Sample records for airborne scanning laser

  1. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  2. Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.

    PubMed

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.

  3. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    PubMed Central

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569

  4. Visualisation of urban airborne laser scanning data with occlusion images

    NASA Astrophysics Data System (ADS)

    Hinks, Tommy; Carr, Hamish; Gharibi, Hamid; Laefer, Debra F.

    2015-06-01

    Airborne Laser Scanning (ALS) was introduced to provide rapid, high resolution scans of landforms for computational processing. More recently, ALS has been adapted for scanning urban areas. The greater complexity of urban scenes necessitates the development of novel methods to exploit urban ALS to best advantage. This paper presents occlusion images: a novel technique that exploits the geometric complexity of the urban environment to improve visualisation of small details for better feature recognition. The algorithm is based on an inversion of traditional occlusion techniques.

  5. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.

    PubMed

    Dalponte, Michele; Coomes, David A

    2016-10-01

    Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks ( r 2  = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.

  6. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    USGS Publications Warehouse

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  7. The shelf-life of airborne laser scanning data for enhancing forest inventory inferences

    Treesearch

    Ronald E. McRoberts; Qi Chen; Dale D. Gormanson; Brian F. Walters

    2018-01-01

    The term shelf-life is used to characterize the elapsed time beyond which a commodity loses its usefulness. The term is most often used with reference to foods and medicines, but herein it is used to characterize the elapsed time beyond which airborne laser scanning (ALS) data are no longer useful for enhancing inferences for forest inventory...

  8. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  9. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

    NASA Astrophysics Data System (ADS)

    Montaghi, Alessandro; Corona, Piermaria; Dalponte, Michele; Gianelle, Damiano; Chirici, Gherardo; Olsson, Håkan

    2013-08-01

    This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this interest is the possibility of reducing costs and providing more accurate and efficient estimation of forest characteristics. This review covers a period of approximately ten years, from the first application of laser scanning for forestry purposes in 2003 to the present day, and shows that there are numerous ongoing research activities which use these technologies for the assessment of forest attributes (e.g., number of trees, mean tree height, stem volume) and ecological issues (e.g., gap identification, fuel model detection). The basic approaches - such as single tree detection and area-based modeling - have been widely examined and commented in order to explore the trend of methods in these technologies, including their applicability and performance. Finally this paper outlines and comments some of the common problems encountered in operational use of laser scanning in Italy, offering potentially useful guidelines and solutions for other countries with similar conditions, under a rather variable environmental framework comprising Alpine, temperate and Mediterranean forest ecosystems.

  10. Accuracy in estimation of timber assortments and stem distribution - A comparison of airborne and terrestrial laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Vauhkonen, Jari; Tanhuanpää, Topi; Holopainen, Markus; Vastaranta, Mikko; Joensuu, Marianna; Krooks, Anssi; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2014-11-01

    Detailed information about timber assortments and diameter distributions is required in forest management. Forest owners can make better decisions concerning the timing of timber sales and forest companies can utilize more detailed information to optimize their wood supply chain from forest to factory. The objective here was to compare the accuracies of high-density laser scanning techniques for the estimation of tree-level diameter distribution and timber assortments. We also introduce a method that utilizes a combination of airborne and terrestrial laser scanning in timber assortment estimation. The study was conducted in Evo, Finland. Harvester measurements were used as a reference for 144 trees within a single clear-cut stand. The results showed that accurate tree-level timber assortments and diameter distributions can be obtained, using terrestrial laser scanning (TLS) or a combination of TLS and airborne laser scanning (ALS). Saw log volumes were estimated with higher accuracy than pulpwood volumes. The saw log volumes were estimated with relative root-mean-squared errors of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. The respective accuracies for pulpwood were 60.1% and 59.3%. The differences in the bucking method used also caused some large errors. In addition, tree quality factors highly affected the bucking accuracy, especially with pulpwood volume.

  11. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Treesearch

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  12. Point-based and model-based geolocation analysis of airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet

    2017-01-01

    Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.

  13. Integrating Airborne and Terrestrial Laser Scanning data to monitor active landsliding

    NASA Astrophysics Data System (ADS)

    Székely, B.; Molnár, G.; Roncat, A.; Lehner, H.; Gaisecker, Th.; Drexel, P.

    2009-04-01

    Active slope processes often endanger various built-up objects and, as a consequence, sometimes human lives as well. Data acquision on the status and evolution of such slopes, especially those that had already affected by landsliding, therefore is a primary target for engineering geomorphic research. The method of laser scanning provides an appropriate data collection technique with the requested accuracy. Data from repeated Airborne Laser Scanning (ALS) campaigns are suitable to be analysed for the slow, incipient movements of the slope. The problem of this surveying technique is that repetition time is strongly dependent on the financial resources of the monitoring project, and often the requested recurrence of flight campaigns cannot be achieved. A possible solution to densify the data acquisition in time is the application of Terrestrial Laser Scanning (TLS) and intergration of its data with ALS data sets. TLS has the advantage of flexibility and shorter observation distances compared to ALS. This technique needs special considerations and tedious processing since the geometric setting of the data acquision considerably differ in TLS and ALS. Furthermore, obstacles in the landscape may partly hamper the data acqusition which rarely the case in ALS. Our case study area is a several-decade-long active landsliding in Doren (Federal State Vorarlberg, Austria) that as it develops, it is about to endangers houses of the locality. The site is especially suitable for the project, because multi-temporal data sets (from ALS flight campaigns in 2003, 2006 and 2007, respectively) of this area are available. The data integration is carried out in the form of production of point clouds (sensed from various points of the valley sides) and we compared the results with the results of the previous ALS campaigns. With the planned repetition of the TLS measurements new and detailed insights can be achieved concerning the evolution of the incipient and on-going slow motions. This

  14. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  15. Footprint Map Partitioning Using Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2016-06-01

    Nowadays many cities and countries are creating their 3D building models for a better daily management and smarter decision making. The newly created 3D models are required to be consistent with existing 2D footprint maps. Thereby the 2D maps are usually combined with height data for the task of 3D reconstruction. Many buildings are often composed by parts that are discontinuous over height. Building parts can be reconstructed independently and combined into a complete building. Therefore, most of the state-of-the-art work on 3D building reconstruction first decomposes a footprint map into parts. However, those works usually change the footprint maps for easier partitioning and cannot detect building parts that are fully inside the footprint polygon. In order to solve those problems, we introduce two methodologies, one more dependent on height data, and the other one more dependent on footprints. We also experimentally evaluate the two methodologies and compare their advantages and disadvantages. The experiments use Airborne Laser Scanning (ALS) data and two vector maps, one with 1:10,000 scale and another one with 1:500 scale.

  16. Clustering of Multispectral Airborne Laser Scanning Data Using Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.

    2017-09-01

    With the evolution of the LiDAR technology, multispectral airborne laser scanning systems are currently available. The first operational multispectral airborne LiDAR sensor, the Optech Titan, acquires LiDAR point clouds at three different wavelengths (1.550, 1.064, 0.532 μm), allowing the acquisition of different spectral information of land surface. Consequently, the recent studies are devoted to use the radiometric information (i.e., intensity) of the LiDAR data along with the geometric information (e.g., height) for classification purposes. In this study, a data clustering method, based on Gaussian decomposition, is presented. First, a ground filtering mechanism is applied to separate non-ground from ground points. Then, three normalized difference vegetation indices (NDVIs) are computed for both non-ground and ground points, followed by histograms construction from each NDVI. The Gaussian function model is used to decompose the histograms into a number of Gaussian components. The maximum likelihood estimate of the Gaussian components is then optimized using Expectation - Maximization algorithm. The intersection points of the adjacent Gaussian components are subsequently used as threshold values, whereas different classes can be clustered. This method is used to classify the terrain of an urban area in Oshawa, Ontario, Canada, into four main classes, namely roofs, trees, asphalt and grass. It is shown that the proposed method has achieved an overall accuracy up to 95.1 % using different NDVIs.

  17. Estimating forest structural characteristics using the airborne LiDAR scanning system and a near-real time profiling laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Kaiguang

    airborne scanning or profiling laser systems for remotely measuring various forest structural attributes at a range of scales, i.e., from individual tree, plot, stand and up to regional levels. The system not only provides a regional assessment tool, one that can be used to repeatedly, remotely measure hundreds or thousands of square kilometers with little/no analyst interaction or interpretation, but also serves as a paradigm for future efforts in building more advanced airborne laser systems such as real-time laser scanners.

  18. Forest structure analysis combining laser scanning with digital airborne photogrammetry

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Onda, Yuichi; Kato, Hiroaki

    2017-04-01

    The interest of Light Detection and Ranging (LiDAR) for vegetation structure analysis has been demonstrated in several research context. Indeed, airborne or ground Lidar surveys can provide detailed three-dimensional data of the forest structure from understorey forest to the canopy. To characterize at different timescale the vegetation components in dense cedar forests we can combine several sources point clouds from Lidar survey and photogrammetry data. For our study, Terrestrial Laser Scanning (TLS-Leica ScanStation C10 processed with Cyclone software) have been lead in three forest areas (≈ 200m2 each zone) mainly composed of japanese cedar (Japonica cryptomeria), in the region of Fukushima (Japan). The study areas are characterized by various vegetation densities. For the 3 areas, Terrestrial laser scanning has been performed from several location points and several heights. Various floors shootings (ground, 4m, 6m and 18m high) were able with the use of a several meters high tower implanted to study the canopy evolution following the Fukushima Daiishi nuclear power plant accident. The combination of all scanners provides a very dense 3D point cloud of ground and canopy structure (average 300 000 000 points). For the Tochigi forest area, a first test of a low-cost Unmanned Aerial Vehicle (UAV) photogrammetry has been lead and calibrated by ground GPS measurements to determine the coordinates of points. TLS combined to UAV photogrammetry make it possible to obtain information on vertical and horizontal structure of the Tochigi forest. This combination of technologies will allow the forest structure mapping, morphometry analysis and the assessment of biomass volume evolution from multi-temporal point clouds. In our research, we used a low-cost UAV 3 Advanced (200 m2 cover, 1300 pictures...). Data processing were performed using PotoScan Pro software to obtain a very dense point clouds to combine to TLS data set. This low-cost UAV photogrammetry data has been

  19. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  20. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment

    PubMed Central

    Hollaus, Markus; Wagner, Wolfgang; Maier, Bernhard; Schadauer, Klemens

    2007-01-01

    Airborne laser scanning (ALS) is an active remote sensing technique that uses the time-of-flight measurement principle to capture the three-dimensional structure of the earth's surface with pulsed lasers that transmit nanosecond-long laser pulses with a high pulse repetition frequency. Over forested areas most of the laser pulses are reflected by the leaves and branches of the trees, but a certain fraction of the laser pulses reaches the forest floor through small gaps in the canopy. Thus it is possible to reconstruct both the three-dimensional structure of the forest canopy and the terrain surface. For the retrieval of quantitative forest parameters such as stem volume or biomass it is necessary to use models that combine ALS with inventory data. One approach is to use multiplicative regression models that are trained with local inventory data. This method has been widely applied over boreal forest regions, but so far little experience exists with applying this method for mapping alpine forest. In this study the transferability of this approach to a 128 km2 large mountainous region in Vorarlberg, Austria, was evaluated. For the calibration of the model, inventory data as operationally collected by Austrian foresters were used. Despite these inventory data are based on variable sample plot sizes, they could be used for mapping stem volume for the entire alpine study area. The coefficient of determination R2 was 0.85 and the root mean square error (RMSE) 90.9 m3ha−1 (relative error of 21.4%) which is comparable to results of ALS studies conducted over topographically less complex environments. Due to the increasing availability, ALS data could become an operational part of Austrian's forest inventories.

  1. A research on snow distribution in mountainous area using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Nishihara, T.; Tanise, A.

    2015-12-01

    In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it's necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain. Our target area was the Chubetsu dam basin. It's located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it's a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line. First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly. Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are

  2. Using airborne laser scanning profiles to validate marine geoid models

    NASA Astrophysics Data System (ADS)

    Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis

    2014-05-01

    Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross

  3. The Registration and Segmentation of Heterogeneous Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Mohannad M.

    Light Detection And Ranging (LiDAR) mapping has been emerging over the past few years as a mainstream tool for the dense acquisition of three dimensional point data. Besides the conventional mapping missions, LiDAR systems have proven to be very useful for a wide spectrum of applications such as forestry, structural deformation analysis, urban mapping, and reverse engineering. The wide application scope of LiDAR lead to the development of many laser scanning technologies that are mountable on multiple platforms (i.e., airborne, mobile terrestrial, and tripod mounted), this caused variations in the characteristics and quality of the generated point clouds. As a result of the increased popularity and diversity of laser scanners, one should address the heterogeneous LiDAR data post processing (i.e., registration and segmentation) problems adequately. Current LiDAR integration techniques do not take into account the varying nature of laser scans originating from various platforms. In this dissertation, the author proposes a methodology designed particularly for the registration and segmentation of heterogeneous LiDAR data. A data characterization and filtering step is proposed to populate the points' attributes and remove non-planar LiDAR points. Then, a modified version of the Iterative Closest Point (ICP), denoted by the Iterative Closest Projected Point (ICPP) is designed for the registration of heterogeneous scans to remove any misalignments between overlapping strips. Next, a region-growing-based heterogeneous segmentation algorithm is developed to ensure the proper extraction of planar segments from the point clouds. Validation experiments show that the proposed heterogeneous registration can successfully align airborne and terrestrial datasets despite the great differences in their point density and their noise level. In addition, similar testes have been conducted to examine the heterogeneous segmentation and it is shown that one is able to identify common

  4. Processing of airborne laser scanning data to generate accurate DTM for floodplain wetland

    NASA Astrophysics Data System (ADS)

    Szporak-Wasilewska, Sylwia; Mirosław-Świątek, Dorota; Grygoruk, Mateusz; Michałowski, Robert; Kardel, Ignacy

    2015-10-01

    Structure of the floodplain, especially its topography and vegetation, influences the overland flow and dynamics of floods which are key factors shaping ecosystems in surface water-fed wetlands. Therefore elaboration of the digital terrain model (DTM) of a high spatial accuracy is crucial in hydrodynamic flow modelling in river valleys. In this study the research was conducted in the unique Central European complex of fens and marshes - the Lower Biebrza river valley. The area is represented mainly by peat ecosystems which according to EU Water Framework Directive (WFD) are called "water-dependent ecosystems". Development of accurate DTM in these areas which are overgrown by dense wetland vegetation consisting of alder forest, willow shrubs, reed, sedges and grass is very difficult, therefore to represent terrain in high accuracy the airborne laser scanning data (ALS) with scanning density of 4 points/m2 was used and the correction of the "vegetation effect" on DTM was executed. This correction was performed utilizing remotely sensed images, topographical survey using the Real Time Kinematic positioning and vegetation height measurements. In order to classify different types of vegetation within research area the object based image analysis (OBIA) was used. OBIA allowed partitioning remotely sensed imagery into meaningful image-objects, and assessing their characteristics through spatial and spectral scale. The final maps of vegetation patches that include attributes of vegetation height and vegetation spectral properties, utilized both the laser scanning data and the vegetation indices developed on the basis of airborne and satellite imagery. This data was used in process of segmentation, attribution and classification. Several different vegetation indices were tested to distinguish different types of vegetation in wetland area. The OBIA classification allowed correction of the "vegetation effect" on DTM. The final digital terrain model was compared and examined

  5. Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.

  6. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  7. Single tree biomass modelling using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Räty, Minna; Yu, Xiaowei; Holopainen, Markus; Vastaranta, Mikko; Kantola, Tuula; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2013-11-01

    Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.

  8. Classification of Dual-Wavelength Airborne Laser Scanning Point Cloud Based on the Radiometric Properties of the Objects

    NASA Astrophysics Data System (ADS)

    Pilarska, M.

    2018-05-01

    Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.

  9. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  10. Estimation of terracing characteristics from airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga

    2015-04-01

    Agricultural terraces are a fundamental morphological form of the Slovenian landscape. They are present in all of its diverse geographical regions, from Mediterranean and Dinaric hills and plateaus, Alpine mountains and plains, to Pannonian hills. New systematic research based on mapping aerial orthophotos and historical maps revealed previously unrecorded distribution and extent of terracing. However, the extensive overgrowing of the Slovenian countryside in the past century, when forest cover has grown from 40% to more than 60%, hid many of the terraces under a thick forest canopy. This is especially true for the higher and more remote areas where unfavourable natural conditions have coupled with depopulation processes. In such conditions, the only reasonable technique to observe cultural terraces and other remains of past human activities over large areas is airborne laser scanning. With the country-wide airborne lidar data becoming available, many new possibilities for discovery as well as quantitative analyses are becoming available. We explored manual and semiautomatic approaches to obtain terracing characteristics around representative villages of diverse landscape types. Individual terraces can be described with several attributes, such as riser slope gradient, riser height, tread area, length and width, ratio of length and width, altitude, location of the terrace in the thermal band, distance to the settlement, number and type of trees, distance between trees, and number of vineyard rows. Such characteristics can be derived manually, which can be painstakingly slow, but with relative precisions reaching the order of centimetres and decimetres, or semiautomatically, which is much faster, but with worse precision levels, mainly due to various outliers and errors in processing. The success of attribute derivation is highly dependent on raw lidar data acquisition parameters and processing. Manual interpretation has a distinct advantage of the possibility to

  11. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  12. Can low-resolution airborne laser scanning data be used to model stream rating curves?

    USGS Publications Warehouse

    Lyon, Steve; Nathanson, Marcus; Lam, Norris; Dahlke, Helen; Rutzinger, Martin; Kean, Jason W.; Laudon, Hjalmar

    2015-01-01

    This pilot study explores the potential of using low-resolution (0.2 points/m2) airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2) ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries). This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  13. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  14. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    USGS Publications Warehouse

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  15. Scale dependency of forest functional diversity assessed using imaging spectroscopy and airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.

    2016-12-01

    Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.

  16. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    PubMed Central

    Vain, Ants; Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Litkey, Paula

    2009-01-01

    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties. PMID:22574045

  17. The application of Airborne Laser Scaning for identifying old lignite workings - case study: the mine "Borussia" near Ośno Lubuskie (Western Poland)

    NASA Astrophysics Data System (ADS)

    Gontaszewska-Piekarz, Agnieszka; Mrówczyńska, Maria

    2018-04-01

    The paper presents the possibilities of using data obtained by airborne laser scanning for identifying areas where lignite used to be mined. The technology of airborne laser scanning presented in the paper as and its results have a vast potential in terms of identifying local terrain deformations. The paper also presents the history of lignite mining in the region of Ośno Lubuskie (the north-west of Ziemia Lubuska - western Poland). It describes underground mining in complicated geological conditions (glaciotectonic deformations). The paper is supplemented with historical maps showing the locations of the mines

  18. Modeling Mediterranean forest structure using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Bottalico, Francesca; Chirici, Gherardo; Giannini, Raffaello; Mele, Salvatore; Mura, Matteo; Puxeddu, Michele; McRoberts, Ronald E.; Valbuena, Ruben; Travaglini, Davide

    2017-05-01

    The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters. Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS

  19. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  20. Automatic Classification of Trees from Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2015-08-01

    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatically classifying laser scanning point clouds into 'tree' and 'non-tree' classes. Our method uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point indicating if it belongs to the 'tree' or 'non-tree' class. To do so, a grid surface is assigned to the lowest height level of the point cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications. While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point

  1. Integrating optical satellite data and airborne laser scanning in habitat classification for wildlife management

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Coops, N. C.; Nielsen, S. E.; Stenhouse, G.

    2015-06-01

    Wildlife habitat selection is determined by a wide range of factors including food availability, shelter, security and landscape heterogeneity all of which are closely related to the more readily mapped landcover types and disturbance regimes. Regional wildlife habitat studies often used moderate resolution multispectral satellite imagery for wall to wall mapping, because it offers a favourable mix of availability, cost and resolution. However, certain habitat characteristics such as canopy structure and topographic factors are not well discriminated with these passive, optical datasets. Airborne laser scanning (ALS) provides highly accurate three dimensional data on canopy structure and the underlying terrain, thereby offers significant enhancements to wildlife habitat mapping. In this paper, we introduce an approach to integrate ALS data and multispectral images to develop a new heuristic wildlife habitat classifier for western Alberta. Our method combines ALS direct measures of canopy height, and cover with optical estimates of species (conifer vs. deciduous) composition into a decision tree classifier for habitat - or landcover types. We believe this new approach is highly versatile and transferable, because class rules can be easily adapted for other species or functional groups. We discuss the implications of increased ALS availability for habitat mapping and wildlife management and provide recommendations for integrating multispectral and ALS data into wildlife management.

  2. Airborne laser mapping of Assateague National Seashore Beach

    USGS Publications Warehouse

    Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.

    2000-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  3. Combining airborne laser scanning and Landsat data for statistical modeling of soil carbon and tree biomass in Tanzanian Miombo woodlands.

    PubMed

    Egberth, Mikael; Nyberg, Gert; Næsset, Erik; Gobakken, Terje; Mauya, Ernest; Malimbwi, Rogers; Katani, Josiah; Chamuya, Nurudin; Bulenga, George; Olsson, Håkan

    2017-12-01

    Soil carbon and biomass depletion can be used to identify and quantify degraded soils, and by using remote sensing, there is potential to map soil conditions over large areas. Landsat 8 Operational Land Imager satellite data and airborne laser scanning data were evaluated separately and in combination for modeling soil organic carbon, above ground tree biomass and below ground tree biomass. The test site is situated in the Liwale district in southeastern Tanzania and is dominated by Miombo woodlands. Tree data from 15 m radius field-surveyed plots and samples of soil carbon down to a depth of 30 cm were used as reference data for tree biomass and soil carbon estimations. Cross-validated plot level error (RMSE) for predicting soil organic carbon was 28% using only Landsat 8, 26% using laser only, and 23% for the combination of the two. The plot level error for above ground tree biomass was 66% when using only Landsat 8, 50% for laser and 49% for the combination of Landsat 8 and laser data. Results for below ground tree biomass were similar to above ground biomass. Additionally it was found that an early dry season satellite image was preferable for modelling biomass while images from later in the dry season were better for modelling soil carbon. The results show that laser data is superior to Landsat 8 when predicting both soil carbon and biomass above and below ground in landscapes dominated by Miombo woodlands. Furthermore, the combination of laser data and Landsat data were marginally better than using laser data only.

  4. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  5. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  6. Categorisation of full waveform data provided by laser scanning devices

    NASA Astrophysics Data System (ADS)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  7. Land-Based Mobile Laser Scanning Systems: a Review

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  8. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement

    NASA Astrophysics Data System (ADS)

    Pfennigbauer, Martin; Ullrich, Andreas

    2010-04-01

    Newest developments in laser scanner technologies put surveyors in the position to comply with the ever increasing demand of high-speed, high-accuracy, and highly reliable data acquisition from terrestrial, mobile, and airborne platforms. Echo digitization in pulsed time-of-flight laser ranging has demonstrated its superior performance in the field of bathymetry and airborne laser scanning for more than a decade, however at the cost of somewhat time consuming off line post processing. State-of-the-art online waveform processing as implemented in RIEGL's V-Line not only saves users post-processing time to obtain true 3D point clouds, it also adds the assets of calibrated amplitude and reflectance measurement for data classification and pulse deviation determination for effective and reliable data validation. We present results from data acquisitions in different complex target situations.

  9. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  10. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    PubMed

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  11. Analysis of 3d Building Models Accuracy Based on the Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.; Pilarska, M.; Charyton, J.; Bakuła, K.

    2018-05-01

    Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term "3D building models" can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.

  12. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Podolske, James; Loewenstein, Max

    1993-01-01

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.

  13. National center for airborne laser mapping proposed

    NASA Astrophysics Data System (ADS)

    Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill

    Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.

  14. The potential of high resolution airborne laser scanning for deriving geometric properties of single trees

    NASA Astrophysics Data System (ADS)

    Morsdorf, F.; Meier, E.; Koetz, B.; Nüesch, D.; Itten, K.; Allgöwer, B.

    2003-04-01

    The potential of airborne laserscanning for mapping forest stands has been intensively evaluated in the past few years. Algorithms deriving structural forest parameters in a stand-wise manner from laser data have been successfully implemented by a number of researchers. However, with very high point density laser (>20 points/m^2) data we pursue the approach of deriving these parameters on a single-tree basis. We explore the potential of delineating single trees from laser scanner raw data (x,y,z- triples) and validate this approach with a dataset of more than 2000 georeferenced trees, including tree height and crown diameter, gathered on a long term forest monitoring site by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). The accuracy of the laser scanner is evaluated trough 6 reference targets, being 3x3 m^2 in size and horizontally plain, for validating both the horizontal and vertical accuracy of the laser scanner by matching of triangular irregular networks (TINs). Single trees are segmented by a clustering analysis in all three coordinate dimensions and their geometric properties can then be derived directly from the tree cluster.

  15. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  16. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    NASA Astrophysics Data System (ADS)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  17. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  18. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  19. Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.

    2017-12-01

    Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.

  20. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  1. Evaluation of Vertical Lacunarity Profiles in Forested Areas Using Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.

    2016-06-01

    The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  2. Creation of a Digital Surface Model and Extraction of Coarse Woody Debris from Terrestrial Laser Scans in an Open Eucalypt Woodland

    NASA Astrophysics Data System (ADS)

    Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.

    2014-12-01

    Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest

  3. The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography

    NASA Astrophysics Data System (ADS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  4. Airborne Laser Scanning - based vegetation classification in grasslands: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Vári, Ágnes; Deák, Balázs; Mücke, Werner; Székely, Balázs

    2013-04-01

    Airborne Laser Scanning is traditionally used for topography mapping, exploiting its ability to map terrain elevation under vegetation cover. Parallel to this, the application of ALS for vegetation classification and mapping of ecological variables is rapidly emerging. Point clouds surveyed by ALS provide accurate representations of vegetation structure and are therefore considered suitable for mapping vegetation classes as long as their vertical structure is characteristic. For this reason, most ALS-based vegetation mapping studies have been carried out in forests, with some rare applications for shrublands or tall grass vegetation such as reeds. The use of remote-sensing derived vegetation maps is widespread in ecological research and is also gaining importance in practical conservation. There is an increasing demand for reliable, high-resolution datasets covering large protected areas. ALS can provide both the coverage and the high resolution, and can prove to be an economical solution due to the potential for automatic processing and the wide range of uses that allows spreading costs. Grasslands have a high importance in nature conservation as due to the drastical land use changes (arable lands, afforestation, fragmentation by linear structures) in the last centuries the extent of these habitats have been considerably reduced. Among the habitat types protected by the Habitat Directive of the Natura 2000 system, several grassland habitat types (e.g. hay meadows, dry grasslands harbouring rare Orchid species) have special priority for conservation. For preserving these habitat types application of a proper management - including mowing or grazing - has a crucial role. Therefore not only the mapping of the locations of habitats but the way of management is needed for representing the natural processes. The objective of this study was to test the applicability of airborne laser scanning for ecological vegetation mapping in and around grasslands. The study site is

  5. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    NASA Technical Reports Server (NTRS)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  6. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  7. Flow control about an airborne laser turret

    NASA Astrophysics Data System (ADS)

    Penix, L. E.

    1982-06-01

    This thesis project is the latest in a series of experiments conducted at the Naval Postgraduate School to improve the air flow in which a laser beam propagates. The particular turret to be studied is currently employed on Airborne Laser Laboratory which is aboard the NKC-135 aircraft; a one-third scale model was constructed in the 5 x 5 foot wind tunnel. The objective is to decrease the optical path distortion and jitter resulting from turbulent flow in the aft hemisphere of the turret that houses the laser telescope.

  8. Laser communications technology with airborne platform

    NASA Astrophysics Data System (ADS)

    Jiang, Huilin; Liu, Guojun; Yin, Fuchang; Liu, Zhi

    2006-01-01

    Space laser communications (SLC) possess a series of advantages, such as higher data rates, large capacity of information, very good secrecy, et al. So SLC has been attracting great attention the throughout western and developed countries. USA, EU and Japan are making great efforts in establishing space-air-ground integrated communications network, with satellites, planes or ground vehicles as platforms. China has also carried out laser communication research activities in recent years. Changchun University of Science and technology (CUST) has been doing research studies on space laser communications with plane as the platform, and relatively thorough study on some of the key technologies such as airborne lasercom terminal design. The present paper will address some of these topics.

  9. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland

    NASA Astrophysics Data System (ADS)

    Goodwin, Nicholas R.; Armston, John D.; Muir, Jasmine; Stiller, Issac

    2017-04-01

    Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) technologies capture spatially detailed estimates of surface topography and when collected multi-temporally can be used to assess geomorphic change. The sensitivity and repeatability of ALS measurements to characterise geomorphic change in topographically complex environments such as gullies; however, remains an area lacking quantitative research. In this study, we captured coincident ALS and TLS datasets to assess their ability and synergies to detect geomorphic change for a gully located in Aratula, southeast Queensland, Australia. We initially used the higher spatial density and ranging accuracy of TLS to provide an assessment of the Digital Elevation Models (DEM) derived from ALS within a gully environment. Results indicated mean residual errors of 0.13 and 0.09 m along with standard deviation (SD) of residual errors of 0.20 and 0.16 m using pixel sizes of 0.5 and 1.0 m, respectively. The positive mean residual errors confirm that TLS data consistently detected deeper sections of the gully than ALS. We also compared the repeatability of ALS and TLS for characterising gully morphology. This indicated that the sensitivity to detect change using ALS is substantially lower than TLS, as expected, and that the ALS survey characteristics influence the ability to detect change. Notably, we found that using one ALS transect (mean density of 5 points / m2) as opposed to three transects increased the SD of residual error by approximately 30%. The supplied classification of ALS ground points was also demonstrated to misclassify gully features as non-ground, with minimum elevation filtering found to provide a more accurate DEM of the gully. The number and placement of terrestrial laser scans were also found to influence the derived DEMs. Furthermore, we applied change detection using two ALS data captures over a four year period and four TLS field surveys over an eight month period. This demonstrated that

  10. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

    NASA Astrophysics Data System (ADS)

    Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng

    2014-06-01

    The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

  11. Large tree diameter distribution modelling using sparse airborne laser scanning data in a subtropical forest in Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Vauhkonen, Jari; Junttila, Virpi; Hou, Zhengyang; Gautam, Basanta; Cawkwell, Fiona; Tokola, Timo

    2017-12-01

    Large-diameter trees (taking DBH > 30 cm to define large trees) dominate the dynamics, function and structure of a forest ecosystem. The aim here was to employ sparse airborne laser scanning (ALS) data with a mean point density of 0.8 m-2 and the non-parametric k-most similar neighbour (k-MSN) to predict tree diameter at breast height (DBH) distributions in a subtropical forest in southern Nepal. The specific objectives were: (1) to evaluate the accuracy of the large-tree fraction of the diameter distribution; and (2) to assess the effect of the number of training areas (sample size, n) on the accuracy of the predicted tree diameter distribution. Comparison of the predicted distributions with empirical ones indicated that the large tree diameter distribution can be derived in a mixed species forest with a RMSE% of 66% and a bias% of -1.33%. It was also feasible to downsize the sample size without losing the interpretability capacity of the model. For large-diameter trees, even a reduction of half of the training plots (n = 250), giving a marginal increase in the RMSE% (1.12-1.97%) was reported compared with the original training plots (n = 500). To be consistent with these outcomes, the sample areas should capture the entire range of spatial and feature variability in order to reduce the occurrence of error.

  12. Close-range laser scanning in forests: towards physically based semantics across scales.

    PubMed

    Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E

    2018-04-06

    Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

  13. Airborne laser study quantifies El Niño-induced coastal change

    USGS Publications Warehouse

    Sallenger, Asbury H.; Krabill, William; Brock, John H.; Swift, Robert; Jansen, Mark; Manizade, Serdar; Richmond, Bruce; Hampton, Monty; Eslinger, David

    1999-01-01

    Winter storms during the 1997–1998 El Niño caused extensive changes to the beaches and cliffs of the west coast of the United States, a NASA-NOAA-USGS investigation using a scanning airborne laser has found. For example, near Pacifica in central California, the cliff eroded locally as much as 10–13 m landward during the El Niño winter, at least 40 times the long term average erosion rate. However, only several hundred meters away the cliff was stable. This variability in cliff response may be related to differences in local beach changes where an accreting beach protected part of the cliff and an eroding beach exposed another part to attack by waves.

  14. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  15. NCALM: NSF Supported Center for Airborne Laser Mapping

    NASA Astrophysics Data System (ADS)

    Shrestha, R. L.; Carter, W. E.; Dietrich, W. E.

    2003-12-01

    The National Science Foundation (NSF) recently awarded a grant to create a research center to support the use of airborne laser mapping technology in the scientific community. The NSF supported Center for Airborne Laser Mapping (NCALM) will be operated jointly by the Department of Civil & Coastal Engineering, College of Engineering, University of Florida (UF) and the Department of Earth and Planetary Science, University of California-Berkeley (UCB). NCALM will use the Airborne Laser Swath Mapping (ALSM) system jointly owned by UF and Florida International University (FIU), based at the UF Geosensing Engineering and Mapping (GEM) Research Center. The state-of-the-art laser surveying instrumentation, GPS systems, which are installed in a Cessna 337 Skymaster aircraft, will collect research grade data in areas selected through the competitive NSF grant review process. The ALSM observations will be analyzed both at UF and UCB, and made available to the PI through an archiving and distribution center at UCB-building upon the Berkeley Seismological Laboratory (BSL) Northern California Earthquake Data Center system. The purpose of NCALM is to provide research grade data from ALSM technology to NSF supported research studies in geosciences. The Center will also contribute to software development that will increase the processing speed and data accuracy. This presentation will discuss NCALM operation and the process of submitting proposals to NSF. In addition, it will outline the process to request available NCALM seed project funds to help jump-start small scientific research studies. Funds are also available for travel by academic researchers and students for hands-on knowledge and experience in ALSM technology at UF and UCB.

  16. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification

    NASA Astrophysics Data System (ADS)

    Pawłuszek, Kamila; Borkowski, Andrzej

    2016-06-01

    Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.

  17. Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Swift, R. N.; Butler, M. L.

    1980-01-01

    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain).

  18. Individual tree crown approach for predicting site index in boreal forests using airborne laser scanning and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Kandare, Kaja; Ørka, Hans Ole; Dalponte, Michele; Næsset, Erik; Gobakken, Terje

    2017-08-01

    Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI

  19. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  20. Measurement of snow depth distribution in the Kamikochi-Azusa river basin using an airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Sasaki, A.

    2013-12-01

    contour lines, and then use the difference between them to clarify the snow depth. This method allows researchers to grasp the snow depth over a wide area, but it needs to be made more precise if it is to incorporate high-precision information on equivalent elevation points on the snow surface. In recent years, a measurement technology has been developed that uses laser scanners mounted on aircraft. This method enables researchers to obtain ground surface coordinate data with high precision over a wide area from the air. Using such a scanner to measure the ground surface during snow coverage and during no snow coverage, and then finding the differences between the surface elevations, has made it possible to ascertain snow depth with high precision. Airborne laser measurement enables high-precision measurements over a wide area and in a short amount of time, and measurements can be made regardless of geographical factors such as sloping ground. As such, it enables measurement of snow depth distribution over a wide area without having to worry about the undulations of the land. In this study, airborne laser scanning was carried out on the snow surface in the upstream region of the Kamikochi-Azusa River in Japan on March 29, 2012, in order to clarify the snow depth distribution.

  1. Galvanometer scanning technology for laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Li, Jin; Lucas, Mark

    2017-02-01

    A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.

  2. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  3. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  4. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  5. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  6. Oil film thickness using airborne laser-induced oil fluorescence backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1983-01-01

    Remote airborne measurement of oil film thickness on ocean surface using laser-induced water Raman backscatter is discussed. It is pointed out that the theoretical model of oil fluorescence by Horvath et al. (1971) contains the necessary constituents to provide for the natural background fluorescence that is also induced by the laser during the course of an oil thickness experiment. How the various parameters of the model are obtained from typical airborne profile data is discussed, and it is shown that the water Raman backscatter may be used to assist further in the application of the data. The regions or water types over which the technique might be most useful or applicable are discussed.

  7. Wide-field airborne laser diode array illuminator: demonstration results

    NASA Astrophysics Data System (ADS)

    Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.

    2005-06-01

    The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.

  8. Black-backed woodpecker habitat suitability mapping using conifer snag basal area estimated from airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Casas Planes, Á.; Garcia, M.; Siegel, R.; Koltunov, A.; Ramirez, C.; Ustin, S.

    2015-12-01

    Occupancy and habitat suitability models for snag-dependent wildlife species are commonly defined as a function of snag basal area. Although critical for predicting or assessing habitat suitability, spatially distributed estimates of snag basal area are not generally available across landscapes at spatial scales relevant for conservation planning. This study evaluates the use of airborne laser scanning (ALS) to 1) identify individual conifer snags and map their basal area across a recently burned forest, and 2) map habitat suitability for a wildlife species known to be dependent on snag basal area, specifically the black-backed woodpecker (Picoides arcticus). This study focuses on the Rim Fire, a megafire that took place in 2013 in the Sierra Nevada Mountains of California, creating large patches of medium- and high-severity burned forest. We use forest inventory plots, single-tree ALS-derived metrics and Gaussian processes classification and regression to identify conifer snags and estimate their stem diameter and basal area. Then, we use the results to map habitat suitability for the black-backed woodpecker using thresholds for conifer basal area from a previously published habitat suitability model. Local maxima detection and watershed segmentation algorithms resulted in 75% detection of trees with stem diameter larger than 30 cm. Snags are identified with an overall accuracy of 91.8 % and conifer snags are identified with an overall accuracy of 84.8 %. Finally, Gaussian process regression reliably estimated stem diameter (R2 = 0.8) using height and crown area. This work provides a fast and efficient methodology to characterize the extent of a burned forest at the tree level and a critical tool for early wildlife assessment in post-fire forest management and biodiversity conservation.

  9. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    PubMed Central

    Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert

    2008-01-01

    Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements

  10. Hybrid processing of laser scanning data

    NASA Astrophysics Data System (ADS)

    Badenko, Vladimir; Zotov, Dmitry; Fedotov, Alexander

    2018-03-01

    In this article the analysis of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the base of usage of laser scanning data for historic building information modeling is presented. The results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application for the historical building of St. Petersburg Polytechnic University shows reliability of the proposed approaches.

  11. An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.; hide

    2001-01-01

    An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.

  12. Airborne Laser Hydrography II

    NASA Astrophysics Data System (ADS)

    Philpot, W.; Wozencraft, J.

    2016-02-01

    In 1985, Dr. Gary Guenther assembled the text, "Airborne Laser Hydrography" which quickly became a heavily used manual and guide for any and all scientists and engineers involved with airborne lidar bathymetry (ALB). It was a remarkable book that captured a snapshot of the state of the art of ALB and included historical developments, theoretical and modeling efforts as well as design characteristics and constraints, ending with accuracy assessment and a discussion of design tradeoffs. Known familiarly as the "Blue Book" it served the community remarkably well for many years. At 30 years of age, it is still a valued reference, but unavoidably dated in a field that has developed rapidly and nonstop over the intervening years. It is time for an update. The new text is attempt by the ALB community to update and expand upon Guenther's text. Like the original, Blue Book II reviews the historical developments in ALB, extending them into the 21st century, considers basic environmental water optical properties, theoretical developments, data processing and performance evaluation. All have progressed dramatically in the past 30 years. This paper presents an outline of the new book, a description of the contents, with emphasis on the theoretical models of the lidar waveform and its propagation through, and interaction with the water.

  13. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  14. Standard module approach to scanning requirements for second-generation airborne FLIRs

    NASA Astrophysics Data System (ADS)

    Ludwiszewski, Alan P.

    1995-05-01

    This paper examines the specification requirements for the development of standard module scanning components to be used in conjunction with SADA I and SADA II sensor arrays. System-level design considerations are presented to identify a selection of components that is consistent with optimum use of the SADA technology. A limited-rotation electromagnetic actuator, used in conjunction with an angular position sensor and a digital controller, is shown to have the necessary performance and flexibility to perform the frame scan function for a wide range of airborne systems. System level requirements and specifications for an optional interlace scan system are also provided.

  15. A Multiple Resource Inventory of Delaware Using an Airborne Profiling Laser

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Short, Austin; Valenti, Michael A.; Keller, Cherry; Smith, David E. (Technical Monitor)

    2002-01-01

    An airborne profiling laser is used to monitor multiple resources related to landscape structure, both natural and man-made, across regions encompassing hundreds of thousands of hectares. A small, lightweight, inexpensive airborne profiling laser is used to inventory Delaware forests, to estimate impervious surface area statewide, and to locate potentially Suitable Delmarva Fox Squirrel (Scrotum niger cinereus) habitat. Merchantable volume estimates are within 14% of US Forest Service estimates at the county level and within 4% statewide. Total above-ground dry biomass estimates are within 19% of USES estimates at the county level and within 16% statewide. Mature forest stands suitable for reintroduction of the Delmarva Fox Squirrel, an endangered species historically endemic to the eastern shores of Delaware, Maryland, and Virginia, are identified and mapped along the laser transacts. Intersection lengths with various types of impervious surface (roofs, concrete/asphalt) and open water are tallied to estimate percent and areal coverage statewide, by stratum and county. Laser estimates of open water are within 7% of photointerpreted GIS estimates at the county level and within 3% of the GIS at the state level.

  16. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  17. Updating stand-level forest inventories using airborne laser scanning and Landsat time series data

    NASA Astrophysics Data System (ADS)

    Bolton, Douglas K.; White, Joanne C.; Wulder, Michael A.; Coops, Nicholas C.; Hermosilla, Txomin; Yuan, Xiaoping

    2018-04-01

    Vertical forest structure can be mapped over large areas by combining samples of airborne laser scanning (ALS) data with wall-to-wall spatial data, such as Landsat imagery. Here, we use samples of ALS data and Landsat time-series metrics to produce estimates of top height, basal area, and net stem volume for two timber supply areas near Kamloops, British Columbia, Canada, using an imputation approach. Both single-year and time series metrics were calculated from annual, gap-free Landsat reflectance composites representing 1984-2014. Metrics included long-term means of vegetation indices, as well as measures of the variance and slope of the indices through time. Terrain metrics, generated from a 30 m digital elevation model, were also included as predictors. We found that imputation models improved with the inclusion of Landsat time series metrics when compared to single-year Landsat metrics (relative RMSE decreased from 22.8% to 16.5% for top height, from 32.1% to 23.3% for basal area, and from 45.6% to 34.1% for net stem volume). Landsat metrics that characterized 30-years of stand history resulted in more accurate models (for all three structural attributes) than Landsat metrics that characterized only the most recent 10 or 20 years of stand history. To test model transferability, we compared imputed attributes against ALS-based estimates in nearby forest blocks (>150,000 ha) that were not included in model training or testing. Landsat-imputed attributes correlated strongly to ALS-based estimates in these blocks (R2 = 0.62 and relative RMSE = 13.1% for top height, R2 = 0.75 and relative RMSE = 17.8% for basal area, and R2 = 0.67 and relative RMSE = 26.5% for net stem volume), indicating model transferability. These findings suggest that in areas containing spatially-limited ALS data acquisitions, imputation models, and Landsat time series and terrain metrics can be effectively used to produce wall-to-wall estimates of key inventory attributes, providing an

  18. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  19. Airborne LiDAR : a new source of traffic flow data.

    DOT National Transportation Integrated Search

    2005-10-01

    LiDAR (or airborne laser scanning) systems became a dominant player in high-precision spatial data acquisition : to efficiently create DEM/DSM in the late 90's. With increasing point density, new systems are now able to : support object extraction, s...

  20. Airborne LiDAR : a new source of traffic flow data.

    DOT National Transportation Integrated Search

    2005-10-01

    LiDAR (or airborne laser scanning) systems became a dominant player in high-precision spatial data acquisition : to efficiently create DEM/DSM in the late 90s. With increasing point density, new systems are now able to : support object extraction, ...

  1. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  2. Laser Scanning Microscopic Investigations of the Decontamination of Soot Nanoparticles from the Skin.

    PubMed

    Lademann, Jürgen; Knorr, Fanny; Patzelt, Alexa; Meinke, Martina C; Richter, Heike; Krutmann, Jean; Rühl, Eckart; Doucet, Olivier

    2018-01-01

    Airborne pollutants, such as nano-sized soot particles, are increasingly being released into the environment as a result of growing population densities and industrialization. They can absorb organic and metal compounds with potential biological activity, such as polycyclic aromatic hydrocarbons and airborne pollen allergens. Local and systemic toxicities may be induced in the skin if the particulates release their harmful components upon dermal contact. In the present study, skin pretreatments with serum and/or shield as barrier formulations prior to exposure and washing with a cleanser subsequent to exposure were evaluated as a protection and decontamination strategy using laser scanning microscopy. The results indicate that while the application of serum and a cleanser was insufficient for decontamination, the pretreatment with shield prior to nanoparticle exposure followed by washing led to the removal of a considerable amount of the carbon black particles. The combined application of serum and shield before the administration of carbon black particles and subsequent washing led to their elimination from the skin samples. The application of barrier-enhancing formulations in combination with a cleanser may reduce the penetration of harmful airborne particulates by preventing their adhesion to the skin and facilitating their removal by subsequent washing with the cleanser. © 2018 S. Karger AG, Basel.

  3. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    PubMed

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  4. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  5. Estimating forest biomass and volume using airborne laser data

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  6. Boresight alignment method for mobile laser scanning systems

    NASA Astrophysics Data System (ADS)

    Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.

    2010-06-01

    Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.

  7. Feasibility of Multispectral Airborne Laser Scanning for Land Cover Classification, Road Mapping and Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E.

    2017-10-01

    This article summarises our first results and experiences on the use of multispectral airborne laser scanner (ALS) data. Optech Titan multispectral ALS data over a large suburban area in Finland were acquired on three different dates in 2015-2016. We investigated the feasibility of the data from the first date for land cover classification and road mapping. Object-based analyses with segmentation and random forests classification were used. The potential of the data for change detection of buildings and roads was also demonstrated. The overall accuracy of land cover classification results with six classes was 96 % compared with validation points. The data also showed high potential for road detection, road surface classification and change detection. The multispectral intensity information appeared to be very important for automated classifications. Compared to passive aerial images, the intensity images have interesting advantages, such as the lack of shadows. Currently, we focus on analyses and applications with the multitemporal multispectral data. Important questions include, for example, the potential and challenges of the multitemporal data for change detection.

  8. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    NASA Astrophysics Data System (ADS)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  9. Airborne and spaceborne lasers for terrestrial geophysical sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Technical Reports Server (NTRS)

    Allario, Frank (Editor)

    1988-01-01

    The present conference on airborne and spaceborne remote sensing laser applications discusses topics in atmospheric and geophysical sciences-related sensors, lidar and DIAL component and subsystem technologies, and coherent laser experiments and semiconductor laser technologies. Attention is given to airborne lidar measurement of aerosols, a ground-based injection-locked pulsed TEA laser for wind measurements, chemical/biological agent standoff detection methods, lidars for wind shear erosion, laser tuning to selected gas absorption lines in the atmosphere, the NASA lidar-in-space technology experiment, and the Laser Atmospheric Wind Sounder.

  10. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Gallay, Michal; Bandura, Peter; Šašak, Ján

    2018-05-01

    Karst sinkholes (dolines) play an important role in a karst landscape by controlling infiltration of surficial water, air flow or spatial distribution of solar energy. These landforms also present a limiting factor for human activities in agriculture or construction. Therefore, mapping such geomorphological forms is vital for appropriate landscape management and planning. There are several mapping techniques available; however, their applicability can be reduced in densely forested areas with poor accessibility and visibility of the landforms. In such conditions, airborne laser scanning (ALS) provides means for efficient and accurate mapping of both land and landscape canopy surfaces. Taking the benefits of ALS into account, we present an innovative method for identification and evaluation of karst sinkholes based on numerical water flow modelling. The suggested method was compared to traditional techniques for sinkhole mapping which use topographic maps and digital terrain modelling. The approach based on simulation of a rainfall event very closely matched the reference datasets derived by manual inspection of the ALS digital elevation model and field surveys. However, our process-based approach provides advantage of assessing the magnitude how sinkholes influence concentration of overland water flow during extreme rainfall events. This was performed by calculating the volume of water accumulated in sinkholes during the simulated rainfall. In this way, the influence of particular sinkholes on underground geomorphological systems can be assessed. The method was demonstrated in a case study of Slovak Karst in the West Carpathians where extreme rainfalls or snow-thaw events occur annually. We identified three spatially contiguous groups of sinkholes with a different effect on overland flow concentration. These results are discussed in relation to the known underground hydrological systems.

  11. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  12. Airborne LiDAR : a new source of traffic flow data : executive summary.

    DOT National Transportation Integrated Search

    2005-10-01

    LiDAR (or airborne laser scanning) systems became a : dominant player in high-precision spatial data : acquisition in the late 90s. This new technology : quickly established itself as the main source of surface : information in commercial mapping,...

  13. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.

    PubMed

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-22

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

  14. Control methods for merging ALSM and ground-based laser point clouds acquired under forest canopies

    NASA Astrophysics Data System (ADS)

    Slatton, Kenneth C.; Coleman, Matt; Carter, William E.; Shrestha, Ramesh L.; Sartori, Michael

    2004-12-01

    Merging of point data acquired from ground-based and airborne scanning laser rangers has been demonstrated for cases in which a common set of targets can be readily located in both data sets. However, direct merging of point data was not generally possible if the two data sets did not share common targets. This is often the case for ranging measurements acquired in forest canopies, where airborne systems image the canopy crowns well, but receive a relatively sparse set of points from the ground and understory. Conversely, ground-based scans of the understory do not generally sample the upper canopy. An experiment was conducted to establish a viable procedure for acquiring and georeferencing laser ranging data underneath a forest canopy. Once georeferenced, the ground-based data points can be merged with airborne points even in cases where no natural targets are common to both data sets. Two ground-based laser scans are merged and georeferenced with a final absolute error in the target locations of less than 10cm. This is comparable to the accuracy of the georeferenced airborne data. Thus, merging of the georeferenced ground-based and airborne data should be feasible. The motivation for this investigation is to facilitate a thorough characterization of airborne laser ranging phenomenology over forested terrain as a function of vertical location in the canopy.

  15. Local Topography Effect on Plant Area Index Profile Calculation from Small Footprint Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, T.; Skidmore, A. K.; Heurich, M.

    2016-12-01

    The plant area index (PAI) profile is a quantitative description of how plants (including leaves and woody materials) are distributed vertically, as a function of height. PAI profiles can be used for many applications including biomass estimation, radiative transfer modelling, fire fuel modelling and wildlife habitat assessment. With airborne laser scanning (ALS), forest structure underneath the canopy surface can be detected. PAI profiles can be calculated through estimates of the vertically resolved gap fraction from ALS data. In this process, a gridding or aggregation step is often involved. Most current research neglects local topographic change, and utilizes a height normalization algorithm to achieve a local or relative height, implying a flat local terrain assumption inside the grid or aggregation area. However, in mountainous forest, this assumption is often not valid. Therefore, in this research, the local topographic effect on the PAI profile calculation was studied. Small footprint discrete multi-return ALS data was acquired over the Bavarian Forest National Park under leaf-off and leaf-on conditions. Ground truth data, including tree height, canopy cover, DBH as well as digital hemispherical photos, were collected in 30 plots. These plots covered a wide range of forest structure, plant species, local topography condition and understory coverage. PAI profiles were calculated both with and without height normalization. The difference between height normalized and non-normalized profiles were evaluated with the coefficient of variation of root mean squared difference (CV-RMSD). The derived metric PAI values from PAI profiles were also evaluated with ground truth PAI from the hemispherical photos. Results showed that change in local topography had significant effects on the PAI profile. The CV-RMSD between PAI profile results calculated with or without height normalization ranged from 24.5% to 163.9%. Height normalization (neglecting topography change) can

  16. Large off-nadir scan angle of airborne LiDAR can severely affect the estimates of forest structure metrics

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Skidmore, Andrew K.; Jones, Simon; Wang, Tiejun; Heurich, Marco; Zhu, Xi; Shi, Yifang

    2018-02-01

    Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile) are important forest structural metrics. Accurate estimation of Pgap and vertical Pgap profile is therefore critical for many ecological applications, including leaf area index (LAI) mapping, LAI profile estimation and wildlife habitat modelling. Although many studies estimated Pgap and vertical Pgap profile from airborne LiDAR data, the scan angle was often overlooked and a nadir view assumed. However, the scan angle can be off-nadir and highly variable in the same flight strip or across different flight strips. In this research, the impact of off-nadir scan angle on Pgap and vertical Pgap profile was evaluated, for several forest types. Airborne LiDAR data from nadir (0°∼7°), small off-nadir (7°∼23°), and large off-nadir (23°∼38°) directions were used to calculate both Pgap and vertical Pgap profile. Digital hemispherical photographs (DHP) acquired during fieldwork were used as references for validation. Our results show that angular Pgap from airborne LiDAR correlates well with angular Pgap from DHP (R2 = 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir direction). But underestimation of Pgap from LiDAR amplifies at large off-nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved from different directions, it is shown that scan angle impact on Pgap and vertical Pgap profile differs amongst different forest types. The difference is likely to be caused by different leaf angle distribution and canopy architecture in these forest types. Statistical results demonstrate that the scan angle impact is more severe for plots with discontinuous or sparse canopies. These include coniferous plots, and deciduous or mixed plots with between-crown gaps. In these discontinuous plots, Pgap and vertical Pgap profiles are maximum when observed from nadir direction, and then rapidly decrease with increasing scan angle. The results of this research have many

  17. Airborne LiDAR : a new source of traffic flow data, executive summary report.

    DOT National Transportation Integrated Search

    2005-10-01

    LiDAR (or airborne laser scanning) systems became a : dominant player in high-precision spatial data : acquisition in the late 90s. This new technology : quickly established itself as the main source of surface : information in commercial mapping,...

  18. Design of an Airborne L-Band Cross-Track Scanning Scatterometer

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Technical Monitor)

    2002-01-01

    In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.

  19. Airborne LiDAR : a new source of traffic flow data, research implementation plan.

    DOT National Transportation Integrated Search

    2005-10-01

    LiDAR (or airborne laser scanning) systems became a dominant player in high-precision spatial data acquisition in the late 90's. This new technology quickly established itself as the main source of surface information in commercial mapping, deliverin...

  20. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  1. Measurement of limb volume: laser scanning versus volume displacement.

    PubMed

    McKinnon, John Gregory; Wong, Vanessa; Temple, Walley J; Galbraith, Callum; Ferry, Paul; Clynch, George S; Clynch, Colin

    2007-10-01

    Determining the prevalence and treatment success of surgical lymphedema requires accurate and reproducible measurement. A new method of measurement of limb volume is described. A series of inanimate objects of known and unknown volume was measured using digital laser scanning and water displacement. A similar comparison was made with 10 human volunteers. Digital scanning was evaluated by comparison to the established method of water displacement, then to itself to determine reproducibility of measurement. (1) Objects of known volume: Laser scanning accurately measured the calculated volume but water displacement became less accurate as the size of the object increased. (2) Objects of unknown volume: As average volume increased, there was an increasing bias of underestimation of volume by the water displacement method. The coefficient of reproducibility of water displacement was 83.44 ml. In contrast, the reproducibility of the digital scanning method was 19.0 ml. (3) Human data: The mean difference between water displacement volume and laser scanning volume was 151.7 ml (SD +/- 189.5). The coefficient of reproducibility of water displacement was 450.8 ml whereas for laser scanning it was 174 ml. Laser scanning is an innovative method of measuring tissue volume that combines precision and reproducibility and may have clinical utility for measuring lymphedema. 2007 Wiley-Liss, Inc

  2. Eye Exam: Is a Laser Retina Scan Worthwhile?

    MedlinePlus

    Healthy Lifestyle Adult health Is a laser retina scan necessary? My eye care provider offers the test, but I'm not sure if I need it. Answers from Alaina ... Softing Hataye, O.D. For most people, a laser retina scan isn't necessary. If you choose ...

  3. Scanning laser microscope for imaging nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  4. Laser Scanning Reader For Automated Data Entry Operations

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1980-02-01

    The use of the Universal Product Code (UPC) in conjunction with the laser-scanner-equipped electronic checkout system has made it technologically possible for supermarket stores to operate more efficiently and accurately. At present, more than 90% of the packages in grocery stores have been marked by the manufacturer with laser-scannable UPC symbols and the installation of laser scanning systems is expected to expand into all major chain stores. Areas to be discussed are: system design features, laser-scanning pattern generation, signal-processing logical considerations, UPC characteristics and encodation.

  5. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods

    PubMed Central

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-01

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information. PMID:26805849

  6. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  7. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  8. Application of Airborne Hydrographic Laser Scanning for Mapping Shallow Water Riverine Environments in the Pacific Northwest, United States

    NASA Astrophysics Data System (ADS)

    Cooper, C.; Nayegandhi, A.; Faux, R.

    2013-12-01

    Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.

  9. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  10. Application of 3D triangulations of airborne laser scanning data to estimate boreal forest leaf area index

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Korhonen, Lauri; Korpela, Ilkka; Vauhkonen, Jari

    2017-07-01

    We propose 3D triangulations of airborne Laser Scanning (ALS) point clouds as a new approach to derive 3D canopy structures and to estimate forest canopy effective LAI (LAIe). Computational geometry and topological connectivity were employed to filter the triangulations to yield a quasi-optimal relationship with the field measured LAIe. The optimal filtering parameters were predicted based on ALS height metrics, emulating the production of maps of LAIe and canopy volume for large areas. The LAIe from triangulations was validated with field measured LAIe and compared with a reference LAIe calculated from ALS data using logarithmic model based on Beer's law. Canopy transmittance was estimated using All Echo Cover Index (ACI), and the mean projection of unit foliage area (β) was obtained using no-intercept regression with field measured LAIe. We investigated the influence species and season on the triangulated LAIe and demonstrated the relationship between triangulated LAIe and canopy volume. Our data is from 115 forest plots located at the southern boreal forest area in Finland and for each plot three different ALS datasets were available to apply the triangulations. The triangulation approach was found applicable for both leaf-on and leaf-off datasets after initial calibration. Results showed the Root Mean Square Errors (RMSEs) between LAIe from triangulations and field measured values agreed the most using the highest pulse density data (RMSE = 0.63, the coefficient of determination (R2) = 0.53). Yet, the LAIe calculated using ACI-index agreed better with the field measured LAIe (RMSE = 0.53 and R2 = 0.70). The best models to predict the optimal alpha value contained the ACI-index, which indicates that within-crown transmittance is accounted by the triangulation approach. The cover indices may be recommended for retrieving LAIe only, but for applications which require more sophisticated information on canopy shape and volume, such as radiative transfer models, the

  11. Multi-temporal terrestrial laser scanning for identifying rockslide modifications: potentialities and problems

    NASA Astrophysics Data System (ADS)

    Castagnetti, Cristina; Bertacchini, Eleonora; Capra, Alessandro; Rivola, Riccardo

    2013-04-01

    The heart of this research is to provide an efficient methodology for a reliable acquisition and interpretation of Terrestrial Laser Scanner (TLS) data in the application field of landslide monitoring. In particular, rockslides, which are characterized by vertical walls of rock and by a complex morphology, are of great concern in the study. In these cases the airborne laser scanning is not able to provide useful and reliable description and the terrestrial laser scanning might be the only possible choice to obtain a good and reliable description of the geomorphology or to identify the changes occurred over time. The last purpose is still a challenging task when long distances are involved because the accurate and punctual identification of displacements is not possible due to the laser beam divergence. The final purpose of the research is a proposal of a methodology which is based on TLS technology for identifying displacements and extracting geomorphological changes. The approach is clearly based on a multi-temporal analysis which is computed on several repetitions of TLS surveys performed on the area of interest. To achieve best results and optimize the processing strategy, different methods about point clouds alignment have been tested together with algorithms both for filtering and post-processing. The case study is the Collagna Landslide that is located in the North Appennines (Reggio Emilia, Italy) on the right flank of Biola torrent. The large scale composite landslide area is made both by a wide rock slide sector and a more limited earth slide sector that, after high precipitation rates, disrupted the National Road 63 in December 2008. An integrated monitoring system is installed since 2009 and comprises both point-based technologies such as extensometers, total station and global positioning system, and also area-based technologies such as airborne laser scanner, long-range TLS and ground-based radar. This choice allows to couple the advantages of both

  12. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  13. Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser.

    PubMed

    Grunewald, Sonja; Bodendorf, Marc Oliver; Zygouris, Alexander; Simon, Jan Christoph; Paasch, Uwe

    2014-01-01

    Alexandrite and diode lasers are commonly used for hair removal. To date, the available spot sizes and repetition rates are defining factors in terms of penetration depth, treatment speed, and efficacy. Still, larger treatment areas and faster systems are desirable. To compare the efficacy, tolerability, and subject satisfaction of a continuously linear-scanning 808 nm diode laser with an alexandrite 755 nm laser for axillary hair removal. A total of 31 adults with skin types I-IV received 6 treatments at 4-week intervals with a 755 nm alexandrite laser (right axilla) and a continuously linear-scanning 808 nm diode laser (left axilla). Axillary hair density was assessed using a computerized hair detection system. There was a significant reduction in axillary hair after the 6th treatment (P < 0.05) on both sides (left, 808 nm: hair clearance of 72.16%; right, 755 nm: hair clearance of 71.30%). The difference in reduction between the two lasers was not significant, but both were persistant at 18 months follow-up (left: hair clearance of 73.71%; right: hair clearance of 71.90%). Erythema and perifollicular edema were more common after alexandrite laser treatment, but all side effects were transient. While 62.50% of patients reported more pain in response to treatment with the new diode laser, all patients rated treatment with either laser tolerable. Treatment with either the alexandrite or the linear-scanning diode laser results in significant, comparable, persistent (at least 18 months) axillary hair reduction among individuals with skin types I-IV. © 2013 Wiley Periodicals, Inc.

  14. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  15. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics

  16. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep

  17. Eye safety analysis for non-uniform retinal scanning laser trajectories

    NASA Astrophysics Data System (ADS)

    Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska

    2016-03-01

    Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.

  18. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  19. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.

    2000-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  20. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  1. Multiplatform Mobile Laser Scanning: Usability and Performance

    PubMed Central

    Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Chen, Yuwei

    2012-01-01

    Mobile laser scanning is an emerging technology capable of capturing three-dimensional data from surrounding objects. With state-of-the-art sensors, the achieved point clouds capture object details with good accuracy and precision. Many of the applications involve civil engineering in urban areas, as well as traffic and other urban planning, all of which serve to make 3D city modeling probably the fastest growing market segment in this field. This article outlines multiplatform mobile laser scanning solutions such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted equipment for fluvial environments. Moreover, we introduce a novel backpack version of mobile laser scanning equipment for surveying applications in the field of natural sciences where the requirements include precision and mobility in variable terrain conditions. In addition to presenting a technical description of the systems, we discuss the performance of the solutions in the light of various applications in the fields of urban mapping and modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and in monitoring the effects of climate change on permafrost landforms. The data performance of the mobile laser scanning approach is described by the results of an evaluation of the ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment using a field of spherical 3D targets for the newly-introduced Akhka backpack system is conducted and reported on.

  2. Airborne Laser Swath Mapping: Improved Penetration of Dense Vegetation Opens New Applications

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, K. C.

    2009-12-01

    Historically, mapping structures and terrain obscured by dense forests has been problematical, because shadows limit or prevent the use of airborne photogrammetric techniques, and ground surveying techniques are slow, labor intensive, and too costly for many applications. Airborne laser swath mapping (ALSM) units with pulse rates of a few thousand to a few tens of thousands of pulses per second typically resulted in 1 or 2 points per square meter of terrain, which worked reasonably well in sparse to moderately forested areas. For example, data collected with a 30 kHz laser, provided sufficient returns from the ground in areas covered with redwood, mixed hardwoods, and conifer forests, to create 1 to 2 meter resolution bare earth digital elevation models (DEM). These DEMs were useful in studies of forest covered landslides, terraces, and fault lines. However, in dense semi-tropical areas of Florida, with primary and secondary canopies that include dense brush such as palmetto, the DEMs were significantly degraded, and in many areas it was not possible to derive bare earth DEMs that were reliable in height to better than 0.5 to 1.0 meter. In 2007 the UF purchased a second generation Optech ALSM unit that has decimeter accuracy ranging with pulse rates of 100 to 125 kHz. Flying at 600 meters AGL, 60 meters per second, and using a scan angle of ± 20 degrees and scan rate of 40 Hz, results in about 5 laser pulses per square meter within a single swath. In April 2009 a UF team collected ALSM observations covering approximately 2000 acres at Caracol, Belize, to support archaeological studies of the ancient (650 to 900AD) Mayan city, which is largely covered with dense jungle. By overlapping adjacent swaths by 50%, and flying the project area twice with orthogonal flight lines, an accumulated data set containing approximately 20 pulses per square meter, with a distribution of incident angles was realized. The Caracol area has been under study for 25 years and traditional

  3. Bathymetry from fusion of airborne hyperspectral and laser data

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. Joseph

    1998-10-01

    Airborne hyperspectral and nadir-viewing laser data can be combined to ascertain shallow water bathymetry. The combination emphasizes the advances and overcomes the disadvantages of each method used alone. For laser systems, both the hardware and software for obtaining off-nadir measurement are complicated and expensive, while for the nadir view the conversion of laser pulse travel time to depth is straightforward. The hyperspectral systems can easily collect data in a full swath, but interpretation for water depth requires careful calibration and correction for transmittance through the atmosphere and water. Relative depths are apparent in displays of several subsets of hyperspectral data, for example, single blue-green wavelengths, endmembers that represent the pure water component of the data, or ratios of deep to shallow water endmembers. A relationship between one of these values and the depth measured by the aligned nadir laser can be determined, and then applied to the rest of the swath to obtain depth in physical units for the entire area covered. We demonstrate this technique using bathymetric charts as a proxy for laser data, and hyperspectral data taken by AVIRIS over Lake Tahoe and Key West.

  4. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.

    2013-07-01

    We discuss aspects of the development of the Airborne Laser Laboratory. Our discussion is historical in nature and consists of the text from a speech given on the occasion of the Airborne Laser Laboratory leaving Kirtland Air Force Base (AFB) to fly to Wright-Patterson AFB to become an exhibit at the National Museum of the United States Air Force. The last part of the discussion concerns the inception of the study of aero-optics as an area of research and some of the milestones in the understanding of the causes and prediction of aero-optical effects.

  5. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.

    PubMed

    Hauglin, Marius; Bollandsås, Ole Martin; Gobakken, Terje; Næsset, Erik

    2017-12-08

    Monitoring of forest resources through national forest inventory programmes is carried out in many countries. The expected climate changes will affect trees and forests and might cause an expansion of trees into presently treeless areas, such as above the current alpine tree line. It is therefore a need to develop methods that enable the inclusion of also these areas into monitoring programmes. Airborne laser scanning (ALS) is an established tool in operational forest inventories, and could be a viable option for monitoring tasks. In the present study, we used multi-temporal ALS data with point density of 8-15 points per m 2 , together with field measurements from single trees in the forest-tundra ecotone along a 1500-km-long transect in Norway. The material comprised 262 small trees with an average height of 1.78 m. The field-measured height growth was derived from height measurements at two points in time. The elapsed time between the two measurements was 4 years. Regression models were then used to model the relationship between ALS-derived variables and tree heights as well as the height growth. Strong relationships between ALS-derived variables and tree heights were found, with R 2 values of 0.93 and 0.97 for the two points in time. The relationship between the ALS data and the field-derived height growth was weaker, with R 2 values of 0.36-0.42. A cross-validation gave corresponding results, with root mean square errors of 19 and 11% for the ALS height models and 60% for the model relating ALS data to single-tree height growth.

  6. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  7. Verification and Updating of the Database of Topographic Objects with Geometric Information About Buildings by Means of Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Mendela-Anzlik, Małgorzata; Borkowski, Andrzej

    2017-06-01

    Airborne laser scanning data (ALS) are used mainly for creation of precise digital elevation models. However, it appears that the informative potential stored in ALS data can be also used for updating spatial databases, including the Database of Topographic Objects (BDOT10k). Typically, geometric representations of buildings in the BDOT10k are equal to their entities in the Land and Property Register (EGiB). In this study ALS is considered as supporting data source. The thresholding method of original ALS data with the use of the alpha shape algorithm, proposed in this paper, allows for extraction of points that represent horizontal cross section of building walls, leading to creation of vector, geometric models of buildings that can be then used for updating the BDOT10k. This method gives also the possibility of an easy verification of up-to-dateness of both the BDOT10k and the district EGiB databases within geometric information about buildings. For verification of the proposed methodology there have been used the classified ALS data acquired with a density of 4 points/m2. The accuracy assessment of the identified building outlines has been carried out by their comparison to the corresponding EGiB objects. The RMSE values for 78 buildings are from a few to tens of centimeters and the average value is about 0,5 m. At the same time for several objects there have been revealed huge geometric discrepancies. Further analyses have shown that these discrepancies could be resulted from incorrect representations of buildings in the EGiB database.

  8. Laser pattern generator challenges in airborne molecular contamination protection

    NASA Astrophysics Data System (ADS)

    Ekberg, Mats; Skotte, Per-Uno; Utterback, Tomas; Paul, Swaraj; Kishkovich, Oleg P.; Hudzik, James S.

    2003-08-01

    The introduction of photomask laser pattern generators presents new challenges to system designers and manufacturers. One of the laser pattern generator's environmental operating challenges is Airborne Molecular Contamination (AMC), which affects both chemically amplified resists (CAResist) and laser optics. Similar challenges in CAResist protection have already been addressed in semiconductor wafer lithography with reasonable solutions and experience gained by all those involved. However, photomask and photomask equipment manufacturers have not previously had a comparable experience, and some photomask AMC issues differ from those seen in semiconductor wafer lithography. Culminating years of AMC experience, the authors discuss specific requirements of Photomask AMC. Air sampling and material of construction analysis were performed to understand these particular AMC challenges and used to develop an appropriate filtration specification for different classes of contaminates. The authors portray the importance of cooperation between tool designers and AMC experts early in the design stage to assure goal attainment to maximize both process stability and machine productivity in advanced mask making. In conclusion, the authors provide valuable recommendations to both laser tool users and other equipment manufacturers.

  9. Laser-scanning techniques for rapid ballistics identification

    NASA Technical Reports Server (NTRS)

    Woodburgy, R. C.; Nakich, R. B.

    1974-01-01

    Two different laser-scanning methods may be utilized. In each case scanned cylindrical bullet surface is displayed ""unwrapped'' on oscilloscope screen. Bullets are compared by photographing each display and superimposing negatives of two images. With some modifications bullets can be scanned and compared by superimposing images on screen of dual-beam oscilloscope.

  10. Characterizing the geomorphic setting of precariously balanced rocks using terrestrial laser scanning technology

    NASA Astrophysics Data System (ADS)

    Haddad, D. E.; Arrowsmith, R.

    2009-12-01

    Terrestrial laser scanning (TLS) technology is rapidly becoming an effective three-dimensional imaging tool. Precariously balanced rocks are a subset of spheroidally weathered boulders. They are balanced on bedrock pedestals and are formed in upland drainage basins and pediments of exhumed plutons. Precarious rocks are used as negative evidence of earthquake-driven extreme ground motions. Field surveys of PBRs are coupled with cosmogenic radionuclide (CRN) surface exposure dating techniques to determine their exhumation rates. These rates are used in statistical simulations to estimate the magnitudes and recurrences of earthquake-generated extreme ground shaking as a means to physically validate seismic hazard analyses. However, the geomorphic setting of PBRs in the landscape is poorly constrained when interpreting their exhumation rates from CRN surface exposure dates. Are PBRs located on steep or gentle hillslopes? Are they located near drainages or hillslope crests? What geomorphic processes control the spatial distribution of PBRs in a landscape, and where do these processes dominate? Because the fundamental hillslope transport laws are largely controlled by local hillslope gradient and contributing area, the location of a PBR is controlled by the geomorphic agents and their rates acting on it. Our latest efforts involve using a combination of TLS and airborne laser swath mapping (ALSM) to characterize the geomorphic situation of PBRs. We used a Riegl LPM 800i (LPM 321) terrestrial laser scanner to scan a ~1.5 m tall by ~1 m wide precariously balanced rock in the Granite Dells, central Arizona. The PBR was scanned from six positions, and the scans were aligned to a point cloud totaling 3.4M points. We also scanned a ~50 m by ~150 m area covering PBR hillslopes from five scan positions. The resulting 5.5M points were used to create a digital terrain model of precarious rocks and their hillslopes. Our TLS- and ALSM-generated surface models and DEMs provide a

  11. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA.

    PubMed

    Orwig, D A; Boucher, P; Paynter, I; Saenz, E; Li, Z; Schaaf, C

    2018-04-06

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock ( Tsuga canadensis ) canopy health affected by an invasive insect, the hemlock woolly adelgid ( Adelges tsugae ). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study.

  12. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA

    PubMed Central

    Boucher, P.; Saenz, E.; Li, Z.

    2018-01-01

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock (Tsuga canadensis) canopy health affected by an invasive insect, the hemlock woolly adelgid (Adelges tsugae). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study. PMID:29503723

  13. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  14. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data.

    PubMed

    González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.

  15. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data

    PubMed Central

    Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524

  16. Assessing forest windthrow damage using single-date, post-event airborne laser scanning data

    Treesearch

    Gherardo Chirici; Francesca Bottalico; Francesca Giannetti; Barbara Del Perugia; Davide Travaglini; Susanna Nocentini; Erico Kutchartt; Enrico Marchi; Cristiano Foderi; Marco Fioravanti; Lorenzo Fattorini; Lorenzo Bottai; Ronald McRoberts; Erik Næsset; Piermaria Corona; Bernardo Gozzini

    2017-01-01

    One of many possible climate change effects in temperate areas is the increase of frequency and severity of windstorms; thus, fast and cost efficient new methods are needed to evaluate wind-induced damages in forests. We present a method for assessing windstorm damages in forest landscapes based on a two-stage sampling strategy using single-date, post-event airborne...

  17. Remote sensing of the earth's surface with an airborne polarized laser

    NASA Technical Reports Server (NTRS)

    Kalshoven, James E.; Dabney, Philip W.

    1993-01-01

    Attention is given to the Airborne Laser Polarization Sensor (ALPS), which makes multispectral radiometric and polarization measurements of the earth's surface using a polarized laser light source. Results from data flights taken over boreal forests in Maine at two wavelengths (1060 and 532 nm) using an Nd:YAG laser source show distinct depolarization signatures for three broadleaf and five coniferous tree species. A statistically significant increase in depolarization is found to correlate with increasing leaf surface roughness for the broadleaf species in the near-IR. The ALPS system 3 employs 12 photomultiplier tube detectors configurable to measure desired parameters such as the total backscatter and the polarization state, including the azimuthal angle and ellipticity, at different UV to near-IR wavelengths simultaneously.

  18. Airborne hyperspectral and LiDAR data integration for weed detection

    NASA Astrophysics Data System (ADS)

    Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter

    2014-05-01

    Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.

  19. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  20. Parameterized approximation of lacunarity functions derived from airborne laser scanning point clouds of forested areas

    NASA Astrophysics Data System (ADS)

    Székely, Balázs; Kania, Adam; Varga, Katalin; Heilmeier, Hermann

    2017-04-01

    Lacunarity, a measure of the spatial distribution of the empty space is found to be a useful descriptive quantity of the forest structure. Its calculation, based on laser-scanned point clouds, results in a four-dimensional data set. The evaluation of results needs sophisticated tools and visualization techniques. To simplify the evaluation, it is straightforward to use approximation functions fitted to the results. The lacunarity function L(r), being a measure of scale-independent structural properties, has a power-law character. Previous studies showed that log(log(L(r))) transformation is suitable for analysis of spatial patterns. Accordingly, transformed lacunarity functions can be approximated by appropriate functions either in the original or in the transformed domain. As input data we have used a number of laser-scanned point clouds of various forests. The lacunarity distribution has been calculated along a regular horizontal grid at various (relative) elevations. The lacunarity data cube then has been logarithm-transformed and the resulting values became the input of parameter estimation at each point (point of interest, POI). This way at each POI a parameter set is generated that is suitable for spatial analysis. The expectation is that the horizontal variation and vertical layering of the vegetation can be characterized by this procedure. The results show that the transformed L(r) functions can be typically approximated by exponentials individually, and the residual values remain low in most cases. However, (1) in most cases the residuals may vary considerably, and (2) neighbouring POIs often give rather differing estimates both in horizontal and in vertical directions, of them the vertical variation seems to be more characteristic. In the vertical sense, the distribution of estimates shows abrupt changes at places, presumably related to the vertical structure of the forest. In low relief areas horizontal similarity is more typical, in higher relief areas

  1. Underwater Laser Micromilling of Commercially-Pure Titanium Using Different Scan Overlaps

    NASA Astrophysics Data System (ADS)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-01-01

    Underwater laser milling process is a technique for minimizing the thermal damage and gaining a higher material removal rate than processing in air. This paper presents the effect of laser scan overlap on cavity width, depth and surface roughness in the laser milling of commercially-pure titanium in water. The effects of laser pulse energy and pulse repetition rate were also examined, in which a nanosecond pulse laser emitting a 1064-nm wavelength was used in this study. The experimental results indicated that a wide and deep cavity was achievable under high laser energy and large scan overlap. According to the surface roughness, the use of high pulse repetition rate together with low laser energy can promote a smooth laser-milled surface particularly at 50% scan overlap. These findings can further suggest a suitable laser micromilling condition for titanium in roughing and finishing operations.

  2. Airborne laser scanning for forest health status assessment and radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Novotny, Jan; Zemek, Frantisek; Pikl, Miroslav; Janoutova, Ruzena

    2013-04-01

    Structural parameters of forest stands/ecosystems are an important complementary source of information to spectral signatures obtained from airborne imaging spectroscopy when quantitative assessment of forest stands are in the focus, such as estimation of forest biomass, biochemical properties (e.g. chlorophyll /water content), etc. The parameterization of radiative transfer (RT) models used in latter case requires three-dimensional spatial distribution of green foliage and woody biomass. Airborne LiDAR data acquired over forest sites bears these kinds of 3D information. The main objective of the study was to compare the results from several approaches to interpolation of digital elevation model (DEM) and digital surface model (DSM). We worked with airborne LiDAR data with different density (TopEye Mk II 1,064nm instrument, 1-5 points/m2) acquired over the Norway spruce forests situated in the Beskydy Mountains, the Czech Republic. Three different interpolation algorithms with increasing complexity were tested: i/Nearest neighbour approach implemented in the BCAL software package (Idaho Univ.); ii/Averaging and linear interpolation techniques used in the OPALS software (Vienna Univ. of Technology); iii/Active contour technique implemented in the TreeVis software (Univ. of Freiburg). We defined two spatial resolutions for the resulting coupled raster DEMs and DSMs outputs: 0.4 m and 1 m, calculated by each algorithm. The grids correspond to the same spatial resolutions of hyperspectral imagery data for which the DEMs were used in a/geometrical correction and b/building a complex tree models for radiative transfer modelling. We applied two types of analyses when comparing between results from the different interpolations/raster resolution: 1/calculated DEM or DSM between themselves; 2/comparison with field data: DEM with measurements from referential GPS, DSM - field tree alometric measurements, where tree height was calculated as DSM-DEM. The results of the analyses

  3. Scanned-wavelength diode laser sensors for harsh environments

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sanders, Scott T.; Zhou, Xin; Ma, Lin; Mattison, Daniel W.; Hanson, Ronald K.

    2002-09-01

    Diode laser absorption offers the possibility of high-speed, robust, and rugged sensors for a wide variety of practical applications. Pressure broadening complicates absorption measurements of gas temperature and species concentrations in high-pressure, high-temperature practical environments. More agile wavelength scanning can enable measurements of temperature and species concentrations in flames and engines as demonstrated by example measurements using wavelength scanning of a single DFB in laboratory flames or a vertical cavity surface emitting laser (VCSEL) in a pulse detonation engine environment. Although the blending of multiple transitions by pressure broadening complicates the atmospheric pressure spectrum of C2H4 fuel, a scanned wavelength strategy enables quantitative measurement of fuel/oxidizer stoichiometry. Wavelength-agile scanning techniques enable high-speed measurements in these harsh environments.

  4. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  5. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  6. LASER ALTIMETER CANOPY HEIGHT PROFILES: METHODS AND VALIDATION FOR CLOSED-CANOPY, BROADLEAF FORESTS. (R828309)

    EPA Science Inventory

    Abstract

    Waveform-recording laser altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne laser altimeter waveform data was acquired using the Scanning Lid...

  7. Airborne laser scanning based quantification of dead-ice melting in recently deglaciated terrain

    NASA Astrophysics Data System (ADS)

    Klug, C.; Sailer, R.; Schümberg, M.; Stötter, J.

    2012-04-01

    Dead-ice is explained as stagnant glacial ice, not influenced by glacier flow anymore. Whenever glaciers have negative mass balances and an accumulation of debris-cover on the surface, dead-ice may form. Although, there are numerous conceptual process-sediment-landform models for the melt-out of dead-ice bodies and areas of dead-ice environments at glacier margins are easily accessible, just a few quantitative studies of dead-ice melting have been carried out so far. Processes and rates of dead-ice melting are commonly believed to be controlled by climate and debris-cover properties, but there is still a lack of knowledge about this fact. This study has a focus on the quantification of process induced volumetric changes caused by dead-ice melting. The research for this project was conducted at Hintereisferner (Ötztal Alps, Austria), Gepatschferner (Ötztal Alps, Austria) and Schrankar (Stubai Alps, Austria), areas for which a good data basis of ALS (Airborne Laser Scanning) measurements is available. 'Hintereisferner' can be characterized as a typical high alpine environment in mid-latitudes, which ranges between approximately 2250 m and 3740 m a.s.l.. The Hintereisferner region has been investigated intensively since many decades. Two dead ice bodies at the orographic right side and one at the orographic left side of the Hintereisferner glacier terminus (approx. at 2500 m to 2550 m a.s.l.) were identified. Since 2001, ALS measurements have been carried out regularly at Hintereisferner resulting in a unique data record of 21 ALS flight campaigns, allowing long-term explorations of the two dead-ice areas. The second study area of 'Gepatschferner' in the Kaunertal ranges between 2060 m and 3520 m a.s.l. and is the second largest glacier of Austria. Near the glacier tongue at the orographic right side a significant dead ice body has formed. The ALS data used for quantification include a period of time of 4 years (2006 - 2010). 'Schrankar' is located in the Western

  8. Semi-automatic mapping of cultural heritage from airborne laser scanning using deep learning

    NASA Astrophysics Data System (ADS)

    Due Trier, Øivind; Salberg, Arnt-Børre; Holger Pilø, Lars; Tonning, Christer; Marius Johansen, Hans; Aarsten, Dagrun

    2016-04-01

    This paper proposes to use deep learning to improve semi-automatic mapping of cultural heritage from airborne laser scanning (ALS) data. Automatic detection methods, based on traditional pattern recognition, have been applied in a number of cultural heritage mapping projects in Norway for the past five years. Automatic detection of pits and heaps have been combined with visual interpretation of the ALS data for the mapping of deer hunting systems, iron production sites, grave mounds and charcoal kilns. However, the performance of the automatic detection methods varies substantially between ALS datasets. For the mapping of deer hunting systems on flat gravel and sand sediment deposits, the automatic detection results were almost perfect. However, some false detections appeared in the terrain outside of the sediment deposits. These could be explained by other pit-like landscape features, like parts of river courses, spaces between boulders, and modern terrain modifications. However, these were easy to spot during visual interpretation, and the number of missed individual pitfall traps was still low. For the mapping of grave mounds, the automatic method produced a large number of false detections, reducing the usefulness of the semi-automatic approach. The mound structure is a very common natural terrain feature, and the grave mounds are less distinct in shape than the pitfall traps. Still, applying automatic mound detection on an entire municipality did lead to a new discovery of an Iron Age grave field with more than 15 individual mounds. Automatic mound detection also proved to be useful for a detailed re-mapping of Norway's largest Iron Age grave yard, which contains almost 1000 individual graves. Combined pit and mound detection has been applied to the mapping of more than 1000 charcoal kilns that were used by an iron work 350-200 years ago. The majority of charcoal kilns were indirectly detected as either pits on the circumference, a central mound, or both

  9. Evaluation of 3-D laser scanning equipment : 2016 interim report.

    DOT National Transportation Integrated Search

    2017-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser : scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the e...

  10. Evaluation of 3-D Laser Scanning Equipment : 2018 Final Report

    DOT National Transportation Integrated Search

    2018-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the equ...

  11. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  12. Development of an airborne laser bathymeter

    NASA Technical Reports Server (NTRS)

    Kim, H., H.; Cervenka, P. O.; Lankford, C. B.

    1975-01-01

    An airborne laser depth sounding system was built and taken through a complete series of field tests. Two green laser sources were tried: a pulsed neon laser at 540 nm and a frequency-doubled Nd:YAG transmitter at 532 nm. To obtain a depth resolution of better than 20 cm, the pulses had a duration of 5 to 7 nanoseconds and could be fired up to at rates of 50 pulses per second. In the receiver, the signal was detected by a photomultiplier tube connected to a 28 cm diameter Cassegrainian telescope that was aimed vertically downward. Oscilloscopic traces of the signal reflected from the sea surface and the ocean floor could either be recorded by a movie camera on 35 mm film or digitized into 500 discrete channels of information and stored on magnetic tape, from which depth information could be extracted. An aerial color movie camera recorded the geographic footprint while a boat crew of oceanographers measured depth and other relevant water parameters. About two hundred hours of flight time on the NASA C-54 airplane in the area of Chincoteague, Virginia, the Chesapeake Bay, and in Key West, Florida, have yielded information on the actual operating conditions of such a system and helped to optimize the design. One can predict the maximum depth attainable in a mission by measuring the effective attenuation coefficient in flight. This quantity is four times smaller than the usual narrow beam attenuation coefficient. Several square miles of a varied underwater landscape were also mapped.

  13. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  14. Using airborne laser altimetry to determine fuel models for estimating fire behavior

    Treesearch

    Carl A. Seielstad; Lloyd P. Queen

    2003-01-01

    Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...

  15. Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds.

    PubMed

    Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert

    2018-02-03

    This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.

  16. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  17. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  18. Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, Laura K.; Kyle, Philip R.; Oppenheimer, Clive; Frechette, Jedediah D.; Okal, Marianne H.

    2015-03-01

    A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.

  19. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  20. A polar grid estimator of forest canopy structure metrics using airborne laser scanning data

    Treesearch

    Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina

    2013-01-01

    The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...

  1. Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry.

    PubMed

    Tornow, R P; Beuel, S; Zrenner, E

    1997-08-01

    The necessary modifications and technical requirements are described for using a commercially available scanning laser ophthalmoscope (Rodenstock Model 101 SLO) as an imaging densitometer to assess human photopigment distribution. The main requirements are a linear detector amplifier, fast shutters for the laser beams, and a trigger unit. Images must be compensated for varying laser intensity. Both rod and cone photopigments are measured with the 514-nm argon laser of the SLO. Discrimination is possible owing to the different spatial distribution. The cone pigment density peaks in the foveal center (D = 0.40) with a steep decrease with increasing eccentricity E (full width at half-maximum, 2.5 degrees ). Rod photopigment increases with increasing eccentricity (D = 0.23 for E = 11 degrees ). These values are in agreement with previous reported results obtained with scanning laser ophthalmoscopes specially designed for retinal densitometry and high stability.

  2. Airborne laser swath mapping of the Denton Hills, Transantarctic Mountains, Antarctica: Applications for structural and glacial geomorphic mapping

    USGS Publications Warehouse

    Wilson, Terry; Csathó, Beata

    2007-01-01

    High-resolution digital elevation data acquired by airborne laser scanning (ALS) for the Denton Hills, along the coastal foothills of the Royal Society Range, Transantarctic Mountains, are examined for applications to bedrock and glacial geomorphic mapping. Digital elevation models (DEMs), displayed as shaded-relief images and slope maps, portray geomorphic landscape features in unprecedented detail across the region. Structures of both ductile and brittle origin, ranging in age from the Paleozoic to the Quaternary, can be mapped from the DEMs. Glacial features, providing a record of the limits of grounded ice, of lake paleoshorelines, and of proglacial lake-ice conveyor deposits, are also prominent on the DEMs. The ALS-derived topographic data have great potential for a range of mapping applications in regions of ice-free terrain in Antarctica

  3. Portable Laser Spectrometer for Airborne and Ground-Based Remote Sensing of Geological CO2 Emissions

    NASA Technical Reports Server (NTRS)

    Queisser, Manuel; Burton, Mike; Allan, Graham R.; Chiarugi, Antonio

    2017-01-01

    A 24 kilogram, suitcase-sized, CW (Continuous Wave) Laser Remote Sensing Spectrometer (LARSS) with an approximately 2-kilometer range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online-offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  4. Construction and testing of a Scanning Laser Radar (SLR), phase 2

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, H. D.

    1971-01-01

    The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.

  5. Helicopter Airborne Laser Positioning System (HALPS)

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Christiansen, Howard; Cross, Jeffrey; Totah, Joseph

    1990-01-01

    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight.

  6. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  7. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    NASA Astrophysics Data System (ADS)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  8. Axonal loss from acute optic neuropathy documented by scanning laser polarimetry

    PubMed Central

    Meier, F M; Bernasconi, P; Stürmer, J; Caubergh, M-J; Landau, K

    2002-01-01

    Background/aims: Retinal nerve fibre layer analysis by scanning laser polarimetry has been shown to facilitate diagnosis of glaucoma while its role in glaucoma follow up is still unclear. A major difficulty is the slow reduction of retinal nerve fibre layer thickness in glaucomatous optic neuropathy. Eyes of patients were studied after acute retrobulbar optic nerve lesion in order to evaluate the usefulness of scanning laser polarimetry in documenting retinal nerve fibre layer loss over time. Methods: Five patients who suffered severe retrobulbar optic neuropathy have had repeated measurements of the retinal nerve fibre layer using scanning laser polarimetry at various intervals, the first examination being within 1 week of injury. Results: All eyes showed a marked decrease in peripapillary retinal nerve fibre layer thickness, which followed an exponential curve and occurred predominantly within 8 weeks of injury. Compared to a previous study using red-free photographs, scanning laser polarimetry showed retinal nerve fibre layer loss earlier in the course of descending atrophy. Conclusion: Scanning laser polarimetry is useful for early detection and documentation of retinal nerve fibre layer loss following acute injury to the retrobulbar optic nerve. It seems to be a promising tool for follow up of individual glaucoma patients. PMID:11864884

  9. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  10. Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. C.

    2004-12-01

    The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing

  11. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  12. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  13. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  14. Distance measurement using frequency scanning interferometry with mode-hoped laser

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  15. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  16. Airborne laser altimetry and multispectral imagery for modeling Golden-cheeked Warbler (Setophaga chrysoparia) density

    Treesearch

    Steven E. Sesnie; James M. Mueller; Sarah E. Lehnen; Scott M. Rowin; Jennifer L. Reidy; Frank R. Thompson

    2016-01-01

    Robust models of wildlife population size, spatial distribution, and habitat relationships are needed to more effectively monitor endangered species and prioritize habitat conservation efforts. Remotely sensed data such as airborne laser altimetry (LiDAR) and digital color infrared (CIR) aerial photography combined with well-designed field studies can help fill these...

  17. A simulator for airborne laser swath mapping via photon counting

    NASA Astrophysics Data System (ADS)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  18. Plot-scale soil loss estimation with laser scanning and photogrammetry methods

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán; Somogyi, Árpád; Barsi, Árpád

    2017-04-01

    Structure from Motion (SfM) is an automatic feature-matching algorithm, which nowadays is widely used tool in photogrammetry for geoscience applications. SfM method and parallel terrestrial laser scanning measurements are widespread and they can be well accomplished for quantitative soil erosion measurements as well. Therefore, our main scope was soil erosion characterization quantitatively and qualitatively, 3D visualization and morphological characterization of soil-erosion-dynamics. During the rainfall simulation, the surface had been measured and compared before and after the rainfall event by photogrammetry (SfM - Structure from Motion) and laser scanning (TLS - Terrestrial Laser Scanning) methods. The validation of the given results had been done by the caught runoff and the measured soil-loss value. During the laboratory experiment, the applied rainfall had 40 mm/h rainfall intensity. The size of the plot was 0.5 m2. The laser scanning had been implemented with Faro Focus 3D 120 S type equipment, while the SfM shooting had been carried out by 2 piece SJCAM SJ4000+ type, 12 MP resolution and 4K action cams. The photo-reconstruction had been made with Agisoft Photoscan software, while evaluation of the resulted point-cloud from laser scanning and photogrammetry had been implemented partly in CloudCompare and partly in ArcGIS. The resulted models and the calculated surface changes didn't prove to be suitable for estimating soil-loss, only for the detection of changes in the vertical surface. The laser scanning resulted a quite precise surface model, while the SfM method is affected by errors at the surface model due to other factors. The method needs more adequate technical laboratory preparation.

  19. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    NASA Astrophysics Data System (ADS)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  20. Two-photon laser scanning microscopy with electrowetting-based prism scanning

    PubMed Central

    Supekar, Omkar D.; Ozbay, Baris N.; Zohrabi, Mo; Nystrom, Philip D.; Futia, Gregory L.; Restrepo, Diego; Gibson, Emily A.; Gopinath, Juliet T.; Bright, Victor M.

    2017-01-01

    Laser scanners are an integral part of high resolution biomedical imaging systems such as confocal or 2-photon excitation (2PE) microscopes. In this work, we demonstrate the utility of electrowetting on dielectric (EWOD) prisms as a lateral laser-scanning element integrated in a conventional 2PE microscope. To the best of our knowledge, this is the first such demonstration for EWOD prisms. EWOD devices provide a transmissive, low power consuming, and compact alternative to conventional adaptive optics, and hence this technology has tremendous potential. We demonstrate 2PE microscope imaging of cultured mouse hippocampal neurons with a FOV of 130 × 130 μm2 using EWOD prism scanning. In addition, we show simulations of the optical system with the EWOD prism, to evaluate the effect of propagating a Gaussian beam through the EWOD prism on the imaging quality. Based on the simulation results a beam size of 0.91 mm full width half max was chosen to conduct the imaging experiments, resulting in a numerical aperture of 0.17 of the imaging system. PMID:29296477

  1. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  2. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  3. Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology

    NASA Astrophysics Data System (ADS)

    Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.

    1997-07-01

    Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.

  4. Airborne platform effects on lasers and warning sensors

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Eisele, Christian; Seiffer, Dirk; Sjöqvist, Lars; Togna, Fabio; Velluet, Marie-Thérèse

    2017-10-01

    Airborne platform effects on lasers and warning sensors (ALWS) has been a European collaborative research project to investigate the effects of platform-related turbulence on optical countermeasure systems, especially missile approach warning systems (MAWS) and directed infrared countermeasures (DIRCM). Field trials have been carried out to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft with engines running on the ground. In addition different methods for modelling the effects have been investigated. In the helicopter trials significant beam wander, scintillations and beam broadening were experienced by narrow divergence laser beams when passing through the down-wash of the hot engine exhaust gases. The measured effects considerably exceed the effects of atmospheric turbulence. Extraction of turbulence parameters for modelling of DIRCM-relevant scenarios show that in most cases the reduction of jamming power and distortion of jamming waveform can be expected to be small. The reduction of effects of turbulence is mainly related to the larger beam divergence and shorter Rayleigh length of DIRCM lasers compared to the experimental probe beams. Measurements using the turboprop platform confirm that tolerable effects on laser beam properties are found when the laser beam passes through the exhaust 15 m behind the outlet where the exhaust gases are starting to cool down. Modelling efforts have shown that time-resolved computational fluid dynamics (CFD) calculations can be used to study properties of beam propagation in engine exhaust-related turbulence. Because of computational cost and the problem of validating the CFD results the use for system performance simulations is however difficult. The hot exhaust gases emitted from aircraft engines create extreme optical turbulence in a local region. The effects on countermeasure system performance depend both on the system parameters and on the threat characteristics. With present

  5. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  6. Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2017-01-28

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  7. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania.

    PubMed

    Mauya, Ernest William; Hansen, Endre Hofstad; Gobakken, Terje; Bollandsås, Ole Martin; Malimbwi, Rogers Ernest; Næsset, Erik

    2015-12-01

    Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R 2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m 2 . The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.

  8. Wind Tunnel Testing of a One-Dimensional Laser Beam Scanning and Laser Sheet Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram

    2012-01-01

    A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.

  9. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-01

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  10. The reflection of airborne UV laser pulses from the ocean

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Krabill, W. B.; Swift, R. N.

    1984-01-01

    It is experimentally shown here for the first time that the normalized laser backscatter cross-section of the sea surface is a function of elevation or height position on teh ocean wave. All data were taken off-nadir, resulting in incidence angles of about 6.5 deg measured relative to the normal to mean sea level (MSL). In the limited data sets analyzed to date, the normalized backscatter cross-section was found to be higher in wave crest regions and lower in wave troughs for a swell-dominated sea over which the wind speed was 5 m/s. The reverse was found to be the case for a sea that was driven by a 14 m/s wind. These isolated results show that the MSL, as measured by an off-nadir and/or multibeam type satellite laser altimeter, will be found above, at, or below the true MSL, depending on the local sea conditions existing in the footprint of the altimeter. Airborne nadir-pointed laser altimeter data for a wide variety of sea conditions are needed before a final determination can be made of the effect of sea state on the backscatter cross-section as measured by a down-looking satellite laser system.

  11. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.

    PubMed

    Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero

    2008-09-01

    Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  12. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Treesearch

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  13. Mini-excimer laser corneal reshaping using a scanning device

    NASA Astrophysics Data System (ADS)

    Lin, Jui T.

    1994-07-01

    In this paper we present an update on the Mini-Excimer photorefractive keratectomy (PRK) laser system with an emphasis on the scanning device. We also compare the systems of various manufacturers. This paper also presents PMMA ablation profiles and clinical results from China with over 100 cases of myopic corrections ranging from -2.5 D to -12 D. In contrast to the old technology which uses industrial-type high-power excimer lasers, the advanced Mini-Excimer system uses the most recent technology involving a compact, high repetition-rate excimer laser operated at a much smaller beam spot size of (0.8 - 1.2) mm in a scanning mode which requires a beam energy per pulse of only (0.9 - 1.2) mJ on the corneal surface to achieve the same range of fluence (or energy density) (160 - 200) mJ/cm2 as that of the high-power excimer lasers.

  14. Control Measurements of Crane Rails Performed by Terrestrial Laser Scanning

    PubMed Central

    Kregar, Klemen; Možina, Jan; Ambrožič, Tomaž; Kogoj, Dušan; Marjetič, Aleš; Štebe, Gašper; Savšek, Simona

    2017-01-01

    This article presents a method for measuring the geometry of crane rails with terrestrial laser scanning (TLS). Two sets of crane rails were divided into segments, their planes were adjusted, and the characteristic rail lines were defined. We used their profiles to define the positional and altitude deviations of the rails, the span and height difference between the two rails, and we also verified that they complied with the Eurocode 3 standard. We tested the method on crane rails at the hydroelectric power plant in Krško and the thermal power plant in Brestanica. We used two scanning techniques: “pure” TLS (Riegel VZ-400) and “hybrid” TLS (Leica MS50) scanning. This article’s original contribution lies in the detailed presentation of the computations used to define the characteristic lines of the rails without using the numeric procedures from existing software packages. We also analysed the influence of segment length and point density on the rail geometry results, and compared the two laser scanning techniques. We also compared the results obtained by terrestrial laser scanning with the results obtained from the classic polar method, which served as a reference point for its precision. PMID:28726755

  15. The fast and accurate 3D-face scanning technology based on laser triangle sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin

    2013-08-01

    A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.

  16. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Guendalyn Kendra

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simplemore » in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.« less

  17. Laser scanning methods and a phase comparison, modulated laser range finder for terrain sensing on a Mars roving vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Herb, G. T.

    1973-01-01

    Two areas of a laser range finder for a Mars roving vehicle are investigated: (1) laser scanning systems, and (2) range finder methods and implementation. Several ways of rapidly scanning a laser are studied. Two digital deflectors and a matrix of laser diodes, are found to be acceptable. A complete range finder scanning system of high accuracy is proposed. The problem of incident laser spot distortion on the terrain is discussed. The instrumentation for a phase comparison, modulated laser range finder is developed and sections of it are tested.

  18. Airborne megawatt class free-electron laser for defense and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the farmore » infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.« less

  19. The current status of airborne laser fluorosensing. [of aquatic environments

    NASA Technical Reports Server (NTRS)

    Oneil, R. A.; Hoge, F. E.; Bristow, M. P. F.

    1981-01-01

    Airborne laser fluorosensors have been used to identify and quantify specific substances in the aquatic environment. It has been shown that the sensor can identify and classify oil films. If the extinction coefficient is known then the thickness of thinner films (less than 20 micrometers) may be calculated. The intensity of the water Raman signal is proportional to the water volume sampled by the sensor and hence an effective attenuation coefficient for the water can be calculated. The same Raman measurement provides the normalization necessary to map chlorophyll and dye concentrations using the intensity of their respective fluorescence signatures.

  20. Quality Assurance By Laser Scanning And Imaging Techniques

    NASA Astrophysics Data System (ADS)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  1. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  2. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    PubMed

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  3. Evaluation of a laser scanning sensor for variable-rate tree sprayer development

    USDA-ARS?s Scientific Manuscript database

    Accurate canopy measurement capabilities are prerequisites to automate variable-rate sprayers. A 270° radial range laser scanning sensor was tested for its scanning accuracy to detect tree canopy profiles. Signals from the laser sensor and a ground speed sensor were processed with an embedded comput...

  4. D Survey in Complex Archaeological Environments: AN Approach by Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Ebolese, D.; Dardanelli, G.; Lo Brutto, M.; Sciortino, R.

    2018-05-01

    The survey of archaeological sites by appropriate geomatics technologies is an important research topic. In particular, the 3D survey by terrestrial laser scanning has become a common practice for 3D archaeological data collection. Even if terrestrial laser scanning survey is quite well established, due to the complexity of the most archaeological contexts, many issues can arise and make the survey more difficult. The aim of this work is to describe the methodology chosen for a terrestrial laser scanning survey in a complex archaeological environment according to the issues related to the particular structure of the site. The developed approach was used for the terrestrial laser scanning survey and documentation of a part of the archaeological site of Elaiussa Sebaste in Turkey. The proposed technical solutions have allowed providing an accurate and detailed 3D dataset of the study area. In addition, further products useful for archaeological analysis were also obtained from the 3D dataset of the study area.

  5. An improved scan laser with a VO2 programmable mirror

    NASA Astrophysics Data System (ADS)

    Chivian, J. S.; Scott, M. W.; Case, W. E.; Krasutsky, N. J.

    1985-04-01

    A 10.6-microns scan laser has been constructed and operated with an off-axis cathode ray tube, high reflectance multilayer thin-film structures, and a tapered plasma discharge tube. Equations are given for the switching time of a high-reflectance spot on the VO2 and for the relation of scan laser output power to cavity geometry, cavity losses, and the gain of the active CO2 medium. A scan capability of 2100 easily resolvable directions was demonstrated, and sequential and randomly addressed spot rates of 100,000/sec were achieved. The equations relating output power and cavity mode size were experimentally verified using a nonscanned beam.

  6. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  7. Non-Contact Measurement Using A Laser Scanning Probe

    NASA Astrophysics Data System (ADS)

    Modjarrad, Amir

    1989-03-01

    Traditional high accuracy touch-trigger probing can now be complemented by high speed, non-contact, profile scanning to give another "dimension" to the three-dimensional Co-ordinate Measuring Machines (CMMs). Some of the features of a specially developed laser scanning probe together with the trade-offs involved in the design of inspection systems that use triangulation are examined. Applications of such a laser probe on CMMs are numerous since high speed scanning allows inspection of many different components and surfaces. For example, car body panels, tyre moulds, aircraft wing skins, turbine blades, wax and clay models, plastics, etc. Other applications include in-process surveillance in manufacturing and food processing, robotics vision and many others. Some of these applications are discussed and practical examples, case studies and experimental results are given with particular reference to use on CMMs. In conclusion, future developments and market trends in high speed non-contact measurement are discussed.

  8. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    PubMed

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  9. Development of the micro-scanning optical system of yellow laser applied to the ophthalmologic area

    NASA Astrophysics Data System (ADS)

    Ortega, Tiago A.; Mota, Alessandro D.; Costal, Glauco Z.; Fontes, Yuri C.; Rossi, Giuliano; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.

    2012-10-01

    In this work, the development of a laser scanning system for ophthalmology with micrometric positioning precision is presented. It is a semi-automatic scanning system for retina photocoagulation and laser trabeculoplasty. The equipment is a solid state laser fully integrated to the slit lamp. An optical system is responsible for producing different laser spot sizes on the image plane and a pair of galvanometer mirrors generates the scanning patterns.

  10. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.

    2015-02-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal / noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

  11. A new airborne laser-induced fluorescence instrument for in situ detection of Formaldehyde throughout the troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.

    2014-08-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a standalone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal/noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e-fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

  12. Software for visualization, analysis, and manipulation of laser scan images

    NASA Astrophysics Data System (ADS)

    Burnsides, Dennis B.

    1997-03-01

    The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.

  13. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  14. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Haggrén, H.

    2012-07-01

    Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing

  15. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  16. Recommendations for the design and the installation of large laser scanning microscopy systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  17. Laser scanning saturated structured illumination microscopy based on phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2017-08-01

    Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.

  18. Selective retinal therapy with a continuous line scanning laser

    NASA Astrophysics Data System (ADS)

    Paulus, Yannis M.; Jain, ATul; Gariano, Ray F.; Nomoto, Hiroyuki; Schuele, Georg; Sramek, Christopher; Charalel, Resmi; Palanker, Daniel

    2010-02-01

    This study evaluates the effects of exposure duration, beam diameter, and power on the safety, selectivity, and healing of retinal lesions created using a continuous line scanning laser. A 532 nm laser (PASCALTM) with retinal beam diameters of 40 and 66 μm was applied to 60 eyes of 30 Dutch-Belted rabbits. Retinal exposure duration varied from 15 to 60 μs. Lesions were acutely assessed by ophthalmoscopy and fluorescein angiography (FA). RPE flatmounts were evaluated with live-dead fluorescent assay (LD). Histological analysis was performed at 1 hour, 1 and 3 days, 1 and 2 weeks, and 1 and 2 months following laser treatment. Ophthalmoscopic visibility (OV) of the lesions corresponded to photoreceptor damage on histological analysis at 1 hour. In subvisible lesions, FA and LD yielded similar thresholds of RPE damage. The ratios of the threshold of rupture and of OV to FA visibility (measures of safety and selectivity) increased with decreasing duration and beam diameter. Above the threshold of OV, histology showed focal RPE damage and photoreceptor loss at one day without inner retinal effects. By one week, continuity of photoreceptor and RPE layers was restored. By 1 month, photoreceptors appeared normal while hypertrophy and hyperpigmentation of the RPE persisted. Retinal therapy with a fast scanning continuous laser achieves selective targeting of the RPE and, at higher power, of the photoreceptors. The damage zone in the photoreceptor layer is quickly filled-in, likely due to photoreceptor migration from adjacent zones. Continuous scanning laser can treat large retinal areas within standard eye fixation time.

  19. Early intraocular pressure change after peripheral iridotomy with ultralow fluence pattern scanning laser and Nd:YAG laser in primary angle-closure suspect: Kowloon East Pattern Scanning Laser Study Report No. 3.

    PubMed

    Chan, Jeffrey Chi Wang; Choy, Bonnie Nga Kwan; Chan, Orlando Chia Chieh; Li, Kenneth Kai Wang

    2018-02-01

    Our purpose was to assess the early intraocular pressure (IOP) changes of ultralow fluence laser iridotomy using pattern scanning laser followed by neodymium:yttrium-aluminum-gamet (Nd:YAG) laser. This is a prospective interventional study. Thirty-three eyes of 33 adult Chinese primary angle-closure suspect subjects were recruited for prophylactic laser peripheral iridotomy. Sequential laser peripheral iridotomy was performed using pattern scanning laser followed by Nd:YAG laser. Visual acuity (VA) and IOP were measured before treatment, at 1 h, 1 day, 1 week, 1 month, 3 months and 6 months after laser. Laser energy used and complications were documented. Corneal endothelial cell count was examined at baseline and 6 months. Patency of the iridotomy was assessed at each follow-up visit. All subjects achieved patent iridotomy in a single session. The mean energy used was 0.335+/-0.088 J for the pattern scanning laser, and 4.767+/-5.780 mJ for the Nd:YAG laser. The total mean energy was 0.339+/-0.089 J. None of the eyes developed a clinically significant IOP spike (≥ 8 mmHg) at 1 h and 1 day after laser use. Only four eyes developed higher IOP at 1 h and all were ≤3 mmHg compared to baseline. The mean IOP was 13.8+/-2.5 mmHg at 1 h and 11.5+/-2.2 mmHg at 1 day, both were significantly lower than baseline (15.8+/-2.1 mmHg) (P < 0.001). Mean VA (logMAR) was similar at 1 h post laser compared to baseline (0.23 vs 0.26). There was also no statistically significant difference in mean VA at other follow-up visits compared to baseline. Peripheral iridotomy closure was encountered in two (6.1%) eyes, one at 1 month and another at 6 months follow-up. There were no complications including hyphema, peripheral anterior synechia formation nor prolonged inflammation throughout the follow-up period. There was no significant loss in corneal endothelial cell counts at 6 months (2255+/-490) compared to baseline (2303+/-386) (P = 0.347). Sequential

  20. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef

    2013-12-01

    Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  1. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    NASA Astrophysics Data System (ADS)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  2. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are

  3. Laser power and Scanning Speed Influence on the Mechanical Property of Laser Metal Deposited Titanium-Alloy

    NASA Astrophysics Data System (ADS)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.; Akinlabi, Stephen

    2015-03-01

    The influence of the laser power and the scanning speed on the microhardness of the Laser Metal Deposited Ti6Al4V, an aerospace Titanium-alloy, was studied. Ti6Al4V powder was deposited on the Ti6Al4V substrate using the Laser Metal Deposition (LMD) process, an Additive Manufacturing (AM) manufacturing technology. The laser power was varied between 1.8 kW 3 kW and the scanning speed was varied between 0.05 m/s and 0.1 m/s. The powder flow rate and the gas flow rate were kept at constant values of 2 g/min and 2 l/min respectively. The full factorial design of experiment was used to design the experiment and to also analyze the results in the Design Expert 9 software environment. The microhardness profiling was studied using Microhardness indenter performed at a load of 500 g and at a dwelling time of 15 s. The distance between indentations was maintained at a distance of 15 μm. The study revealed that as the laser power was increased, the microhardness was found to decrease and as the scanning speed was increased, the microhardness was found to also increase. The results are presented and fully discussed.

  4. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    NASA Astrophysics Data System (ADS)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  5. Comparison of solar and laser macula retinal injury using scanning laser ophthalmoscopy spectral imaging

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Gagliano, Donald A.; Stuck, Bruce E.; Lund, David J.

    1994-07-01

    Both solar and laser sources may induce punctate foveal retinal damage. Unprotected viewing of the sun or bright blue sky represent potential solar radiation causes of photic maculopathy that may induce punctate foveal damage. Laser induced macular retinal damage is another more recent kind of photic maculopathy. Most documented cases of laser photic maculopathy have involved acute laser exposure generally from Q-switched visible or nonvisible near IR laser systems. In our comparison of these types of photic maculopathies, we have employed conventional as well as spectral and confocal scanning laser ophthalomoscopy to evaluate the depth of the photic maculopathy. Functionally, we have observed a tritan color vision loss present in nearly all photic maculopathies.

  6. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.

    PubMed

    Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O

    2014-05-01

    To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.

  7. The design and construction of a cost-efficient confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul

    2007-03-01

    The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.

  8. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  9. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  10. [Results of therapy of children with amblyopia by scanning stimulating laser].

    PubMed

    Chentsova, O B; Magaramova, M D; Grechanyĭ, M P

    1997-01-01

    A new effective method for the treatment of amblyopia was used in 113 children: stimulation with ophthalmological SLSO-208A scanning laser by two methods differing by the transmission coefficient and scanning pattern. Good results were attained, the best when laser exposure was combined with traditional therapy for amblyopia and in the patients with the central fixation. The results were assessed by the main parameters of visual functions and the stability of the effect.

  11. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  12. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  13. Dental scanning in CAD/CAM technologies: laser beams

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Faur, Nicolae; Negru, Radu; Romînu, Mihai; Cozarov, Dalibor

    2008-02-01

    Scanning, also called digitizing, is the process of gathering the requisite data from an object. Many different technologies are used to collect three dimensional data. They range from mechanical and very slow, to radiation-based and highly-automated. Each technology has its advantages and disadvantages, and their applications and specifications overlap. The aims of this study are represented by establishing a viable method of digitally representing artifacts of dental casts, proposing a suitable scanner and post-processing software and obtaining 3D Models for the dental applications. The method is represented by the scanning procedure made by different scanners as the implicated materials. Scanners are the medium of data capture. 3D scanners aim to measure and record the relative distance between the object's surface and a known point in space. This geometric data is represented in the form of point cloud data. The contact and no contact scanners were presented. The results show that contact scanning procedures uses a touch probe to record the relative position of points on the objects' surface. This procedure is commonly used in Reverse engineering applications. Its merits are represented by efficiency for objects with low geometric surface detail. Disadvantages are represented by time consuming, this procedure being impractical for artifacts digitization. The non contact scanning procedure implies laser scanning (laser triangulation technology) and photogrammetry. As a conclusion it can be drawn that different types of dental structure needs different types of scanning procedures in order to obtain a competitive complex 3D virtual model that can be used in CAD/CAM technologies.

  14. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  15. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  16. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1975-01-01

    An airborne laser fluorosensor for the detection of oil derivatives on water has been tested. The system transmits 337 nm UV radiation at the rate of 100 pulses per second and monitors fluorescent emission at 540 nm. Daylight flight tests were made over the areas of controlled oil spills and additional reconnaissance flights were made over a 50 km stretch of the Delaware River to establish ambient oil baseline in the river. The results show that the device is capable of monitoring and mapping out extremely low level oil on water which cannot be identified by ordinary photographic method.

  17. Laser scanning system for object monitoring

    DOEpatents

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  18. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    NASA Astrophysics Data System (ADS)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  19. Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment : Tech Transfer Summaries

    DOT National Transportation Integrated Search

    2016-05-01

    Problem Statement : While several state departments of transportation (DOTs) have used : terrestrial laser scanning (TLS) in the project planning phase, limited : research has been conducted on employing laser scanners to detect : cracks for bridge c...

  20. Terrestrial laser scanning in monitoring of anthropogenic objects

    NASA Astrophysics Data System (ADS)

    Zaczek-Peplinska, Janina; Kowalska, Maria

    2017-12-01

    The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan's density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam's incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.

  1. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  2. Nonlinear laser scanning microscopy of human vocal folds.

    PubMed

    Miri, Amir K; Tripathy, Umakanta; Mongeau, Luc; Wiseman, Paul W

    2012-02-01

    The purpose of this work was to apply nonlinear laser scanning microscopy (NLSM) for visualizing the morphology of extracellular matrix proteins within human vocal folds. This technique may potentially assist clinicians in making rapid diagnoses of vocal fold tissue disease or damage. Microstructural characterization based on NLSM provides valuable information for better understanding molecular mechanisms and tissue structure. Experimental, ex vivo human vocal fold. A custom-built multimodal nonlinear laser scanning microscope was used to scan fibrillar proteins in three 4% formaldehyde-fixed cadaveric samples. Collagen and elastin, key extracellular matrix proteins in the vocal fold lamina propria, were imaged by two nonlinear microscopy modalities: second harmonic generation (SHG) and two-photon fluorescence (TPF), respectively. An experimental protocol was introduced to characterize the geometrical properties of the imaged fibrous proteins. NLSM revealed the biomorphology of the human vocal fold fibrous proteins. No photobleaching was observed for the incident laser power of ∼60 mW before the excitation objective. Types I and III fibrillar collagen were imaged without label in the tissue by intrinsic SHG. Imaging while rotating the incident laser light-polarization direction confirmed a helical shape for the collagen fibers. The amplitude, periodicity, and overall orientation were then computed for the helically distributed collagen network. The elastin network was simultaneously imaged via TPF and found to have a basket-like structure. In some regions, particularly close to the epithelium, colocalization of both extracellular matrix components were observed. A benchmark study is presented for quantitative real-time, ex vivo, NLSM imaging of the extracellular macromolecules in human vocal fold lamina propria. The results are promising for clinical applications. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy

    PubMed Central

    Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.

    2017-01-01

    Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861

  4. Stop-and-Go Mode: Sensor Manipulation as Essential as Sensor Development in Terrestrial Laser Scanning

    PubMed Central

    Lin, Yi; Hyyppä, Juha; Kukko, Antero

    2013-01-01

    This study was dedicated to illustrating the significance of sensor manipulation in the case of terrestrial laser scanning, which is a field now in quick development. In fact, this quickness was mainly rooted in the emergence of new sensors with better performance, while the implications of sensor manipulation have not been fully recognized by the whole community. For this technical gap, the stop-and-go mapping mode can be reckoned as one of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the stability of sample collections for the state-of-the-art technology of mobile laser scanning. This work reviewed the previous efforts of trying the stop-and-go mode for improving the performance of static and mobile terrestrial laser scanning and generalized their principles respectively. This work also analyzed its advantages compared to the fully-static and fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review indicated that the stop-and-go mapping mode as a case with generic sense can verify the presumption of sensor manipulation as essential as sensor development. PMID:23799493

  5. Airborne Laser Remote Sensor for Oil Detection and Classification : Engineering Requirements and Technical Considerations Relevant to a Performance Specification

    DOT National Transportation Integrated Search

    1975-08-01

    This report outlines the engineering requirements for an Airborne Laser Remote Sensor for Oil Detection and Classification System. Detailed engineering requirements are given for the major units of the system. Technical considerations pertinent to a ...

  6. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  7. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  8. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  9. Accuracy improvement of laser line scanning for feature measurements on CMM

    NASA Astrophysics Data System (ADS)

    Bešić, Igor; Van Gestel, Nick; Kruth, Jean-Pierre; Bleys, Philip; Hodolič, Janko

    2011-11-01

    Because of its high speed and high detail output, laser line scanning is increasingly included in coordinate metrology applications where its performance can satisfy specified tolerances. Increasing its accuracy will open the possibility to use it in other areas where contact methods are still dominant. Multi-sensor systems allow to select discrete probing or scanning methods to measure part elements. Decision is often based on the principle that tight toleranced elements should be measured by contact methods, while other more loose toleranced elements can be laser scanned. This paper aims to introduce a method for improving the output of a CMM mounted laser line scanner for metrology applications. This improvement is achieved by filtering of the scanner's random error and by combination with widely spread and reliable but slow touch trigger probing. The filtered point cloud is used to estimate the form deviation of the inspected element while few tactile obtained points were used to effectively compensate for errors in the point cloud position.

  10. 3D laser scanning in civil engineering - measurements of volume of earth masses

    NASA Astrophysics Data System (ADS)

    Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.

    2018-03-01

    Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering

  11. Application of Laser Scanning for Creating Geological Documentation

    NASA Astrophysics Data System (ADS)

    Buczek, Michał; Paszek, Martyna; Szafarczyk, Anna

    2018-03-01

    A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR) can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud) in combination with the photographs. The results were compared with the geological cross-section.

  12. Mobile Laser Scanning for Indoor Modelling

    NASA Astrophysics Data System (ADS)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  13. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  14. Purchase of a Laser Scanning Confocal Microscope at Xavier University of Louisiana

    DTIC Science & Technology

    2016-05-04

    SECURITY CLASSIFICATION OF: The purpose of this grant was to purchase a laser scanning confocal microscope to be used by multiple laboratories at...was being developed for undergraduate education. Over the course of the funding period, the microscope was purchased and installed, multiple training...Distribution Unlimited UU UU UU UU 04-05-2016 1-Feb-2015 31-Jan-2016 Final Report: Purchase of a Laser Scanning Confocal Microscope at Xavier

  15. Application of 3D Laser Scanning Technology in Complex Rock Foundation Design

    NASA Astrophysics Data System (ADS)

    Junjie, Ma; Dan, Lu; Zhilong, Liu

    2017-12-01

    Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.

  16. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  17. Application of laser scanning confocal microscopy in the soft tissue exquisite structure for 3D scan

    PubMed Central

    Zhang, Zhaoqiang; Ibrahim, Mohamed; Fu, Yang; Wu, Xujia; Ren, Fei; Chen, Lei

    2018-01-01

    Three-dimensional (3D) printing is a new developing technology for printing individualized materials swiftly and precisely in the field of biological medicine (especially tissue-engineered materials). Prior to printing, it is necessary to scan the structure of the natural biological tissue, then construct the 3D printing digital model through optimizing the scanned data. By searching the literatures, magazines at home and abroad, this article reviewed the current status, main processes and matters needing attention of confocal laser scanning microscope (LSCM) in the application of soft tissue fine structure 3D scanning, empathizing the significance of LSCM in this field. PMID:29755838

  18. Simulation of the Performances of WIND, an Airborne CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Oh, D.; Dabas, A.; Lieutaud, F.; Loth, C.; Flamant, P. H.

    1992-01-01

    An airborne Doppler coherent lidar is under development as a joint project between France and Germany. The instrument is designed around CO2 laser technology, heterodyne detection, and a conical scanning of the line-of-site. The 10 micron domain is suitable for long range measurements due to the maturity of the technology and because it corresponds to an atmospheric window. The objectives of WIND are twofold: (1) to conduct mesoscale scientific studies in particular over oceanic and inhomogeneous terrain areas; and (2) to support the Earth-orbiting wind lidar projects.

  19. Tracking scanning laser ophthalmoscope (TSLO)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.

    2003-07-01

    The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

  20. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  1. Western Rainier Seismic Zone Airborne Laser Swath Mapping

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir

    2003-01-01

    Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.

  2. Correlation of a scanning laser derived oedema index and visual function following grid laser treatment for diabetic macular oedema.

    PubMed

    Hudson, C; Flanagan, J G; Turner, G S; Chen, H C; Young, L B; McLeod, D

    2003-04-01

    To correlate change of an oedema index derived by scanning laser tomography with change of visual function in patients undergoing grid laser photocoagulation for clinically significant diabetic macular oedema (DMO). The sample comprised 24 diabetic patients with retinal thickening within 500 micro m of the fovea. Inclusion criteria included a logMAR visual acuity of 0.25, or better. Patients were assessed twice before a single session of grid laser treatment and within 1 week of, and at 1, 2, 4, and 12 weeks after, treatment. At each visit, patients underwent logMAR visual acuity, conventional and short wavelength automated perimetry (SWAP), and scanning laser tomography. Each visual function parameter was correlated with the mean oedema index. The mean oedema index represented the z-profile signal width divided by the maximum reflectance intensity (arbitrary units). A Pearson correlation coefficient (Bonferroni corrected) was undertaken on the data set of each patient. 13 patients exhibited significant correlation of the mean oedema index and at least one measure of visual function for the 10 degrees x 10 degrees scan field while 10 patients correlated for the 20 degrees x 20 degrees scan field. Seven patients demonstrated correlation for both scan fields. Laser photocoagulation typically resulted in an immediate loss of perimetric sensitivity whereas the oedema index changed over a period of weeks. Localised oedema did not impact upon visual acuity or letter contrast sensitivity when situated extrafoveally. Correlation of change of the oedema index and of visual function following grid laser photocoagulation was not found in all patients. An absence of correlation can be explained by the localised distribution of DMO in this sample of patients, as well as by differences in the time course of change of the oedema index and visual function. The study has objectively documented change in the magnitude and distribution of DMO following grid laser treatment and has

  3. Inspection of float glass using a novel retroreflective laser scanning system

    NASA Astrophysics Data System (ADS)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  4. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    NASA Astrophysics Data System (ADS)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  5. Three-dimensional dynamic deformation monitoring using a laser-scanning system

    NASA Astrophysics Data System (ADS)

    Al-Hanbali, Nedal N.; Teskey, William F.

    1994-10-01

    Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.

  6. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  7. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  8. Using airborne lidar as a sampling tool for estimating forest biomass resources in the upper Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen

    2011-01-01

    Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...

  9. Evolution of laser skin resurfacing: from scanning to fractional technology.

    PubMed

    Aslam, Arif; Alster, Tina S

    2014-11-01

    Laser skin resurfacing was popularized for photoaged and scarred skin 2 decades ago. Since then, several technologic advancements have led to a new generation of delivery systems that produce excellent clinical outcomes with reduced treatment risks and faster recovery times. To review the evolution of laser skin resurfacing from pulsed and scanned infrared laser technology to the latest techniques of nonablative and ablative fractional photothermolysis. All published literature regarding laser skin resurfacing was analyzed and collated. A comprehensive review of laser skin resurfacing was outlined and future developments in the field of fractionated laser skin treatment were introduced. Laser skin resurfacing has evolved such that excellent clinical outcomes in photodamaged and scarred skin are achieved with rapid wound healing. As newer devices are developed, the applications of this technology will have a dramatic effect on the delivery of medical and aesthetic dermatology.

  10. Development of Smart Precision Forest in Conifer Plantation in Japan Using Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Katoh, M.; Deng, S.; Takenaka, Y.; Cheung, K.; Oono, K.; Horisawa, M.; Hyyppä, J.; Yu, X.; Liang, X.; Wang, Y.

    2017-10-01

    Currently, the authors are planning to launch a consortium effort toward Japan's first smart precision forestry project using laser data and to develop this technology throughout the country. Smart precision forestry information gathered using the Nagano model (laser scanning from aircraft, drone, and backpack) is being developed to improve the sophistication of forest information, reduce labor-intensive work, maintain sustainable timber productivity, and facilitate supply chain management by laser sensing information in collaboration with industry, academia, and government. In this paper, we outline the research project and the technical development situation of unmanned aerial vehicle laser scanning.

  11. Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser

    NASA Astrophysics Data System (ADS)

    Mincuzzi, Girolamo; Vesce, Luigi; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M.

    2009-09-01

    By identifying the right combination of laser parameters, in particular the integrated laser fluence Φ, we fabricated dye solar cells (DSCs) with UV laser-sintered TiO2 films exhibiting a power conversion efficiency η =5.2%, the highest reported for laser-sintered devices. η is dramatically affected by Φ and a clear trend is reported. Significantly, DSCs fabricated by raster scanning the laser beam to sinter the TiO2 films are made as efficient as those with oven-sintered ones. These results, confirmed on three batches of cells, demonstrate the remarkable potential (noncontact, local, low cost, rapid, selective, and scalable) of scanning laser processing applied to DSC technology.

  12. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadbandmore » excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.« less

  13. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  14. A walk by the river: three-dimensional reconstruction of surface sedimentology and topography using wearable laser scanning

    NASA Astrophysics Data System (ADS)

    Williams, R.; Lamy, M. L.; Stott, E.; Maniatis, G.

    2017-12-01

    In the last two decades, quantification of fluvial topography has been transformed by a number of geomatics technologies that have enabled the acquisition of data with unprecedented spatial resolution. Hyperscale surveys with spatial extents of <1 km2 have been widely demonstrated, by means of Terrestrial Laser Scanning (TLS) and Structure-from-Motion (SfM) photogrammetry. Recent advances in the development and integration of GNSS, IMU, lightweight laser scanning and SLAM technologies are now resulting in the emergence of wearable, mobile laser scanning systems that have the potential to increase data acquisition and processing rates by 1-2 orders of magnitude compared to TLS/SfM, and thus challenge the recent dominance of these two geomatics technologies. In this study we describe the methods and results of a comparison between a wearable laser scanning survey, using a Leica Pegasus Backpack, and a multi-station static TLS survey, using a Riegl VZ-1000 scanner. The evaluation is undertaken on a 600 m long reach of the braided River Feshie, Scotland, using data acquired in June 2017. Comparison between the DEMs produced from static and mobile laser scanning, across non-vegetated areas, revealed a Mean Error (ME) of -0.002 m and a Standard Deviation Error (SDE) of 0.109 m. Comparison to 100 independent check point resulted in a similar ME and SDE for static (ME = 0.061m; SDE = 0.030 m) and mobile (ME = 0.044 m; SDE = 0.029 m) laser scanning. Empirical relationships between sub-metre topographic variability and median sediment grain size (10-100 mm), across 14 grid-by-number samples, were similar and demonstrate that surface roughness from wearable laser scanning can be used to derive reach-scale maps of median grain size. These results demonstrate that wearable laser scanning generates hyperscale topographic models that are comparable in quality to more time-consuming multi-station TLS setups. Wearable laser scanning is likely to be commonly adopted for fluvial

  15. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  16. MEMS scanned laser head-up display

    NASA Astrophysics Data System (ADS)

    Freeman, Mark O.

    2011-03-01

    Head-up displays (HUD) in automobiles and other vehicles have been shown to significantly reduce accident rates by keeping the driver's eyes on the road. The requirements for automotive HUDs are quite demanding especially in terms of brightness, dimming range, supplied power, and size. Scanned laser display technology is particularly well-suited to this application since the lasers can be very efficiently relayed to the driver's eyes. Additionally, the lasers are only turned on where the light is needed in the image. This helps to provide the required brightness while minimizing power and avoiding a background glow that disturbs the see-through experience. Microvision has developed a couple of HUD architectures that are presented herein. One design uses an exit pupil expander and relay optics to produce a high quality virtual image for built-in systems where the image appears to float above the hood of the auto. A second design uses a patented see-through screen technology and pico projector to make automotive HUDs available to anyone with a projector. The presentation will go over the basic designs for the two types of HUD and discuss design tradeoffs.

  17. Short- and long-term memory effects in intensified array detectors - Influence on airborne laser fluorosensor measurements

    NASA Astrophysics Data System (ADS)

    Bristow, Michael P.; Edmonds, Curtis M.; Bundy, Donald H.; Turner, Rudolpha M.

    1989-02-01

    Phosphorescence and thermoluminescence memory effects in the phosphors of image intensifiers are investigated, with application to the performance improvement of intensified optical multichannel analyzers. Algorithms have been developed which can be used to remove these effects from airborne measurements of laser-induced fluorescence spectra of aquatic and terrestrial targets. The present method can be adapted to situations involving different gating routines, repetition rates, and diode group sizes.

  18. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  19. Hyper-spectrum scanning laser optical tomography

    NASA Astrophysics Data System (ADS)

    Chen, Lingling; Li, Guiye; Li, Yingchao; Liu, Lina; Liu, Ang; Hu, Xuejuan; Ruan, Shuangchen

    2018-02-01

    We describe a quantitative fluorescence projection tomography technique which measures the three-dimensional fluorescence spectrum in biomedical samples with size up to several millimeters. This is achieved by acquiring a series of hyperspectral images, by using laser scanning scheme, at different projection angles. We demonstrate that this technique provide a quantitative measure of the fluorescence signal by comparing the spectrum and intensity profile of a fluorescent bead phantom and also demonstrate its application to differentiating the extrinsic label and the autofluorescence in a mouse embryo.

  20. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.

    PubMed

    Kook, Michael S; Cho, Hyun-soo; Seong, Mincheol; Choi, Jaewan

    2005-11-01

    To evaluate the ability of scanning laser polarimetry parameters and a novel deviation map algorithm to discriminate between healthy and early glaucomatous eyes with localized visual field (VF) defects confined to one hemifield. Prospective case-control study. Seventy glaucomatous eyes with localized VF defects and 66 normal controls. A Humphrey field analyzer 24-2 full-threshold test and scanning laser polarimetry with variable corneal compensation were used. We assessed the sensitivity and specificity of scanning laser polarimetry parameters, sensitivity and cutoff values for scanning laser polarimetry deviation map algorithms at different specificity values (80%, 90%, and 95%) in the detection of glaucoma, and correlations between the algorithms of scanning laser polarimetry and of the pattern deviation derived from Humphrey field analyzer testing. There were significant differences between the glaucoma group and normal subjects in the mean parametric values of the temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and TSNIT standard deviation (SD) (P<0.05). The sensitivity and specificity of each scanning laser polarimetry variable was as follows: TSNIT, 44.3% (95% confidence interval [CI], 39.8%-49.8%) and 100% (95.4%-100%); superior average, 30% (25.5%-34.5%) and 97% (93.5%-100%); inferior average, 45.7% (42.2%-49.2%) and 100% (95.8%-100%); and TSNIT SD, 30% (25.9%-34.1%) and 97% (93.2%-100%), respectively (when abnormal was defined as P<0.05). Based on nerve fiber indicator cutoff values of > or =30 and > or =51 to indicate glaucoma, sensitivities were 54.3% (50.1%-58.5%) and 10% (6.4%-13.6%), and specificities were 97% (93.2%-100%) and 100% (95.8%-100%), respectively. The range of areas under the receiver operating characteristic curves using the scanning laser polarimetry deviation map algorithm was 0.790 to 0.879. Overall sensitivities combining each probability scale and severity score at 80%, 90%, and 95

  1. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  2. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  3. Determination of foveal location using scanning laser polarimetry.

    PubMed

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  4. Versatile optical system for static and dynamic thermomagnetic recording using a scanning laser microscope

    NASA Astrophysics Data System (ADS)

    Clegg, Warwick W.; Jenkins, David F. L.; Helian, Na; Windmill, James; Windmill, Robert

    2001-12-01

    Scanning Laser Microscopes (SLM) have been used to characterise the magnetic domain properties of various magnetic and magneto-optical materials. The SLM in our laboratory has been designed to enable both static and dynamic read-write operations to be performed on stationary media. In a conventional (static) SLM, data bits are recorded thermo-magnetically by focusing a pulse of laser light onto the sample surface. If the laser beam has a Gaussian intensity distribution (TEM00) then so will the focused laser spot. The resultant temperature profile will largely mirror the intensity distribution of the focused spot, and in the region where the temperature is sufficiently high for switching to occur, in the presence of bias field, a circular data bit will be recorded. However, in a real magneto-optical drive the bits are written onto non-stationary media, and the resultant bit will be non-circular. A versatile optical system has been developed to facilitate both recording and imaging of data bits. To simulate the action of a Magneto-Optical drive, the laser is pulsed via an Acousto-Optic Modulator, whilst being scanned across the sample using a galvanometer mounted mirror, thus imitating a storage medium rotating above a MO head with high relative velocity between the beam and medium. Static recording is simply achieved by disabling the galvanometer scan mirror. Polar magneto-optic Kerr effect images are acquired using multiple-segment photo-detectors for diffraction-limited scanned spot detection, with either specimen scanning for highest resolution or beam scanning for near real-time image acquisition. Results will be presented to illustrate the systems capabilities.

  5. Microanalysis of dental caries using laser-scanned fluorescence

    NASA Astrophysics Data System (ADS)

    Barron, Joseph R.; Paton, Barry E.; Zakariasen, Kenneth L.

    1992-06-01

    It is well known that enamel and dentin fluoresce when illuminated by short-wavelength optical radiation. Fluorescence emission from carious and non-carious regions of teeth have been studied using a new experimental scanning technique for fluorescence analysis of dental sections. Scanning in 2 dimensions will allow surface maps of dental caries to be created. These surface images are then enhanced using the conventional and newer image processing techniques. Carious regions can be readily identified and contour maps can be used to graphically display the degree of damage on both surfaces and transverse sections. Numerous studies have shown that carious fluorescence is significantly different than non-carious regions. The scanning laser fluorescence spectrometer focuses light from a 25 mW He-Cd laser at 442 nm through an objective lens onto a cross-section area as small as 3 micrometers in diameter. Microtome prepared dental samples 100 micrometers thick are laid flat onto an optical bench perpendicular to the incident beam. The sample is moved under computer control in X & Y with an absolute precision of 0.1 micrometers . The backscattered light is both spatial and wavelength filtered before being measured on a long wavelength sensitized photomultiplier tube. High precision analysis of dental samples allow detailed maps of carious regions to be determined. Successive images allow time studies of caries growth and even the potential for remineralization studies of decalcified regions.

  6. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien

    2018-01-01

    A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.

  7. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  8. Surface modification of ceramic and metallic alloy substrates by laser raster-scanning

    NASA Astrophysics Data System (ADS)

    Ramos Grez, Jorge Andres

    This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400

  9. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    PubMed

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  10. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  11. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams

    NASA Astrophysics Data System (ADS)

    Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun

    2016-04-01

    Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.

  12. Error analysis of motion correction method for laser scanning of moving objects

    NASA Astrophysics Data System (ADS)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  13. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    NASA Astrophysics Data System (ADS)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  14. Development of a wavelength stabilized seed laser system for an airborne water vapour lidar experiment

    NASA Astrophysics Data System (ADS)

    Schwarzer, H.; Börner, A.; Fix, A.; Günther, B.; Hübers, H.-W.; Raugust, M.; Schrandt, F.; Wirth, M.

    2007-09-01

    At the German Aerospace Center an airborne multi-wavelength differential absorption LIDAR for the measurement of atmospheric water vapour is currently under development. This instrument will enable the retrieval of the complete humidity profile from the surface up to the lowermost stratosphere with high vertical and horizontal resolution at a systematic error below 5%. The LIDAR will work in the wavelength region around 935 nm at three different water vapour absorption lines and one reference wavelength. A major sub-system of this instrument is a highly frequency stabilized seed laser system for the optical parametrical oscillators which generate the narrowband high energy light pulses. The development of the seed laser system includes the control software, the electronic control unit and the opto-mechanical layout. The seed lasers are Peltier-cooled distributed feedback laser diodes with bandwidths of about 30 MHz, each one operating for 200 μs before switching to the next one. The required frequency stability is +/- 30 MHz ≅ +/- 10 -4 nm under the rough environmental conditions aboard an aircraft. It is achieved by locking the laser wavelength to a water vapour absorption line. The paper describes the opto-mechanical layout of the seed laser system, the stabilization procedure and the results obtained with this equipment.

  15. Delineation of estuarine fronts in the German Bight using airborne laser-induced water Raman backscatter and fluorescence of water column constituents

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1982-01-01

    The acquisition and application of airborne laser induced emission spectra from German Bight water during the 1979 MARSEN experiment is detailed for the synoptic location of estuarine fronts. The NASA Airborne Oceanographic Lidar (AOL) was operated in the fluorosensing mode. A nitrogen laser transmitter at 337.1 nm was used to stimulate the water column to obtain Gelbstoff or organic material fluorescence spectra together with water Raman backscatter. Maps showing the location and relative strength of estuarine fronts are presented. The distribution of the fronts indicates that mixing within the German Bight takes place across a relatively large area. Reasonable agreement between the patterns observed by the AOL and published results are obtained. The limitations and constraints of this technique are indicated and improvements to the AOL fluorosensor are discussed with respect to future ocean mapping applications.

  16. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  17. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  18. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  19. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng

    2013-07-01

    Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

  20. Experimental validation of a newly designed 6 degrees of freedom scanning laser head: Application to three-dimensional beam structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maio, D., E-mail: dario.dimaio@bristol.ac.uk; Copertaro, E.

    2013-12-15

    A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of themore » conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure.« less

  1. Integration of multi-temporal airborne and terrestrial laser scanning data for the analysis and modelling of proglacial geomorphodynamic processes

    NASA Astrophysics Data System (ADS)

    Briese, Christian; Glira, Philipp; Pfeifer, Norbert

    2013-04-01

    The actual on-going and predicted climate change leads in sensitive areas like in high-mountain proglacial regions to significant geomorphodynamic processes (e.g. landslides). Within a short time period (even less than a year) these processes lead to a substantial change of the landscape. In order to study and analyse the recent changes in a proglacial environment the multi-disciplinary research project PROSA (high-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) selected the study area of the Gepatschferner (Tyrol), the second largest glacier in Austria. One of the challenges within the project is the geometric integration (i.e. georeferencing) of multi-temporal topographic data sets in a continuously changing environment. Furthermore, one has to deal with data sets of multiple scales (large area data sets vs. highly detailed local area observations) that are on one hand necessary to cover the complete proglacial area with the whole catchment and on the other hand guaranty a highly dense and accurate sampling of individual areas of interest (e.g. a certain highly affected slope). This contribution suggests a comprehensive method for the georeferencing of multi-temporal airborne and terrestrial laser scanning (ALS resp. TLS). It is studied by application to the data that was acquired within the project PROSA. In a first step a stable coordinate frame that allows the analysis of the changing environment has to be defined. Subsequently procedures for the transformation of the individual ALS and TLS data sets into this coordinate frame were developed. This includes the selection of appropriate reference areas as well as the development of special targets for the local TLS acquisition that can be used for the absolute georeferencing in the common coordinate frame. Due to the fact that different TLS instruments can be used (some larger distance sensors that allow covering larger areas vs. closer operating sensors that allow a

  2. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-12-01

    In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

  3. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    PubMed

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  4. Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.

    PubMed

    Model, Michael A; Blank, James L

    2006-10-01

    To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.

  5. Influence of laser power on the penetration depth and geometry of scanning tracks in selective laser melting

    NASA Astrophysics Data System (ADS)

    Stopyra, Wojciech; Kurzac, Jarosław; Gruber, Konrad; Kurzynowski, Tomasz; Chlebus, Edward

    2016-12-01

    SLM technology allows production of a fully functional objects from metal and ceramic powders, with true density of more than 99,9%. The quality of manufactured items in SLM method affects more than 100 parameters, which can be divided into fixed and variable. Fixed parameters are those whose value before the process should be defined and maintained in an appropriate range during the process, e.g. chemical composition and morphology of the powder, oxygen level in working chamber, heating temperature of the substrate plate. In SLM technology, five parameters are variables that optimal set allows to produce parts without defects (pores, cracks) and with an acceptable speed. These parameters are: laser power, distance between points, time of exposure, distance between lines and layer thickness. To develop optimal parameters thin walls or single track experiments are performed, to select the best sets narrowed to three parameters: laser power, exposure time and distance between points. In this paper, the effect of laser power on the penetration depth and geometry of scanned single track was shown. In this experiment, titanium (grade 2) substrate plate was used and scanned by fibre laser of 1064 nm wavelength. For each track width, height and penetration depth of laser beam was measured.

  6. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the upper Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen

    2011-01-01

    Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...

  7. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...

  8. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    NASA Astrophysics Data System (ADS)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  9. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    PubMed Central

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered. PMID:23112655

  10. Laser-based sensors for oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Mullin, Joseph V.

    1997-07-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. It has long been recognized that there is no one sensor which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide field-of- view and can therefore be used to map the overall extent of the spill. These sensors, however lack the capability to positively identify oil and related products, especially along complicated beach and shoreline environments where several substrates are present. The laser-based sensors under development by the Emergencies Science Division of Environment Canada are designed to fill specific roles in oil spill response. The scanning laser environmental airborne fluorosensor (SLEAF) is being developed to detect and map oil and related petroleum products in complex marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non-specific sensors. This confirmation will release response crews from the time-consuming task of physically inspecting each site, and direct crews to sites that require remediation. The laser ultrasonic remote sensing of oil thickness (LURSOT) sensor will provide an absolute measurement of oil thickness from an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper describes the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identifies the anticipated benefits of the use of this technology

  11. Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction

    DOT National Transportation Integrated Search

    2015-08-28

    Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...

  12. Facial recognition and laser surface scan: a pilot study.

    PubMed

    Lynnerup, Niels; Clausen, Maja-Lisa; Kristoffersen, Agnethe May; Steglich-Arnholm, Henrik

    2009-01-01

    Surface scanning of the face of a suspect is presented as a way to better match the facial features with those of a perpetrator from CCTV footage. We performed a simple pilot study where we obtained facial surface scans of volunteers and then in blind trials tried to match these scans with 2D photographs of the faces of the volunteers. Fifteen male volunteers were surface scanned using a Polhemus FastSCAN Cobra Handheld Laser Scanner. Three photographs were taken of each volunteer's face in full frontal, profile and from above at an angle of 45 degrees and also 45 degrees laterally. Via special software (MIMICS and Photoshop) the surface scans were matched with the photographs in blind trials. The matches were graded as: a good fit; possible fit; and no fit. All the surface scans and photos were matched correctly, although one surface scan could be matched with two angled photographs, meaning that the discriminatory value was 86.7%. We also tested the surface scanner in terms of reliability in establishing point measures on skulls, and compared with physical measurements performed by calipers. The variation was on average 1 mm for five cranial measures. We suggest how surface scanning might be applied in forensic facial identification.

  13. Semantic Labelling of Road Furniture in Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Li, F.; Oude Elberink, S.; Vosselman, G.

    2017-09-01

    Road furniture semantic labelling is vital for large scale mapping and autonomous driving systems. Much research has been investigated on road furniture interpretation in both 2D images and 3D point clouds. Precise interpretation of road furniture in mobile laser scanning data still remains unexplored. In this paper, a novel method is proposed to interpret road furniture based on their logical relations and functionalities. Our work represents the most detailed interpretation of road furniture in mobile laser scanning data. 93.3 % of poles are correctly extracted and all of them are correctly recognised. 94.3 % of street light heads are detected and 76.9 % of them are correctly identified. Despite errors arising from the recognition of other components, our framework provides a promising solution to automatically map road furniture at a detailed level in urban environments.

  14. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-;can ALS now work better on the task of LAI prediction?; As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  15. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    NASA Astrophysics Data System (ADS)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  16. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  17. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    NASA Astrophysics Data System (ADS)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  18. Laser Scanning Cytometry

    PubMed Central

    Pozarowski, Piotr; Holden, Elena; Darzynkiewicz, Zbigniew

    2013-01-01

    Summary The laser scanning cytometer (LSC) is the microscope-based cytofluorometer that offers a plethora of analytical capabilities. Multilaser-excited fluorescence emitted from individual cells is measured at several wavelength ranges, rapidly (up to 5000 cells/min), with high sensitivity and accuracy. The following applications of LSC are reviewed: (1) identification of cells that differ in degree of chromatin condensation (e.g., mitotic or apoptotic cells or lymphocytes vs granulocytes vs monocytes); (2) detection of translocation between cytoplasm vs nucleus or nucleoplasm vs nucleolus of regulatory molecules such as NF- κB, p53, or Bax; (3) semiautomatic scoring of micronuclei in mutagenicity assays; (4) analysis of fluorescence in situ hybridization; (5) enumeration and morphometry of nucleoli; (6) analysis of phenotype of progeny of individual cells in clonogenicity assay; (7) cell immunophenotyping; (8) visual examination, imaging, or sequential analysis of the cells measured earlier upon their relocation, using different probes; (9) in situ enzyme kinetics and other time-resolved processes; (10) analysis of tissue section architecture; (11) application for hypocellular samples (needle aspirate, spinal fluid, etc.); (12) other clinical applications. Advantages and limitations of LSC are discussed and compared with flow cytometry. PMID:16719355

  19. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  20. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  1. Efficient green lasers for high-resolution scanning micro-projector displays

    NASA Astrophysics Data System (ADS)

    Bhatia, Vikram; Bauco, Anthony S.; Oubei, Hassan M.; Loeber, David A. S.

    2010-02-01

    Laser-based projectors are gaining increased acceptance in mobile device market due to their low power consumption, superior image quality and small size. The basic configuration of such micro-projectors is a miniature mirror that creates an image by raster scanning the collinear red, blue and green laser beams that are individually modulated on a pixel-bypixel basis. The image resolution of these displays can be limited by the modulation bandwidth of the laser sources, and the modulation speed of the green laser has been one of the key limitations in the development of these displays. We will discuss how this limitation is fundamental to the architecture of many laser designs and then present a green laser configuration which overcomes these difficulties. In this green laser architecture infra-red light from a distributed Bragg-reflector (DBR) laser diode undergoes conversion to green light in a waveguided second harmonic generator (SHG) crystal. The direct doubling in a single pass through the SHG crystal allows the device to operate at the large modulation bandwidth of the DBR laser. We demonstrate that the resultant product has a small footprint (<0.7 cc envelope volume), high efficiency (>9% electrical-to-optical conversion) and large modulation bandwidth (>100 MHz).

  2. Active suppression of acoustically induced jitter for the airborne laser

    NASA Astrophysics Data System (ADS)

    Glaese, Roger M.; Anderson, Eric H.; Janzen, Paul C.

    2000-07-01

    The Airborne Laser (ABL) system has extremely tight jitter requirements. Acoustic disturbances, such as those caused by the pressure recovery system of the high power laser, are a significant jitter source. Several technologies may be appropriate for reducing the acoustically induced jitter. The first choice for mitigation will be passive approaches, such as acoustic blankets. There is, however, some uncertainty whether these approaches will provide sufficient attenuation and there is concern about the weight of these approaches. A testbed that captured the fundamental physics of the ABL acoustically induced optical jitter problem was developed. This testbed consists of a flexure-mounted mirror exposed to an acoustic field that is generated outside a beam tube and then propagates within the tube. Both feedback and adaptive feedforward control topologies were implemented on the testbed using either of two actuators (a fast steering mirror and a secondary acoustic speaker located near the precision mirror), and a variety of sensors (microphones measuring the acoustic disturbance, accelerometers and microphones mounted on the precision optic, and an optical position sensing detector). This paper summarizes the results from these control topologies for reducing the acoustically induced jitter with some control topologies achieving in excess of 40 dB jitter reduction at a single frequency. This work was performed under an SBIR Phase I funded by the Air Force Research Laboratory Space Vehicles Directorate.

  3. Efficient terrestrial laser scan segmentation exploiting data structure

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa

    2016-09-01

    New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.

  4. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunaevskiy, Mikhail, E-mail: Mike.Dunaeffsky@mail.ioffe.ru; National Research University of Information Technologies, Mechanics and Optics; Dontsov, Anton

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the lightmore » absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.« less

  5. Patterned retinal coagulation with a scanning laser

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Jain, ATul; Paulus, Yannis; Andersen, Dan; Blumenkranz, Mark S.

    2007-02-01

    Pan-retinal photocoagulation in patients with diabetic retinopathy typically involves application of more than 1000 laser spots; often resulting in physician fatigue and patient discomfort. We present a semi-automated patterned scanning laser photocoagulator that rapidly applies predetermined patterns of lesions; thus, greatly improving the comfort, efficiency and precision of the treatment. Patterns selected from a graphical user interface are displayed on the retina with an aiming beam, and treatment can be initiated and interrupted by depressing a foot pedal. To deliver a significant number of burns during the eye's fixation time, each pulse should be considerably shorter than conventional 100ms pulse duration. We measured coagulation thresholds and studied clinical and histological outcomes of the application of laser pulses in the range of 1-200ms in pigmented rabbits. Laser power required for producing ophthalmoscopically visible lesions with a laser spot of 132μm decreased from 360 to 37mW with pulse durations increasing from 1 to 100ms. In the range of 10-100ms clinically and histologically equivalent light burns could be produced. The safe therapeutic range of coagulation (ratio of the laser power required to produce a rupture to that for a light burn) decreased with decreasing pulse duration: from 3.8 at 100ms, to 3.0 at 20ms, to 2.5 at 10ms, and to 1.1 at 1ms. Histology demonstrated increased confinement of the thermal damage with shorter pulses, with coagulation zone limited to the photoreceptor layer at pulses shorter than 10ms. Durations of 10-20ms appear to be a good compromise between the speed and safety of retinal coagulation. Rapid application of multiple lesions greatly improves the speed, precision, and reduces pain in retinal photocoagulation.

  6. Moose (Alces alces) reacts to high summer temperatures by utilizing thermal shelters in boreal forests - an analysis based on airborne laser scanning of the canopy structure at moose locations.

    PubMed

    Melin, Markus; Matala, Juho; Mehtätalo, Lauri; Tiilikainen, Raisa; Tikkanen, Olli-Pekka; Maltamo, Matti; Pusenius, Jyrki; Packalen, Petteri

    2014-04-01

    The adaptation of different species to warming temperatures has been increasingly studied. Moose (Alces alces) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies, the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose, we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 °C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate. © 2013 John Wiley & Sons Ltd.

  7. An Energy-Based Approach for Detection and Characterization of Subtle Entities Within Laser Scanning Point-Clouds

    NASA Astrophysics Data System (ADS)

    Arav, Reuma; Filin, Sagi

    2016-06-01

    Airborne laser scans present an optimal tool to describe geomorphological features in natural environments. However, a challenge arises in the detection of such phenomena, as they are embedded in the topography, tend to blend into their surroundings and leave only a subtle signature within the data. Most object-recognition studies address mainly urban environments and follow a general pipeline where the data are partitioned into segments with uniform properties. These approaches are restricted to man-made domain and are capable to handle limited features that answer a well-defined geometric form. As natural environments present a more complex set of features, the common interpretation of the data is still manual at large. In this paper, we propose a data-aware detection scheme, unbound to specific domains or shapes. We define the recognition question as an energy optimization problem, solved by variational means. Our approach, based on the level-set method, characterizes geometrically local surfaces within the data, and uses these characteristics as potential field for minimization. The main advantage here is that it allows topological changes of the evolving curves, such as merging and breaking. We demonstrate the proposed methodology on the detection of collapse sinkholes.

  8. RAYSAW: a log sawing simulator for 3D laser-scanned hardwood logs

    Treesearch

    R. Edward Thomas

    2013-01-01

    Laser scanning of hardwood logs provides detailed high-resolution imagery of log surfaces. Characteristics such as sweep, taper, and crook, as well as most surface defects, are visible to the eye in the scan data. In addition, models have been developed that predict interior knot size and position based on external defect information. Computerized processing of...

  9. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  10. Optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy in retinal nerve fiber layer measurements of glaucoma patients.

    PubMed

    Fanihagh, Farsad; Kremmer, Stephan; Anastassiou, Gerasimos; Schallenberg, Maurice

    2015-01-01

    To determine the correlations and strength of association between different imaging systems in analyzing the retinal nerve fiber layer (RNFL) of glaucoma patients: optical coherence tomography (OCT), scanning laser polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO). 114 eyes of patients with moderate open angle glaucoma underwent spectral domain OCT (Topcon SD-OCT 2000 and Zeiss Cirrus HD-OCT), SLP (GDx VCC and GDx Pro) and CSLO (Heidelberg Retina Tomograph, HRT 3). Correlation coefficients were calculated between the structural parameters yielded by these examinations. The quantitative relationship between the measured RNFL thickness globally and for the four regions (superior, inferior, nasal, temporal) were evaluated with different regression models for all used imaging systems. The strongest correlation of RNFL measurements was found between devices using the same technology like GDx VCC and GDx Pro as well as Topcon OCT and Cirrus OCT. In glaucoma patients, the strongest associations (R²) were found between RNFL measurements of the two optical coherence tomography devices Topcon OCT and Cirrus OCT (R² = 0.513) and between GDx VCC and GDx Pro (R² = 0.451). The results of the OCTs and GDX Pro also had a strong quantitative relationship (Topcon OCT R² = 0.339 and Cirrus OCT R² = 0.347). GDx VCC and the OCTs showed a mild to moderate association (Topcon OCT R² = 0.207 and Cirrus OCT R² = 0.258). The confocal scanning laser ophthalmoscopy (HRT 3) had the lowest association to all other devices (Topcon OCT R² = 0.254, Cirrus OCT R² = 0.158, GDx Pro R² = 0.086 and GDx VCC R² = 0.1). The measurements of the RNFL in glaucoma patients reveal a high correlation of OCT and GDx devices because OCTs can measure all major retinal layers and SLP can detect nerve fibers allowing a comparison between the results of this devices. However, CSLO by means of HRT topography can only measure height values of the retinal surface but it cannot distinguish

  11. Modeling Of A Monocular, Full-Color, Laser-Scanning, Helmet-Mounted Display for Aviator Situational Awareness

    DTIC Science & Technology

    2017-03-27

    USAARL Report No. 2017-10 Modeling of a Monocular, Full -Color, Laser- Scanning, Helmet-Mounted Display for Aviator Situational Awareness By Thomas...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 27-03-2017 Final 2002-2003 Modeling of a Monocular, Full -Color, Laser-Scanning, Helmet...was the idea of modeling HMDs by producing computer imagery for an observer to evaluate the quality of symbology. HMD, ANVIS, HGU-56P, Virtual

  12. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer

    NASA Astrophysics Data System (ADS)

    Scott, Jill R.; Tremblay, Paul L.

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  13. Pole-Like Road Furniture Detection in Sparse and Unevenly Distributed Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Li, F.; Lehtomäki, M.; Oude Elberink, S.; Vosselman, G.; Puttonen, E.; Kukko, A.; Hyyppä, J.

    2018-05-01

    Pole-like road furniture detection received much attention due to its traffic functionality in recent years. In this paper, we develop a framework to detect pole-like road furniture from sparse mobile laser scanning data. The framework is carried out in four steps. The unorganised point cloud is first partitioned. Then above ground points are clustered and roughly classified after removing ground points. A slicing check in combination with cylinder masking is proposed to extract pole-like road furniture candidates. Pole-like road furniture are obtained after occlusion analysis in the last stage. The average completeness and correctness of pole-like road furniture in sparse and unevenly distributed mobile laser scanning data was above 0.83. It is comparable to the state of art in the field of pole-like road furniture detection in mobile laser scanning data of good quality and is potentially of practical use in the processing of point clouds collected by autonomous driving platforms.

  14. A flexible 3D laser scanning system using a robotic arm

    NASA Astrophysics Data System (ADS)

    Fei, Zixuan; Zhou, Xiang; Gao, Xiaofei; Zhang, Guanliang

    2017-06-01

    In this paper, we present a flexible 3D scanning system based on a MEMS scanner mounted on an industrial arm with a turntable. This system has 7-degrees of freedom and is able to conduct a full field scan from any angle, suitable for scanning object with the complex shape. The existing non-contact 3D scanning system usually uses laser scanner that projects fixed stripe mounted on the Coordinate Measuring Machine (CMM) or industrial robot. These existing systems can't perform path planning without CAD models. The 3D scanning system presented in this paper can scan the object without CAD models, and we introduced this path planning method in the paper. We also propose a practical approach to calibrating the hand-in-eye system based on binocular stereo vision and analyzes the errors of the hand-eye calibration.

  15. Maintaining a stationary laser footprint during angular scan in internal-reflection experiments.

    PubMed

    Fontana, Eduardo; Cavalcanti, Gustavo Oliveira

    2013-11-10

    In internal-reflection metrology using prisms, the prism is usually mounted on a rotation/translation stage to enable adjusting angle and location of the laser footprint on the surface. If a visual inspection method is used to find the laser footprint, the task becomes impossible if invisible radiation in the near infrared is employed. In addition, it may be desirable to perform angular scan experiments with a stationary footprint on the surface during scans, or even to automatically probe specific points on an extended prism face for predetermined incidence angles. In this paper, a formulation is developed to determine the required translation along the prism face to allow maintaining the laser footprint stationary under a given rotation. A web-based app developed under the scope of this work demonstrates the applicability of the approach for silica, BK7 and SF2 glasses, in the wavelength range from 500 to 1500 nm and for an arbitrary geometry of the glass prism.

  16. Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2018-01-01

    Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.

  17. Storm Surge Measurement with an Airborne Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Krabill, W. B.; Shaffer, W. A.; Baig, S. R.; Peng, M.; Pietrafesa, L. J.; Garcia, A. W.; Marks, F. D., Jr.; Black, P. G.; hide

    2008-01-01

    Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.

  18. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  19. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  20. 3D laser scanning and modelling of the Dhow heritage for the Qatar National Museum

    NASA Astrophysics Data System (ADS)

    Wetherelt, A.; Cooper, J. P.; Zazzaro, C.

    2014-08-01

    Curating boats can be difficult. They are complex structures, often demanding to conserve whether in or out of the water; they are usually large, difficult to move on land, and demanding of gallery space. Communicating life on board to a visiting public in the terra firma context of a museum can be difficult. Boats in their native environment are inherently dynamic artifacts. In a museum they can be static and divorced from the maritime context that might inspire engagement. New technologies offer new approaches to these problems. 3D laser scanning and digital modeling offers museums a multifaceted means of recording, monitoring, studying and communicating watercraft in their care. In this paper we describe the application of 3D laser scanning and subsequent digital modeling. Laser scans were further developed using computer-generated imagery (CGI) modeling techniques to produce photorealistic 3D digital models for development into interactive, media-based museum displays. The scans were also used to generate 2D naval lines and orthographic drawings as a lasting curatorial record of the dhows held by the National Museum of Qatar.

  1. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  2. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    EPA Science Inventory

    MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    Robert M. Zucker Susan C. Jeffery and Sally D. Perreault

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Prot...

  3. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  4. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  5. Confocal Laser Scanning Microscopy, a New In Vivo Diagnostic Tool for Schistosomiasis

    PubMed Central

    Holtfreter, Martha Charlotte; Nohr-Łuczak, Constanze; Guthoff, Rudolf Friedrich; Reisinger, Emil Christian

    2012-01-01

    Background The gold standard for the diagnosis of schistosomiasis is the detection of the parasite's characteristic eggs in urine, stool, or rectal and bladder biopsy specimens. Direct detection of eggs is difficult and not always possible in patients with low egg-shedding rates. Confocal laser scanning microscopy (CLSM) permits non-invasive cell imaging in vivo and is an established way of obtaining high-resolution images and 3-dimensional reconstructions. Recently, CLSM was shown to be a suitable method to visualize Schistosoma mansoni eggs within the mucosa of dissected mouse gut. In this case, we evaluated the suitability of CLSM to detect eggs of Schistosoma haematobium in a patient with urinary schistosomiasis and low egg-shedding rates. Methodology/Principal Findings The confocal laser scanning microscope used in this study was based on a scanning laser system for imaging the retina of a living eye, the Heidelberg Retina Tomograph II, in combination with a lens system (image modality). Standard light cystoscopy was performed using a rigid cystoscope under general anaesthesia. The CLSM endoscope was then passed through the working channel of the rigid cystoscope. The mucosal tissue of the bladder was scanned using CLSM. Schistoma haematobium eggs appeared as bright structures, with the characteristic egg shape and typical terminal spine. Conclusion/Significance We were able to detect schistosomal eggs in the urothelium of a patient with urinary schistosomiasis. Thus, CLSM may be a suitable tool for the diagnosis of schistosomiasis in humans, especially in cases where standard diagnostic tools are not suitable. PMID:22529947

  6. The remote measurement of tornado-like flows employing a scanning laser Doppler system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.

    1977-01-01

    The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.

  7. Comparison of a novel surface laser scanning anthropometric technique to traditional methods for facial parameter measurements.

    PubMed

    Joe, Paula S; Ito, Yasushi; Shih, Alan M; Oestenstad, Riedar K; Lungu, Claudiu T

    2012-01-01

    This study was designed to determine if three-dimensional (3D) laser scanning techniques could be used to collect accurate anthropometric measurements, compared with traditional methods. The use of an alternative 3D method would allow for quick collection of data that could be used to change the parameters used for facepiece design, improving fit and protection for a wider variety of faces. In our study, 10 facial dimensions were collected using both the traditional calipers and tape method and a Konica-Minolta Vivid9i laser scanner. Scans were combined using RapidForm XOR software to create a single complete facial geometry of the subject as a triangulated surface with an associated texture image from which to obtain measurements. A paired t-test was performed on subject means in each measurement by method. Nine subjects were used in this study: five males (one African-American and four Caucasian females) and four females displaying a range of facial dimensions. Five measurements showed significant differences (p<0.05), with most accounted for by subject movements or amended by scanning technique modifications. Laser scanning measurements showed high precision and accuracy when compared with traditional methods. Significant differences found can be very small changes in measurements and are unlikely to present a practical difference. The laser scanning technique demonstrated reliable and quick anthropometric data collection for use in future projects in redesigning respirators.

  8. Effect of scanning speed on continuous wave laser scribing of metal thin films: theory and experiment

    NASA Astrophysics Data System (ADS)

    Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro

    2017-01-01

    In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.

  9. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  10. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  11. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  12. A scanning laser rangefinder for a robotic vehicle

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Johnston, A. R.

    1977-01-01

    A scanning Laser Rangefinder (LRF) which operates in conjunction with a minicomputer as part of a robotic vehicle is described. The description, in sufficient detail for replication, modification, and maintenance, includes both hardware and software. Also included is a discussion of functional requirements relative to a detailing of the instrument and its performance, a summary of the robot system in which the LRF functions, the software organization, interfaces and description, and the applications to which the LRF has been put.

  13. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  14. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    PubMed

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  15. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  16. Two-dimensional profiling of carriers in terahertz quantum cascade lasers using calibrated scanning spreading resistance microscopy and scanning capacitance microscopy.

    PubMed

    Dhar, R S; Ban, D

    2013-07-01

    The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  17. Scanning laser polarimetry in glaucoma

    PubMed Central

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-01-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far. PMID:25494244

  18. Scanning laser polarimetry in glaucoma.

    PubMed

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  19. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  20. Laser-scanned fluorescence of nonlased/normal, lased/normal, nonlased/carious, and lased/carious enamel

    NASA Astrophysics Data System (ADS)

    Zakariasen, Kenneth L.; Barron, Joseph R.; Paton, Barry E.

    1992-06-01

    Research has shown that low levels of CO2 laser irradiation raise enamel resistance to sub-surface demineralization. Additionally, laser scanned fluorescence analysis of enamel, as well a laser and white light reflection studies, have potential for both clinical diagnosis and comparative research investigations of the caries process. This study was designed to compare laser fluorescence and laser/white light reflection of (1) non-lased/normal with lased/normal enamel and (2) non-lased/normal with non-lased/carious and lased/carious enamel. Specimens were buccal surfaces of extracted third molars, coated with acid resistant varnish except for either two or three 2.25 mm2 windows (two window specimens: non-lased/normal, lased/normal--three window specimens: non-lased/normal, non-lased carious, lased/carious). Teeth exhibiting carious windows were immersed in a demineralizing solution for twelve days. Non-carious windows were covered with wax during immersion. Following immersion, the wax was removed, and fluorescence and laser/white light reflection analyses were performed on all windows utilizing a custom scanning laser fluorescence spectrometer which focuses light from a 25 mWatt He-Cd laser at 442 nm through an objective lens onto a cross-section >= 3 (mu) in diameter. For laser/white light reflection analyses, reflected light intensities were measured. A HeNe laser was used for laser light reflection studies. Following analyses, the teeth are sectioned bucco-lingually into 80 micrometers sections, examined under polarized light microscopy, and the lesions photographed. This permits comparison between fluorescence/reflected light values and the visualized decalcification areas for each section, and thus comparisons between various enamel treatments and normal enamel. The enamel specimens are currently being analyzed.

  1. Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation

    PubMed Central

    Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin

    2011-01-01

    Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially

  2. Primary detection of hardwood log defects using laser surface scanning

    Treesearch

    Ed Thomas; Liya Thomas; Lamine Mili; Roger Ehrich; A. Lynn Abbott; Clifford Shaffer; Clifford Shaffer

    2003-01-01

    The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation's hardwood industry. The location, type, and...

  3. On the integration of Airborne full-waveform laser scanning and optical imagery for Site Detection and Mapping: Monteserico study case

    NASA Astrophysics Data System (ADS)

    Coluzzi, R.; Guariglia, A.; Lacovara, B.; Lasaponara, R.; Masini, N.

    2009-04-01

    This paper analyses the capability of airborne LiDAR derived data in the recognition of archaeological marks. It also evaluates the benefits to integrate them with aerial photos and very high resolution satellite imagery. The selected test site is Monteserico, a medieval village located on a pastureland hill in the North East of Basilicata (Southern Italy). The site, attested by documentary sources beginning from the 12th century, was discovered by aerial survey in 1996 [1] and investigated in 2005 by using QuickBird imagery [2]. The only architectural evidence is a castle, built on the western top of the hill; whereas on the southern side, earthenware, pottery and crumbling building materials, related to the medieval settlement, could be observed. From a geological point of view, the stratigraphic sequence is composed of Subappennine Clays, Monte Marano sands and Irsina conglomerates. Sporadic herbaceous plants grow over the investigated area. For the purpose of this study, a full-waveform laser scanning with a 240.000 Hz frequency was used. The average point density value of dataset is about 30 points/m2. The final product is a 0.30 m Digital Surface Models (DSMs) accurately modelled. To derive the DSM the point cloud of the ALS was filtered and then classified by applying appropriate algorithms. In this way surface relief and archaeological features were surveyed with great detail. The DSM was compared with other remote sensing data source such as oblique and nadiral aerial photos and QuickBird imagery, acquired in different time. In this way it was possible to evaluate, compare each other and overlay the archaeological features recorded from each data source (aerial, satellite and lidar). Lidar data showed some interesting results. In particular, they allowed for identifying and recording differences in height on the ground produced by surface and shallow archaeological remains (the so-called shadow marks). Most of these features are visible also by the optical

  4. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  5. How the confocal laser scanning microscope entered biological research.

    PubMed

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  6. Membrane Vibration Studies Using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Solter, Micah J.; Pappa, Richard S.

    2001-01-01

    This paper summarizes on-going experimental work at NASA Langley Research Center to measure the dynamics of a 1.016 m (40 in.) square polyimide film Kapton membrane. A fixed fully automated impact hammer and Polytec PSV-300-H scanning laser vibrometer were used for non-contact modal testing of the membrane with zero-mass-loading. The paper discusses the results obtained by testing the membrane at various tension levels and at various excitation locations. Results obtained by direct shaker excitation to the membrane are also discussed.

  7. Scanning laser ophthalmoscopy: optimized testing strategies for psychophysics

    NASA Astrophysics Data System (ADS)

    Van de Velde, Frans J.

    1996-12-01

    Retinal function can be evaluated with the scanning laser ophthalmoscope (SLO). the main advantage is a precise localization of the psychophysical stimulus on the retina. Four alternative forced choice (4AFC) and parameter estimation by sequential testing (PEST) are classic adaptive algorithms that have been optimized for use with the SLO, and combined with strategies to correct for small eye movements. Efficient calibration procedures are essential for quantitative microperimetry. These techniques measure precisely visual acuity and retinal sensitivity at distinct locations on the retina. A combined 632 nm and IR Maxwellian view illumination provides a maximal transmittance through the ocular media and has a animal interference with xanthophyll or hemoglobin. Future modifications of the instrument include the possibility of binocular evaluation, Maxwellian view control, fundus tracking using normalized gray-scale correlation, and microphotocoagulation. The techniques are useful in low vision rehabilitation and the application of laser to the retina.

  8. ICESat-2 simulated data from airborne altimetery

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Markus, T.; Brenner, A. C.; Barbieri, K.; Field, C.; Sirota, M.

    2010-12-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.

  9. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    PubMed

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  10. Scanning mid-IR laser apparatus with eye tracking for refractive surgery

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Yoder, Paul R., Jr.; Bekker, Carsten; Hoffman, Hanna J.; Jensen, Eric F.

    1999-06-01

    A robust, real-time, dynamic eye tracker has been integrated with the short pulse mid-infrared laser scanning delivery system previously described. This system employs a Q- switched Nd:YAG laser pumped optical parametric oscillator operating at 2.94 micrometers. Previous ablation studies on human cadaver eyes and in-vivo cat eyes demonstrated very smooth ablations with extremely low damage levels similar to results with an excimer. A 4-month healing study with cats indicated no adverse healing effects. In order to treat human eyes, the tracker is required because the eyes move during the procedure due to both voluntary and involuntary motions such as breathing, heartbeat, drift, loss of fixation, saccades and microsaccades. Eye tracking techniques from the literature were compared. A limbus tracking system was best for this application. Temporal and spectral filtering techniques were implemented to reduce tracking errors, reject stray light, and increase signal to noise ratio. The expanded-capability system (IRVision AccuScan 2000 Laser System) has been tested in the lab on simulated eye targets, glass eyes, cadaver eyes, and live human subjects. Circular targets ranging from 10-mm to 14-mm diameter were successfully tracked. The tracker performed beyond expectations while the system performed myopic photorefractive keratectomy procedures on several legally blind human subjects.

  11. Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory.

    Treesearch

    Stephen E. Reutebuch; Hans-Erik Andersen; Robert J. McGaughey

    2005-01-01

    Airborne laser scanning of forests has been shown to provide accurate terrain models and, at the same time, estimates of multiple resource inventory variables through active sensing of three-dimensional (3D) forest vegetation. Brief overviews of airborne laser scanning technology [often referred to as "light detection and ranging" (LIDAR)] and research...

  12. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  13. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  14. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE AND RAT OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse and Rat Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research ...

  15. Using Airborne Lidar Data from IcePod to Measure Annual and Seasonal Ice Changes Over Greenland

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bertinato, C.; Das, I.

    2014-12-01

    The IcePod is a multi-sensor airborne science platform that supports a wide suite of instruments, including a Riegl VQ-580 infrared scanning laser, GPS-inertial positioning system, shallow and deep-ice radars, visible-wave and infrared cameras, and upward-looking pyrometer. These instruments allow us to image the ice from top to bottom, including the surface of melt-water plumes that originate at the ice-ocean boundary. In collaboration with the New York Air National Guard 109th Airlift Wing, the IcePod is flown on LC-130 aircraft, which presents the unique opportunity to routinely image the Greenland ice sheet several times within a season. This is particularly important for mass balance studies, as we can measure elevation changes during the melt season. During the 2014 summer, laser data was collected via IcePod over the Greenland ice sheet, including Russell Glacier, Jakobshavn Glacier, Eqip Glacier, and Summit Camp. The Icepod will also be routinely operated in Antarctica. We present the initial testing, calibration, and error estimates from the first set of laser data that were collected on IcePod. At a survey altitude of 1000 m, the laser swath covers ~ 1000 m. A Northrop-Grumman LN-200 tactical grade IMU is rigidly attached to the laser scanner to provide attitude data at a rate of 200 Hz. Several methods were used to determine the lever arm between the IMU center of navigation and GPS antenna phase center, terrestrial scanning laser, total station survey, and optimal estimation. Additionally, initial bore sight calibration flights yielded misalignment angles within an accuracy of ±4 cm. We also performed routine passes over the airport ramp in Kangerlussuaq, Greenland, comparing the airborne GPS and Lidar data to a reference GPS-based ground survey across the ramp, spot GPS points on the ramp and a nearby GPS base station. Positioning errors can severely impact the accuracy of a laser altimeter when flying over remote regions such as across the ice sheets

  16. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  17. Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror.

    PubMed

    Akram, M Nadeem; Tong, Zhaomin; Ouyang, Guangmin; Chen, Xuyuan; Kartashov, Vladimir

    2010-06-10

    We utilize spatial and angular diversity to achieve speckle reduction in laser illumination. Both free-space and imaging geometry configurations are considered. A fast two-dimensional scanning micromirror is employed to steer the laser beam. A simple experimental setup is built to demonstrate the application of our technique in a two-dimensional laser picture projection. Experimental results show that the speckle contrast factor can be reduced down to 5% within the integration time of the detector.

  18. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed Central

    Schröter, Tobias J.; Johnson, Shane B.; John, Kerstin; Santi, Peter A.

    2011-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. PMID:22254177

  19. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  20. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  1. Laser line scan performance prediction

    NASA Astrophysics Data System (ADS)

    Mahoney, Kevin L.; Schofield, Oscar; Kerfoot, John; Giddings, Tom; Shirron, Joe; Twardowski, Mike

    2007-09-01

    The effectiveness of sensors that use optical measurements for the laser detection and identification of subsurface mines is directly related to water clarity. The primary objective of the work presented here was to use the optical data collected by UUV (Slocum Glider) surveys of an operational areas to estimate the performance of an electro-optical identification (EOID) Laser Line Scan (LLS) system during RIMPAC 06, an international naval exercise off the coast of Hawaii. Measurements of optical backscattering and beam attenuation were made with a Wet Labs, Inc. Scattering Absorption Meter (SAM), mounted on a Rutgers University/Webb Research Slocum glider. The optical data universally indicated extremely clear water in the operational area, except very close to shore. The beam-c values from the SAM sensor were integrated to three attenuation lengths to provide an estimate of how well the LLS would perform in detecting and identifying mines in the operational areas. Additionally, the processed in situ optical data served as near-real-time input to the Electro-Optic Detection Simulator, ver. 3 (EODES-3; Metron, Inc.) model for EOID performance prediction. Both methods of predicting LLS performance suggested a high probability of detection and probability of identification. These predictions were validated by the actual performance of the LLS as the EOID system yielded imagery from which reliable mine identification could be made. Future plans include repeating this work in more optically challenging water types to demonstrate the utility of pre-mission UUV surveys of operational areas as a tactical decision aid for planning EOID missions.

  2. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    NASA Astrophysics Data System (ADS)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-03-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  3. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    NASA Astrophysics Data System (ADS)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-01-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  4. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  5. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  6. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    NASA Astrophysics Data System (ADS)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  7. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    PubMed

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  8. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE PAGES

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; ...

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  9. Infrared scanning laser ophthalmoscope imaging of the macula and its correlation with functional loss and structural changes in patients with stargardt disease.

    PubMed

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2011-05-01

    To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Eighteen eyes of 10 patients with Stargardt disease were studied. Scanning laser ophthalmoscope infrared images were compared with corresponding spectral-domain optical coherence tomography scans. Additionally, scanning laser ophthalmoscope microperimetry was performed, and results were superimposed on scanning laser ophthalmoscope infrared images and in selected cases on fundus autofluorescence images. Seventeen of 18 eyes showed a distinct hyporeflective foveal and/or perifoveal area with distinct borders on scanning laser ophthalmoscope infrared images, which was less evident on funduscopy and incompletely depicted in fundus autofluorescence images. This hyporeflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium and disorganization or loss of the photoreceptor cell inner segment-outer segment junction and external-limiting membrane on spectral-domain optical coherence tomography. Scanning laser ophthalmoscope infrared fundus images are useful for depicting retinal structural changes in patients with Stargardt disease. A spectral-domain optical coherence tomography/scanning laser ophthalmoscope microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history.

  10. Using mid-range laser scanners to digitize cultural-heritage sites.

    PubMed

    Spring, Adam P; Peters, Caradoc; Minns, Tom

    2010-01-01

    Here, we explore new, more accessible ways of modeling 3D data sets that both professionals and amateurs can employ in areas such as architecture, forensics, geotechnics, cultural heritage, and even hobbyist modeling. To support our arguments, we present images from a recent case study in digital preservation of cultural heritage using a mid-range laser scanner. Our appreciation of the increasing variety of methods for capturing 3D spatial data inspired our research. Available methods include photogrammetry, airborne lidar, sonar, total stations (a combined electronic and optical survey instrument), and midand close-range scanning.1 They all can produce point clouds of varying density. In our case study, the point cloud produced by a mid-range scanner demonstrates how open source software can make modeling and disseminating data easier. Normally, researchers would model this data using expensive specialized software, and the data wouldn't extend beyond the laser-scanning community.

  11. Nd:YLF laser for airborne/spaceborne laser ranging

    NASA Technical Reports Server (NTRS)

    Dallas, Joseph L.; Selker, Mark D.

    1993-01-01

    In order to meet the need for light weight, long lifetime, efficient, short pulse lasers, a diode-pumped, Nd:YLF oscillator and regenerative amplifier is being developed. The anticipated output is 20 mJ per 10 picosecond pulse, running at a repetition rate of 40 Hz. The fundamental wavelength is at 1047 nm. The oscillator is pumped by a single laser diode bar and mode locked using an electro-optic, intra-cavity phase modulator. The output from the oscillator is injected as a seed into the regenerative amplifier. The regenerative amplifier laser crystal is optically pumped by two 60W quasi-cw laser diode bars. Each diode is collimated using a custom designed micro-lens bar. The injected 10 ps pulse from the oscillator is kept circulating within the regenerative amplifier until this nanojoule level seed pulse is amplified to 2-3 millijoules. At this point the pulse is ejected and sent on to a more standard single pass amplifier where the energy is boosted to 20 mJ. The footprint of the entire laser (oscillator-regenerative amplifier-amplifier) will fit on a 3 by 4 ft. optical pallet.

  12. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  13. Geometric validation of a mobile laser scanning system for urban applications

    NASA Astrophysics Data System (ADS)

    Guan, Haiyan; Li, Jonathan; Yu, Yongtao; Liu, Yan

    2016-03-01

    Mobile laser scanning (MLS) technologies have been actively studied and implemented over the past decade, as their application fields are rapidly expanding and extending beyond conventional topographic mapping. Trimble's MX-8, as one of the MLS systems in the current market, generates rich survey-grade laser and image data for urban surveying. The objective of this study is to evaluate whether Trimble MX-8 MLS data satisfies the accuracy requirements of urban surveying. According to the formula of geo-referencing, accuracies of navigation solution and laser scanner determines the accuracy of the collected LiDAR point clouds. Two test sites were selected to test the performance of Trimble MX-8. Those extensive tests confirm that Trimble MX-8 offers a very promising tool to survey complex urban areas.

  14. Automated inspection of gaps on the free-form shape parts by laser scanning technologies

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan

    2018-01-01

    In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.

  15. First aircraft experiment results with the wide-angle airborne laser ranging system

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Thom, Christian; Kasser, Michel

    1999-12-01

    The first aircraft experiment with the Wide-Angle Airborne Laser Ranging System has been conducted in May 1998 over an air base in France equipped with a network of 64 cub-corner retroreflectors. The ranging system was operated from the Avion de Recherche Atmospherique et de Teledetection of CNES/IGN/INSU. Data have been collected during two 4-hour flights. The paper describes the data processing methods and presents the first experimental results. The precision is of 2 cm on the difference of vertical coordinates from two sets of 3 X 103 distance measurements, which is consistent with simulations and a posteriori covariance. The precision is mainly limited by the smallness of the number of efficient measurements remaining after a drastic data sorting for outliers. Higher precision is expected for future experiments after some instrumental improvements (achieving higher link budget) and measurement of aircraft attitude during the flight.

  16. Shape-from-shading using Landsat 8 and airborne laser altimetry over ice sheets: toward new regional DEMs of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.

    2015-12-01

    We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.

  17. Nano-material processing with laser radiation in the near field of a scanning probe tip

    NASA Astrophysics Data System (ADS)

    Jersch, J.; Demming, F.; Hildenhagen, J.; Dickmann, K.

    1998-04-01

    We report preliminary results of using a scanning probe microscope/laser combination to perform nanostructuring on insulator and metal surfaces in air. This technique enables processing of structures with a lateral resolution of approximately 10 nm. In this paper we present our last structuring results with both scanning tunnelling and scanning force microscopy. Some possible interaction mechanisms responsible for the structuring will be discussed.

  18. Remote defect imaging for plate-like structures based on the scanning laser source technique

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  19. Clinical Evaluation of Hair Removal Using an 810 nm Diode Laser With a Novel Scanning Device.

    PubMed

    Courtney, Erin; Goldberg, David J

    2016-11-01

    Diode lasers are often considered as the gold standard preference for hair removal due to the deep penetration and ef- fective targeting of the hair follicle. A wide variety of diode lasers are available, which can differ in terms of their parameters (such as fluence, pulse duration, repetition rate, scanner, and cooling). The objective of the study was to evaluate the safety and ef cacy of hair removal with an 810 nm novel scanning diode laser, up to six months after last treatment. A scanning 810 nm diode laser was used for axillary hair removal of 14 female patients who received 3 treatments, 4-6 weeks apart. Follow-up on hair count was conducted 3 and 6 months after last treatment and compared to baseline hair count. No unexpected or signi cant adverse events were recorded. An average hair count reduction of 72.8% after 3 months and 67.6% 6 months after the last treatment is demonstrated. The examined 810 nm diode laser was proven to be safe and effective for hair removal. Results were sustained for 6 months after last treatment. Longer follow-up data are followed for further substantiation of the clinical effect. Scanning technology can provide for potentially faster and safer treatments. J Drugs Dermatol. 2016;15(11):1330-1333..

  20. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  1. Modelling Mean Albedo of Individual Roofs in Complex Urban Areas Using Satellite Images and Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Kalantar, B.; Mansor, S.; Khuzaimah, Z.; Sameen, M. Ibrahim; Pradhan, B.

    2017-09-01

    Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.

  2. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  3. Scanning laser topography and scanning laser polarimetry: comparing both imaging methods at same distances from the optic nerve head.

    PubMed

    Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael

    2012-01-01

    To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.

  4. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  5. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  6. Characterisation of Intensity Values on Terrestrial Laser Scanning for Recording Enhancement

    NASA Astrophysics Data System (ADS)

    Balaguer-Puig, M.; Molada-Tebar, A.; Marqués-Mateu, A.; Lerma, J. L.

    2017-08-01

    Mapping surveys based on terrestrial laser scanning (TLS) are common nowadays for different purposes such as documentation of cultural heritage assets. The chance to extract relevant information from TLS surveys depends not only on the fast acquisition of XYZ coordinates, but also on the meaningful intensity values of the fired objects. TLS behaviour depends on several known factors such as distance, texture, roughness, colour and albedo. This paper seeks to find out the mathematical relationship between the TLS intensity values and the colorimetric data using a colour chart. In order to do so, objective colour specification based on well-known colour spaces is needed. The approach used here started with scanning a colour chart containing a number of colour patches with known chromatic and reflection characteristics. After several transformations, the results allowed us to characterise the intensity behaviour of a time-of-flight laser scanner. The characterisation of the intensity values are tested indoor on the colour chart and outdoor on an archaeological shelter. Promising results are obtained to enhance the behaviour of the intensity values coming from the TLS.

  7. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    PubMed

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate <10(-10) is -25.6 dBm, and the power penalty added after 25-km transmission is less than 2 dB for all 16 channels.

  8. Scanning laser beam displays based on a 2D MEMS

    NASA Astrophysics Data System (ADS)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  9. Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array

    PubMed Central

    Wu, Jianglai; Tang, Anson H. L.; Mok, Aaron T. Y.; Yan, Wenwei; Chan, Godfrey C. F.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2017-01-01

    Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged. PMID:28966855

  10. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  11. Development of an Airborne Micropulse Water Vapor DIAL

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  12. Flight tests of a range-resolved airborne dial with two min-tea CO2 lasers

    NASA Technical Reports Server (NTRS)

    Itabe, T.; Ishizu, M.; Aruga, T.; Igarashi, T.; Asai, K.

    1986-01-01

    It is important to measure regional distributions of ozone concentrations in a short time for understanding a mechanism of photo-chemical smog development. An airborne Differential Absorption Lidar (DIAL) system with two low-power mini-TEA CO2 lasers was developed for measuring three-dimensional distributions of ozone in the lower troposphere. The CO2 DIAL is a nadir-looking system and is designed to measure ozone profiles between ground and airplane by using atmospheric aerosols as a distributed radar target. First flight test with a single laser were conducted in February 1985 over the Tokyo area. The system was operated at an altitude of 5000 ft. Results of the first flight tests show that the height profiles of the received power in the boundary layer were different between over land and ocean. The received power has to be inverted to an expression of a single optical parameter to see real aerosol distributions. Inversion of the lidar signal to the aerosol extinction was performed by using Klett's solution.

  13. A study of cavity preparation by Er:YAG laser--observation of hard tooth structures by laser scanning microscope and examination of the time necessary to remove caries.

    PubMed

    Shigetani, Yoshimi; Okamoto, Akira; Abu-Bakr, Neamat; Iwaku, Masaaki

    2002-03-01

    The purpose of this study was to observe and measure the morphological changes that occur in the hard tissue after the application of Er:YAG laser. Another objective was to evaluate and compare the duration of application of both the laser apparatus and a conventional cutting device. In this study, sound and newly extracted carious tissues were used. The morphological changes in hard tooth structures produced by Er:YAG laser irradiation were examined by using a laser scanning microscope. Results showed that appropriate laser irradiation was 100 mJ/pulse for dentin, and 200 mJ/pulse for enamel. Also, the laser scanning microscope images were less damaged than the SEM images due to pretreatment of the specimens. The time taken to remove carious enamel by laser irradiation was slightly longer than the compared rotary cutting device; however, no differences between the two methods were observed in case of carious dentin removal.

  14. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    PubMed

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.

  15. Use of high resolution Airborne Laser Scanning data for landslide interpretation under mixed forest and tropical rainforest: case study in Barcelonnette, France and Cameron Highlands, Malaysia

    NASA Astrophysics Data System (ADS)

    Azahari Razak, Khamarrul; Straatsma, Menno; van Westen, Cees; Malet, Jean-Philippe; de Jong, Steven M.

    2010-05-01

    Airborne Laser Scanning (ALS) is the state of the art technology for topographic mapping over a wide variety of spatial and temporal scales. It is also a promising technique for identification and mapping of landslides in a forested mountainous landscape. This technology demonstrates the ability to pass through the gaps between forest foliage and record the terrain height under vegetation cover. To date, most of the images either derived from satellite imagery, aerial-photograph or synthetic aperture radar are not appropriate for visual interpretation of landslide features that are covered by dense vegetation. However, it is a necessity to carefully map the landslides in order to understand its processes. This is essential for landslide hazard and risk assessment. This research demonstrates the capabilities of high resolution ALS data to recognize and identify different types of landslides in mixed forest in Barcelonnette, France and tropical rainforest in Cameron Highlands, Malaysia. ALS measurements over the 100-years old forest in Bois Noir catchment were carried out in 2007 and 2009. Both ALS dataset were captured using a Riegl laser scanner. First and last pulse with density of one point per meter square was derived from 2007 ALS dataset, whereas multiple return (of up to five returns) pulse was derived from July 2009 ALS dataset, which consists of 60 points per meter square over forested terrain. Generally, this catchment is highly affected by shallow landslides which mostly occur beneath dense vegetation. It is located in the dry intra-Alpine zone and represented by the climatic of the South French Alps. In the Cameron Highlands, first and last pulse data was captured in 2004 which covers an area of up to 300 kilometres square. Here, the Optech laser scanner was used under the Malaysian national pilot study which has slightly low point density. With precipitation intensity of up to 3000 mm per year over rugged topography and elevations up to 2800 m a

  16. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  17. The reality of virtual anthropology: Comparing digitizer and laser scan data collection methods for the quantitative assessment of the cranium.

    PubMed

    Algee-Hewitt, Bridget F B; Wheat, Amber D

    2016-05-01

    The use of geometric morphometry to study cranial variation has steadily grown in appeal over the past decade in biological anthropology. Publication trends suggest that the most popular methods for three-dimensional data acquisition involve landmark-based coordinate data collection using a digitizer. Newer laser scan approaches are seeing increasing use, owing to the benefits that densely sampled data offer. While both of these methods have their utility, research that investigates their compatibility is lacking. The purpose of this project is to compare, quantitatively, craniometrics collected with a digitizer against data extracted from laser scans using the same individuals and laboratory conditions. Three-dimensional (x,y,z) coordinates and traditional inter-landmark distances (ILDs) were obtained with a Microscribe digitizer and 360° color models produced from NextEngine laser scans for 38 adult crania representing five cemeteries from the ADBOU skeletal collection in Denmark. Variance-based tests were performed to evaluate the disagreement between data collected with a digitizer and from laser scan models. Consideration was given to differences among landmarks by type, between ILDs calculated from landmark coordinates, and in morphology for the cemetery populations. Further, the reliability of laser scan data collection was assessed by intra-observer error tests. Researchers should be aware of the potential error associated with the use of Types II and III landmarks and the limitations on reliability imposed by object-to-scanner placement. This project reveals how laser scans can provide a valuable digital archive of cranial material that can be reasonably exploited for the "virtual" collection of coordinates and the calculation of ILDs. © 2015 Wiley Periodicals, Inc.

  18. A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies.

    PubMed

    Parker, I; Callamaras, N; Wier, W G

    1997-06-01

    We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.

  19. Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes

    NASA Astrophysics Data System (ADS)

    Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd

    2018-05-01

    In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.

  20. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  1. A spatio-temporal index for aerial full waveform laser scanning data

    NASA Astrophysics Data System (ADS)

    Laefer, Debra F.; Vo, Anh-Vu; Bertolotto, Michela

    2018-04-01

    Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2-3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct

  2. Light and scanning electron microscope investigations comparing calculus removal using an Er:YAG laser and a frequency-doubled alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.

    1997-05-01

    With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.

  3. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  4. Airborne discrimination between ice and water - Application to the laser measurement of chlorophyll-in-water in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1989-01-01

    The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.

  5. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  6. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  7. Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field

    PubMed Central

    Kaartinen, Harri; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Hyyppä, Hannu

    2012-01-01

    The performance of various mobile laser scanning systems was tested on an established urban test field. The test was connected to the European Spatial Data Research (EuroSDR) project “Mobile Mapping—Road Environment Mapping Using Mobile Laser Scanning”. Several commercial and research systems collected laser point cloud data on the same test field. The system comparisons focused on planimetric and elevation errors using a filtered digital elevation model, poles, and building corners as the reference objects. The results revealed the high quality of the point clouds generated by all of the tested systems under good GNSS conditions. With all professional systems properly calibrated, the elevation accuracy was better than 3.5 cm up to a range of 35 m. The best system achieved a planimetric accuracy of 2.5 cm over a range of 45 m. The planimetric errors increased as a function of range, but moderately so if the system was properly calibrated. The main focus on mobile laser scanning development in the near future should be on the improvement of the trajectory solution, especially under non-ideal conditions, using both improvements in hardware and software. Test fields are relatively easy to implement in built environments and they are feasible for verifying and comparing the performance of different systems and also for improving system calibration to achieve optimum quality.

  8. Pedestrian Detection by Laser Scanning and Depth Imagery

    NASA Astrophysics Data System (ADS)

    Barsi, A.; Lovas, T.; Molnar, B.; Somogyi, A.; Igazvolgyi, Z.

    2016-06-01

    Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall).

  9. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012<-00001) absorption band. Their fiber coupled outputs are sinusoidal amplitude modulated by each EO devices with kHz rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging

  10. A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope

    PubMed Central

    MACRAE, K.; TRAVIS, C.; AMOR, R.; NORRIS, G.; WILSON, S.H.; OPPO, G.‐L.; MCCONNELL, G.

    2015-01-01

    Summary We report a method for characterizing the focussing laser beam exiting the objective in a laser scanning microscope. This method provides the size of the optical focus, the divergence of the beam, the ellipticity and the astigmatism. We use a microscopic‐scale knife edge in the form of a simple transmission electron microscopy grid attached to a glass microscope slide, and a light‐collecting optical fibre and photodiode underneath the specimen. By scanning the laser spot from a reflective to a transmitting part of the grid, a beam profile in the form of an error function can be obtained and by repeating this with the knife edge at different axial positions relative to the beam waist, the divergence and astigmatism of the postobjective laser beam can be obtained. The measured divergence can be used to quantify how much of the full numerical aperture of the lens is used in practice. We present data of the beam radius, beam divergence, ellipticity and astigmatism obtained with low (0.15, 0.7) and high (1.3) numerical aperture lenses and lasers commonly used in confocal and multiphoton laser scanning microscopy. Our knife‐edge method has several advantages over alternative knife‐edge methods used in microscopy including that the knife edge is easy to prepare, that the beam can be characterized also directly under a cover slip, as necessary to reduce spherical aberrations for objectives designed to be used with a cover slip, and it is suitable for use with commercial laser scanning microscopes where access to the laser beam can be limited. PMID:25864964

  11. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  12. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    NASA Astrophysics Data System (ADS)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  13. Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu

    2016-06-01

    3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.

  14. Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning

    NASA Astrophysics Data System (ADS)

    Guinard, S.; Vallet, B.

    2018-05-01

    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  15. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    PubMed

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua

    2018-04-01

    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  17. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  18. Plane-Based Registration of Several Thousand Laser Scans on Standard Hardware

    NASA Astrophysics Data System (ADS)

    Wujanz, D.; Schaller, S.; Gielsdorf, F.; Gründig, L.

    2018-05-01

    The automatic registration of terrestrial laser scans appears to be a solved problem in science as well as in practice. However, this assumption is questionable especially in the context of large projects where an object of interest is described by several thousand scans. A critical issue inherently linked to this task is memory management especially if cloud-based registration approaches such as the ICP are being deployed. In order to process even thousands of scans on standard hardware a plane-based registration approach is applied. As a first step planar features are detected within the unregistered scans. This step drastically reduces the amount of data that has to be handled by the hardware. After determination of corresponding planar features a pairwise registration procedure is initiated based on a graph that represents topological relations among all scans. For every feature individual stochastic characteristics are computed that are consequently carried through the algorithm. Finally, a block adjustment is carried out that minimises the residuals between redundantly captured areas. The algorithm is demonstrated on a practical survey campaign featuring a historic town hall. In total, 4853 scans were registered on a standard PC with four processors (3.07 GHz) and 12 GB of RAM.

  19. Determining Geometric Parameters of Agricultural Trees from Laser Scanning Data Obtained with Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Hadas, E.; Jozkow, G.; Walicka, A.; Borkowski, A.

    2018-05-01

    The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS) data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2) obtained with Unmanned Aerial Vehicle (UAV) equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA) and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.

  20. Evaluation and correction of laser-scanned point clouds

    NASA Astrophysics Data System (ADS)

    Teutsch, Christian; Isenberg, Tobias; Trostmann, Erik; Weber, Michael; Berndt, Dirk; Strothotte, Thomas

    2005-01-01

    The digitalization of real-world objects is of great importance in various application domains. E.g. in industrial processes quality assurance is very important. Geometric properties of workpieces have to be measured. Traditionally, this is done with gauges which is somewhat subjective and time-consuming. We developed a robust optical laser scanner for the digitalization of arbitrary objects, primary, industrial workpieces. As measuring principle we use triangulation with structured lighting and a multi-axis locomotor system. Measurements on the generated data leads to incorrect results if the contained error is too high. Therefore, processes for geometric inspection under non-laboratory conditions are needed that are robust in permanent use and provide high accuracy as well as high operation speed. The many existing methods for polygonal mesh optimization produce very esthetic 3D models but often require user interaction and are limited in processing speed and/or accuracy. Furthermore, operations on optimized meshes consider the entire model and pay only little attention to individual measurements. However, many measurements contribute to parts or single scans with possibly strong differences between neighboring scans being lost during mesh construction. Also, most algorithms consider unsorted point clouds although the scanned data is structured through device properties and measuring principles. We use this underlying structure to achieve high processing speeds and extract intrinsic system parameters and use them for fast pre-processing.

  1. Acquisition of multiple image stacks with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Zuschratter, Werner; Steffen, Thomas; Braun, Katharina; Herzog, Andreas; Michaelis, Bernd; Scheich, Henning

    1998-06-01

    Image acquisition at high magnification is inevitably correlated with a limited view over the entire tissue section. To overcome this limitation we designed software for multiple image-stack acquisition (3D-MISA) in confocal laser scanning microscopy (CLSM). The system consists of a 4 channel Leica CLSM equipped with a high resolution z- scanning stage mounted on a xy-monitorized stage. The 3D- MISA software is implemented into the microscope scanning software and uses the microscope settings for the movements of the xy-stage. It allows storage and recall of 70 xyz- positions and the automatic 3D-scanning of image arrays between selected xyz-coordinates. The number of images within one array is limited only by the amount of disk space or memory available. Although for most applications the accuracy of the xy-scanning stage is sufficient for a precise alignment of tiled views, the software provides the possibility of an adjustable overlap between two image stacks by shifting the moving steps of the xy-scanning stage. After scanning a tiled image gallery of the extended focus-images of each channel will be displayed on a graphic monitor. In addition, a tiled image gallery of individual focal planes can be created. In summary, the 3D-MISA allows 3D-image acquisition of coherent regions in combination with high resolution of single images.

  2. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  3. Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.

    PubMed

    Yang, Jinsheng; Wang, Yuanyuan; Rao, Xuejun; Wei, Ling; Li, Xiqi; He, Yi

    2017-01-01

    We describe the optical design of a confocal scanning laser ophthalmoscope with two deformable mirrors. Spherical mirrors are used for pupil relay. Defocus aberration of the human eye is corrected by a Badal focusing structure and astigmatism aberration is corrected by a deformable mirror. The main optical system achieves a diffraction-limited performance through the entire scanning field (6 mm pupil, 3 degrees on pupil plane). The performance of the optical system, with correction of defocus and astigmatism, is also evaluated.

  4. Performance of a three-dimensional-printed microscanner in a laser scanning microscopy application

    NASA Astrophysics Data System (ADS)

    Oyman, Hilmi Artun; Gokdel, Yigit Daghan; Ferhanoglu, Onur; Yalcinkaya, Arda Deniz

    2018-04-01

    A magnetically actuated microscanner is used in a laser scanning microscopy application. Stress distribution along the circular-profiled flexure is compared with a rectangular counterpart in finite-element environment. Magnetic actuation mechanism of the scanning unit is explained in detail. Moreover, reliability of the scanner is tested for 3×106 cycle. The scanning device is designed to meet a confocal microscopy application providing 100 μm×100 μm field of view and <3-μm lateral resolution. The resonance frequencies of the device were analytically modeled, where we obtained 130- and 268-Hz resonance values for the out-of-plane and torsion modes, respectively. The scanning device provided an optical scan angle about 2.5 deg for 170-mA drive current, enabling the desired field of view for our custom built confocal microscope setup. Finally, imaging experiments were conducted on a resolution target, showcasing the desired scan area and resolution.

  5. Integration of GB-InSAR, laser scanning and in situ monitoring on the rockslope instability of Mannen/Børa (western Norway)

    NASA Astrophysics Data System (ADS)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Harald, Blikra Lars; Michel, Jaboyedoff

    2013-04-01

    This work is part of a master thesis about the use of Ground-Based InSAR for the monitoring of rock instabilities (University of Lausanne in cooperation with the Åknes/Tafjord Early Warning Centre in Norway). Main goals are (1) the evaluation of the GB-InSAR potential to investigate different kinds of instabilities, (2) the combination of data from GB-InSAR, conventional in situ devices and laser scanning to get information about instability behavior and geometry. The rockslope instability of Mannen/Børa is located in Møre of Romsdal County (western Norway). Mannen is a complex rockslide of 15-25 mill. m3 of volume, affecting the left side of the Romsdalen valley. Børa is a large plateau directly located on its south-eastern side and showing signs of activity. In this case, the analysis included GB-InSAR data of 2011 and 2012 campaigns in Børa compared with results of a permanent GB-InSAR in Mannen. The results of continuous monitoring in Mannen (GPS, extensometers, laser-reflectors and tiltmeters) since end of 2009, as well as periodical GPS campaigns on Børa plateau were integrated. The analysis showed a quite regular inter-annual velocity with seasonal effects in Mannen site and a slower movement in Børa. Moreover, it allowed highlighting an area in mid-slope, affected by high variations and periodical inversions of movement in the overlap sector between the two GB-InSAR. The first interpretation of this pattern involves networks of water flow across the slope. A novel point of this site is to have two GB-InSAR systems (one permanent and one temporary) imaging the rockslope with an overlap of views. GB-InSAR results were compared to other types of monitoring data, in terms of spatial coverage (punctual vs. large area), temporal scale (continuous monitoring vs. periodical campaigns) or recorded information (eg. 3D vs. 1D along the LOS). Moreover, a structural geology analysis based on terrestrial and airborne laser scanning data provided information about

  6. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  7. Scanning laser densitometry and color perimetry demonstrate reduced photopigment density and sensitivity in two patients with retinal degeneration.

    PubMed

    Tornow, R P; Stilling, R; Zrenner, E

    1999-10-01

    To test the feasibility of scanning laser densitometry with a modified Rodenstock scanning laser ophthalmoscope (SLO) to measure the rod and cone photopigment distribution in patients with retinal diseases. Scanning laser densitometry was performed using a modified Rodenstock scanning laser ophthalmoscope. The distribution of the photopigments was calculated from dark adapted and bleached images taken with the 514 nm laser of the SLO. This wavelength is absorbed by rod and cone photopigments. Discrimination is possible due to their different spatial distribution. Additionally, to measure retinal sensitivity profiles, dark adapted two color static perimetry with a Tübinger manual perimeter was performed along the horizontal meridian with 1 degree spacing. A patient with retinitis pigmentosa had slightly reduced photopigment density within the central +/- 5 degrees but no detectable photopigment for eccentricities beyond 5 degrees. A patient with cone dystrophy had nearly normal pigment density beyond +/- 5 degrees, but considerably reduced photopigment density within the central +/- 5 degrees. Within the central +/- 5 degrees, the patient with retinitis pigmentosa had normal sensitivity for the red stimulus and reduced sensitivity for the green stimulus. There was no measurable function beyond 7 degrees. The patient with cone dystrophy had normal sensitivity for the green stimulus outside the foveal center and reduced sensitivity for the red stimulus at the foveal center. The results of color perimetry for this patient with a central scotoma were probably influenced by eccentric fixation. Scanning laser densitometry with a modified Rodenstock SLO is a useful method to assess the human photopigment distribution. Densitometry results were confirmed by dark adapted two color static perimetry. Photopigment distribution and retinal sensitivity profiles can be measured with high spatial resolution. This may help to measure exactly the temporal development of retinal

  8. 2-photon laser scanning microscopy on native human cartilage

    NASA Astrophysics Data System (ADS)

    Martini, Joerg; Toensing, Katja; Dickob, Michael; Anselmetti, Dario

    2005-08-01

    Native hyaline cartilage from a human knee joint was directly investigated with laser scanning microscopy via 2-photon autofluorescence excitation with no additional staining or labelling protocols in a nondestructive and sterile manner. Using a femtosecond, near-infrared (NIR) Ti:Sa laser for 2-photon excitation and a dedicated NIR long distance objective, autofluorescence imaging and measurements of the extracellular matrix (ECM) tissue with incorporated chondrocytes were possible with a penetration depth of up to 460 μm inside the sample. Via spectral autofluorescence separation these experiments allowed the discrimination of chondrocytes from the ECM and therefore an estimate of chondrocytic cell density within the cartilage tissue to approximately 0.2-2•107cm3. Furthermore, a comparison of the relative autofluorescence signals between nonarthritic and arthritic cartilage tissue exhibited distinct differences in tissue morphology. As these morphological findings are in keeping with the macroscopic diagnosis, our measurement has the potential of being used in future diagnostic applications.

  9. Next-Generation Terrestrial Laser Scanning to Measure Forest Canopy Structure

    NASA Astrophysics Data System (ADS)

    Danson, M.

    2015-12-01

    Terrestrial laser scanners (TLS) are now capable of semi-automatic reconstruction of the structure of complete trees or forest stands and have the potential to provide detailed information on tree architecture and foliage biophysical properties. The trends for the next generation of TLS are towards higher resolution, faster scanning and full-waveform data recording, with mobile, multispectral laser devices. The convergence of these technological advances in the next generation of TLS will allow the production of information for forest and woodland mapping and monitoring that is far more detailed, more accurate, and more comprehensive than any available today. This paper describes recent scientific advances in the application of TLS for characterising forest and woodland areas, drawing on the authors' development of the Salford Advanced Laser Canopy Analyser (SALCA), the activities of the Terrestrial Laser Scanner International Interest Group (TLSIIG), and recent advances in laser scanner technology around the world. The key findings illustrated in the paper are that (i) a complete understanding of system measurement characteristics is required for quantitative analysis of TLS data, (ii) full-waveform data recording is required for extraction of forest biophysical variables and, (iii) multi-wavelength systems provide additional spectral information that is essential for classifying different vegetation components. The paper uses a range of recent experimental TLS measurements to support these findings, and sets out a vision for new research to develop an information-rich future-forest information system, populated by mobile autonomous multispectral TLS devices.

  10. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  11. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  12. Validation of a new noniterative method for accurate position determination of a scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Pauwels, Steven; Boucart, Nick; Dierckx, Benoit; Van Vlierberghe, Pieter

    2000-05-01

    The use of a scanning laser Doppler vibrometer for vibration testing is becoming a popular instrument. The scanning laser Doppler vibrometer is a non-contacting transducer that can measure many points at a high spatial resolution in a short time. Manually aiming the laser beam at the points that need to be measured is very time consuming. In order to use it effectively, the position of the laser Doppler vibrometer needs to be determined relative to the structure. If the position of the laser Doppler vibrometer is known, any visible point on the structure can be hit and measured automatically. A new algorithm for this position determination is developed, based on a geometry model of the structure. After manually aiming the laser beam at 4 or more known points, the laser position and orientation relative to the structure is determined. Using this calculated position and orientation a list with the mirror angles for every measurement point is generated, which is used during the measurement. The algorithm is validated using 3 practical cases. In the first case a plate is used of which the points are measured very accurately, so the geometry model is assumed to be perfect. The second case is a brake disc. Here the geometry points are measured with a ruler, thus not so accurate. The final validation is done on a body in white of a car. A reduced finite element model is used as geometry model. This calibration shows that the new algorithm is very effective and practically usable.

  13. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus.

    PubMed

    Patel, Dipika V; Sherwin, Trevor; McGhee, Charles N J

    2006-07-01

    To elucidate the structure of the human corneoscleral limbus by in vivo laser scanning confocal microscopy and to correlate limbal epithelial dimensions and density with the central epithelium and in relation to age. Fifty adult subjects were recruited into one of two age groups: younger (age<45 years) and older (age>or=45 years). Fifty left eyes of these 50 healthy subjects were examined by laser scanning in vivo confocal microscopy, to assess the basal epithelium of the central cornea and inferior limbus. Mean epithelial cell diameter, area, and density were calculated for the central basal epithelium, limbus-corneal basal epithelium, and limbus-palisade epithelium. Data were analyzed in relation to the two age groups, group A, 30+/-6 years (n=25; mean+/-SD), and group B, 60+/-11 years (n=25; P<0.01). Mean epithelial density in the limbus-cornea and limbus-palisade regions decreased significantly with age: limbus-cornea group A=7253+/-1077 cells/mm2 group B=6614+/-987 cells/mm2, P=0.03; limbus palisade group A=5409+/-799 cells/mm2, group B=5055+/-722 cells/mm2, P=0.03). Central corneal epithelial density did not change with age: group A=6162+/-503 cells/mm2, group B=6362+/-614 cells/mm2, P=0.08. Mean epithelial density was greatest at the limbus-cornea (7010+/-1081 cells/mm2) and lowest at the limbus-palisades (5289+/-847 cells/mm2). The mean width of palisade ridges was 25.0+/-6.3 microm. This is the first study to image clearly the living human corneal limbus by laser scanning in vivo confocal microscopy and to demonstrate quantitative changes in the basal epithelium with age.

  14. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    PubMed

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  15. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    PubMed

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  16. Optical toolkits for in vivo deep tissue laser scanning microscopy: a primer

    NASA Astrophysics Data System (ADS)

    Lee, Woei Ming; McMenamin, Thomas; Li, Yongxiao

    2018-06-01

    Life at the microscale is animated and multifaceted. The impact of dynamic in vivo microscopy in small animals has opened up opportunities to peer into a multitude of biological processes at the cellular scale in their native microenvironments. Laser scanning microscopy (LSM) coupled with targeted fluorescent proteins has become an indispensable tool to enable dynamic imaging in vivo at high temporal and spatial resolutions. In the last few decades, the technique has been translated from imaging cells in thin samples to mapping cells in the thick biological tissue of living organisms. Here, we sought to provide a concise overview of the design considerations of a LSM that enables cellular and subcellular imaging in deep tissue. Individual components under review include: long working distance microscope objectives, laser scanning technologies, adaptive optics devices, beam shaping technologies and photon detectors, with an emphasis on more recent advances. The review will conclude with the latest innovations in automated optical microscopy, which would impact tracking and quantification of heterogeneous populations of cells in vivo.

  17. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi

    2017-01-01

    Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...

  18. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  19. Comparison of Laser Scanning Diagnostic Devices for Early Glaucoma Detection.

    PubMed

    Schulze, Andreas; Lamparter, Julia; Pfeiffer, Norbert; Berisha, Fatmire; Schmidtmann, Irene; Hoffmann, Esther M

    2015-08-01

    To compare the diagnostic accuracy and to evaluate the correlation of optic nerve head and retinal nerve fiber layer thickness values between Fourier-Domain optical coherence tomography (FD-OCT), confocal scanning laser ophthalmoscopy (CSLO), and scanning laser polarimetry (SLP) for early glaucoma detection. Ninety-three patients with early open-angle glaucoma, 58 patients with ocular hypertension, and 60 healthy control subjects were included in this observational, cross-sectional study. All study participants underwent FD-OCT (RTVue-100), CSLO (HRT3), and SLP (GDx VCC) imaging of the optic nerve head and the retinal nerve fiber layer. Area under the receiver operating characteristic curves (AUROC) and Bland-Altman analysis were performed. The parameters with the highest diagnostic accuracy were found for FD-OCT cup-to-disc ratio (AUROC=0.841), for SLP NFI (AUROC=0.835), and for CSLO cup-to-disc ratio (AUROC=0.789). Diagnostic accuracy of the best CSLO and SLP parameter was similar (P=0.259). There was a small statistically significant difference between the best CSLO and FD-OCT parameters for differentiating between glaucoma and healthy eyes (P=0.047). FD-OCT and SLP have a similarly good diagnostic ability to distinguish between early glaucoma and healthy subjects. The diagnostic accuracy of CSLO was comparable with SLP and marginally lower compared with FD-OCT.

  20. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Sun, K.; Chao, X.; Sur, R.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-12-01

    A novel strategy has been developed for analysis of wavelength-scanned, wavelength modulation spectroscopy (WMS) with tunable diode lasers (TDLs). The method simulates WMS signals to compare with measurements to determine gas properties (e.g., temperature, pressure and concentration of the absorbing species). Injection-current-tuned TDLs have simultaneous wavelength and intensity variation, which severely complicates the Fourier expansion of the simulated WMS signal into harmonics of the modulation frequency (fm). The new method differs from previous WMS analysis strategies in two significant ways: (1) the measured laser intensity is used to simulate the transmitted laser intensity and (2) digital lock-in and low-pass filter software is used to expand both simulated and measured transmitted laser intensities into harmonics of the modulation frequency, WMS-nfm (n = 1, 2, 3,…), avoiding the need for an analytic model of intensity modulation or Fourier expansion of the simulated WMS harmonics. This analysis scheme is valid at any optical depth, modulation index, and at all values of scanned-laser wavelength. The method is demonstrated and validated with WMS of H2O dilute in air (1 atm, 296 K, near 1392 nm). WMS-nfm harmonics for n = 1 to 6 are extracted and the simulation and measurements are found in good agreement for the entire WMS lineshape. The use of 1f-normalization strategies to realize calibration-free wavelength-scanned WMS is also discussed.

  1. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  2. As- built inventory of the office building with the use of terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Przyborski, Marek; Tysiąc, Paweł

    2018-01-01

    Terrestrial Laser Scanning (TLS) is an efficient tool for building inventories. Based on the red- laser beam technology it is possible to provide the high accuracy data with complete spatial information about a scanned object. In this article, authors present the solution of use a TLS in as-built inventory of the office building. Based on the provided data, it is possible to evaluate the correctness of built details of a building and provide information for further construction works, for example an area needed for Styrofoam installation. The biggest problem in this research is that an error which equals over 1cm could generate costs, which could be a problem to cover by a constructor. Based on a complicated place of the construction works (centre of a city) it was a challenge to maintain the accuracy.

  3. Proceedings of the Fourth Laser Hydrography Symposium at Defence Research Centre and Royal Australian Navy Hydrographic Office

    NASA Astrophysics Data System (ADS)

    Penny, M. F.; Phillips, D. M.

    1981-03-01

    At this Symposium, research on laser hydrography and related development programs currently in progress in the United States of America, Canada, and Australia, were reported. The depth sounding systems described include the US Airborne Oceanographic Lidar and Hydrographic Airborne Laser Sounder, the Canadian Profiling Lidar Bathymeter, and the Australian Laser Airborne Depth Sounder. Other papers presented research on blue-green lasers, theoretical modelling, position fixing, and data processing.

  4. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  5. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    NASA Astrophysics Data System (ADS)

    McConnell, Gail; Riis, Erling

    2004-10-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM.

  6. Tree Species Classification of Broadleaved Forests in Nagano, Central Japan, Using Airborne Laser Data and Multispectral Images

    NASA Astrophysics Data System (ADS)

    Deng, S.; Katoh, M.; Takenaka, Y.; Cheung, K.; Ishii, A.; Fujii, N.; Gao, T.

    2017-10-01

    This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.

  7. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  8. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  9. The method for scanning reshaping the spectrum of chirped laser pulse based on the quadratic electro-optic effects

    NASA Astrophysics Data System (ADS)

    Ye, Rong; Yin, Ming; Wu, Xianyun; Tan, Hang

    2017-10-01

    T A new method for scanning reshaping the spectrum of chirped laser pulse based on quadratic electro-optic effects is proposed. The scanning reshaping scheme with a two-beam interference system is designed and the spectrum reshaping properties are analyzed theoretically. For the Gaussian chirped laser pulse with central wavelength λ0=800nm, nearly flat-topped spectral profiles with wider bandwidth is obtained with the proposed scanning reshaping method, which is beneficial to compensate for the gain narrowing effect in CPA and OPCPA. Further numerical simulations show that the reshaped spectrum is sensitive to the time-delay and deviation of the voltage applied to the crystal. In order to avoid narrowing or distorting the reshaped spectrum pointing to target, it is necessary to reduce the unfavorable deviations. With the rapid and wide applications of ultra-short laser pulse supported by some latter research results including photo-associative formation of ultra-cold molecules from ultra-cold atoms[1-3], laser-induced communications[4], capsule implosions on the National Ignition Facility(NIF)[5-6], the control of the temporal and spectral profiles of laser pulse is very important and urgently need to be addressed. Generally, the control of the pulse profiles depends on practical applications, ranging from femtosecond and picosecond to nanosecond. For instance, the basic shaping setup is a Fourier transform system for ultra-short laser pulse. The most important element is a spatially patterned mask which modulates the phase or amplitude, or sometimes the polarization after the pulse is decomposed into its constituent spectral components by usually a grating and a lens[7]. One of the generation techniques of ultra-short laser pulse is the chirped pulse amplifications(CPA), which brings a new era of development for high energy and high peak intensity ultra-short laser pulse, proposed by D. Strcik and G. Mourou from the chirping radar technology in microwave region

  10. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System

    PubMed Central

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-01-01

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths. PMID:27999252

  11. Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies

    NASA Astrophysics Data System (ADS)

    Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.

    2012-04-01

    Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that

  12. Airborne Hydromapping - How high-resolution bathymetric surveys will change the research and work focused on waterbody-related topics

    NASA Astrophysics Data System (ADS)

    Steinbacher, Frank; Baran, Ramona; Dobler, Wolfgang; Aufleger, Markus

    2013-04-01

    Repetitive surveying of inshore waters and coastal zones is becoming more and more essential in order to evaluate water-level dynamics, structural and zonal variations of rivers and riparian areas, river degradation, water flow, reservoir sedimentation, delta growth, as well as coastal processes. This can only be achieved in an effective manner by employing hydrographic airborne laser scanning (hydromapping). A new laser scanner is introduced, which has been specifically designed for the acquisition of high-resolution hydrographic data in order to survey and monitor inland waters and shallow coastal zones. Recently, this scanner has been developed within the framework of an Austrian research cooperation between Riegl LMS and the Unit of Hydraulic Engineering at the University of Innsbruck. We present exemplary measurement results obtained with the compact airborne laser-scanning system during our project work. Along the Baltic Sea coast northeast of Kiel city, northern Germany, we obtained measurement depths up to 8 m under clear-water conditions. Moreover, we detect underwater dune-structures and the accumulation of sediment within groin structures. In contrast, under turbid water conditions we obtained depths of approximately 3 m along the Rhine River at Rheinfelden, German-Swiss border east of Basel city. Nevertheless, we were able to map small-scale and complex morphologic features within a fish ramp or bedrock cliffs. The laser data had been combined with sonar measurements displaying the bathymetry at depths of ca. 2-25 m in order to document comprehensively the actual hydrographic setting after the new construction of the hydropower plant Rheinfelden. In summary, a high-resolution spatial view on the ground of various waterbodies is now possible for the first time with point densities in the usual range of approximately 10-20 points/m². However, the combination of these data with high-resolution aerial (approximately < 5 cm/pixel) or spectral images offers

  13. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.

  14. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  15. Application of laser scanning speckle-microscopy for high-resolution express diagnostics of chlamydial infection

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina

    2018-04-01

    Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.

  16. PtSi gimbal-based FLIR for airborne applications

    NASA Astrophysics Data System (ADS)

    Wallace, Joseph; Ornstein, Itzhak; Nezri, M.; Fryd, Y.; Bloomberg, Steve; Beem, S.; Bibi, B.; Hem, S.; Perna, Steve N.; Tower, John R.; Lang, Frank B.; Villani, Thomas S.; McCarthy, D. R.; Stabile, Paul J.

    1997-08-01

    A new gimbal-based, FLIR camera for several types of airborne platforms has been developed. The FLIR is based on a PtSi on silicon technology: developed for high volume and minimum cost. The gimbal scans an area of 360 degrees in azimuth and an elevation range of plus 15 degrees to minus 105 degrees. It is stabilized to 25 (mu) Rad-rms. A combination of uniformity correction, defect substitution, and compact optics results in a long range, low cost FLIR for all low-speed airborne platforms.

  17. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  18. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references

    NASA Astrophysics Data System (ADS)

    Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi

    2017-04-01

    Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.

  19. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    PubMed Central

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  20. Contamination and UV lasers: lessons learned

    NASA Astrophysics Data System (ADS)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.