has promise but accuracy could be substantially improved by the use of bistatic SAR systems, which would allow for more stable and measurable interferometric baselines.

  6. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Werner, Marian U.

    1993-05-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  7. Estimation of penetration of forest canopies by Interferometric SAR measurements

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Michel, Thierry R.; Harding, David J.

    1995-01-01

    In contrast to traditional Synthetic Aperture Radar (SAR), an Interferometric SAR (INSAR) yields two additional measurements: the phase difference and the correlation between the two interferometric channels. The phase difference has been used to estimate topographic height. For homogeneous surfaces, the correlation depends on the system signal-to-noise (SNR) ratio, the interferometer parameters, and the local slope. In the presence of volume scattering, such as that encountered in vegetation canopies, the correlation between the two channels is also dependent on the degree of penetration of the radiation into the scattering medium. In this paper, we propose a method for removing system and slope effects in order to obtain the decorrelation due to penetration alone. The sensitivities and accuracy of the proposed method are determined by Monte Carlo experiments, and we show that the proposed technique has sufficient sensitivity to provide penetration measurements for airborne SAR systems. Next, we provide a theoretical model to estimate the degree of penetration in a way which is independent of the details of the scattering medium. We also present a model for the correlation from non-homogeneous layers. We assess the sensitivity of the proposed inversion technique to these inhomogeneous situations. Finally, we present a comparison of the interferometric results against in situ data obtained by an airborne laser profilometer which provides a direct measurement of tree height and an estimate of the vegetation density profile in the forested areas around Mt. Adams, WA.

  8. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems

    PubMed Central

    Fischer, Sebastian; Thieves, Martin; Hirsch, Tobias; Fischer, Klaus-Dieter; Hubert, Helmine; Bepler, Steffen; Seipp, Hans-Martin

    2015-01-01

    Background Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. Material/Methods We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1–3 with the first 138 surgeries in ORs 7 and 8. Results Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (p<0.01). Accordingly, peak values decreased to 0.9 CFU/h and 1.0 CFU/h in ORs 7 and 8, respectively (p<0.01). Airborne bacterial burden increased linearly with surgery duration in ORs 1–3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (<3 CFU/h). A comparison of the last 138 surgeries before with the first 138 surgeries after changing ORs revealed a 94% reduction in average airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, p<0.01). Conclusions The unidirectional displacement airflow, which fulfills the requirements of standard DIN-1946-4 annex D of 2008, is an effective ventilation system that reduces airborne bacterial burden

  9. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  10. Active alignment and vibration control system for a large airborne optical system

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  11. Simulation of Terminal-Area Flight Management System Arrivals with Airborne Spacing

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Lee, Paul U.; Mercer, Joey S.; Palmer, Everett A.; Prevot, Thomas

    2007-01-01

    A simulation evaluated the feasibility and potential benefits of using decision support tools to support time-based airborne spacing and merging for aircraft arriving in the terminal area on charted Flight Management System (FMS) routes. Sixteen trials were conducted in each treatment combination of a 2X2 repeated-measures design. In trials 'with ground tools' air traffic controller participants managed traffic using sequencing and spacing tools. In trials 'with air tools' approximately seventy-five percent of aircraft assigned to the primary landing runway were equipped for airborne spacing, including flight simulators flown by commercial pilots. The results indicate that airborne spacing improves spacing accuracy and is feasible for FMS operations and mixed spacing equipage. Controllers and pilots can manage spacing clearances that contain two call signs without difficulty. For best effect, both decision support tools and spacing guidance should exhibit consistently predictable performance, and merging traffic flows should be well coordinated.

  12. A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-04-01

    Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data

  13. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  14. Airborne Wireless Optical Communication System in Low Altitude Using an Unmanned Aerial Vehicle and LEDs

    NASA Astrophysics Data System (ADS)

    Kong, Meiwei; Tong, Zheng; Yu, Xiangyu; Song, Yuhang; Lin, Aobo; Xu, Jing

    2016-02-01

    In this paper, we demonstrate the feasibility of airborne wireless optical communication system using an unmanned aerial vehicle and LEDs. Monte Carlo simulation method is used to evaluate the performance of the communication channel. Considering OOK modulation, we illustrate how the BER performance is affected by the link distance, the divergence angel and the deflection angel of the light source.

  15. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  16. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented.

  17. Multi-scale InSAR analysis of aseismic creep across the San Andreas, Calevaras,and Hayward Fault systems

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Simons, M.

    2011-12-01

    We apply the Multi-scale Interferometric Time-series (MInTS) technique, developed at Caltech,to study spatial variations in aseismic creep across the San Andreas, Calaveras and Hayward Faultsystems in Central California.Interferometric Synthetic Aperture Radar (InSAR) Time-series methods estimate the spatio-temporal evolution of surface deformation using multiple SAR interferograms. Traditional time-series analysis techniques like persistent scatterers and short baseline methods assume the statistical independence of InSAR phase measurements over space and time when estimating deformation. However, existing atmospheric phase screen models clearly show that noise in InSAR phase observations is correlated over the spatial domain. MInTS is an approach designed to exploit the correlation of phase observations over space to significantly improve the signal-to-noise ratio in the estimated deformation time-series compared to the traditional time-series InSAR techniques. The MInTS technique reduces the set of InSAR observations to a set of almost uncorrelated observations at various spatial scales using wavelets. Traditional inversion techniques can then be applied to the wavelet coefficients more effectively. Creep across the Central San Andreas Fault and the Hayward Fault has been studied previously using C-band (6 cm wavelength) ERS data, but detailed analysis of the transition zone between the San Andreas and Hayward Faults was not possible due to severe decorrelation. Improved coherence at L-band (24 cm wavelength) significantly improves the spatial coverage of the estimated deformation signal in our ALOS PALSAR data set. We analyze 450 ALOS PALSAR interferograms processed using 175 SAR images acquired between Dec 2006 and Dec 2010 that cover the area along the San Andreas Fault System from Richmond in the San Francisco Bay Area to Maricopa in the San Joaquin Valley.We invert the InSAR phase observations to estimate the constant Line-of-Sight (LOS) deformation

  18. Assessment of SAR and thermal changes near a cochlear implant system for mobile phone type exposures.

    PubMed

    McIntosh, Robert L; Iskra, Steve; McKenzie, Raymond J; Chambers, John; Metzenthen, Bill; Anderson, Vitas

    2008-01-01

    A cochlear implant system is a device used to enable hearing in people with severe hearing loss and consists of an internal implant and external speech processor. This study considers the effect of scattered radiofrequency fields when these persons are subject to mobile phone type exposure. A worst-case scenario is considered where the antenna is operating at nominal full power, the speech processor is situated behind the ear using a metallic hook, and the antenna is adjacent to the hook and the internal ball electrode. The resultant energy deposition and thermal changes were determined through numerical modelling. With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which occurred in the vicinity of the hook and the ball electrode. The maximum temperature increase was 0.33 degrees C in skin adjacent to the hook. For the 1800 MHz antenna, operating at 125 mW, the maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum temperature change was 0.16 degrees C. The analysis predicts that the wearer complies with the radiofrequency safety limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no cause for concern. The resultant temperature increase is well below the maximum rise of 1 degrees C recommended by ICNIRP. Effects in the cochlea were insignificant. PMID:17902159

  19. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  20. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  1. Sparsity-driven autofocus for multipass SAR tomography

    NASA Astrophysics Data System (ADS)

    Muirhead, F.; Mulgrew, B.; Woodhouse, I. H.; Greig, D.

    2015-10-01

    Synthetic aperture radar (SAR) systems produce high resolution, two dimensional imaging of areas of environmental interest. SAR interferometry and tomography enables these techniques to extend to three dimensional imaging by exploiting multiple SAR images with diversity in space and time. These techniques require accurate phase information over multiple images as the data is extremely sensitive to deviations from the reference track, therefore to enable interferometry and tomography an accurate autofocus solution is required. This paper investigates phase errors resulting from navigational uncertainties in multipass spotlight SAR imaging and uses techniques from the field of compressive sensing to achieve an autofocus solution. The proposed algorithm builds on previous autofocus work by expanding it to the multipass case and jointly recovers phase errors for all images simultaneously, making it extremely useful for interferometry and tomography techniques. The algorithm described uses pixels that are stable in all SAR images to gain an autofocus solution as these are the pixels that are the focus for analysis using tomography. This is unlike conventional autofocus, which just works on an image-by-image basis. The tools of compressive sensing can be used to concurrently select pixels for bright image elements that are stable and coherent over all images, as these pixels are sparse in the image domain, and calculate the phase errors present in each pass. Using the multipass data after autofocus, height distributions for scatterers in single pixels are determined for simulated forest scenes at X-band. The performance of the autofocus algorithm is examined through numerical simulations and is also applied to real data collected from Selex ES's airborne, X-band, experimental SAR system. The experimental results demonstrate that the algorithm effectively achieves an autofocus solution. By finding the vertical distribution of two scatterers in a single pixel over

  2. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  3. Development of a high-altitude airborne dial system: The Lidar Atmospheric Sensing Experiment (LASE)

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Vaughan, W. R.; Hall, W. M.; Degnan, J. J.; Averill, R. D.; Wells, J. G.; Hinton, D. E.; Goad, J. H.

    1986-01-01

    The ability of a Differential Absorption Lidar (DIAL) system to measure vertical profiles of H2O in the lower atmosphere was demonstrated both in ground-based and airborne experiments. In these experiments, tunable lasers were used that required real-time experimenter control to locate and lock onto the atmospheric H2O absorption line for the DIAL measurements. The Lidar Atmospheric Sensing Experiment (LASE) is the first step in a long-range effort to develop and demonstrate an autonomous DIAL system for airborne and spaceborne flight experiments. The LASE instrument is being developed to measure H2O, aerosol, and cloud profiles from a high-altitude ER-2 (extended range U-2) aircraft. The science of the LASE program, the LASE system design, and the expected measurement capability of the system are discussed.

  4. How far SAR has fulfilled its expectation for soil moisture retrieval

    NASA Astrophysics Data System (ADS)

    Srivastava, Hari Shanker; Patel, Parul; Navalgund, Ranganath R.

    2006-12-01

    Microwave remote sensing is one of the most promising tools for soil moisture estimation owing to its high sensitivity to dielectric properties of the target. Many ground-based scatterometer experiments were carried out for exploring this potential. After the launch of ERS-1, expectation was generated to operationally retrieve large area soil moisture information. However, along with its strong sensitivity to soil moisture, SAR is also sensitive to other parameters like surface roughness, crop cover and soil texture. Single channel SAR was found to be inadequate to resolve the effects of these parameters. Low and high incidence angle RADARSAT-1 SAR was exploited for resolving these effects and incorporating the effects of surface roughness and crop cover in the soil moisture retrieval models. Since the moisture and roughness should remain unchanged between low and high angle SAR acquisition, the gap period between the two acquisitions should be minimum. However, for RADARSAT-1 the gap is typically of the order of 3 days. To overcome this difficulty, simultaneously acquired ENVISAT-1 ASAR HH/VV and VV/VH data was studied for operational soil moisture estimation. Cross-polarised SAR data has been exploited for its sensitivity to vegetation for crop-covered fields where as co-pol ratio has been used to incorporate surface roughness for the case of bare soil. Although there has not been any multi-frequency SAR system onboard a satellite platform, efforts have also been made to understand soil moisture sensitivity and penetration capability at different frequencies using SIR-C/X-SAR and multi-parametric Airborne SAR data. This paper describes multi-incidence angle, multi-polarised and multi-frequency SAR approaches for soil moisture retrieval over large agricultural area.

  5. Forest height estimation in a tropical forest context from PolInSAR measurements: Illustration from the TropiSAR campaign in French Guyana

    NASA Astrophysics Data System (ADS)

    Dubois-Fernandez, P.; Le Toan, T.; Chave, J.; Blanc, L.; Daniel, S.; Davidson, M.

    2010-12-01

    The BIOMASS mission was retained in January 2009 as one of the three candidates for the next Earth Explorer Core mission to go to phase A. BIOMASS main objective is to provide information on the carbon sinks and sources in the forests globally, which will be of essential value for climate modelling and policy adaptation, e.g. REDD. Up to now, biomass retrieval algorithms have been developed and validated for the range of biomass up to 300 t/ha. The methods are based on combining SAR intensity and SAR Polarimetric interferometry (PolInSAR) which provide respectively estimates of biomass and canopy height. The remaining questions concern the overall performance of the retrieval algorithms in tropical forests characterized by high biomass density (> 300 t/ha) and complex structure. The TropiSAR experiment in French Guyana was proposed to provide feedbacks on the performances of a P-band SAR to measure biomass and canopy height of a tropical forest with higher biomass density. Characterising tropical forests is essential as it represents a large component of the terrestrial carbon pool and the carbon sources. Specifically, TropiSAR was designed to provide measurements of temporal coherence at P-band over tropical forests for time intervals compatible with space-borne missions (typically 20-30 days), to assess performances of methods transforming P-Band SAR intensity and interferometric measurements into forest biomass and forest height. The SAR system is the ONERA airborne system SETHI that flew in French Guyana in August 2009. This paper presents the first results from this analysis. The temporal coherence at P-band over tropical forests is observed to remain high even after 22 days, a time interval period compatible with typical SAR orbit cycle. The vegetation height map estimated from Polarimetric interferometry is shown to be in good agreement with Lidar measured heights and the in-situ measurements in the study area. The PolInSAR derived height captures the main

  6. Reducing airborne pathogens and dust in commercial hatching cabinets with an electrostatic space charge system.

    PubMed

    Mitchell, B W; Waltman, W D

    2003-01-01

    Commercial hatcheries typically infuse hydrogen peroxide or formaldehyde gas into hatching cabinets to reduce airborne pathogens that may lead to disease transmission during the hatch. A nonchemical option, an electrostatic space charge system (ESCS), was customized for full-sized commercial hatching cabinets and was tested extensively in broiler hatcheries. The ESCS cleans air by transferring a strong negative electrostatic charge to dust and microorganisms that are aerosolized during the hatch and collecting the charged particles on grounded plates or surfaces. In studies with three poultry companies, the ESCS resulted in significant (P < 0.0001) reductions of airborne dust of 77%-79%, in Enterobacteriaceae and fungus levels not significantly different (P > or = 0.05) from those with formaldehyde, and in 93%-96% lower Enterobacteriaceae than with no treatment or with hydrogen peroxide treatment (P < 0.01). The ESCS significantly (P < 0.05) reduced airborne Salmonella by 33%-83% compared with no treatment or hydrogen peroxide treatment. Results of this study suggest that the ESCS is a viable alternative to chemical treatment for reducing airborne pathogens in full-sized commercial hatchers, and it also provides dust control and containment, which should be helpful in reducing cross contamination and loading of ventilation ducts within different areas of the hatchery. PMID:12887184

  7. Can airborne fungal allergens pass through an air-conditioning system. [Aspergillus fumigatus

    SciTech Connect

    Elixmann, J.H. ); Linskens, H.F.; Schata, M.; Jorde, W. )

    1989-01-01

    Fungal spores, an important fraction of aeroplankton particles, can be filtered in an air-conditioning system, resulting in a drastic reduction of the spore count in the air-conditioned rooms. Nevertheless, using the EISA inhibition test against Aspergillus fumigatus, it was found that air samples from air-conditioned rooms show inhibition of the serum activity of a highly sensitized patient. There is evidence that airborne allergens can pass both coarse and fine filters of an air-conditioning system.

  8. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  9. Design Of A Geosynchronous SAR System For Water-Vapour Maps And Deformation Estimation

    NASA Astrophysics Data System (ADS)

    Guarnieri, Andrea Monti; Perletta, Luca; Rocca, Fabio; Scapin, Diego; Tebaldini, Stefano; Broquetas, Antoni; Ruiz, Josep

    2012-01-01

    In this paper, we propose a geosynchronous SAR concept that makes use of dual frequencies to achieve WIDE and SPOT coverage, aiming at continuous monitoring of deformation and generation of water vapour maps at high space-temporal resolution.

  10. SARS Basics

    MedlinePlus

    ... waiting room or office. Top of Page CDC’s response to SARS during the 2003 outbreak CDC worked ... Center to provide round-the-clock coordination and response. Committed more than 800 medical experts and support ...

  11. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  12. Development of VHF CARABAS II SAR

    NASA Astrophysics Data System (ADS)

    Hellsten, Hans; Ulander, Lars M.; Gustavsson, Anders; Larsson, Bjoern

    1996-06-01

    There is an increasing interest in imaging radar systems operating at low frequencies. Examples of military and civilian applications are detection of stealth-designed man- made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. The developed CARABAS technology is a contribution to this field of low frequency SAR imagery. The used wavelengths offer a potential of penetration below the upper scattering layer in combination with high spatial resolution. The first prototype of the system (CARABAS I) has been tested in environments ranging from rain forests to deserts, collecting a considerably amount of data often in parallel with other SAR sensors. The work on data analysis proceeds and results obtained so far seem promising, especially for application in forested regions. The experiences gained are used in the development of a new upgraded system (CARABAS II), which is near completion and initial airborne radar tests for system verifications followed by some major field campaign are scheduled to take place during 1996. This paper will summarize the CARABAS I system characteristics and system performance evaluation. The major imperfections discovered in the radar functioning will be identified, and we explain some of the modification made in the system design for CARABAS II. A new algorithm for future real-time CARABAS data processing has been derived, with a structure well-suited for a multi-processor environment. Motion compensation and radio frequency interference mitigation are both included in this scheme. Some comments on low frequency SAR operation at UHF-based versus VHF-band will be given.

  13. Lightweight SAR GMTI radar technology development

    NASA Astrophysics Data System (ADS)

    Kirk, John C.; Lin, Kai; Gray, Andrew; Hseih, Chung; Darden, Scott; Kwong, Winston; Majumder, Uttam; Scarborough, Steven

    2013-05-01

    A small and lightweight dual-channel radar has been developed for SAR data collections. Using standard Displaced Phase Center Antenna (DPCA) radar digital signal processing, SAR GMTI images have been obtained. The prototype radar weighs 5-lbs and has demonstrated the extraction of ground moving targets (GMTs) embedded in high-resolution SAR imagery data. Heretofore this type of capability has been reserved for much larger systems such as the JSTARS. Previously, small lightweight SARs featured only a single channel and only displayed SAR imagery. Now, with the advent of this new capability, SAR GMTI performance is now possible for small UAV class radars.

  14. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  15. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  16. Ultrawideband VHF SAR design and measurements

    NASA Astrophysics Data System (ADS)

    Hellsten, Hans; Froelind, Per-Olov; Gustafsson, Anders; Jonsson, T.; Larsson, Bjoern; Stenstroem, Gunnar; Binder, Bradley T.; Mirkin, Mitchell I.; Ayasli, Serpil

    1994-07-01

    CARABAS, an acronym for `coherent all radio band sensing,' is an airborne, horizontal-polarization SAR operating across the frequency band 20 to 90 MHz, conceived, designed and built by FOA in Sweden. The original motivation for designing such a low frequency system was that a large relative or fractional bandwidth could be achieved at low frequencies. For reasons to be explained, a large fractional bandwidth was considered to be of potential benefit for radar detection in severe clutter environments. A feasibility study of a short wave ultra-wideband radar started at FOA in 1985. Actual construction of the CARABAS system commenced 1987, aircraft integration took place during 1991 and the first radar tests were conducted in early 1992. From the fall of 1992 onwards, field campaigns and evaluation studies have been conducted as a joint effort between FOA and MIT Lincoln Laboratory in the US. This article will focus on experiences concerning foliage penetration with the system. First we touch upon the CARABAS system characteristics, outline the arguments behind a large fractional bandwidth VHF-band SAR approach to foliage penetration, and finally present some early experimental results. We refer to other papers for a fuller explanation of the system, for more details of image calibration, and for results concerning underground imaging.

  17. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  18. Introduction to an airborne remote sensing system equipped onboard the Chinese marine surveillance plane

    NASA Astrophysics Data System (ADS)

    Gong, Fang; Wang, Difeng; Pan, Delu; Hao, Zengzhou

    2008-10-01

    The airborne remote sensing system onboard the Chinese Marine Surveillance Plane have three scanners including marine airborne multi-spectrum scanner(MAMS), airborne hyper spectral system(AISA+) and optical-electric platform(MOP) currently. MAMS is developed by Shanghai Institute of Technology and Physics CAS with 11 bands from ultraviolet to infrared and mainly used for inversion of oceanic main factors and pollution information, like chlorophyll, sea surface temperature, red tide, etc. The AISA+ made by Finnish Specim company is a push broom system, consist of a high spectrum scanner head, a miniature GPS/INS sensor and data collecting PC. It is a kind of aviation imaging spectrometer and has the ability of ground target imaging and measuring target spectrum characteristic. The MOP mainly supports for object watching, recording and track. It mainly includes 3 equipments: digital CCD with Sony-DXC390, CANON EOS film camera and digital camera Sony F717. This paper mainly introduces these three remote sensing instruments as well as the ground processing information system, involving the system's hardware and software design, related algorithm research, etc.

  19. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  20. A study on the calibration of pitch-angle deviation for airborne lidar system

    NASA Astrophysics Data System (ADS)

    Jiang, Lixing; Hao, Xiangyang; Zhang, Weiqiang

    2013-05-01

    Airborne Lidar measurement technology, as an efficient way of acquiring three-dimensional geographic information, plays an important role in building DSM and DEM rapidly. Because the airborne Lidar measurement system usually integrates multiple devices including GPS receiver, INS, laser rangefinder and CCD camera, the relative geometric position and attitude relationships among these devices must be accurately measured in order to get the points with high precision and thereby satisfy the accuracy requirements of produced DSM and DEM. It is proved that the misalignment of airborne Lidar system, which is represented by angle deviations of yaw, pitch and roll, is the most significant source of systematic error in airborne Lidar measurement. In this paper, the effect of pitch angle error on the 3D coordinates of measured point is firstly analyzed. On this basis, a calibration method of the pitch angle deviation for airborne Lidar system by using the geometric characteristics of spire houses is put forward. The proposed pitch angle deviation calibration method consists of four key steps: (1) Initial pitch angle calculation. In the light of the offset distance between the ridge lines of the same house acquired by airborne Lidar system flying in opposite directions, an initial pitch angle deviation can be calculated. After separating the effect of pitch angle deviation, the rectified laser point cloud data are obtained. (2) Roof plane equation determination. The plane equations of both roof slopes are determined by fitting algorithms with the 3D coordinates of points located in the same spire roof. (3) Distance standard error calculation. The distance of each point to the roof plane is computed and applied to the calculation of distance standard error. (4) Final pitch angle deviation calculation. Taking the distance standard error as the overlapping criterion, the pitch angle deviation correction is iteratively calculated according to the aforesaid procedure until the

  1. SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.

  2. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  3. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  4. SAR Imagery Applied to the Monitoring of Hyper-Saline Deposits: Death Valley Example (CA)

    NASA Technical Reports Server (NTRS)

    Lasne, Yannick; Paillou, Philippe; Freeman, Anthony; Chapman, Bruce

    2009-01-01

    The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.

  5. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  6. Utilization of an Airborne Plant Chlorophyll Imaging System for Detection of Septic System Malfunction

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Carter, Gregory A.

    2001-01-01

    Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.

  7. Design, calibration, and application of an airborne gamma spectrometer system in Switzerland

    SciTech Connect

    Schwarz, G.F.; Rybach, L.; Klingele, E.E.

    1997-09-01

    Airborne radiometric surveys are finding increasingly wider application in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack-mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma-ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power-plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose-rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Goesgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.

  8. Determining Airborne Concentrations of Spatial Repellent Chemicals in Mosquito Behavior Assay Systems

    PubMed Central

    Martin, Nicholas J.; Smith, Philip A.; Achee, Nicole L.; DeLong, Gerald T.

    2013-01-01

    Background Mosquito behavior assays have been used to evaluate the efficacy of vector control interventions to include spatial repellents (SR). Current analytical methods are not optimized to determine short duration concentrations of SR active ingredients (AI) in air spaces during entomological evaluations. The aim of this study was to expand on our previous research to further validate a novel air sampling method to detect and quantitate airborne concentrations of a SR under laboratory and field conditions. Methodology/Principal Findings A thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) method was used to determine the amount of dichlorodiphenyltrichloroethane (DDT) in samples of air. During laboratory experiments, 1 L volumes of air were collected over 10 min intervals from a three-chamber mosquito behavior assay system. Significantly higher levels of airborne DDT were measured in the chamber containing textiles treated with DDT compared to chambers free of AI. In the field, 57 samples of air were collected from experimental huts with and without DDT for onsite analysis. Airborne DDT was detected in samples collected from treated huts. The mean DDT air concentrations in these two huts over a period of four days with variable ambient temperature were 0.74 µg/m3 (n = 17; SD = 0.45) and 1.42 µg/m3 (n = 30; SD = 0.96). Conclusions/Significance The results from laboratory experiments confirmed that significantly different DDT exposure conditions existed in the three-chamber system establishing a chemical gradient to evaluate mosquito deterrency. The TD GC-MS method addresses a need to measure short-term (<1 h) SR concentrations in small volume (<100 L) samples of air and should be considered for standard evaluation of airborne AI levels in mosquito behavior assay systems. Future studies include the use of TD GC-MS to measure other semi-volatile vector control compounds. PMID:24015195

  9. The development of an airborne information management system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, Glenn

    1992-01-01

    An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.

  10. Gross-merchantable timber volume estimation using an airborne lidar system

    NASA Technical Reports Server (NTRS)

    Maclean, G. A.; Krabill, W. B.

    1986-01-01

    A preliminary study to determine the utility of an airborne laser as a tool for use by forest managers to estimate gross-merchantable timber volume was conducted near the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Wallops Flight Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) system. Measured timber volume was regressed against the cross-sectional area of an AOL-generated profile of forest at the same location. The AOL profile area was found to be a very significant variable in the estimation of gross-merchantable timber volume. Significant improvements were obtained when the data were stratified by species. The overall R-squared value obtained was 0.921 with the regression significant at the one percent level.

  11. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.

    1990-01-01

    Ways in which computers can aid the decision making of an human operator of an aerospace system are investigated. The approach taken is to aid rather than replace the human operator, because operational experience has shown that humans can enhance the effectiveness of systems. As systems become more automated, the role of the operator has shifted to that of a manager and problem solver. This shift has created the research area of how to aid the human in this role. Published research in four areas is described. A discussion is presented of the DC-8 flight simulator at Georgia Tech.

  12. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel

    1995-01-01

    The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.

  13. Concept of Operations for Real-time Airborne Management System

    SciTech Connect

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  14. Progress towards SAR based ecosystem analysis

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing

    1991-01-01

    Recent progress towards a synthetic aperture radar (SAR) based system for determining forest ecosystem attributes is discussed. Our SAR data processing and analysis sequence, from calibration through classification, is described. In addition, the usefulness of SAR image data for identifying ecosystem classes is discussed.

  15. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  16. Low Gravity Guidance System for Airborne Microgravity Research

    NASA Technical Reports Server (NTRS)

    Rieke, W. J.; Emery, E. F.; Boyer, E. O.; Hegedus, C.; ODonoghue, D. P.

    1996-01-01

    Microgravity research techniques have been established to achieve a greater understanding of the role of gravity in the fundamentals of a variety of physical phenomena and material processing. One technique in use at the NASA Lewis Research Center involves flying Keplarian trajectories with a modified Lear Jet and DC-9 aircraft to achieve a highly accurate Microgravity environment by neutralizing accelerations in all three axis of the aircraft. The Low Gravity Guidance System (LGGS) assists the pilot and copilot in flying the trajectories by displaying the aircraft acceleration data in a graphical display format. The Low Gravity Guidance System is a microprocessor based system that acquires and displays the aircraft acceleration information. This information is presented using an electroluminescent display mounted over the pilot's instrument panel. The pilot can select the Microgravity range that is required for a given research event. This paper describes the characteristics, design, calibration and testing of the Low Gravity Guidance System Phase 3, significant lessons from earlier systems and the developmental work on future systems.

  17. History of SAR at Lockheed Martin (previously Goodyear Aerospace)

    NASA Astrophysics Data System (ADS)

    Lasswell, Stephen W.

    2005-05-01

    Synthetic Aperture Radar (SAR) was invented by Carl Wiley at Goodyear Aircraft Company in Goodyear, Arizona, in 1951. From that time forward, as the company became Goodyear Aerospace Corporation, Loral Corporation, and finally Lockheed Martin Corporation, the Arizona employees past and present played a long and storied role in numerous SAR firsts. These include the original SAR patent (known as Simultaneous Doppler Buildup), the first demonstration SAR and flight test, the first operational SAR system, the first operational SAR data link, the first 5-foot resolution operational SAR system, the first 1-foot resolution SAR system, and the first large scale SAR digital processor. The company has installed and flown over five hundred SAR systems on more than thirty different types of aircraft for numerous countries throughout the world. The company designed and produced all of the evolving high performance SAR systems for the U. S. Air Force SR-71 "Blackbird" spy plane throughout its entire operational history, spanning some twenty-nine years. Recent SAR accomplishments include long-range standoff high performance SAR systems, smaller high resolution podded SAR systems for fighter aircraft, and foliage penetration (FOPEN) SAR. The company is currently developing the high performance SAR/MTI (Moving Target Indication) radar for the Army Aerial Common Sensor (ACS) system.

  18. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  19. Microfluidics-based integrated airborne pathogen detection systems

    NASA Astrophysics Data System (ADS)

    Northrup, M. Allen; Alleman-Sposito, Jennifer; Austin, Todd; Devitt, Amy; Fong, Donna; Lin, Phil; Nakao, Brian; Pourahmadi, Farzad; Vinas, Mary; Yuan, Bob

    2006-09-01

    Microfluidic Systems is focused on building microfluidic platforms that interface front-end mesofluidics to handle real world sample volumes for optimal sensitivity coupled to microfluidic circuitry to process small liquid volumes for complex reagent metering, mixing, and biochemical analysis, particularly for pathogens. MFSI is the prime contractor on two programs for the US Department of Homeland Security: BAND (Bioagent Autonomous Networked Detector) and IBADS (Instantaneous Bio-Aerosol Detection System). The goal of BAND is to develop an autonomous system for monitoring the air for known biological agents. This consists of air collection, sample lysis, sample purification, detection of DNA, RNA, and toxins, and a networked interface to report the results. For IBADS, MFSI is developing the confirmatory device which must verify the presence of a pathogen with 5 minutes of an air collector/trigger sounding an alarm. Instrument designs and biological assay results from both BAND and IBADS will be presented.

  20. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  1. Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection

    NASA Astrophysics Data System (ADS)

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent

    2016-06-01

    An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.

  2. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.

    1983-01-01

    The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.

  3. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  4. ATLAS: an airborne active linescan system for high-resolution topographic mapping

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Kightley, Peter J.; Mole, S. G.; Pearson, Guy N.; Pearson, P.; Coffey, Adrian S.; Stokes, Tim J.; Tapster, Paul R.; Westwood, M.

    2004-12-01

    High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.

  5. Development of the Advance Warning Airborne System(AWAS)

    NASA Technical Reports Server (NTRS)

    Adamson, H. Patrick

    1992-01-01

    The thermal characteristics of microbursts are utilized by the AWAS IR and OAT features to provide predictive warning of hazardous microbursts ahead of the aircraft during landing or take off. The AWAS was evaluated satisfactorily in 1990 on a Cessna Citation that was intentionally flown into a number of wind shear events. The events were detected, and both the IR and OAT thermal features were shown to be effective. In 1991, AWAS units were flown on three American Airline MD-80's and three Northwest Airlines DC-9's to study and to decrease the nuisance alert response of the system. The AWAS was also flown on the NASA B737 during the summer of 1991. The results of these flights were inconclusive and disappointing. The results were not as promising as before because NASA conducted research flights which were outside of the normal operating envelope for which the AWAS is designed to operate. In an attempt to compensate for these differences in airspeed and mounting location, the automatic features of the system were sometimes overridden by NASA personnel during the flight. Each of these critical factors is discussed in detail. The effect of rain on the OAT signals is presented as a function of the air speed. Use of a 4 pole 1/20 Hertz filter is demonstrated by both the IR and thermal data. Participation in the NASA 1992 program was discussed. FAA direction in the continuing Certification program requires the addition of a reactive feature to the AWAS predictive system. This combined system will not require flight guidance on newer aircraft. The features of AWAS-IV, with the NASA algorithm included, were presented. Expected completion of the FAA Certification plan was also described.

  6. Airborne Antenna System for Minimum-Cycle-Slip GPS Reception

    NASA Technical Reports Server (NTRS)

    Wright, C. Wayne

    2009-01-01

    A system that includes a Global Positioning System (GPS) antenna and associated apparatus for keeping the antenna aimed upward has been developed for use aboard a remote-sensing-survey airplane. The purpose served by the system is to enable minimum- cycle-slip reception of GPS signals used in precise computation of the trajectory of the airplane, without having to restrict the airplane to maneuvers that increase the flight time needed to perform a survey. Cycle slip signifies loss of continuous track of the phase of a signal. Minimum-cycle-slip reception is desirable because maintaining constant track of the phase of the carrier signal from each available GPS satellite is necessary for surveying to centimeter or subcentimeter precision. Even a loss of signal for as short a time as a nanosecond can cause cycle slip. Cycle slips degrade the quality and precision of survey data acquired during a flight. The two principal causes of cycle slip are weakness of signals and multipath propagation. Heretofore, it has been standard practice to mount a GPS antenna rigidly on top of an airplane, and the radiation pattern of the antenna is typically hemispherical, so that all GPS satellites above the horizon are viewed by the antenna during level flight. When the airplane must be banked for a turn or other maneuver, the reception hemisphere becomes correspondingly tilted; hence, the antenna no longer views satellites that may still be above the Earth horizon but are now below the equatorial plane of the tilted reception hemisphere. Moreover, part of the reception hemisphere (typically, on the inside of a turn) becomes pointed toward ground, with a consequent increase in received noise and, therefore, degradation of GPS measurements. To minimize the likelihood of loss of signal and cycle slip, bank angles of remote-sensing survey airplanes have generally been limited to 10 or less, resulting in skidding or slipping uncoordinated turns. An airplane must be banked in order to make

  7. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  8. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay

    1987-01-01

    The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.

  9. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  10. An Improved Platform Levelling System for Airborne Gravity Meters.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2014-12-01

    Recent advances in sensor technology have enabled Lacoste and Romberg type relative gravity meters to improve in accuracy to the point where other non-sensor related sources of error serve to limit the overall accuracy of the system. One of these sources of error is derived from the inability of the platform, in which the sensor is mounted, to keep the sensor perfectly level during survey flight. Off level errors occur when the aircraft is unable to maintain straight and level flight along a survey line. The levelling platform of a typical Lacoste and Romberg type dynamic gravity meter utilizes a complex feedback loop involving both accelerometers and gyroscopes with an output connected to torque motors mounted to the platform to sense an off level situation and correct for it. The current system is limited by an inability of the platform to distinguish between an acceleration of the platform due to a change in heading, altitude or speed of the aircraft and a true change in the local gravity vertical. Both of these situations cause the platform to tilt in reponse however the aircraft acceleration creates an error in the gravity measurement. These off level errors can be corrected for to a limited degree depending on the algorithm used and the size and duration of the causal acceleration. High precision GPS now provides accurate real time position information which can be used to determine if an accleration is a real level change or due to an anomalous acceleration. The correct implementation of the GPS position can significantly improve the accuracy of the platform levelling including keeping the platform level during course reversals or drape flying during a survey. This can typically improve the quality of the gravity data before any processing corrections. The enhanced platform also reduces the time taken to stabilize the platform at the beginning of a survey line therefore improving the efficiency of the data collection. This paper discusses the method and

  11. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  12. Artificial Immune System Approach for Airborne Vehicle Maneuvering

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor)

    2014-01-01

    A method and system for control of a first aircraft relative to a second aircraft. A desired location and desired orientation are estimated for the first aircraft, relative to the second aircraft, at a subsequent time, t=t2, subsequent to the present time, t=t1, where the second aircraft continues its present velocity during a subsequent time interval, t1.ltoreq.t.ltoreq.t2, or takes evasive action. Action command sequences are examined, and an optimal sequence is chosen to bring the first aircraft to the desired location and desired orientation relative to the second aircraft at time t=t2. The method applies to control of combat aircraft and/or of aircraft in a congested airspace.

  13. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  14. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1986-01-01

    KAOS (Kuiper Airborne Observatory Scheduler) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  15. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  16. System for rapid detection of antibiotic resistance of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Noiseux, I.; Mouslinkina, L.; Vernon, M. L.; Laflamme, C.; Filion, G.; Duchaine, C.; Ho, J.

    2009-05-01

    This project uses function-based detection via a fundamental understanding of the genetic markers of AR to distinguish harmful organisms from innocuous ones. This approach circumvents complex analyses to unravel the taxonomic details of 1399 pathogen species, enormously simplifying detection requirements. Laval Hospital's fast permeabilization strategy enables AR revelation in <1hr. Packaging the AR protocols in liquid-processing cartridges and coupling these to our in-house miniature fiber optic flow cell (FOFC) provides first responders with timely information on-site. INO's FOFC platform consists of a specialty optical fiber through which a hole is transversally bored by laser micromachining. The analyte solution is injected into the hole of the fiber and the particles are detected and counted. The advantage with respect to classic free space FC is that alignment occurs in the fabrication process only and complex excitation and collection optics are replaced by optical fibers. Moreover, we use a sheathless configuration which has the advantage of increase the portability of the system, to reduce excess biohazard material and the need for weekly maintenance. In this paper we present the principle of our FOFC along with a, demonstration of the basic capability of the platform for detection of bacillus cereus spores using permeabilized staining.

  17. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  18. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.

    PubMed

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L; Elihn, Karine

    2016-10-01

    The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air-liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm(-2) ) at cell-free conditions following 2 h exposure was observed for the highest flow rate (390 ml min(-1) ) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm(-2) ) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:26935862

  19. Concentration and characterization of airborne particles in Tehran's subway system.

    PubMed

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations. PMID:24573466

  20. Development of an Airborne System for Direct Validation of Regional Carbon Flux Estimates

    NASA Astrophysics Data System (ADS)

    Wolfe, G.; Kawa, S. R.; Hanisco, T. F.; Newman, P. A.

    2015-12-01

    Global distributions of greenhouse gas (GHG) sources and sinks, principally CO2 and CH4, and characterization of the processes that control them, comprise a key uncertainty in projections of future climate. A broad spectrum of tools is currently used to characterize these processes. Top-down inversions of orbital GHG column observations (e.g. ACOS/GOSAT and OCO-2) provide a global perspective, but little information is available to validate these estimates. Indirect (boundary-layer budget) or direct (tower-based eddy covariance) surface flux measurements can provide bottom-up constraints, but the former is typically focused on large point and area emission sources while the latter relies on sparse networks with limited spatial coverage. Aircraft are an ideal platform to bridge the flux representation scale from kilometers (as measured from towers) to the tens or hundreds of kilometers relevant to satellite observations and global models. In light of current measurement gaps and the emerging need for direct validation of GHG surface flux estimates, NASA is developing a sophisticated facility for airborne eddy covariance observations of carbon dioxide, methane, water vapor and other trace gases. Three components comprise the core measurement system: i) the NASA Wallops Sherpa, which is ideal for airborne eddy covariance due to its substantial payload and the ability to fly low and slow, ii) commercial GHG sensors optimized for airborne flux measurements, and iii) a custom gust-probe system for high-fidelity measurements of vertical wind velocity. These systems will be discussed in detail, along with future plans for deployment and application of measurements to improving GHG flux estimates on local, regional and global scales.

  1. An Integrated Data Acquisition / User Request/ Processing / Delivery System for Airborne Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chapman, B.; Chu, A.; Tung, W.

    2003-12-01

    Airborne science data has historically played an important role in the development of the scientific underpinnings for spaceborne missions. When the science community determines the need for new types of spaceborne measurements, airborne campaigns are often crucial in risk mitigation for these future missions. However, full exploitation of the acquired data may be difficult due to its experimental and transitory nature. Externally to the project, most problematic (in particular, for those not involved in requesting the data acquisitions) may be the difficulty in searching for, requesting, and receiving the data, or even knowing the data exist. This can result in a rather small, insular community of users for these data sets. Internally, the difficulty for the project is in maintaining a robust processing and archival system during periods of changing mission priorities and evolving technologies. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) has acquired data for a large and varied community of scientists and engineers for 15 years. AIRSAR is presently supporting current NASA Earth Science Enterprise experiments, such as the Soil Moisture EXperiment (SMEX) and the Cold Land Processes experiment (CLPX), as well as experiments conducted as many as 10 years ago. During that time, it's processing, data ordering, and data delivery system has undergone evolutionary change as the cost and capability of resources has improved. AIRSAR now has a fully integrated data acquisition/user request/processing/delivery system through which most components of the data fulfillment process communicate via shared information within a database. The integration of these functions has reduced errors and increased throughput of processed data to customers.

  2. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  3. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  4. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  5. Recent advances in the applications of pulsed lasers in the hydrosphere. [considering airborne bathymetry system

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.

    1975-01-01

    Laboratory and field measurements have been performed on the transmission/scattering characteristics of a pulsed neon laser as a function of water turbidity. These results have been used to establish the criteria for an airborne laser bathymetry system. Extensive measurements have been made of laser induced fluorescence using a pulsed tunable dye laser. Feasibility has been demonstrated for remote detection and possible identification of various types of algae and oils. Similar measurements made on a wide variety of organic dyes have shown this technique to have applications in remote measurements of subsurface currents, temperature and salinity.

  6. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants.

    PubMed

    Sánchez-Monedero, M A; Aguilar, M I; Fenoll, R; Roig, A

    2008-08-01

    Six different wastewater treatment plants were monitored in order to identify the main bioaerosol sources and to evaluate the effect of the aeration system used in the biological treatment (air diffusion, horizontal rotors and surface turbine aerators) on the airborne microorganism levels to which workers may be exposed. Air samples were collected by using a single stage impactor. Total count of mesophilic bacteria was used as the monitoring parameter to compare the impact of the aeration system on generic bacterial bioaerosols rather than a quantitative estimation for pathogens or fecal indicator microbes. In this study, pre-treatment, biological treatment and sludge thickening were the processes that generated the highest amount of bioaerosols. Aeration systems involving mechanical agitation of the wastewater, such as horizontal rotors and surface turbines, generated a larger amount of bioaerosols (between 450 and 4580CFU/m(3)) than air diffuser aerators (between 22 and 57CFU/m(3)). The levels of airborne bacteria generated by air diffusers were very similar to those registered at the background locations (lower than 50CFU/m(3)), unaffected by the activities taking place in the wastewater treatment plant. The use of air diffusers as an aeration system for the biological treatment would significantly minimise the potential biological hazard that wastewater treatment plant workers may be exposed to. PMID:18662822

  7. Simulation of airborne radar observations of precipitating systems at various frequency bands

    NASA Astrophysics Data System (ADS)

    Louf, Valentin; Pujol, Olivier; Riedi, Jérôme

    2013-05-01

    The choice of the microwave frequency is of considerable importance for precipitating system observations by airborne radar. Currently, these radars operate at X-band (f = 10 GHz), although other frequency bands, may be used jointly or not. Since the measured reflectivity Zm is f-depending, different physical information about precipitating systems could be obtained. Herein, a comparison of reflectivity fields at different frequency bands is presented. A realistic and flexible model of precipitating systems is presented and simulations of airborne radar observations are performed. Simulated reflectivity fields are degraded as/increases because of Mie effects and microwave attenuation. At S, C and X-bands, attenuation is weak and Mie effects slightly increase the backscattered signal such that they can compensate attenuation at X and Ku bands. The Ka and W-bands suffer from a strong attenuation and significant Mie effects which seriously alter Zm-fields. For a squall line, the closer convective tower hides the farther ones, which is problematic for a pilot to estimate hazard at long distance. In addition, because hail is the main meteorological hazard for civil aviation, hail-rain discrimination is discussed and clarified for convective systems. It appears that S, C, and X-bands are the best ones, but the significant size of antenna used is prohibitive. Higher frequencies are more difficult to use on civil aviation due to high ambiguities and a too strongly attenuated microwave signal.

  8. An Airborne Scanning LiDAR System for Ocean and Coastal Applications

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Castel, D.; Melville, W. K.

    2008-12-01

    We have developed an airborne scanning LiDAR (Light Detection And Ranging) system and demonstrated its functionality for terrestrial and oceanographic measurements. Differential GPS (DGPS) and an Inertial Navigation System (INS) are synchronized with the LiDAR, providing end result vertical rms errors of approximately 6~cm. Flying 170~m above the surface, we achieve a point density of ~ 0.7 m-2 and a swath width of 90 to 120~m over ocean and 200~m over land. Georeferencing algorithms were developed in-house and earth-referenced data are available several hours after acquisition. Surveys from the system are compared with ground DGPS surveys and existing airborne surveys of fixed targets. Twelve research flights in a Piper Twin Comanche from August 2007 to July 2008 have provided topography of the Southern California coastline and sea surface wave fields in the nearshore ocean environment. Two of the flights also documented the results of the October 2007 landslide on Mt.~Soledad in La Jolla, California. Eight research flights aboard a Cessna Caravan surveyed the topography, lagoon, reef, and surrounding seas of Lady Elliot Island (LEI) in Australia's Great Barrier Reef in April 2008. We describe applications for the system, including coastal topographic surveys, wave measurements, reef research, and ship wake studies.

  9. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  10. Snow Water Equivalent Retrieval Using Multitemporal COSMO Skymed X-Band SAR Images To Inform Water Systems Operation

    NASA Astrophysics Data System (ADS)

    Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.

    2015-12-01

    In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.

  11. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  12. Simple and robust baseline estimation method for multichannel SAR-GMTI systems

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Yan; Wang, Tong; Ma, Nan

    2016-07-01

    In this paper, the authors propose an approach of estimating the effective baseline for ground moving target indication (GMTI) mode of synthetic aperture radar (SAR), which is different from any previous work. The authors show that the new method leads to a simpler and more robust baseline estimate. This method employs a baseline search operation, where the degree of coherence (DOC) is served as a metric to judge whether the optimum baseline estimate is obtained. The rationale behind this method is that the more accurate the baseline estimate, the higher the coherence of the two channels after co-registering with the estimated baseline value. The merits of the proposed method are twofold: simple to design and robust to the Doppler centroid estimation error. The performance of the proposed method is good. The effectiveness of the method is tested with real SAR data.

  13. An efficient two-objective automatic SAR image segmentation framework using artificial immune system

    NASA Astrophysics Data System (ADS)

    Yang, Dongdong; Niu, Ruican; Fei, Rong; Jiang, Qiaoyong; Li, Hongye; Cao, Zijian

    2015-12-01

    Here, an efficient multi-objective automatic segmentation framework (MASF) is formulated and applied to synthetic aperture radar (SAR) image unsupervised classification. In the framework, three important issues are presented: 1) two reasonable image preprocessing techniques, including spatial filtering and watershed operator, are discussed at the initial stage of the framework; 2)then, an efficient immune multi-objective optimization algorithm with uniform clone, adaptive selection by online nondominated solutions, and dynamic deletion in diversity maintenance is proposed; 3 two very simple, but very efficient conflicting clustering validity indices are incorporated into the framework and simultaneously optimized. Two simulated SAR data and two complicated real images are used to quantitatively validate its effectiveness. In addition, four other state-of-the-art image segmentation methods are employed for comparison.

  14. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  15. An airborne FLIR detection and warning system for low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  16. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming. PMID:19104536

  17. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  18. Imaging of buried and foliage-obscured objects with an ultrawide-bandwidth polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Sheen, Dan R.; Lewis, Terry B.; Wei, Susan C.; Kletzli, D. W., Jr.

    1993-11-01

    The Environmental Research Institute of Michigan (ERIM) has developed a unique ground- based, portable, synthetic aperture radar (SAR). This SAR images targets in their natural backgrounds without the expense of an airborne sensor and with higher performance (bandwidth, resolution) than existing airborne systems. A horizontal 36-foot long aluminum truss supports a rail and an antenna cartridge, which is moved along the rail to allow synthetic aperture focusing. The system is fully-polarimetric and has collected data over the frequency band of 400 - 1300 MHz resulting in a nominal resolution of 0.17 m in range and 0.5 m in cross-range. The low frequency range of the system allows for penetration of soil (to shallow depths) as well as foliage and the system has been used to collect images of buried and foliage- obscured targets. The ground imagery collected to date includes steel oil drums buried at depths of up to one-meter. Both the drums as well as the disturbances due to digging the holes are visible in the imagery. Foliage imagery includes portions of a Lear jet under a mature hardwood forest. Due to the low frequency and wide bandwidth of the sensor (400 - 1300 MHz), obscured objects are clearly visible in the SAR imagery. Other responses in the foliage imagery are due to the dihedral-like ground-trunk reflections.

  19. Light weight airborne imaging spectrometer remote sensing system for mineral exploration in China

    NASA Astrophysics Data System (ADS)

    Wu, Taixia; Zhang, Lifu; Cen, Yi; Wang, Jinnian; Tong, Qingxi

    2014-05-01

    Imaging spectrometers provide the unique combination of both spatially contiguous spectra and spectrally contiguous images of the Earth's surface that allows spatial mapping of these minerals. One of the successful applications of imaging spectrometers remote sensing identified was geological mapping and mineral exploration. A Light weight Airborne Imaging Spectrometer System (LAISS) has been developed in China. The hardware of the compact LAISS include a VNIR imaging spectrometer, a SWIR imaging spectrometer, a high resolution camera and a position and attitude device. The weight of the system is less than 20kg. The VNIR imaging spectrometer measures incoming radiation in 344 contiguous spectral channels in the 400-1000 nm wavelength range with spectral resolution of better than 5 nm and creates images of 464 pixels for a line of targets with a nominal instantaneous field of view (IFOV) of ~1 mrad. The SWIR imaging spectrometer measures incoming radiation in the 1000-2500 nm wavelength range with spectral resolution of better than 10 nm with a nominal instantaneous field of view (IFOV) of ~2 mrad. The 400 to 2500nm spectral range provides abundant information about many important Earth-surface minerals. A ground mineral scan experiment and an UAV carried flying experiment has been done. The experiment results show the LAISS have achieved relative high performance levels in terms of signal to noise ratio and image quality. The potential applications for light weight airborne imaging spectrometer system in mineral exploration are tremendous.

  20. Assessment of a non-dedicated GPS receiver system for precise airborne attitude determination

    SciTech Connect

    Cannon, M.E.; Sun, H.; Owen, T.E.; Meindl, M.A.

    1994-09-01

    The use of a non-dedicated GPS receiver system for attitude determination was assessed in airborne mode through a test conducted at Sandia National Laboratories. Four independent NovAtel GPSCard{trademark} receivers were installed in Sandia`s Twin Engine Otter with two antennas mounted on the fuselage and two on the wing tips at separations of 6 to 18 m. A strapdown INS was also on board the aircraft in order to provide an independent attitude reference at rates between 4 and 10 Hz. During the multi-day test, GPS measurements were recorded between 1 and 10 Hz. Carrier phase measurements were post-processed using a double difference approach developed at The University of Calgary in which integer ambiguities were resolved in seconds using the known antenna separations as constraints. The tracking capability of the system is demonstrated under dynamics consisting of roll and pitch angles up to 45 and 12 degrees, respectively. Comparisons between the GPS and INS attitude angles are presented for two of the test days and show agreement at the several arcminute level. Conclusions are made with respect to system accuracy and performance in an operational airborne environment.

  1. Issues on utility management simulation system for miscellaneous airborne electromechanical devices

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Liu, Qiaozhen; Wang, Zhanlin

    2006-11-01

    UMS for miscellaneous airborne electromechanical devices is the part and parcel of VMS. The object of utility management is airborne electromechanical devices which ensure that air engine, avionics and other systems work in order. This paper works over several items about UMS by introducing advanced simulation and its correlative technologies. Firstly, message transmission software of 1553B bus is designed and the bus characteristics are tested. Also, the problem of time synchronization is solved by testing network delay. Secondly, in order to obtain high performance of distributed process ability, heuristic job dispatching algorithm and hydrodynamic load balancing strategy are adopted, which solve the static job dispatch and dynamic job scheduling respectively. The hydrodynamic load balancing strategy is aiming to fulfill the resources usage in the whole system and accomplishes best resources sharing. Thirdly, this paper establishes and realizes the demo environment for visual simulation of the electromechanical subsystems. Adopting tree-mode during the software design makes the system scalable and reconstruction. As multithreading synchronization is resolved, real-time performance of simulation. is ensured during.

  2. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    SciTech Connect

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection. Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.

  3. Statistical Characterisation of the Maximum Eigenvalue of a Wishart Distribution with Application to Multi-Channel SAR System

    NASA Astrophysics Data System (ADS)

    Erten, E.; Zandoná-Schneider, R.; Reigber, A.

    2009-04-01

    Multi-channel SAR system characterise the target with multicomponent Gaussian circular vector whose number of components m is equal to the number of polarimetric and/or interferometric channels of the system. In the case of the multivariate (multi-channel) Gaussian system, the second order statistics known as covariance matrix contains all the necessary information to characterise the target vector. In this framework, the eigendecomposition of the covariance matrix have demonstrated as a important analysis in the physical parameter estimation and target detection. Especially, the maximum eigenvalue related to the first eigenvector of the covariance matrix is the most interesting parameter in a wide selection of application, i.e. polarimetry, GMTI (ground moving target indication) and interferometric phase filtering. Related to this, the cornerstone study considering the statistical description of the covariance matrix eigendecomposition in polarimetry has been carried out in [1]. However, the majority of the analysis in [1] was performed on the basis of numerical methods. In this paper we support the results of [1] by addressing analytical solutions. Specifically, we derive new exact closed form expressions for Probability Density Function (PDF), for Cumulative Dis tribution Function (CDF) and for the Moment Generating Function (MGF) of the multi channel SAR system covariance matrix maximum eigenvalue, thus enabling the exact evaluation of the performance analysis of the estimation and the detection problem considering the number of averaged samples and different correlation scenario. Our results are analysed by means of simulated data.

  4. Interseismic Crustal Deformation in and around the Atotsugawa Fault System, Central Japan, Detected by InSAR and GNSS

    NASA Astrophysics Data System (ADS)

    Takada, Y.; Sagiya, T.; Nishimura, T.

    2015-12-01

    Interseismic crustal deformation of active faults provides crucial information to understand the stress accumulation process on the fault planes. Recently, the interseismic surface movements are detected with very high spatial resolution using combination of InSAR and GNSS survey. Most of the successful reports, however, addressed the fault creep in less vegetated area which enables C-band SAR interferometry. In this study, we report the interseismic crustal deformation in and around the Atotsugawa fault system, a strike-slip active fault in central Japan. This area is covered with dense vegetation in summer and with heavy snow in winter. We created a series of InSAR images acquired by ALOS/PALSAR and applied SBAS based time-series analysis (Berardino et al., 2002) to extract small deformation. Next, we corrected the long wave-length phase trend by GNSS network maintained by Japanese University Group (e.g, Ohzono et al., 2011) and GSI, Japan. The mean velocity field thus obtained shows a strain concentration zone along the Ushikubi fault, a major strand of the Atotsugawa fault system. The Ushikubi fault is seismically less active than the Atotsugawa fault, but it shows good correlation with a zone of large spatial gradient of Bouguer gravity anomaly. We further discuss on the deformation style at the junction between the Atotsugawa fault and the Hida mountain range (Tateyama volcano). Acknowledgement: The PALSAR level 1.0 data were provided by JAXA via the PALSAR Interferometry Consortium to Study our Evolving Land surface (PIXEL) based on a cooperative research contract between JAXA and the ERI, the University of Tokyo. The PALSAR product is owned by JAXA and METI.

  5. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  6. A pattern recognition system for locating small volvanoes in Magellan SAR images of Venus

    NASA Technical Reports Server (NTRS)

    Burl, M. C.; Fayyad, U. M.; Smyth, P.; Aubele, J. C.; Crumpler, L. S.

    1993-01-01

    The Magellan data set constitutes an example of the large volumes of data that today's instruments can collect, providing more detail of Venus than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations put together. However, data analysis technology has not kept pace with data collection and storage technology. Due to the sheer size of the data, complete and comprehensive scientific analysis of such large volumes of image data is no longer feasible without the use of computational aids. Our progress towards developing a pattern recognition system for aiding in the detection and cataloging of small-scale natural features in large collections of images is reported. Combining classical image processing, machine learning, and a graphical user interface, the detection of the 'small-shield' volcanoes (less than 15km in diameter) that constitute the most abundant visible geologic feature in the more that 30,000 synthetic aperture radar (SAR) images of the surface of Venus are initially targeted. Our eventual goal is to provide a general, trainable tool for locating small-scale features where scientists specify what to look for simply by providing examples and attributes of interest to measure. This contrasts with the traditional approach of developing problem specific programs for detecting Specific patterns. The approach and initial results in the specific context of locating small volcanoes is reported. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanoes visible in the Magellan data. Identifying and studying these volcanoes is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is forbiddingly time-consuming. Hence, the development of techniques to partially automate this task were undertaken. The primary

  7. A pattern recognition system for locating small volcanoes in Magellan SAR images of Venus

    NASA Astrophysics Data System (ADS)

    Burl, M. C.; Fayyad, U. M.; Smyth, P.; Aubele, J. C.; Crumpler, L. S.

    1993-03-01

    The Magellan data set constitutes an example of the large volumes of data that today's instruments can collect, providing more detail of Venus than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations put together. However, data analysis technology has not kept pace with data collection and storage technology. Due to the sheer size of the data, complete and comprehensive scientific analysis of such large volumes of image data is no longer feasible without the use of computational aids. Our progress towards developing a pattern recognition system for aiding in the detection and cataloging of small-scale natural features in large collections of images is reported. Combining classical image processing, machine learning, and a graphical user interface, the detection of the 'small-shield' volcanoes (less than 15km in diameter) that constitute the most abundant visible geologic feature in the more that 30,000 synthetic aperture radar (SAR) images of the surface of Venus are initially targeted. Our eventual goal is to provide a general, trainable tool for locating small-scale features where scientists specify what to look for simply by providing examples and attributes of interest to measure. This contrasts with the traditional approach of developing problem specific programs for detecting Specific patterns. The approach and initial results in the specific context of locating small volcanoes is reported. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 105 to 106 of these volcanoes visible in the Magellan data. Identifying and studying these volcanoes is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is forbiddingly time-consuming. Hence, the development of techniques to partially automate this task were undertaken. The primary constraints for

  8. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  9. Development and test of video systems for airborne surveillance of oil spills

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.; Lewis, P. L.

    1975-01-01

    Five video systems - potentially useful for airborne surveillance of oil spills - were developed, flight tested, and evaluated. The systems are: (1) conventional black and white TV, (2) conventional TV with false color, (3) differential TV, (4) prototype Lunar Surface TV, and (5) field sequential TV. Wavelength and polarization filtering were utilized in all systems. Greatly enhanced detection of oil spills, relative to that possible with the unaided eye, was achieved. The most practical video system is a conventional TV camera with silicon-diode-array image tube, filtered with a Corning 7-54 filter and a polarizer oriented with its principal axis in the horizontal direction. Best contrast between oil and water was achieved when winds and sea states were low. The minimum detectable oil film thickness was about 0.1 micrometer.

  10. Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems

    USGS Publications Warehouse

    Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J., Jr.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.

    2009-01-01

    We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.

  11. Pol(In)SAR Soil Moisture Study by using Pi-SAR 2L and GB-SAR Data in Preparation of the upcoming ALOS-2/PALSAR-2 Mission

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Sato, M.

    2013-12-01

    moving along a rail to provide the scanning. This is the first time that such a study is carried out. Up to now the radar skin depth of natural terrain with varying soil water content is usually somewhat ill-defined. Moreover, super high resolution airborne fully polarimetric L-band SAR data from repeat-pass as well as from square-flight acquisitions is used to demonstrate the potentials of surface parameter retrieval from PolInSAR and multi-angular PolSAR data. The Pi-SAR 2L operated by JAXA is the same system which is used for the pre-launch Cal/Val operations for PALSAR-2. Based on recent campaign data acquired over our test sites in the Sendai area, we demonstrate the potential of the upcoming ALOS-2/PALSAR-2 for frequent global-wide soil moisture and vegetation biomass observation.

  12. A hardware/software simulation for the video tracking system of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Boozer, G. A.; Mckibbin, D. D.; Haas, M. R.; Erickson, E. F.

    1984-01-01

    This simulator was created so that C-141 Kuiper Airborne Observatory investigators could test their Airborne Data Acquisition and Management System software on a system which is generally more accessible than the ADAMS on the plane. An investigator can currently test most of his data acquisition program using the data computer simulator in the Cave. (The Cave refers to the ground-based computer facilities for the KAO and the associated support personnel.) The main Cave computer is interfaced to the data computer simulator in order to simulate the data-Exec computer communications. However until now, there has been no way to test the data computer interface to the tracker. The simulator described here simulates both the KAO Exec and tracker computers with software which runs on the same Hewlett-Packard (HP) computer as the investigator's data acquisition program. A simulator control box is hardwired to the computer to provide monitoring of tracker functions, to provide an operator panel similar to the real tracker, and to simulate the 180 deg phase shifting of the chopper squre-wave reference with beam switching. If run in the Cave, one can use their Exec simulator and this tracker simulator.

  13. Airborne test results for smart pushbroom imaging system with optoelectronic image correction

    NASA Astrophysics Data System (ADS)

    Tchernykh, Valerij; Dyblenko, Serguei; Janschek, Klaus; Seifart, Klaus; Harnisch, Bernd

    2004-02-01

    Smart pushbroom imaging system (SMARTSCAN) solves the problem of image correction for satellite pushbroom cameras which are disturbed by satellite attitude instability effects. Satellite cameras with linear sensors are particularly sensitive to attitude errors, which cause considerable image distortions. A novel solution of distortions correction is presented, which is based on the real-time recording of the image motion in the focal plane of the satellite camera. This allows using such smart pushbroom cameras (multi-/hyperspectral) even on moderately stabilised satellites, e.g. small sat's, LEO comsat's. The SMARTSCAN concept uses in-situ measurements of the image motion with additional CCD-sensors in the focal plane and real-time image processing of these measurements by an onboard Joint Transform Optical Correlator. SMARTSCAN has been successfully demonstrated with breadboard models for the Optical Correlator and a Smart Pushbroom Camera at laboratory level (satellite motion simulator on base of a 5 DOF industrial robot) and by an airborne flight demonstration in July 2002. The paper describes briefly the principle of operation of the system and gives a description of the hardware model are provided. Detailed results of the airborne tests and performance analysis are given as well as detailed tests description.

  14. The Influence of Aircraft Speed Variations on Sensible Heat-Flux Measurements by Different Airborne Systems

    NASA Astrophysics Data System (ADS)

    Martin, Sabrina; Bange, Jens

    2014-01-01

    Crawford et al. (Boundary-Layer Meteorol 66:237-245, 1993) showed that the time average is inappropriate for airborne eddy-covariance flux calculations. The aircraft's ground speed through a turbulent field is not constant. One reason can be a correlation with vertical air motion, so that some types of structures are sampled more densely than others. To avoid this, the time-sampled data are adjusted for the varying ground speed so that the modified estimates are equivalent to spatially-sampled data. A comparison of sensible heat-flux calculations using temporal and spatial averaging methods is presented and discussed. Data of the airborne measurement systems , Helipod and Dornier 128-6 are used for the analysis. These systems vary in size, weight and aerodynamic characteristics, since the is a small unmanned aerial vehicle (UAV), the Helipod a helicopter-borne turbulence probe and the Dornier 128-6 a manned research aircraft. The systematic bias anticipated in covariance computations due to speed variations was neither found when averaging over Dornier, Helipod nor UAV flight legs. However, the random differences between spatial and temporal averaging fluxes were found to be up to 30 % on the individual flight legs.

  15. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  16. Spectra-view: A high performance, low-cost multispectral airborne imaging system

    SciTech Connect

    Helder, D.

    1996-11-01

    Although a variety of airborne platforms are available for collecting remote sensing data, a niche exists for a low cost, compact systemd capable of collecting accurate visible and infrared multispectral data in a digital format. To fill this void, an instrument known as Spectra-View was developed by Airborne Data Systems. Multispectral data is collected in the visible and near-infrared using an array of CCD cameras with appropriate spectral filtering. Infrared imaging is accomplished using commercially available cameras. Although the current system images in five spectral bands, a modular design approach allows various configurations for imaging in the visible and infrared regions with up to 10 or more channels. It was built entirely through integration of readily available commercial components, is compact enough to fly in an aircraft as small as a Cessna 172, and can record imagery at airspeeds in excess of 150 knots. A GPS-based navigation system provides a course deviation indicator for the pilot to follow and allows for georeferencing of the data. To maintain precise pointing knowledge, and at the same time keep system cost low, attitude sensors are mounted directly with the cameras rather than using a stabilized mounting system. Information is collect during camera firing of aircraft/camera attitude along the yaw, pitch, and roll axes. All data is collected in a digital format on a hard disk that is removable during flight so that virtually unlimited amounts of data may be recorded. Following collection, imagery is readily available for viewing and incorporation into computer-based systems for analysis and reduction. Ground processing software has been developed to perform radiometric calibration and georeference the imagery. Since June, 1995, the system has been collecting high-quality data in a variety of applications for numerous customers including applications in agriculture, forestry, and global change research. Several examples will be presented.

  17. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements

    PubMed Central

    Kontoes, Charalabos; Keramitsoglou, Iphigenia; Sifakis, Nicolaos; Konstantinidis, Pavlos

    2009-01-01

    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces. PMID:22399963

  18. Airborne far-IR minefield imaging system (AFIRMIS): description and preliminary results

    NASA Astrophysics Data System (ADS)

    Simard, Jean-Robert; Mathieu, Pierre; Larochelle, Vincent; Bonnier, Deni

    1998-09-01

    In minefield detection, two main types of operation can be identified. First, there is the detection of surface-laid minefield. This scenario is encountered largely in tactical operations (troop movement, beach landing) where the speed at which the minefield is deployed or the strategic barrier that they represent exceed the need to bury them. Second, there is the detection of buried minefield which is encountered mainly in peacekeeping missions or clearance operations. To address these two types of minefield detection process, we propose an airborne far-infrared minefield imaging system (AFIRMIS). This passive and active imaging system fuses the information from the emissivity, the reflectivity and the 3-dimensional profile of the target/background scene in order to improve the probability of detection and to reduce the false alarm rate. This paper describes the proposed imaging system and presents early active imaging results of surface-laid mines.

  19. a Modified Method for Polarimetric SAR Calibration Algorithm

    NASA Astrophysics Data System (ADS)

    Liao, L.; Li, P.; Yang, J.

    2013-07-01

    Present fully polarimetric synthetic aperture radar (SAR) systems often update calibration techniques to further enhance the accuracy to the polarimetric data. In this paper, we propose a modified method to estimate the value of crosstalk based on the corrected observed value. Since Ainsworth calibration algorithm firstly set the value of k to be one. And the value of k relates to the copolarization channel imbalance .We consider the effects of value of k and analyze it. Through comparison to crosstalk results between the stimulated parameters and the estimated parameters, we assume high co-polarization channel imbalance will be obviously to affect crosstalk results. Then, used covariance observation value of the initial value of k rewrites the model to solve related parameters. And crosstalk parameter is calculated by the same iterative method. To verify the effect of the modified calibration method, this letter compares the accuracy of the two methods using the simulated polarimetric SAR data and Chinese airborne X-band polarimetric SAR data. The results confirm that the modified method tends to get more accurate crosstalk results.

  20. Preliminary analysis results of the Sea Surface Observation by a High Resolution Along-Track Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Kojima, S.

    2013-12-01

    There are many requirements to detect the moving targets such as cars and ships in SAR images as well as to measure their speed. In particular, there are strongly requirements to detect ships and measure the ocean waves and the sea surface currents regardless of the time or the weather in the case of the ship accidents or the oil spill accidents because the rescue operation should be operated at the anytime. To satisfy these requirements, NICT developed the airborne along-track interferometric SAR (AT-InSAR) system in 2011. Kojima[1][2] carried out the preliminary experiments using a truck and ship to check its function and clarify its capability for the detection of the moving targets, and confirmed that its performance was satisfied with its specifications. The purpose of this study is to make clear the relationship between the phenomena on the sea surface such as the ocean waves and the velocity estimated from the AT-InSAR data, and the capability of the sea surface measurement by the AT-InSAR. In addition, the method to estimate wave directional spectra from AT-InSAR data is developed. The sea surface observation was carried out 3 km off the coast of Ooarai, the northeast of Tokyo, JAPAN on the 23th of August 2011. I observed the sea surface in the fine special resolution (0.3 m) and took a special average (1 m) to reduce noise. First of all, I estimated the wave velocity from the AT-InSAR images and calculated the 2D wave number spectra from it. And then, I estimated the directional wave spectra using the dispersion relation. As a result, it was clarified that the ocean waves could be measured by the AT-InSAR. In addition, it made clear that the bow waves and stern waves generated by a running ship could be detected by AT-InSAR. References [1] S. Kojima, T. Umehara, J. Uemoto, T. Kobayashi, M. Satake and S. Uratsuka, 'Development of Pi-SAR2 Along-Track Interferometric SAR System', IGARSS 2013, pp. 3159-3162, Aug. 2013. [2] S. Kojima, 'Evaluation of the Ship

  1. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  2. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed. PMID:18071387

  3. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  4. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  5. Linking morphology to ecosystem structure using air-borne sensors for monitoring the Earth System

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Giardino, C.; Valentini, E.; Bresciani, M.; Gasperini, L.

    2010-12-01

    Coastal Landscape, and how they change over time, provide the template on which the emerging role of Earth system science (ESS) closely linked with the development of space-borne sensors can stand in the center of a newly emerging science of the Earth's surface, where strong couplings links human dynamics, biology, biochemistry, geochemistry, geomorphology, and fluid dynamics including climate change. Modern views on the behavior of complex systems like the coastal one, allow the interpretation of phenomenological coastal landscape as a stationary landscape-state that correspond to a dynamic equilibrium, and to a self-organized exogenic order of the edge of the chaos. Therefore is essential for a thoroughly understanding of spatiotemporal variations in coastal dynamics and habitat distribution for the source of nonlinearity and complexity in geomorphic system make gathering data appropriate for use in developing and testing models of biological and physical process interacting across a wide range of scale. In this paper a physics based approach was applied to MIVIS (Multi-spectral IR and Visible Imaging Spectrometer) and LiDAR (Light Detection and Ranging) airborne data, simultaneously acquired on 12 May 2009 in order to integrate geomorphological and ecological observations into a detailed macrophytes map of Lake Trasimeno (Italy). Shallow water vegetation, in fact, plays an essential role in determining how coastal morphology and ecosystems dynamics respond to feedbacks between biological and physical processes. An accurate field campaign was carried out during the airborne survey and a collection of different biophysical parameter has been achieved. The purposes of the field observations were twofold. First, field observations allowed identification of biophysical habitats and properties associated both to radiometric and limnological features. Secondly, field reconnaissance allowed identifying significant parameters involved in optical interpretation of the

  6. Production of mirrors made of HB-Cesic® for an airborne reconnaissance telescope system

    NASA Astrophysics Data System (ADS)

    Krödel, Matthias R.; Hofbauer, Peter; Luichtel, Georg; Katzer, J.; Tausendfreund, M.; Derst, Gerhard

    2009-08-01

    In support of a new airborne telescope system the Multi-Spectral Telescope for a new Reconnaissance Program ECM was contracted by Carl Zeiss Optronics to produce 20 mirrors made of HB-Cesic®, each mirror with a diameter of 315 mm. The contract requirements were that the mirrors remain stable under extreme mechanical and thermal loads and that the production schedule is 12 months. The main challenges of the project were achieving consistent optical performance of the mirrors and meeting the tight schedule of delivering the mirrors, in lots of four, every two months for a total delivery time of twelve months. In this paper we present the lessons learned in producing the HB-Cesic® mirrors, including all the steps up to the final integration of the mirrors into the telescope system and establishing reliable repeatability of the production cycles.

  7. Volcano deformation analysis based an on-demand DInSAR-GRID system: the SBAS-GPOD solution

    NASA Astrophysics Data System (ADS)

    Manunta, M.; Casu, F.; Cossu, R.; Fusco, L.; Guarino, S.; Lanari, R.; Mazzarella, G.; Sansosti, E.

    2009-04-01

    Differential SAR Interferometry (DInSAR) has already demonstrated to be an effective technique to detect and monitor ground displacements with centimeter accuracy. Moreover, the recent development of advanced DInSAR techniques, aimed at the generation of deformation time series, has led to the exploitation of the large archive of SAR data acquired all over the world, during the last 16 years, by the ERS, ENVISAT and RADARSAT satellites. Among these advanced approaches, we focus on the Small BAseline Subset (SBAS) algorithm that relies on the combination of DInSAR data pairs, characterized by a small separation between the acquisition orbits (baseline), in order to produce mean deformation velocity maps and the corresponding time series, maximizing the coherent pixel density of the investigated area. One of the main capabilities of the SBAS approach is the possibility to work at two spatial resolution scales, thus allowing us to investigate deformation phenomena affecting both extended areas (with resolution of about 100 by 100 m) and selected zones, in the latter case highlighting localized displacements that may affect single structures or buildings (at the full instrument resolution). Similarly to other advanced DInSAR techniques, the SBAS approach requires extended data storage and processing capabilities due to the large amount of data exploited for the generation of the final products. Accordingly, we present in this work the results of the first experiment to "plug" the robustness of the SBAS algorithm into the high computing capability provided by a GRID-based system. In particular, we have exploited the low-resolution SBAS algorithm [1] and the ESA Grid Processing-on-Demand (G-POD) system. This environment is one of the results achieved by the ESA Science and Application Department of Earth Observation Programmes Directorate at ESRIN that focused, following the participation to the DATAGRID project (the first large European Commission funded Grid project

  8. SAR change detection for monitoring the impact of the rehabilitation of the Arghandab irrigation system in Afghanistan

    NASA Astrophysics Data System (ADS)

    Busler, Jennifer; Ghazel, Mohsen; Kotamraju, Vinay; Vandehei, Lisa; Aubé, Guy; Froese, Corey

    2012-06-01

    Tracking the progress and impact of large scale projects in areas of active conflict is challenging. In early 2010, the Canadian International Development Agency (CIDA) broke ground on an ambitious project to rehabilitate a network of just under 600 km of canals that supply water from the Arghandab River throughout southern Kandahar Province thereby restoring a reliable and secure water supply and stimulating a once vibrant agricultural region. Monitoring the region for signs of renewal is difficult due to the large areal extent of the irrigated land and safety concerns. With the support of the Canadian Space Agency, polarimetric change detection techniques are applied to space-borne SAR data to safely monitor the area through a time-series of RADARSAT-2 images acquired during the rehabilitation ground work and subsequent growing seasons. Change detection maps delineating surface cover improvement will aid CIDA in demonstrating the positive value of Canada's investment in renovating Afghanistan's irrigation system to improve water distribution. This paper examines the use of value-added SAR imaging products to provide short- and long-term monitoring suitable for assessing the impact and benefit of large scale projects and discusses the challenges of integrating remote sensing products into a non-expert user community.

  9. Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors

    NASA Astrophysics Data System (ADS)

    Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh

    2006-12-01

    Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will

  10. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  11. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  12. A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1989-01-01

    Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.

  13. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  14. Interferometric SAR imaging by transmitting stepped frequency chaotic noise signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Gu, Xiang; Zhai, Wenshuai; Dong, Xiao; Shi, Xiaojin; Kang, Xueyan

    2015-10-01

    Noise radar has been applied in many fields since it was proposed more than 50 years ago. However, it has not been applied to interferometric SAR imaging yet as far as we know. This paper introduces our recent work on interferometric noise radar. An interferometric SAR system was developed which can transmit both chirp signal and chaotic noise signal (CNS) at multiple carrier frequencies. An airborne experiment with this system by transmitting both signals was carried out, and the data were processed to show the capability of interferometric SAR imaging with CNS. The results shows that although the interferometric phase quality of CNS is degraded due to the signal to noise ratio (SNR) is lower compared with that of chirp signal, we still can get satisfied DEM after multi-looking processing. Another work of this paper is to apply compressed sensing (CS) theory to the interferometric SAR imaging with CNS. The CS theory states that if a signal is sparse, then it can be accurately reconstructed with much less sampled data than that regularly required according to Nyquist Sampling Theory. To form a structured random matrix, if the transmitted signal is of fixed waveform, then random subsampling is needed. However, if the transmitted signal is of random waveform, then only uniform subsampling is needed. This is another advantage of noise signal. Both the interferometric phase images and the DEMs by regular method and by CS method are processed with results compared. It is shown that the degradation of interferometric phases due to subsampling is larger than that of amplitude image.

  15. Agricultural Land Cover from Multitemporal C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Skriver, H.

    2013-12-01

    Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were

  16. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.

    PubMed

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  17. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  18. ARBRES: light-weight CW/FM SAR sensors for small UAVs.

    PubMed

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  19. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    PubMed Central

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J.; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  20. Initial observations on using SAR to monitor wildfire scars in boreal forests

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Bourgeau-Chavez, L. L.; French, N. H. F.; Harrell, P.; Christensen, N. L., Jr.

    1992-01-01

    Initial observations on the effects of wildfires in black spruce forests on radar backscatter are presented. Airborne and spaceborne SAR imagery are utilized to illustrate two distinct fire signatures. A theory is presented to explain these differences.

  1. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  2. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  3. Failure detection of liquid cooled electronics in sealed packages. [in airborne information management system

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1991-01-01

    The theory and experimental verification of a method of detecting fluid-mass loss, expansion-chamber pressure loss, or excessive vapor build-up in NASA's Airborne Information Management System (AIMS) are presented. The primary purpose of this leak-detection method is to detect the fluid-mass loss before the volume of vapor on the liquid side causes a temperature-critical part to be out of the liquid. The method detects the initial leak after the first 2.5 pct of the liquid mass has been lost, and it can be used for detecting subsequent situations including the leaking of air into the liquid chamber and the subsequent vapor build-up.

  4. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.

    PubMed

    Elsayed, Khaled A; Chen, Songsheng; Petway, Larry B; Meadows, Byron L; Marsh, Waverly D; Edwards, William C; Barnes, James C; DeYoung, Russell J

    2002-05-20

    Two compact, high-pulse-energy, injection-seeded, 30-Hz frequency-doubled Nd:YAG-laser-pumped Ti: sapphire lasers were developed and operated at infrared wavelengths of 867 and 900 nm. Beams with laser pulse energy >30 mJ at ultraviolet wavelengths of 289 and 300 nm were generated through a tripling of the frequencies of these Ti:sapphire lasers. This work is directed at the replacement of dye lasers for use in an airborne ozone differential absorption lidar system. The ultraviolet pulse energy at 289 and 300 nm had 27% and 31% absolute optical energy conversion efficiencies from input pulse energies at 867 and 900 nm, respectively. PMID:12027160

  5. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2013-08-01

    use 2007-2011 Advanced Land Observing Satellite (ALOS) data to perform an arc-wide interferometric synthetic aperture radar (InSAR) time series survey of the Trans-Mexican Volcanic Belt (TMVB) and to study time-dependent ground deformation of four Indonesian volcanoes selected following the 2007-2009 study of Chaussard and Amelung (2012). Our objectives are to examine whether arc volcanoes exhibit long-term edifice-wide cyclic deformation patterns that can be used to characterize open and closed volcanic systems and to better constrain in which cases precursory inflation is expected. We reveal deformation cycles at both regularly active and previously inactive Indonesian volcanoes, but we do not detect deformation in the TMVB, reflecting a lower activity level. We identify three types of relationships between deformation and activity: inflation prior to eruption and associated with or followed by deflation (Kerinci and Sinabung), inflation without eruption and followed by slow deflation (Agung), and eruption without precursory deformation (Merapi, Colima, and Popocatépetl; at Merapi, no significant deformation is detected even during eruption). The first two cases correspond to closed volcanic systems and suggest that the traditional model of magmatic systems and eruptive cycles do apply to andesitic volcanoes (i.e., inflation and deflation episodes associated with magma accumulation or volatile exsolution in a crustal reservoir followed by eruptions or in situ cooling). In contrast, the last case corresponds to open volcanic systems where no significant pressurization of the magmatic reservoirs is taking place prior to eruptions and thus no long-term edifice-wide ground deformation can be detected. We discuss these results in terms of InSAR's potential for forecasting volcanic unrest.

  6. Georeferencing airborne images from a multiple digital camera system by GPS/INS

    NASA Astrophysics Data System (ADS)

    Mostafa, Mohamed Mohamed Rashad

    2000-10-01

    In this thesis, the development and testing of an airborne fully digital multi-sensor system for kinematic mapping is presented. The system acquires two streams of data, namely navigation data and imaging data. The navigation data are obtained by integrating an accurate strapdown Inertial Navigation System with two GPS receivers. The imaging data are acquired by two digital cameras, configured in such a way so as to reduce their geometric limitations. The two digital cameras capture strips of overlapping nadir and oblique images. The INS/GPS-derived trajectory contains the full translational and rotational motion of the carrier aircraft. Thus, image exterior orientation information is extracted from the trajectory, during postprocessing. This approach eliminates the need for ground control when computing 3D positions of objects that appear in the field of view of the system imaging component. Test flights were conducted over the campus of The University of Calgary. Two approaches for calibrating the system are presented, namely pre-mission calibration and in-flight calibration. Testing the system in flight showed that best ground point positioning accuracy at 1:12000 average image scale is 0.2 m (RMS) in easting and northing and 0.3 m (RMS) in height. Preliminary results indicate that major applications of such a system in the future are in the field of digital mapping, at scales of 1:10000 and smaller, and the generation of digital elevation models for engineering applications.

  7. The design and the development of a hyperspectral and multispectral airborne mapping system

    NASA Astrophysics Data System (ADS)

    Gorsevski, Pece V.; Gessler, Paul E.

    Flexible and cost-effective tools for rapid image acquisition and natural resource mapping are needed by land managers. This paper describes the hardware and software architecture of a low-cost system that can be deployed on a light aircraft for rapid data acquisition. The Hyperspectral and Multispectral Cameras for Airborne Mapping (HAMCAM) was designed and developed in the Geospatial Laboratory for Environmental Dynamics at the University of Idaho as a student-learning tool, and to enhance the existing curriculum currently offered. The system integrates a hyperspectral sensor with four multispectral cameras, an Inertial Navigation System (INS), a Wide Area Augmentation System (WAAS)-capable Global Positioning System (GPS), a data acquisition computer, and custom software for running the sensors in a variety of different modes. The outputs include very high resolution imagery obtained in four adjustable visible and near-infrared bands from the multispectral imager. The hyperspectral sensor acquires 240 spectral bands along 2.7 nm intervals within the 445-900 nm range. The INS provides aircraft pitch, roll and yaw information for rapid geo-registration of the imagery. This paper will discuss the challenges associated with the development of the system and the integration of components and software for implementation of this system for natural resource management applications. In addition, sample imagery acquired by the sensor will be presented.

  8. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  9. Observation of Planetary Oceans with Fully Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Moon, Wooil M.

    Synthetic Aperture Radar (SAR) is one of the most cost effective and powerful all weather tools for observation of planetary surface without sun light. The SAR systems can observe planetary surfaces with the very high resolution and large spatial coverage. We have developed and improved the algorithms for extracting quantitative information on geophysical parameters using various types of SAR data available on Earth's surface, both space-borne SAR (ERS-1/2, RADARSAT, and ENVISAT ASAR) and airborne SAR (NASA(JPL) AIRSAR). SAR is the only system that can provide a synoptic view of find wind fields near the coastal area on Earth. Many SAR images including RADARSAT and ENVISAT ASAR's alternating polarization mode and wide swath mode were to investigate the ability of retrieving sea surface wind field and the results are quite accurate and operationally acceptable. We installed corner reflectors on the nearby beach to calibrate the SAR data, and we obtained in-situ measurements from the several coast-based automatic weather systems and ocean buoys. Using the simultaneously acquired polarization ENVISAT ASAR data (HH and VV), the most appropriate polarization ratio was evaluated and applied for improving the wind retrieval model. In addition, the best combinations depending on given sea states and incidence angle ranges were investigated. The characteristics of short-period and long-period (near-inertial) internal waves are also investigated with several space-borne SAR systems. The possibility of inferring characteristics of the interior ocean dynamics from the SAR image associated with internal solitary waves was tested using a hydrodynamic interaction model (action balance equation) and a radar backscattering model (two-scale tilted Bragg model). These models were used iteratively to fit the observed SAR data to the simulated SAR. The estimated results were compared with in-situ measurements. The typical scales and the spatial and temporal characteristics of internal

  10. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  11. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  12. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  13. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  14. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  15. Use of SAR in Regional Methane Exchange Studies

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.; Durden, S. L.

    1994-01-01

    Significant sources of uncertainty in global trace gas budgets are due to lack of knowledge concerning the areal and temporal extent of source and sink areas. Synthetic aperture radar (SAR) is particularly suited to studies of northern ecosystems because of its all-weather operating capability which enables the acquisition of seasonal data. As key controls on methane exchange, the ability to differentiate major vegetation communities, inundation, and leaf area index (LAI) with satellite and airborne SAR data would increase the accuracy and precision of regional and seasonal estimates of methane exchange. The utility of SAR data for monitoring key controls on methane emissions from Arctic and boreal ecosystems is examined.

  16. Possible effects of clear-air refractive-index perturbations on SAR images.

    SciTech Connect

    Dickey, Fred McCartney; Muschinski, Andreas; Doerry, Armin Walter

    2005-03-01

    Airborne synthetic aperture radar (SAR) imaging systems have reached a degree of accuracy and sophistication that requires the validity of the free-space approximation for radio-wave propagation to be questioned. Based on the thin-lens approximation, a closed-form model for the focal length of a gravity wave-modulated refractive-index interface in the lower troposphere is developed. The model corroborates the suggestion that mesoscale, quasi-deterministic variations of the clear-air radio refractive-index field can cause diffraction patterns on the ground that are consistent with reflectivity artifacts occasionally seen in SAR images, particularly in those collected at long ranges, short wavelengths, and small grazing angles.

  17. On the accuracy of crosstalk calibration of polarimetric SAR using natural clutter statistics

    SciTech Connect

    Cordey, R.A. )

    1993-03-01

    A method for the routine correction of fully polarimetric synthetic aperture radar (SAR) images has been proposed by van Zyl which uses assumed statistical properties of natural distributed targets. The method has the potential to improve dramatically the accuracy of polarimetric imagery contaminated by antenna crosstalk and may be of importance for future spaceborne polarimetric SAR's as well as current airborne systems. The accuracy of the method is assessed here when the statistics of clutter deviate from the assumed form, and limits are placed on likely acceptable deviations. An investigation is presented of these statistics for a heterogeneous forestry and agricultural scene imaged by the NASA/JPL radar. The only significant deviations were found over certain man-made targets, including villages, and a single agricultural field. The results lend support to the routine use of the van Zyl method in such applications.

  18. The detection and measurement of microburst wind shear by an airborne lidar system

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A.; Bowles, Roland L.; Targ, Russell

    1993-01-01

    The NASA Lockheed Missiles and Space Company (LMSC) Coherent Lidar Airborne Shear Sensor (CLASS) employs coherent lidar technology as a basis for a forward-looking predictive wind shear detection system. Line of sight wind velocities measured ahead of the aircraft are combined with aircraft state parameters to relate the measured wind change (or shear) ahead of an aircraft to its performance loss or gain. In this way the system can predict whether a shear detected ahead of the aircraft poses a significant threat to the aircraft and provide an advance warning to the flight crew. Installed aboard NASA's Boeing 737 research aircraft, the CLASS system is flown through convective microburst wind shears in Denver, Co., and Orlando, Fl. Some preliminary flight test results are presented. It is seen that the system was able to detect and measure wind shears ahead of the aircraft in the relatively dry Denver environment, but its performance was degraded in the high humidity and heavy rain in Orlando.

  19. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  20. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    NASA Technical Reports Server (NTRS)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  1. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  2. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  3. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  4. Evaluation of polarimetric SAR parameters for soil moisture retrieval

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Vanzyl, Jakob J.; Engman, Edwin T.

    1992-01-01

    Results of ongoing efforts to develop an algorithm for soil moisture retrieval from Synthetic Aperture Radar (SAR) imagery are reported. Estimates of soil moisture are of great importance in numerous environmental studies, including hydrology, meteorology, and agriculture. Previous studies using extensive scatterometer measurements have established the optimum parameters for moisture retrieval as C-band HH radar operating at incidence angles between 10 to 15 deg. However, these parameters were not tested or verified with imaging radar systems. The results from different investigators showed considerable variability in the relationship between soil moisture and radar backscattering. This variability suggests that those algorithms are site-specific. Furthermore, the small incidence angle requirement limits the spatial application, especially for airborne radar systems.

  5. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  6. Summary of results from a foliage penetration experiment with a three-frequency polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Fleischman, Jack G.; Toups, Michael F.; Ayasli, Serpil

    1992-08-01

    As a part of the MIT Lincoln Laboratory Critical Mobile Target program an experiment was conducted jointly by the Jet Propulsion Laboratory and MIT Lincoln Laboratory in July 1990 using the NASA/JPL airborne SAR system, to investigate the effects of foliage on Synthetic Aperture Radar (SAR) imaging of targets concealed by trees. A large number of 8-ft corner reflectors were deployed for the investigation of two-way propagation through foliage, and tone generators were deployed at four locations to investigate one-way pulse-to-pulse phase and amplitude fluctuations to study possible SAR beam distortions caused by trees. In addition, a 40 km2 area was imaged over five passes at each of 30 degree(s), 45 degree(s), and 60 degree(s) depression angles, simultaneously at C-, L-band and UHF frequencies, fully polarimetrically. Several trucks of varying sizes were also deployed in the open and behind trees for limited testing of target detection. Analysis of the data is near completion. This paper will summarize results on attenuation and clutter statistics, SAR pattern distortion through trees as well as results on multichannel processing of the images containing vehicle masked by foliage.

  7. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures.

    PubMed

    Coudrain, Christophe; Bernhardt, Sylvie; Caes, Marcel; Domel, Roland; Ferrec, Yann; Gouyon, Rémi; Henry, Didier; Jacquart, Marc; Kattnig, Alain; Perrault, Philippe; Poutier, Laurent; Rousset-Rouvière, Laurent; Tauvy, Michel; Thétas, Sophie; Primot, Jérôme

    2015-06-15

    More and more, hyperspectral images are envisaged to improve the aerial reconnaissance capability of airborne systems, both for civilian and military applications. To confirm the hopes put in this new way of imaging a scene, it is necessary to develop airborne systems allowing the measurement of the spectral signatures of objects of interest in real conditions, with high spectral and spatial resolutions. The purpose of this paper is to present the design and the first in-flight results of the dual-band infrared spectro-imaging system called Sieleters. This system has demonstrated simultaneously a ground sampling distance of 0.5m, associated with a spectral resolution of 11 cm(-1) for the Mid-Wave InfraRed (MWIR) and 5 cm(-1) for the Long-Wave InfraRed (LWIR). PMID:26193589

  8. Investigation of the dynamic range problem and providing software support for the AOL system. [Airborne Oceanographic Lidar systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The present scheme for providing system timing for the airborne oceanographic lidar (AOL) system is not completely satisfactory. The possibility of using a digital approach to generate the forty pulses needed to energize the gates leading to the charge digitizers was investigated. The solution in terms of general analog and digital circuitry is straightforward. The crystal oscillator provides a stable frequency source which is used as a clock to the ring counter. The ring counter propagates a pulse from stage one to stage forty. Each of the outputs has an amplifier for isolation. This design is easy to implement in the frequency range up to 50 MHZ. Because a gate pulse width of from about 2 to 6 ns is needed for the AOL system, this dictates an input clock frequency to the shift register of from 100 MHA to 500 MHA. Problems associated with generating pulses in this range of operation are examined and an alternate solution is discussed.

  9. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  10. Severe acute respiratory syndrome (SARS)

    MedlinePlus

    ... when the virus spread from small mammals in China. When someone with SARS coughs or sneezes, infected ... causes SARS include: Antibody tests for SARS Direct isolation of the SARS virus Rapid polymerase chain reaction ( ...

  11. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    SciTech Connect

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. )

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  12. InSAR Terrain Mapping Using ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Atwood, D.; Guritz, R.; Muskett, R.; Lingle, C.; Sauber, J.

    2006-12-01

    High quality geodetic ground control is time-consuming and costly to acquire in remote regions, where logistical operations are difficult to support. Hence, there is a strong interest in establishing new sources of ground control points that can be used in conjunction with Interferometric SAR (InSAR) for producing accurate digital elevation models (DEMs). In January 2003, NASA launched the Geoscience Laser Altimeter System (GLAS) into high polar orbit onboard the Ice, Cloud, and land Elevation Satellite (ICESat). A major objective of this spaceborne laser altimeter system, with orbital coverage extending from 86° N to 86° S, is to provide elevation measurements of the Earth's topography with unprecedented accuracy. The intent of our project is to assess the accuracy of ICESat elevation data and evaluate its utility as ground control for topographic mapping. Our study area lies near Barrow, Alaska; 15,650 sq. km of coastal plain adjacent to the Arctic Ocean, characterized by vast expanses of tundra, lakes, and arctic wetlands of such low relief as to be nearly devoid of terrain features. Accuracy of the ICESat elevation measurements is assessed through comparison with differential GPS (DGPS) data, acquired along ICESat ground tracks crossing our study area. Using DGPS as the reference, ICESat yields a mean offset of -0.04 ± 0.15 m for fast static measurements on frozen tundra lakes and 0.22 ± 0.96 m for two kinematic DGPS profiles along the ICESat ground track. These results suggests that ICESat-derived elevations on the Arctic coastal plain are more than sufficiently accurate for use as ground control in DEM generation. The only clear limitation of the ICESat data is the non-uniform distribution of the ICESat tracks within the 33 day near-repeat sub-cycle. Although the coverage is poor at equatorial latitudes, track separation in the Arctic is on the order of tens of kilometers because of orbital convergence at the Poles. To test whether these data can be used

  13. On Ambiguities in SAR Design

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2006-01-01

    Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .

  14. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  15. Airborne wildfire intelligence system: a decision support tool for wildland fire managers in Alberta

    NASA Astrophysics Data System (ADS)

    Campbell, Doug; Born, Wally G.; Beck, Judi; Bereska, Bill; Frederick, Kurt; Hua, Sun

    2002-03-01

    The Airborne Wildfire Intelligence System (AWIS) defines the state-of-the-art in remotely sensed wildfire intelligence. AWIS is a commercial, automated, intelligence service, delivering GIS integrated fire intelligence, classified interpretive and analysis layers, and higher level decision support products for wildfires in near real time via the Internet. The AWIS effort illustrates flexible and dynamic cooperation between industry and government to combine technology with field knowledge and experience into an effective, optimized end-user tool. In Alberta the Forest Protection Division of the department of Sustainable Resource Development uses AWIS for several applications: holdover and wildfire hotspot detection, fire front and burned area perimeter mapping, strategic and tactical support through 3D visualization, research into the effects of fire and its severity and to document burn patterns across the landscape. A discussion of all of the scientific themes behind the AWIS is outside the scope of this paper, however, the science of sub-element detection will be reviewed. An independent study has been conducted by the Forest Engineering Research Institute of Canada (FERIC) to investigate the capability of a variety of thermal infrared remote sensing systems to detect small and subtle hotspots in an effort to identify the strengths and weaknesses thereof. As a result of this work, method suitability guidelines have been established to match appropriate infrared technology with a given wildfire management objective.

  16. Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback

    NASA Technical Reports Server (NTRS)

    Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

    1995-01-01

    In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

  17. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  18. Remote sensing of tropospheric gases and aerosols with airborne DIAL system

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1983-01-01

    The multipurpose airborne DIAL system developed at NASA Langley Research Center is characterized, and the published results of tropospheric O3, H2O, and aerosol-backscatter remote-sensing experiments performed in 1980 and 1981 are summarized. The system comprises two tunable dye lasers pumped by frequency-doubled Nd:YAG lasers, dielectric-coated steering optics, a 36-cm-diameter Cassegrain receiver telescope, gateable photomultiplier tubes, and a minicomputer data-processing unit for real-time calculation of gas concentrations and backscattering profiles. The transmitted energy of the 100-microsec-separated dye-laser pulses is 40, 80, or 50 mJ/pulse at around 300, 600, or 720-nm wavelength, respectively. Good agreement was found between DIAL-remote-sensed and in-situ H2O and O3 profiles of the lower troposphere and O3 profiles of the tropopause region, and the usefulness of DIAL backscattering measurements in the study of boundary-layer and tropospheric dynamics is demonstrated. The feasibility of DIAL sensing of power-plant or urban plume SO2, of urban-area (or rural-area column-content) NO2, and of temperature and H2O (simultaneously using a third laser) has been suggested by simulation studies.

  19. Image-based 3D scene analysis for navigation of autonomous airborne systems

    NASA Astrophysics Data System (ADS)

    Jaeger, Klaus; Bers, Karl-Heinz

    2001-10-01

    In this paper we describe a method for automatic determination of sensor pose (position and orientation) related to a 3D landmark or scene model. The method is based on geometrical matching of 2D image structures with projected elements of the associated 3D model. For structural image analysis and scene interpretation, a blackboard-based production system is used resulting in a symbolic description of image data. Knowledge of the approximated sensor pose measured for example by IMU or GPS enables to estimate an expected model projection used for solving the correspondence problem of image structures and model elements. These correspondences are presupposed for pose computation carried out by nonlinear numerical optimization algorithms. We demonstrate the efficiency of the proposed method by navigation update approaching a bridge scenario and flying over urban area, whereas data were taken with airborne infrared sensors in high oblique view. In doing so we simulated image-based navigation for target engagement and midcourse guidance suited for the concepts of future autonomous systems like missiles and drones.

  20. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  1. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  2. A comparative evaluation of SAR and SLAR

    SciTech Connect

    Mastin, G.A.; Manson, J.J.; Bradley, J.D.; Axline, R.M.; Hover, G.L.

    1993-11-01

    Synthetic aperture radar (SAR) was evaluated as a potential technological improvement over the Coast Guard`s existing side-looking airborne radar (SLAR) for oil-spill surveillance applications. The US Coast Guard Research and Development Center (R&D Center), Environmental Branch, sponsored a joint experiment including the US Coast Guard, Sandia National Laboratories, and the Naval Oceanographic and Atmospheric Administration (NOAA), Hazardous Materials Division. Radar imaging missions were flown on six days over the coastal waters off Santa Barbara, CA, where there are constant natural seeps of oil. Both the Coast Guard SLAR and the Sandia National Laboratories SAR were employed to acquire simultaneous images of oil slicks and other natural sea surface features that impact oil-spill interpretation. Surface truth and other environmental data were also recorded during the experiment. The experiment data were processed at Sandia National Laboratories and delivered to the R&D Center on a computer workstation for analysis by experiment participants. Issues such as optimal spatial resolution, single-look vs. multi-look SAR imaging, and the utility of SAR for oil-spill analysis were addressed. Finally, conceptual design requirements for a possible future Coast Guard SAR were outlined and evaluated.

  3. Low complexity efficient raw SAR data compression

    NASA Astrophysics Data System (ADS)

    Rane, Shantanu; Boufounos, Petros; Vetro, Anthony; Okada, Yu

    2011-06-01

    We present a low-complexity method for compression of raw Synthetic Aperture Radar (SAR) data. Raw SAR data is typically acquired using a satellite or airborne platform without sufficient computational capabilities to process the data and generate a SAR image on-board. Hence, the raw data needs to be compressed and transmitted to the ground station, where SAR image formation can be carried out. To perform low-complexity compression, our method uses 1-dimensional transforms, followed by quantization and entropy coding. In contrast to previous approaches, which send uncompressed or Huffman-coded bits, we achieve more efficient entropy coding using an arithmetic coder that responds to a continuously updated probability distribution. We present experimental results on compression of raw Ku-SAR data. In those we evaluate the effect of the length of the transform on compression performance and demonstrate the advantages of the proposed framework over a state-of-the-art low complexity scheme called Block Adaptive Quantization (BAQ).

  4. Scanning infrared remote sensing system for identification, visualization, and quantification of airborne pollutants

    NASA Astrophysics Data System (ADS)

    Harig, Roland; Matz, Gerhard; Rusch, Peter

    2002-02-01

    Remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection, identification, and quantification of airborne pollutants. In the case of leaks in pipelines or leaks in chemical plants, chemical accidents, terrorism, or war, hazardous compounds are often released into the atmosphere. Various Fourier-transform infrared spectrometers have been developed for the remote detection and identification of hazardous clouds. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the size of a cloud is essential. Therefore, an imaging passive remote sensing system comprised of an interferometer (Bruker OPAG 22), a data acquisition, processing, and control system with a digital signal processor (FTIR DSP), an azimuth-elevation-scanning mirror, a video system with a DSP, and a personal computer has been developed. The FTIR DSP system controls the scanning mirror, collects the interferograms, and performs the Fourier transformation. The spectra are transferred to a personal computer and analyzed by a real-time identification algorithm that does not require background spectra for the analysis. The results are visualized by a video image, overlaid by false color images. For each target compound of a spectral library, images of the coefficient of correlation, the signal to noise ratio, the brightness temperature of the background, the difference between the temperature of the ambient air and the brightness temperature of the background, and the noise equivalent column density are produced. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and an additional false color image is displayed. The system has a high selectivity, low noise equivalent spectral radiance, and it allows identification, visualization, and quantification of pollutant clouds.

  5. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2015-01-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS), and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purposes (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS onboard the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber-gas chromatography-mass spectrometry (TD-GC-MS) system. Guided by forecasts calculated with the Lagrangian model Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecast position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecast. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental setup and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  6. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2014-07-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS) and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purpose (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS on board the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber/gas chromatography/mass spectrometry (TD/GC/MS) system. Guided by forecasts calculated with the Lagrangian model, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, respectively, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecasted position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecasted. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental set-up and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  7. A Nadir-adjusted Airborne Multi Spectral Imaging System (NAMSIS) for high-resolution remote sensing of carbon fluxes

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Scott, S.; Rahman, A. F.

    2012-12-01

    Satellite remote sensing is widely used in vegetation monitoring, water stress detection and carbon cycle modeling. However, image pixels from high temporal resolution satellite sensors (such as MODIS) have coarse spatial resolution, much larger than the canopies they are supposed to characterize. An alternative solution for on-demand high spatial resolution remote sensing is sensors onboard low-flying aircrafts. Airborne remote sensing has been traditionally used in crop management studies. In this presentation we demonstrate the application of a relatively low-cost airborne sensor system with customized spectral band combinations for studying forest carbon fluxes. Our team has developed an Inertia Measurement Unit (IMU) controlled automated system to detach aircraft movements (pitch and roll) and engine vibration from the six-band programmable imager, in order to maintain the sensor at nadir view at all times during the flight. Flight lines are configured by a GPS-controleld system to simulate MODIS pixels. A feature-based algorithm is used to automatically generate a mosaic of individual images along the flight lines. This algorithm eliminates the need to mosiac and georeference images manually. An empirical line method is used to calculate reflectance from the raw data. Images from this airborne system produce reflectance values that are comparable with MODIS reflectance product. These high spatial resolution (~0.5 m) images deliver detailed information about tree species and phenological conditions within each MODIS pixel, and thus permit a high resolution spatio-temporal assessment of forest carbon fluxes.

  8. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system. PMID:23262604

  9. Comprehensive analysis of imaging quality degradation of an airborne optical system for aerodynamic flow field around the optical window.

    PubMed

    Hao, Chenglong; Chen, Shouqian; Zhang, Wang; Ren, Jinhan; Li, Chong; Pang, Hongjun; Wang, Honghao; Liu, Qian; Wang, Chao; Zou, Huiying; Fan, Zhigang

    2013-11-20

    We investigated the influences exerted by the nonuniform aerodynamic flow field surrounding the optical window on the imaging quality degradation of an airborne optical system. The density distribution of flow fields around three typical optical windows, including a spherical window, an ellipsoidal window, and a paraboloidal window, were calculated by adopting the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras model provided by FLUENT. The fourth-order Runge-Kutta algorithm based ray-tracing program was used to simulate the optical transmission through the aerodynamic flow field. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the entrance pupil, point spread function, encircled energy, and modulation transfer function. The results show that the imaging quality of the airborne optical system was affected by the shape of the optical window and angle of attack of the aircraft. PMID:24513738

  10. SINCGARS (Single-Channel Ground/Airborne Radio System) operator performance decay

    NASA Astrophysics Data System (ADS)

    Palmer, Richard L.; Buckalew, Louis W.

    1988-11-01

    The Single-Channel Ground/Airborne Radio System (SINCGARS) is scheduled to replace the Army's VRC-12 and PRC-77 radios. However, SINCGARS is more complex to operate and requires more training. This study examined the decay of operational skills and knowledge in two groups of recently trained operators who went without exposure to SINCGARS for several weeks. Performance levels were measured with the SINCGARS Learning-Retention Test (SLRT), a simulated hands-on performance test emphasizing skills and operational knowledge retention. The results provided tentative indications that operators may lose about 10 percent of their prior performance levels within the first few weeks. This figure is expected to vary considerably, depending on the type of soldier, the length of the nonexposure period, and other conditions. It was also found that performance level was correlated with soldiers' Armed Services Vocational Aptitude Battery (ASVAB) General Technical (GT) scores. Correlations between GT and SLRT scores obtained at two different times were .43 and .50, respectively. However, no relation was observed between performance decay and GT. Further evaluation of operator performance decay needs to be done to determine the effect of longer periods of nonexposure (e.g., 60 and 90 days).

  11. Experience with a prototype of the Test Ban Treaty monitoring system for air-borne radioactivity

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Ho, Ernest C. Y.

    2004-01-01

    Monitoring of air-borne radioactivity has been tested on behalf of the Comprehensive Test Ban Treaty Organization. A prototype system was installed at the University of British Columbia, Vancouver, BC in April 1996 and has been operating successfully since then. The air is drawn through a glass-fibre filter for a period of 24 h. A cooling period eliminates products of 222Rn in the uranium series. A germanium detector then counts the γ-rays. Several anthropogenic nuclides such as 123I and 99mTc have been observed from local medical facilities. In addition many natural nuclides have been detected and the most abundant are the products of thoron viz 220Rn, which is in the thorium series. The 239 keV γ-ray from 212Pb has been studied to investigate the reason for significant fluctuations in its intensity. It was found that rain, wind, low temperature and maritime air all decrease the observed activity. A model was created which mimics the variation reasonably well.

  12. Analysis of link performance and robustness of homodyne BPSK for airborne backbone laser communication system

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Shang-hong; Zhao, Wei-hu; Li, Yong-jun; Liu, Yun; Li, Xuan

    2016-01-01

    The high altitude turbulence is described by the "Clear 1" model in terms of refractive-index structure. The outage and Bit Error Rate (BER) performance of airborne communication links under atmospheric turbulence and aero-optics effects of homodyne binary phase shift keying (BPSK) system is deduced in the high altitude turbulence channel, the relation of probability of fade, mean fade time with flight altitude and transmission distance is analyzed, the Bit Error Rate (BER) vary characteristic along with the mean signal noise rate signal noise rate (SNR) of different modulates is discussed in the gamma-gamma turbulence channel. The results show that atmospheric turbulence and aero-optic effects can greatly reduce the SNR that would occur in the absence of optical turbulence, leading in some cases to unacceptable fade levels or BERs. The average SNR is 26 dB for BPSK to achieve a BER of 10-6. A bit error rate of 5.94×10-10 at 200 km propagation distance was achieved employing a homodyne BPSK based modem.

  13. Multilateration with the wide-angle airborne laser ranging system: positioning precision and atmospheric effects.

    PubMed

    Bock, O

    1999-05-20

    Numerical simulations based on previously validated models for the wide-angle airborne laser ranging system are used here for assessing the precision in coordinate estimates of ground-based cube-corner retroreflectors (CCR's). It is shown that the precision can be optimized to first order as a function of instrument performance, number of laser shots (LS's), and network size. Laser beam divergence, aircraft altitude, and CCR density are only second-order parameters, provided that the number of echoes per LS is greater than 20. Thus precision in the vertical is approximately 1 mm, with a signal-to-noise ratio of 50 at nadir, a 10-km altitude, a 20 degrees beam divergence, and approximately 5 x 10(3) measurements. Scintillation and fair-weather cumulus clouds usually have negligible influence on the estimates. Laser biases and path delay are compensated for by adjustment of aircraft offsets. The predominant atmospheric effect is with mesoscale nonuniform horizontal temperature gradients, which might lead to biases near 0.5 mm. PMID:18319932

  14. Reconnaissance with slant plane circular SAR imaging.

    PubMed

    Soumekh, M

    1996-01-01

    This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle. PMID:18285213

  15. Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1

    NASA Technical Reports Server (NTRS)

    Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero

    1988-01-01

    The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.

  16. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  17. Design and performance of a fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system

    NASA Astrophysics Data System (ADS)

    Huang, Genghua; Shu, Rong; Hou, Libing; Li, Ming

    2014-06-01

    Photon counting lidar has an ultra-high sensitivity which can be hundreds even thousands of times higher than the linear detection lidar. It can significantly increase the system's capability of detection rang and imaging density, saving size and power consumings in airborne or space-borne applications. Based on Geiger-mode Si avalanche photodiodes (Si-APD), a prototype photon counting lidar which used 8 APDs coupled with a 1×8-pixel fiber array has been made in June, 2011. The experiments with static objects showed that the photon counting lidar could operate in strong solar background with 0.04 receiving photoelectrons on average. Limited by less counting times in moving platforms, the probability of detection and the 3D imaging density would be lower than that in static platforms. In this paper, a latest fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system is introduced. The correlation range receiver algorithm of photon counting 3D imaging is improved for airborne signal photon events extraction and noise filter. The 3D imaging experiments in the helicopter shows that the false alarm rate is less than 6×10-7, and the correct rate is better than 99.9% with 4 received photoelectrons and 0.7MHz system noise on average.

  18. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  19. <5cm Ground Resolution DEMs for the Atacama Fault System (Chile), Acquried With the Modular Airborne Camera System (MACS)

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Victor, P.; Oncken, O.; Bucher, T. U.; Lehmann, F.

    2011-12-01

    A primary step towards assessing time and size of future earthquakes is the identification of earthquake recurrence patterns in the existing seismic record. Geologic and geomorphic data are commonly analyzed for this purpose, reasoned by the lack of sufficiently long historical or instrumental seismic data sets. Until recently, those geomorphic data sets encompassed field observation, local total station surveys, and aerial photography. Over the last decade, LiDAR-based high-resolution topographic data sets became an additional powerful mean, contributing distinctly to a better understanding of earthquake rupture characteristics (e.g., single-event along-fault slip distribution, along-fault slip accumulation pattern) and their relation to fault geometric complexities. Typical shot densities of such data sets (e.g., airborne-LiDAR data along the San Andreas Fault) permit generation of digital elevation models (DEM) with <50 cm ground resolution, sufficient for depiction of meter-scale tectonic landforms. Identification of submeter-scale features is however prohibited by DEM resolution limitation. Here, we present a high-resolution topographic and visual data set from the Atacama fault system near Antofagasta, Chile. Data were acquired with Modular Airborne Camera System (MACS) - developed by the DLR (German Aerospace Center) in Berlin, Germany. The photogrammetrically derived DEM and True Ortho Images with <5cm ground resolution permit identification of very small-scale geomorphic features, thus enabling fault zone and earthquake rupture characterization at unprecedented detail. Compared to typical LiDAR-DEM, ground resolution is increased by an order of magnitude while the spatial extend of these data set is essentially the same. Here, we present examples of the <5cm resolution data set (DEM and visual results) and further explore resolution capabilities and potential with regards to the aforementioned tectono-geomorphic questions.

  20. Polar format algorithm for SAR imaging with Matlab

    NASA Astrophysics Data System (ADS)

    Deming, Ross; Best, Matthew; Farrell, Sean

    2014-06-01

    Due to its computational efficiency, the polar format algorithm (PFA) is considered by many to be the workhorse for airborne synthetic aperture radar (SAR) imaging. PFA is implemented in spatial Fourier space, also known as "K-space", which is a convenient domain for understanding SAR performance metrics, sampling requirements, etc. In this paper the mathematics behind PFA are explained and computed examples are presented, both using simulated data, and experimental airborne radar data from the Air Force Research Laboratory (AFRL) Gotcha Challenge collect. In addition, a simple graphical method is described that can be used to model and predict wavefront curvature artifacts in PFA imagery, which are due to the limited validity of the underlying far-field approximation. The appendix includes Matlab code for computing SAR images using PFA.

  1. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  2. 20. OVERVIEW OF SAR3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. OVERVIEW OF SAR-3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR-3 SWITCH RACK, MAINTENANCE YARD, AND GREENSPOT BRIDGE. NOTE ALSO LARGE PIPE CONDUCTING TAILRACE WATER INTO IRRIGATION SYSTEM. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  3. Development of the APEX experiment, preparatory activities for an airborne system supporting future space-borne imaging spectrometers in Europe

    NASA Astrophysics Data System (ADS)

    Schaepman, M.

    2002-06-01

    APEX is an airborne imaging spectrometer built in the framework of ESA PRODEX (Programme développement d'expériences scientifiques) with the support of ESA EO-EP. It is based on a Swiss/Belgian initiative and designed to be an airborne simulator for the support and development of future spaceborne systems for the study of land surface processes. It will be able to contribute to the simulation, calibration, and validation of planned ESA imaging spectrometer missions (e.g., MERIS/ENVISAT, SPECTRA, etc.) in the 400 - 2500 nm region of the spectrum. APEX will foster the use of imaging spectrometer data in Europe and will support the application development for imaging spectroscopy products. The industrial consortium building the instrument is composed out of joint Swiss/Belgian industries with the support of ESA EO-EP (e.g., detectors, calibration, technical management).

  4. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  5. Squint mode SAR processing algorithms

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Jin, M.; Curlander, J. C.

    1989-01-01

    The unique characteristics of a spaceborne SAR (synthetic aperture radar) operating in a squint mode include large range walk and large variation in the Doppler centroid as a function of range. A pointing control technique to reduce the Doppler drift and a new processing algorithm to accommodate large range walk are presented. Simulations of the new algorithm for squint angles up to 20 deg and look angles up to 44 deg for the Earth Observing System (Eos) L-band SAR configuration demonstrate that it is capable of maintaining the resolution broadening within 20 percent and the ISLR within a fraction of a decibel of the theoretical value.

  6. High-Rate Data-Capture for an Airborne Lidar System

    NASA Technical Reports Server (NTRS)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is

  7. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  8. SAR change detection MTI

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven; Lemanski, Christopher; Nichols, Howard; Owirka, Gregory; Minardi, Michael; Hale, Todd

    2006-05-01

    This paper examines the theory, application, and results of using single-channel synthetic aperture radar (SAR) data with Moving Reference Processing (MRP) to focus and geolocate moving targets. Moving targets within a standard SAR imaging scene are defocused, displaced, or completely missing in the final image. Building on previous research at AFRL, the SAR-MRP method focuses and geolocates moving targets by reprocessing the SAR data to focus the movers rather than the stationary clutter. SAR change detection is used so that target detection and focusing is performed more robustly. In the cases where moving target returns possess the same range versus slow-time histories, a geolocation ambiguity results. This ambiguity can be resolved in a number of ways. This paper concludes by applying the SAR-MRP method to high-frequency radar measurements from persistent continuous-dwell SAR observations of a moving target.

  9. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  10. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  11. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  12. Environmental assessment of three egg production systems - Part III: Airborne bacteria concentrations and emissions.

    PubMed

    Zhao, Y; Zhao, D; Ma, H; Liu, K; Atilgan, A; Xin, H

    2016-07-01

    Airborne microorganism level is an important indoor air quality indicator, yet it has not been well documented for laying-hen houses in the United States. As a part of the Coalition for Sustainable Egg Supply (CSES) environmental monitoring project, this study comparatively monitored the concentrations and emissions of airborne total and Gram-negative (Gram(-)) bacteria in three types of commercial laying-hen houses, i.e., conventional cage (CC), aviary (AV), and enriched colony (EC) houses, over a period of eight months covering the mid and late stages of the flock cycle. It also delineated the relationship between airborne total bacteria and particulate matter smaller than 10 μm in aerodynamic diameter (PM10). The results showed airborne total bacteria concentrations (log CFU/m(3)) of 4.7 ± 0.3 in CC, 6.0 ± 0.8 in AV, and 4.8 ± 0.3 in EC, all being higher than the level recommended for human environment (3.0 log CFU/m(3)). The much higher concentrations in AV arose from the presence of floor litter and hen activities on it, as evidenced by the higher concentrations in the afternoon (with litter access) than in the morning (without litter access). The overall means and standard deviation of airborne total bacteria emission rates, in log CFU/[h-hen] (or log CFU/[h-AU], AU = animal unit or 500 kg live weight) were 4.8 ± 0.4 (or 7.3 ± 0.4) for CC, 6.1 ± 0.7 (or 8.6 ± 0.7) for AV, and 4.8 ± 0.5 (or 7.3 ± 0.5) for EC. Both concentration and emission rate of airborne total bacteria were positively related to PM10 Gram(-) bacteria were present at low concentrations in all houses; and only 2 samples (6%) in CC, 7 (22%) samples in AV, and 2 (6%) samples in EC out of 32 air samples collected in each house were found positive with Gram(-) bacteria. The concentration of airborne Gram(-) bacteria was estimated to be <2% of the total bacteria. Total bacteria counts in manure on belt (in all houses) and floor litter (only in AV) were similar; however, the manure had

  13. Dual super-systolic core for real-time reconstructive algorithms of high-resolution radar/SAR imaging systems.

    PubMed

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  14. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  15. Preliminary geoid mapping results by Fugro's improved Micro-g LaCoste turnkey airborne gravity system

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Kingdon, R. W.

    2015-07-01

    In this paper, we introduce the Micro-g LaCoste Turnkey Airborne Gravity System (TAGS) with Fugro's improved gravity processing and geoid modeling software package for regional gravity field mapping and geoid determination. Three test areas with different topographic characteristics under the Gravity for the Redefinition of the AmericanVertical Datum (GRAV-D) project of theUSNOAA National Geodetic Surveys (NGS) were used for case studies and determine the available accuracy of the system. The preliminary results of all these test cases show that the system with Fugro's improved gravity and geoid processing software package is able to achieve a comparable geoid mapping result to traditional terrestrial methods.

  16. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways.

    PubMed

    Ding, Yanqing; He, Li; Zhang, Qingling; Huang, Zhongxi; Che, Xiaoyan; Hou, Jinlin; Wang, Huijun; Shen, Hong; Qiu, Liwen; Li, Zhuguo; Geng, Jian; Cai, Junjie; Han, Huixia; Li, Xin; Kang, Wei; Weng, Desheng; Liang, Ping; Jiang, Shibo

    2004-06-01

    We previously identified the major pathological changes in the respiratory and immune systems of patients who died of severe acute respiratory syndrome (SARS) but gained little information on the organ distribution of SARS-associated coronavirus (SARS-CoV). In the present study, we used a murine monoclonal antibody specific for SARS-CoV nucleoprotein, and probes specific for a SARS-CoV RNA polymerase gene fragment, for immunohistochemistry and in situ hybridization, respectively, to detect SARS-CoV systematically in tissues from patients who died of SARS. SARS-CoV was found in lung, trachea/bronchus, stomach, small intestine, distal convoluted renal tubule, sweat gland, parathyroid, pituitary, pancreas, adrenal gland, liver and cerebrum, but was not detected in oesophagus, spleen, lymph node, bone marrow, heart, aorta, cerebellum, thyroid, testis, ovary, uterus or muscle. These results suggest that, in addition to the respiratory system, the gastrointestinal tract and other organs with detectable SARS-CoV may also be targets of SARS-CoV infection. The pathological changes in these organs may be caused directly by the cytopathic effect mediated by local replication of the SARS-CoV; or indirectly as a result of systemic responses to respiratory failure or the harmful immune response induced by viral infection. In addition to viral spread through a respiratory route, SARS-CoV in the intestinal tract, kidney and sweat glands may be excreted via faeces, urine and sweat, thereby leading to virus transmission. This study provides important information for understanding the pathogenesis of SARS-CoV infection and sheds light on possible virus transmission pathways. This data will be useful for designing new strategies for prevention and treatment of SARS. PMID:15141376

  17. Recovering Seasat SAR Data

    NASA Astrophysics Data System (ADS)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the

  18. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  19. Biooptical variability in the Greenland Sea observed with the Multispectral Airborne Radiometer System (MARS)

    NASA Technical Reports Server (NTRS)

    Mueller, James L.; Trees, Charles C.

    1989-01-01

    A site-specific ocean color remote sensing algorithm was developed and used to convert Multispectral Airborne Radiometer System (MARS) spectral radiance measurements to chlorophyll-a concentration profiles along aircraft tracklines in the Greenland Sea. The analysis is described and the results given in graphical or tabular form. Section 2 describes the salient characteristics and history of development of the MARS instrument. Section 3 describes the analyses of MARS flight segments over consolidated sea ice, resulting in a set of altitude dependent ratios used (over water) to estimate radiance reflected by the surface and atmosphere from total radiance measured. Section 4 presents optically weighted pigment concentrations calculated from profile data, and spectral reflectances measured in situ from the top meter of the water column; this data was analyzed to develop an algorithm relating chlorophyll-a concentrations to the ratio of radiance reflectances at 441 and 550 nm (with a selection of coefficients dependent upon whether significant gelvin presence is implied by a low ratio of reflectances at 410 and 550 nm). Section 5 describes the scaling adjustments which were derived to reconcile the MARS upwelled radiance ratios at 410:550 nm and 441:550 nm to in situ reflectance ratios measured simultaneously on the surface. Section 6 graphically presents the locations of MARS data tracklines and positions of the surface monitoring R/V. Section 7 presents stick-plots of MARS tracklines selected to illustrate two-dimensional spatial variability within the box covered by each day's flight. Section 8 presents curves of chlorophyll-a concentration profiles derived from MARS data along survey tracklines. Significant results are summarized in Section 1.

  20. Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system

    NASA Technical Reports Server (NTRS)

    Ehret, G.; Kiemle, C.; Renger, W.; Simmet, G.

    1992-01-01

    Summarized here are the results of airborne water vapor measurements in the lower middle and upper troposphere using the Differential Absorption Lidar (DIAL) technique in the near infrared. The measurements were performed in July 1990 in Southern Bavaria between Allersberg and Straubing from 20 to 23 UTC taking advantage of night time conditions. The tropospheric H2O profiles were range investigated both horizontally and vertically. With the DIAL system that was used, water vapor measurements in the upper troposphere have been carried out for the first time. To calibrate the H2O-retrievals, effective absorption cross sections of selected H2O lines in terms of altitude around 724 nm were calculated using line parameter data from the literature (B. E. Grossmann et al). The frequency of the on-line measurements was adjusted by the spectra of a Polyacenic Semiconductor (PAS) cell filled with H2O. We found that the calibration error ranged between 0.005 and 0.015 cm(exp -1). The systematic errors of the H2O as a function of altitude were estimated below 7 km and 12 percent accuracy in the upper troposphere. The vertical H2O profile agrees well with in situ measurements in the investigated range between the top of the planetary boundary layer (PBL) up to near the tropopause. Horizontal and vertical H2O profiles are calculated by means of averaging single lidar returns. Typical horizontal resolutions range from 4 km in the lower to 11 km in the upper troposphere with vertical resolutions varying from 0.3 km up to 1 km, respectively, in order to satisfy a 5 - 10 percent accuracy in the statistical error. The measurement sensibility of the water vapor mixing ration in the upper troposphere is 0.01 g/kg.

  1. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  2. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  3. Design considerations of GeoSAR

    NASA Astrophysics Data System (ADS)

    Kim, Yunjin; Hensley, Scott; Veilleux, Louise; Edelstein, W.; Lou, Yun-Ling; Burken, A.; Skotnicky, W. F.; Sato, T.; Brown, W.

    1996-06-01

    The primary purpose of GeoSAR is to demonstrate the feasibility of interferometric topographic mapping through foliage penetration. GeoSAR should become a commercially viable instrument after the feasibility demonstration. To satisfy both requirements, we have designed a dual frequency (UHF- and X-band) interferometric radar. For foliage penetration, a lower frequency (UHF) radar is used. To obtain better height accuracy for low backscatter areas, we proposed a high frequency (X-band) interferometric system. In this paper, we present a possible GeoSAR system configuration and associated performance estimation.

  4. Modeling and a correlation algorithm for spaceborne SAR signals

    NASA Technical Reports Server (NTRS)

    Wu, C.; Liu, K. Y.; Jin, M.

    1982-01-01

    A mathematical model of a spaceborne synthetic aperture radar (SAR) response is presented. Thhe associated SAR system performance, in terms of the resolution capability, is also discussed. The analysis of spaceborne SAR target response indicates that the SAR correlation problem is a two-dimensional one with a linear shift-variant response function. A new digital processing algorithm is proposed here in order to realize an economical digital SAR correlation system. The proposed algorithm treats the two-dimensional correlation by a combination of frequency domain fast correlation in the azimuth dimension and a time-domain convolver type of operation in the range dimension. Finally, digitally correlated SEASAT satellite SAR imagery is used in an exemplary sense to validate the SAR response model and the new digital processing technique developed.

  5. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  6. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. PMID:26773821

  7. 23. OVERVIEW OF SAR3 AREA, SHOWING CORNER OF SAR3 WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. OVERVIEW OF SAR-3 AREA, SHOWING CORNER OF SAR-3 WITH TAILRACE, ADMINISTRATIVE OFFICE, TOILET SHED, AND RETAINING WALLS AT FORMER EMPLOYEE HOUSING SITE. VIEW TO SOUTHEAST. PANORAMA 1/2. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  8. InSAR and GPS measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Kervyn, François

    2016-04-01

    Along the East African Rift System (EARS), magma intrusions represent a major component in continental rifting. When these intrusions reach the surface, they cause volcanic eruptions. This is the case of the last flank eruption of Nyamulagira, which occurred from November 6 2011 to April 2012. Nyamulagira is an active shield volcano with a central caldera, located in the eastern part of the Democratic Republic of Congo, along the Kivu segment of the East African Rift System. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e., 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e., several months) eruptions usually emitting larger volumes of lava that take place at larger distance (>8 km) from the central caldera. The 2011-2012 Nyamulagira eruption is of that second type. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) to measure pre-, co and post-eruptive ground displacement associated with the Nyamulagira 2011-2012 eruption. Results suggest that a magma intrusion preceded by two days the eruption. This intrusion corresponded to the migration of magma from a shallow reservoir (~3km) below the caldera to the two eruptive fissures located ~11 km ENE of the central edifice. Available seismic data are in agreement with InSAR results showing increased seismic activity since November 4 2011, with long- and short-period earthquakes swarms. Using analytical models we invert the measured ground displacements during the first co-eruptive month to evaluate the deformation source parameters and the mechanism of magma emplacement for this eruption. GPS data from permanent stations in the KivuGNet network are used to constrain the temporal evolution of the eruption and evaluate far-field deformation, while the InSAR data is more sensitive to the near-field deformation

  9. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  10. Calibration of the Geosar Dual Frequency Interferometric SAR

    NASA Technical Reports Server (NTRS)

    Chapine, Elaine

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (INSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation (CalDOC) with funding provided by the Topographic Engineering Center (TEC) of the U.S. Army Corps of Engineers and the Defense Advanced Research Projects Agency (DARPA). The radar simultaneously maps swaths on both sides of the aircraft at two frequencies, X-Band and P-Band. For the P-Band system, data is collected for two across track interferometric baselines and at the crossed polarization. The aircraft position and attitude are measured using two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The mechanical orientation and position of the antennas are actively measured using a Laser Baseline Metrology System (LBMS). In the GeoSAR motion measurement software, these data are optimally combined with data from a nearby ground station using Ashtech PNAV software to produce the position, orientation, and baseline information are used to process the dual frequency radar data. Proper calibration of the GeoSAR system is essential to obtaining digital elevation models (DEMS) with the required sub-meter level planimetric and vertical accuracies. Calibration begins with the determination of the yaw and pitch biases for the two EGI units. Common range delays are determined for each mode, along with differential time and phase delays between channels. Because the antennas are measured by the LBMS, baseline calibration consists primarily of measuring a constant offset between mechanical center and the electrical phase center of the antennas. A phase screen, an offset to the interferometric phase difference which is a function of absolute phase, is applied to the interferometric data to compensate for multipath and leakage. Calibration parameters are calculated for each of the ten

  11. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  12. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of

  13. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of

  14. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR

    NASA Astrophysics Data System (ADS)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.

    2016-04-01

    Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001-2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6-11.5] mm yr-1 with an N89 [81-97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this

  15. Using InSAR to Evaluate Pumping-Related Aquifer-System Response Between 1992 and 2007 in Ground-Water Basins of Eastern Nevada

    NASA Astrophysics Data System (ADS)

    Donovan, D. J.; Arai, R.; Bell, J.

    2008-12-01

    Interferometric synthetic aperture radar (InSAR) has become a commonly used tool to detect and measure the magnitude and spatial variation of aquifer-system response, specifically subsidence, in groundwater basins in Nevada. Previous work has included InSAR studies of Las Vegas, which has a well-documented history of water-level changes and subsidence. The purpose of this study was to extend InSAR studies from Las Vegas to the north to Ely, Nevada in order to evaluate on a reconnaissance level the present groundwater system response to pumping in 35 hydrographic basins. These data will form a baseline for the proposed Southern Nevada Water Authority's In-state Groundwater Project which is designed to provide as much as 202 hm3/yr (164,000 acre-ft/yr) from 6 of these basins to the Las Vegas metropolitan area. We have processed more than 100 interferometric pairs using ERS and Envisat data from the WInSAR and GeoEarthscope archives covering the time period 1992-2007. Results were analyzed in time series in order to identify potential atmospheric and topographic artifacts, and to verify the occurrence of the groundwater signal. The preliminary results show that some principal groundwater basins currently undergoing moderate levels of groundwater pumping exhibit small, localized subsidence signals of a few centimeters for one or more years. These basins include Lake, Patterson, Butte, and White River Valleys, where annual pumping rates are on the order of 2.5-16.0 hm3/yr (2000-13,000 acre-ft/yr). Spring and Cave Valleys have localized subsidence signals away from known pumping centers. Localized signals are also located near the towns of McGill and Ely, Nevada in Steptoe Valley. These small amplitude signals are consistent with the low to moderate levels of pumping presently occurring in these valleys. The InSAR results also showed that some other basins undergoing moderate levels of pumping do not exhibit any visible evidence of aquifer-system impact. Due to the

  16. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  17. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  18. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  19. Airborne measurements of formaldehyde employing a high-performance tunable diode laser absorption system

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Walega, James G.; Richter, Dirk A.; Potter, William T.

    2002-09-01

    Formaldehyde (CH2O) is a ubiquitous component of both the remote atmosphere as well as the polluted urban atmosphere. This important gas-phase intermediate is a primary emission product from hydrocarbon combustion sources as well as from oxidation of natural hydrocarbons emitted by plants and trees. Through its subsequent decomposition, formaldehyde is a source of reactive hydrogen radicals, which control the oxidation capacity of the atmosphere. Because ambient CH2O concentrations attain levels as high as several tens of parts-per-billion (ppbv) in urban areas to levels as low as tens of parts-per-trillion (pptv) in the remote background atmosphere, ambient measurements become quite challenging, particularly on airborne platforms. The present paper discusses an airborne tunable diode laser absorption spectrometer, which has been developed and refined over the past 6 years, for such demanding measurements. The results from a recent study will be presented.

  20. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.