Science.gov

Sample records for airborne scatterometer measurements

  1. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  2. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  3. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  4. Airborne test flight of HY-2A satellite microwave scatterometer and data analysis

    NASA Astrophysics Data System (ADS)

    Zou, Juhong; Guo, Maohua; Cui, Songxue; Zhou, Wu

    2016-04-01

    This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer (HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section (NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small diff erence between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function (NSCAT GMF), indicating satisfactory HSCAT performance.

  5. Standard deviation of scatterometer measurements from space.

    NASA Technical Reports Server (NTRS)

    Fischer, R. E.

    1972-01-01

    The standard deviation of scatterometer measurements has been derived under assumptions applicable to spaceborne scatterometers. Numerical results are presented which show that, with sufficiently long integration times, input signal-to-noise ratios below unity do not cause excessive degradation of measurement accuracy. The effects on measurement accuracy due to varying integration times and changing the ratio of signal bandwidth to IF filter-noise bandwidth are also plotted. The results of the analysis may resolve a controversy by showing that in fact statistically useful scatterometer measurements can be made from space using a 20-W transmitter, such as will be used on the S-193 experiment for Skylab-A.

  6. Ground registration of data from an airborne scatterometer

    NASA Technical Reports Server (NTRS)

    Richter, J. C.

    1981-01-01

    A portion of the data for the agricultural soil moisture experiment, conducted near Colby, Kansas, was collected from four scatterometers mounted on an aircraft. A method is outlined for locating the scatterometer footprints with respect to a ground-based coordinate system. The method requires the airplane's flight parameters along with aerial photography acquired simultaneously with the scatterometer data. Listings of the programs used in the registration process are included.

  7. Ocean wind field measurement performance of the ERS-1 scatterometer

    NASA Technical Reports Server (NTRS)

    Hans, P.; Schuessler, H.

    1984-01-01

    The Active Microwave Instrumentation (AMI), which will be implemented on the ERS-1, is a 5.3 GHz multipurpose radar for land surface imaging, ocean wave spectrum measurement and wind observations over oceans. The imaging and wave measurements apply Synthetic Aperture Radar (SAR) techniques, while wind field detection is performed by the Scatterometer as part of the AMI. The Scatterometer system design was developed and optimized with the aid of a performance simulator. This paper, aimed at giving an overview, is presented about the: (1) ERS-1 Scatterometer system design; (2) Error budget; and the (3) Overall calibration concept.

  8. Measuring wind and stress under tropical cyclones with scatterometer

    NASA Astrophysics Data System (ADS)

    Liu, W. Timothy

    2016-07-01

    Ocean surface stress, the turbulent transport of momentum, is largely derived from wind through a drag coefficient. In tropical cyclones (TC), scatterometers have difficulty in measuring strong wind and there is large uncertainty in the drag coefficient. We postulate that the microwave backscatter from ocean surface roughness, which is in equilibrium with local stress, does not distinguish weather systems. The reduced sensitivity of scatterometer wind retrieval algorithm under the strong wind is an air-sea interaction problem that is caused by a change in the behavior of the drag coefficient and not a sensor problem. Under this assumption, we applied a stress retrieval algorithm developed over a moderate wind range to retrieve stress under the strong winds of TCs. Over a moderate wind range, the abundant wind measurements and more established drag coefficient value allow sufficient stress data to be computed from wind to develop a stress retrieval algorithm for the scatterometer. Using unprecedented large amount of stress retrieved from the scatterometer coincident with strong winds in TC, we showed that the drag coefficient decreases with wind speed at a much steeper rate than previously revealed, for wind speeds over 25 m/s. The result implies that the ocean applies less drag to inhibit TC intensification and the TC causes less ocean mixing and surface cooling than previous studies indicated. With continuous and extensive coverage from constellations of scatterometers for several decades, the impact of tropical cyclones on the ocean and the feedback from the ocean are examined.

  9. Design of an Airborne L-Band Cross-Track Scanning Scatterometer

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Technical Monitor)

    2002-01-01

    In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.

  10. ERS-1 scatterometer measurements over the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.

    1994-01-01

    Backscatter cross section measurements from the ERS-1 Active Microwave Instrument (AMI) scatterometer were reprocessed to vector winds using the Freilich-Dunbar model function and a meteorologically aided ambiguity removal scheme. This consistent data set was used to examine the wind field over the Southern Ocean from 20 to 60 deg South. The large number of ERS-1 measurements allows relatively accurate calculation of annual mean wind, stress, and curl fields as well as overall statistics of the winds at mid to high southern latitudes. The long duration of the data time series allows preliminary examination of low frequency (semi annual) wind variability.

  11. Dual frequency scatterometer measurement of ocean wave height

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Swift, C. T.; Grantham, W. L.; Weissman, D. E.

    1975-01-01

    A technique for remotely measuring wave height averaged over an area of the sea surface was developed and verified with a series of aircraft flight experiments. The measurement concept involves the cross correlation of the amplitude fluctuations of two monochromatic reflected signals with variable frequency separation. The signal reflected by the randomly distributed specular points on the surface is observed in the backscatter direction at nadir incidence angle. The measured correlation coefficient is equal to the square of the magnitude of the characteristic function of the specular point height from which RMS wave height can be determined. The flight scatterometer operates at 13.9 GHz and 13.9 - delta f GHz with a maximum delta f of 40 MHz. Measurements were conducted for low and moderate sea states at altitudes of 2, 5, and 10 thousand feet. The experimental results agree with the predicted decorrelation with frequency separation and with off-nadir incidence angle.

  12. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  13. High Resolution Surface Backscatter Measurements with the SeaWinds Scatterometer

    NASA Technical Reports Server (NTRS)

    Spencer, M. W.; Wu, C.; Long, D. G.

    1998-01-01

    A technique employed to extract higher resolution backscatter measurements from the SeaWinds pencil-beam scatterometer system is described. The unique methodology necessary to achieve very high radiometric accuracy for such measurements is discussed.

  14. Seasat A Satellite Scatterometer measurements of equatorial surface winds

    SciTech Connect

    Halpern, D. )

    1989-04-15

    Seasat A Satellite Scatterometer measurements of surface wind components were made under normal weather conditions with unsurpassed space and time resolutions during August and September 1978. Longitudinal distributions of the monthly mean zonal component were markedly different in each ocean: in the Pacific the zonal profile resembled a semicircle; a linear change occurred in the Atlantic, and quasi-uniform values prevailed in the Indian Ocean. Only in the Atlantic and Pacific was the prevailing direction of the zonal component westward. In the Pacific the monthly mean standard deviations increased towards the west. This indicated that the larger day-to-day wind variability observed at the western islands compared to moored buoy measurements in the eastern region was a natural phenomenon and not caused by islands. The average monthly mean slope of the wave number spectra throughout the 550- to 2,200-km wavelength band was {minus}1.7, which was approximately equal to the {minus}5/3 power law associated with turbulent motions. That the spectra levels of the zonal wind, but not the meridional component, were substantially different in each equatorial ocean represents an enigma. Largest spectral values occurred in the Atlantic where variances were nearly 10 times greater than in the Pacific, which contained the smallest values.

  15. Assessment of the biophysical characteristics of rangeland community using scatterometer and optical measurements

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Asrar, Ghassem; Myneni, Ranga; Martin, Robert, Jr.; Burnett, R. Bruce

    1987-01-01

    Research activities for the following study areas are summarized: single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies; the use of successive orders of scattering approximations (SOSA) for treating multiple scattering in a plant canopy; reflectance of a soybean canopy using the SOSA method; and C-band scatterometer measurements of the Konza tallgrass prairie.

  16. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  17. Performance of a scanning pencil-beam spaceborne scatterometer for ocean wind measurements

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Kennett, R. G.; Fuk, K.

    1988-01-01

    Simulation results show that a scatterometer design using two pencil beams scanning at different incidence angles measures the near-surface oceanic winds from a satellite better under most conditions than previous designs. The return signals from the ocean surface are much stronger than those from the fan beams used previously. Performance on a polar-orbiting satellite is compared with that of a fan beam spaceborne scatterometer. A wider and continuous swath is covered. The improvement in performance is higher at low wind speeds, so it is particularly suitable for measuring the low-mean-speed tropical wind fields. Performance on a low altitude tropic-orbiting platform such as the Space Station is also shown.

  18. Comparison between laboratory and airborne BRDF measurements for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2006-08-01

    Samples from soil and leaf litter were obtained at a site located in the savanna biome of South Africa (Skukuza; 25.0°S, 31.5°E) and their bidirectional reflectance distribution functions (BRDF) were measured using the out-of-plane scatterometer located in the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC) Diffuser Calibration Facility (DCaF). BRDF was measured using P and S incident polarized light over a range of incident and scatter angles. A monochromator-based broadband light source was used in the ultraviolet (uv) and visible (vis) spectral ranges. The diffuse scattered light was collected using an uv-enhanced silicon photodiode detector with output fed to a computer-controlled lock-in amplifier. Typical measurement uncertainties of the reported laboratory BRDF measurements are found to be less than 1% (k=1). These laboratory results were compared with airborne measurements of BRDF from NASA's Cloud Absorption Radiometer (CAR) instrument over the same general site where the samples were obtained. This study presents preliminary results of the comparison between these laboratory and airborne BRDF measurements and identifies areas for future laboratory and airborne BRDF measurements. This paper presents initial results in a study to try to understand BRDF measurements from laboratory, airborne, and satellite measurements in an attempt to improve the consistency of remote sensing models.

  19. Application of Cylindrical Near-Field Measurement Technique to The Calibration of Spaceborne Radar Antennas: NASA Scatterometer and SeaWinds

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Rahmat-Samii, Yahya

    1997-01-01

    Modern spaceborne radar scatterometers such as the NASA Scatterometer (NSCAT) and SeaWinds radar instruments require precise determination of the normalized backscattered radar cross section within a few tenth of a decibel in order to achieve the desired wind velocity and direction measurement accuracy of 2 m/s and 20 degrees respectively.

  20. Comparisons of some scattering theories with recent scatterometer measurements. [sea roughness radar model

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Dome, G.; Moore, R. K.

    1977-01-01

    The paper compares the predictions of two different types of sea scatter theories with recent scatterometer measurements which indicate the variations of the backscattering coefficient with polarization, incident angle, wind speed, and azimuth angle. Wright's theory (1968) differs from that of Chan and Fung (1977) in two major aspects: (1) Wright uses Phillips' sea spectrum (1966) while Chan and Fung use that of Mitsuyasu and Honda, and (2) Wright uses a modified slick sea slope distribution by Cox and Munk (1954) while Chan and Fung use the slick sea slope distribution of Cox and Munk defined with respect to the plane perpendicular to the look direction. Satisfactory agreements between theory and experimental data are obtained when Chan and Fung's model is used to explain the wind and azimuthal dependence of the scattering coefficient.

  1. Effect of sea wave age on scatterometer measurements and wind speed retrieval accuracy

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Jie, Guo

    2015-04-01

    Radiolocation data is widely used for the wind field retrieval over the sea surface. Wind speed is obtained from the radar cross-section. The backscattered signal contains information about the sea surface but not about the wind vector. This means that at the fixed wind speed the radar backscattering cross-section (RCS) depends on the sea maturity. In the present work the influence of the sea state at RCS and wind speed retrieval accuracy was investigated. The collocated array of ERS scatterometer and sea buoys data was processed. Buoy data were used to determine the wave age and all the dataset was separated into three parts: developing wind waves, fully developed waves and mixed sea. It was shown that error of wind retrieval algorithms for scatterometers (CMOD in this case) depends on the sea state. Wind speed is overestimated for swell-dominant sea and underestimated for developing waves. The direct problem of RCS dependence on the wind vector and sea state was also concidered. The large-scale waves slope variance is a very important parameter that implicitly influences the RCS in case of Bragg scattering and depends on the sea state. The buoy data were used to estimate the slope variance. The algorithm based on artificial neural networks taking into account the slope variance for RCS retrieval was proposed and performed better agreement with the measured RCS than CMOD5. It was shown that RCS increases with the slope variance growth other conditions being equal. Thus wind speed retrieval accuracy can be increased by taking into account sea waves parameters and regional peculiarities. Acknowledgments. This work was supported by Russian Foundation for Basic Research grants 130500852a, 14-05-31517mol-a.

  2. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  3. Estimation of sea-surface winds using backscatter cross-section measurements from airborne research weather radar

    SciTech Connect

    Hildebrand, P.H. . Remote Sensing Facility)

    1994-01-01

    A technique is presented for estimation of sea-surface winds using backscatter cross-section measurements from an airborne research weather radar. The technique is based on an empirical relation developed for use with satellite-borne microwave scatterometers which derives sea-surface winds from radar backscatter cross-section measurements. Unlike a scatterometer, the airborne research weather radar is a Doppler radar designed to measure atmospheric storm structure and kinematics. Designed to scan the atmosphere, the radar also scans the ocean surface over a wide range of azimuths, with the incidence angle and polarization angle changing continuously during each scan. The new sea-surface wind estimation technique accounts for these variations in incidence angle and polarization and derives the atmospheric surface winds. The technique works well over the range of wind conditions over which the wind speed-backscatter cross-section relation holds, about 2--20 m/s. The problems likely to be encountered with this new technique are evaluated and it is concluded that most problems are those which are endemic to any microwave scatterometer wind estimation technique. The new technique will enable using the research weather radar to provide measurements which would otherwise require use of a dedicated scatterometer.

  4. Archival of aircraft scatterometer data from AAFE RADSCAT missions

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Mitchell, J. L.

    1983-01-01

    Aircraft scatterometer data obtained over the ocean with the Radiometer-Scatterometer (RADSCAT) instrument is documented. The normalized radar cross section data was obtained at 13.9 GHz for a variety of ocean surface wind conditions, which are also presented. All such valid RADSCAT ocean scatterometer data for which surface truth was obtained are included, except for ice research missions during the last year of RADSCAT's lifetime. Aircraft scatterometer data obtained for the SEASAT underflights were with a second instrument, the Airborne Microwave Scatterometer (AMSCAT). The RADSCAT data are archived on card image computer tapes and on microfiche.

  5. A physical-model-based, field-wise and self-contained algorithm for removing directional ambiguities of ocean surface winds retrieved from scatterometer measurements

    NASA Astrophysics Data System (ADS)

    Kim, Young-Joon

    2000-09-01

    An algorithm is introduced to remove the directional ambiguities in ocean surface winds measured by scatterometers, which requires scatterometer data only. It is based on two versions of PBL (planetary boundary layer) models and a low-pass filter. A pressure field is first derived from the median-filtered scatterometer winds, is then noise-filtered, and is finally converted back to the winds, respectively, by an inverted PBL model, a smoothing algorithm, and a PBL model. The derived wind field is used to remove the directional ambiguities in the scatterometer data. This new algorithm is applied to Hurricane Eugene and produces results comparable to those from the current standard ambiguity removal algorithm for NASA/JPL SeaWinds project, which requires external numerical weather forecast/analyses data.

  6. Improved Resolution Backscatter Measurements with the SeaWinds Pencil-Beam Scatterometer

    NASA Technical Reports Server (NTRS)

    Spencer, M. W.; Wu, C.; Long, D. G.

    1998-01-01

    The SeaWinds scatterometer will fly on the NASA Quickscat spacecraft in 1998, and on the Japanese ADEOS-II mission in 2000. In addition to providing ocean surface wind estimates for use by weather forcasters, these flights will generate a global Ku-Band backscatter data set for a variety of climate studies.

  7. Four frequency ground scatterometer

    NASA Technical Reports Server (NTRS)

    Dickerson, E. T.

    1982-01-01

    The FM-CW Radar, used as a microwave scatterometer is described. Scatterometer system design, scatterometer system calibration, parameter calculation and correction for data acquisition, ground scatterometer data acquistion at Jornada Experimental Range, and Kansas radar cross-calibration test are discussed.

  8. ERS-1 and Seasat scatterometer measurements of ocean winds: Model functions and the directional distribution of short waves

    NASA Technical Reports Server (NTRS)

    Freilich, Michael H.; Dunbar, R. Scott

    1993-01-01

    Calculation of accurate vector winds from scatterometers requires knowledge of the relationship between backscatter cross-section and the geophysical variable of interest. As the detailed dynamics of wind generation of centimetric waves and radar-sea surface scattering at moderate incidence angles are not well known, empirical scatterometer model functions relating backscatter to winds must be developed. Less well appreciated is the fact that, given an accurate model function and some knowledge of the dominant scattering mechanisms, significant information on the amplitudes and directional distributions of centimetric roughness elements on the sea surface can be inferred. accurate scatterometer model functions can thus be used to investigate wind generation of short waves under realistic conditions. The present investigation involves developing an empirical model function for the C-band (5.3 GHz) ERS-1 scatterometer and comparing Ku-band model functions with the C-band model to infer information on the two-dimensional spectrum of centimetric roughness elements in the ocean. The C-band model function development is based on collocations of global backscatter measurements with operational surface analyses produced by meteorological agencies. Strengths and limitations of the method are discussed, and the resulting model function is validated in part through comparison with the actual distributions of backscatter cross-section triplets. Details of the directional modulation as well as the wind speed sensitivity at C-band are investigated. Analysis of persistent outliers in the data is used to infer the magnitudes of non-wind effects (such as atmospheric stratification, swell, etc.). The ERS-1 C-band instrument and the Seasat Ku-band (14.6 GHz) scatterometer both imaged waves of approximately 3.4 cm wavelength assuming that Bragg scattering is the dominant mechanism. Comparisons of the C-band and Ku-band model functions are used both to test the validity of the

  9. Model-based estimation of wind fields over the ocean from wind scatterometer measurements. I - Development of the wind field model. II - Model parameter estimation

    NASA Technical Reports Server (NTRS)

    Long, David G.; Mendel, Jerry M.

    1990-01-01

    Techniques for the determination of near-surface mesoscale ocean wind fields on the basis of satellite scatterometer data are developed and demonstrated. The derivation of normal-boundary and parameterized-boundary-condition (PBC) wind-field models is outlined, and results from a simulation performed to estimate the model errors are presented in tables. It is shown that the PBC model provides accurate results while minimizing the number of unknowns. After a review of the principles of scatterometry and an analysis of scatterometer measurement noise, an objective function for the measurement parameters is developed and optimized on the basis of gradient search with initial values computed from pointwise wind estimates. The model is then applied to data from a simulation of the NASA Scatterometer (Li et al., 1984), and the results are presented in extensive graphs. The feasibility of model-based wind-field estimation and the appropriateness of the PBC model are demonstrated.

  10. Preliminary report on measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1986-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: radar backscattering coefficients (BSCs) of deciduous forests are higher than those of coniferous forests at a large incidence angle by ranging measurement, the VV polarization BSCs obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSCs obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and tree canopies with higher attenuations have higher BSCs for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  11. A backscatter model for wheat canopies. Comparison with C-band multiparameter scatterometer measurements

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Le Toan, Thuy; Mattia, Francesco; Gatti, Anna-Maria; Posa, Franco; D'Alessio, Angelo; Notarnicola, Claudia; Sabatelli, Enzo

    2002-01-01

    This paper describes a theoretical study on radar backscatter from a wheat canopy, based on experimental data. The objective is to interpret C-band SAR data provided by ERS, RADARSAT, and the forthcoming ENVISAT. In a first step, ERS data and scatterometer data over the growth season at two test sites are compared with results of a first order coherent modelling. For fully-developed wheat canopies, however, this type of modelling fails to correctly estimate the attenuation of the incident wave within the canopy, resulting in a predicted backscattering coefficient one order of magnitude lower than that observed by the SAR system. The main reason for these observed discrepancies between theory and observation is identified to be the sparse medium assumption in the original model, an assumption which does not apply to fully-grown wheat canopies. Accordingly, we propose higher order modelling based on numerical solution of multiple scattering Foldy-Lax equation. The new modelling improves the backscatter estimate for the both test site.

  12. Statistics of Ku-band microwave response of the United States with a satellite borne radiometer/scatterometer. [scattering coefficient and brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    Moore, R. K. (Principal Investigator); Ulaby, F. T.; Sobti, A.; Burton, T.

    1974-01-01

    The author has identified the following significant results. The Skylab S-193 radiometer/scatterometer collected thousands of measurements of scattering coefficient and brightness temperature over various parts of the United States during the summer of 1973 at angles of incidence between vertical and about 45 deg. These measurements have been combined to produce histograms of the response at each of several angles within this range, and to establish average scattering coefficient vs angle curves with 10% and 90% exceedance levels as well. The variation of the radiometric measurements is primarily in the region from 255 K to 285 K, with very few measurements giving higher values, but a significant, though small, number giving values down to and even below 200 K. The scattering coefficient varies, for the mean, from about 0 db at 1 deg off vertical to a low in the neighborhood of -10 db at 45 deg. The variability of the scattering coefficient measurements with this coarse resolution sensor is surprisingly small. The number of distinguishable levels is slightly more for the scatterometer than for the radiometer, but the amount of variation in brightness temperature caused by the physical temperature of the ground is enough so that the scatterometer can be used to distinguish significantly more meaningful levels than the radiometer.

  13. A preliminary report on the measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1985-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: (1) the radar backscattering coefficients (BSC) of deciduous forests such as oak, maple, blackgum, and cypress are higher than those of coniferous forests such as slash pine plantation and natural pine; (2) at a large incidence angle, where polarization effect is significant, and by ranging measurement, the VV polarization BSC obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSC obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and (3) using the active radar calibrator for tree canopy attenuation measurement of a dense and a sparse live oak, it is found that the tree canopies with higher attenuations have higher BSC for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  14. Measurement of soil moisture trends with airborne scatterometers. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Jones, C. L.; Mcfarland, M. J.; Rosethal, W. D.; Theis, S. W. (Principal Investigator)

    1982-01-01

    In an effort to investigate aircraft multisensor responses to soil moisture and vegetation in agricultural fields, an intensive ground sampling program was conducted in Guymon, Oklahoma and Dalhart, Texas in conjunction with aircraft data collected for visible/infrared and passive and active microwave systems. Field selections, sampling techniques, data processing, and the aircraft schedule are discussed for both sites. Field notes are included along with final (normalized and corrected) data sets.

  15. Continuation of measurement of hydrologic soil-cover complex with airborne scatterometers. [Texas

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Nieber, J. L.; Blanchard, A. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Analysis of radar scatterometry data obtained over five flight lines in Texas by NASA C-130 aircraft demonstrated that multivariant radar data can be used to distinguish difference in land use, and hence be an indicator of surface runoff characteristics. The capability of using microwave sensors to detect flood inundation of timbered land was also determined.

  16. The SeaWinds Scatterometer Instrument

    NASA Technical Reports Server (NTRS)

    Wu, C.; Graf, J.; Freilich, M.; Long, D.; Spencer, M.; Tsai, W.; Lisman, D.; Winn, C.

    1994-01-01

    The SeaWinds scatterometer instrument is currently being developed by NASA/JPL, as part of the NASA EOS Program, for flight on the Hapanese ADEOS II mission in 1999. This Ku-band radar scatterometer will infer surface wind speed and direction by measuring the radar normalized backscatter cross-section over several different azimuth angles. This paper presents the design characteristics of and operational approach to the instrument itself.

  17. Evaluation of High-Resolution Ocean Surface Vector Winds Measured by QuikSCAT Scatterometer in Coastal Regions

    NASA Technical Reports Server (NTRS)

    Tang, Wenqing; Liu, W. Timothy; Stiles, Bryan W.

    2004-01-01

    The SeaWinds scatterometer onboard QuikSCAT covers approximately 90% of the global ocean under clear and cloudy condition in 24 h, and the standard data product has 25-km spatial resolution. Such spatial resolution is not sufficient to resolve small-scale processes, especially in coastal oceans. Based on range-compressed normalized backscatter and a modified wind retrieval algorithm, a coastal wind dataset at 12.5-km resolution was produced. Even with larger error, the high-resolution winds, in medium to high strength, would still be useful over coastal ocean. Using measurements from moored buoys from the National Buoy Data Center, the high-resolution QuikSCAT wind data are found to have similar accuracy as standard data in the open ocean. The accuracy of both high- and standard-resolution winds, particularly in wind directions, is found to degrade near shore. The increase in error is likely caused by the inadequacy of the geophysical model function/ambiguity removal scheme in addressing coastal conditions and light winds situations. The modified algorithm helps to bring the directional accuracy of the high-resolution winds to the accuracy of the standard-resolution winds in near-shore regions, particularly in the nadir and far zones across the satellite track.

  18. Aquarius Scatterometer Winds

    NASA Astrophysics Data System (ADS)

    Yueh, S. H.; Fore, A.; Freedman, A. P.; Neumann, G.; Tang, W.; Brown, S.; Chaubell, M. J.; Jones, L.; Lagerloef, G. S.; LeVine, D.; Dinnat, E. P.; Meissner, T.; Wentz, F. J.; Vandemark, D. C.

    2011-12-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 GHz) sea surface brightness temperatures to sea surface salinity. To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves), along with several additional factors impacting the observed brightness temperature, must be corrected to better than a few tenths of a degree Kelvin. To this end, Aquarius includes a scatterometer to help correct for this surface roughness effect. The Aquarius/SACD was launched successfully on June 10, 2011, and the instrument is expected to be turned on in August. The prelaunch tests of Aquarius showed that the instrument should be extremely stable at the week-to-month time scale with drift of less than 0.1 K for the radiometer and 0.1 dB for the scatterometer. The current baseline algorithm for Aquarius is to use the scatterometer data in conjunction with the NCEP wind direction to derive the ocean surface wind speed and then a radiometer roughness correction. The pre-launch simulations predict 1 m/s wind speed accuracy. This will be tested using the Aquarius data collected in the coming few months. To quantify the benefits of combining passive and active microwave sensors for ocean salinity remote sensing, the Passive/Active L-band Sensor (PALS) was used to acquire data over a wide range of ocean surface wind conditions during the High Ocean Wind (HOW) Campaign in 2009. The PALS brightness

  19. Absolute calibration of the RADSCAT scatterometer using precision spheres

    NASA Technical Reports Server (NTRS)

    Grantham, W. L.; Schroeder, L. C.; Mitchell, J. L.

    1976-01-01

    Tests using precision sphere targets suspended from balloons were conducted to calibrate the received-power/transmitted-power tatio of the RADSCAT scatterometer. Comparisons were made of these measured results with theoretical return from spheres. The RADSCAT scatterometer measurements at 13.9 GHz should be corrected by -2.4 dB, and those at 9.3 GHz, by -4.3 dB. The techniques described should be generally applicable to calibration of scatterometers where measurement precision is of prime importance. Inferred from the magnitude of these RADSCAT corrections was the present state of technology in building precision scatterometers.

  20. The measurement of the winds near the ocean surface with a radiometer-scatterometer on Skylab

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.; Moore, R. K.; Mcclain, E. P. (Principal Investigator); Cardone, V. J.; Young, J. D.; Greenwood, J. A.; Greenwood, C.; Fung, A. K.; Salfi, R.; Chan, H. L.

    1976-01-01

    The author has identified the following significant results. There were a total of twenty-six passes in the ZLV mode that yielded useful data. Six were in the in-track noncontiguous mode; all others were in the cross-track noncontiguous mode. The wind speed and direction, as effectively determined in a neutral atmosphere at 19.5 m above the sea surface, were found for each cell scanned by S193. It is shown how the passive microwave measurements were used both to compute the attenuation of the radar beam and to determine those cells where the backscatter measurement was suspect. Given the direction of the wind from some independent source, with the typical accuracy of measurement by available meteorological methods, a backscatter measurement at a nadir angle of 50, 43, or 32 deg can be used to compute the speed of the wind averaged over the illuminated area.

  1. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. (abstract) Ekman Pumping/Suction and Wind-Driven Ocean Circulation from ERS-1 Scatterometer Measurements Over the Arabian Sea During October 1994-October 1995

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Freilich, M. H.; Weller, R. A.

    1996-01-01

    Spatial variations of the east-west and north-south components of surface wind stress are critical in studies of ocean circulation and biological-physical interactions because surface wind stress curl produces a vertical velocity in the upper ocean at the bottom of the Ekman Layer.The ERS-1 scatterometer provides reasonable coverage and direct measurements of vector of winds. Three schemes are evaluated relative to high-quality moored-bouy wind observations recorded in the central Arabian Sea, where high surface waves and high atmospheric water content during the southeast monsoon adversely affect the estimation of satellite-derived winds.

  3. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  4. JSME scatterometer data processing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A software system was developed which processes digitized scatterometer data from the 13.3 GHz, 1.6 GHz and 400 MHz scatterometer systems. In addition to this, the hardware capability has been developed to recover the raw analog radar signals and the aircraft parameters from an ADAS data stream in a digital format for processing by the software package. Software for the preparation of data reports and chart presentation of scattering coefficients time histories has also been developed. This report documents the development of the software, describes key components of the processing system and presents examples of the processed data and procedure for software operation.

  5. Ring laser scatterometer

    DOEpatents

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  6. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  7. Agricultural terrain scatterometer observations with emphasis on soil moisture variations

    NASA Technical Reports Server (NTRS)

    King, C.

    1973-01-01

    Airborne scatterometer observations were made for agricultural terrain in May and June, 1970 at a NASA test site near Garden City, Kansas. Data from 13.3 GHz and 400 MHz scatterometer were analyzed. It was observed that for incidence angle less than 40 degrees, the 13.3 GHz data showed a difference in backscatter from wet and dry fields of the order of 7 db. The averages of the various crop types were within a spread of only 5 db. Other ground parameters such as cultivation pattern and vegetation row effects showed even less distinguishing characteristics on the backscatter. The 400 MHz data also showed a slight moisture dependency.

  8. Evaluation of wind vectors observed by HY-2A scatterometer using ocean buoy observations, ASCAT measurements, and numerical model data

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Shen, Hui

    2015-09-01

    The first Chinese microwave ocean environment satellite HY-2A was launched successfully in August, 2011. This study presents a quality assessment of HY-2A scatterometer (HYSCAT) data based on comparison with ocean buoy data, the Advanced Scatterometer (ASCAT) data, and numerical model data from the National Centers for Environmental Prediction (NCEP). The in-situ observations include those from buoy arrays operated by the National Data Buoy Center (NDBC) and Tropical Atmosphere Ocean (TAO) project. Only buoys located offshore and in deep water were analyzed. The temporal and spatial collocation windows between HYSCAT data and buoy observations were 30 min and 25 km, respectively. The comparisons showed that the wind speeds and directions observed by HYSCAT agree well with the buoy data. The root-mean-squared errors (RMSEs) of wind speed and direction for the HYSCAT standard wind products are 1.90 m/s and 22.80°, respectively. For the HYSCAT-ASCAT comparison, the temporal and spatial differences were limited to 1 h and 25 km, respectively. This comparison yielded RMSEs of 1.68 m/s for wind speed and 19.1° for wind direction. We also compared HYSCAT winds with reanalysis data from NCEP. The results show that the RMSEs of wind speed and direction are 2.6 m/s and 26°, respectively. The global distribution of wind speed residuals (HYSCAT-NCEP) is also presented here for evaluation of the HYSCAT-retrieved wind field globally. Considering the large temporal and spatial differences of the collocated data, it is concluded that the HYSCAT-retrieved wind speed and direction met the mission requirements, which were 2 m/s and 20° for wind speeds in the range 2-24 m/s. These encouraging assessment results show that the wind data obtained from HYSCAT will be useful for the scientific community.

  9. Development of airborne oil thickness measurements.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    A laboratory sensor has now been developed to measure the absolute thickness of oil on water slicks. This prototype oil slick thickness measurement system is known as the laser-ultrasonic remote sensing of oil thickness (LURSOT) sensor. This laser opto-acoustic sensor is the initial step in the ultimate goal of providing an airborne sensor with the ability to remotely measure oil-on-water slick thickness. The LURSOT sensor employs three lasers to produce and measure the time-of-flight of ultrasonic waves in oil and hence provide a direct measurement of oil slick thickness. The successful application of this technology to the measurement of oil slick thickness will benefit the scientific community as a whole by providing information about the dynamics of oil slick spreading and the spill responder by providing a measurement of the effectiveness of spill countermeasures such as dispersant application and in situ burning. This paper will provide a review of early developments and discuss the current state-of-the-art in the field of oil slick thickness measurement. PMID:12899892

  10. Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve

    1999-01-01

    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. Monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics. The annual duration of frost-free period also bounds the period of photosynthetic activity in boreal and arctic regions thus affecting the annual carbon budget and the interannual variability of regional carbon fluxes. In this study, we use the NASA scatterometer (NSCAT) to monitor the temporal change in the radar backscatter signature across selected ecoregions of the boreal zone. We have measured vegetation tissue temperatures, soil temperature profiles, and micrometeorological parameters in situ at selected sites along a north-south transect extending across Alaska from Prudhoe Bay to the Kenai Peninsula and in Siberia near the Yenisey River. Data from these stations have been used to quantify the scatterometer's sensitivity to freeze/thaw state under a variety of terrain and landcover conditions. Analysis of the NSCAT temporal response over the 1997 spring thaw cycle shows a 3 to 5 dB change in measured backscatter that is well correlated with the landscape springtime thaw process. Having verified the instrument's capability to monitor freeze/thaw transitions, regional scale mosaicked data are applied to derive temporal series of freeze/thaw transition maps for selected circumpolar high latitude regions. These maps are applied to derive areal extent of frozen and thawed landscape and demonstrate the utility of spaceborne radar for operational monitoring of seasonal freeze-thaw dynamics and associated biophysical processes for the circumpolar high latitudes.

  11. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  12. Design study for future satellite microwave scatterometers, part 3

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1979-01-01

    A computerized simulation analysis for a number of scatterometer antenna configuration and polarization modes including the Seasat scatterometer (SASS) is presented. The results of the simulations were expressed in terms of performance statistics. These statistics relate to the wind direction alias removal capability and to the rms sensing errors for friction velocity and wind direction X. The statistics are analyzed, and optimum scatterometer configurations are recommended. The accuracy of the SASS in measuring U* and X, and its capability to resolve wind direction aliases are assessed.

  13. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  14. RadSTAR L-Band Imaging Scatterometer: Performance Assessment

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Hildebrand, Peter; Hilliard, Larry

    2007-01-01

    RadSTAR is an instrument development program aimed at combining a radiometer and a scatterometer system into a highly compact configuration that uses a single, electronically scanned antenna to provide co-located and simultaneous measurements of emission and backscatter for airborne and spaceborne applications [I]. The program was designed to map soil moisture and ocean salinity, both important components of the water cycle, and to map sea ice density and thickness, an important factor in ocean-atmosphere heat exchange in Polar Regions. The accuracy in estimation of these and a number of other Earth science parameters can be greatly enhanced by providing the co-aligned radar/radiometer microwave measurements. For instance, radiometer estimates of soil moisture from soil emission are affected by emission from vegetation, and from the roughness of the surface. Complementary measurements using the scatterometer can be used to evaluate the vegetation and surface roughness effects. Hence, the combined observations can provide an improved estimate. As with soil moisture, the ocean salinity is a function of the microwave emission from the sea surface temperature (SST) and sea roughness. There, the addition of radar backscatter measurements of sea roughness enables the correction of the emissivity and provide more accurate estimates of ocean salinity. Similar arguments can be made for other important Earth science parameters. This paper discusses the RadSTAR program, the radar system design, calibration, and digital beamforming techniques, and presents preliminary analysis of the data collected during the test flights. The data sets obtained during the flights and during the radar calibration in the anechoic chamber are also employed to asses the performance of the radar. The paper also discusses the Digital Beamforming Synthetic Aperture Radar (DBSAR) processor, a real-time processor recently developed for the LIS instrument which enables beam synthesis, fine resolutions

  15. An intercomparison of airborne nitric acid measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. L.; Hoell, J. M.; Huebert, B. J.; van Bramer, S. E.; Lebel, P. J.; Vay, S. A.; Marinaro, R. M.; Schiff, H. I.; Hastie, D. R.; Mackay, G. I.; Karecki, D. R.

    1990-06-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric acid are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during the summer of 1986. Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a niylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. Intercomparison of investigators' calibration standards were also performed as part of the test protocol. While results were somewhat "soft" and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominately in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. The TDLAS participated in an intercomparison of NO2 instruments (major focus) that was also conducted during the same flights. As a result the TDLAS data set is limited. Further, a significant fraction of the nitric acid measurements were below the TDLAS detection limit (75 pptv as configured for these tests). While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO3 techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO3 at levels often encountered in the

  16. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    SciTech Connect

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goals of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.

  17. NASA's L-band Imaging Scatterometer

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Hildebrand, Peter; Hilliard, Larry; Mead, James

    2004-01-01

    NASA's L-band Imaging Scatterometer (LIS) is a new state-of-the-art radar that combines electronic beam scanning and digital beam forming technologies. The instrument will be used in conjunction with ESTAR instruments to demonstrate the capability of making concurrent measurements of radar cross-section and radiometric brightness temperature from common targets. The main application of the instrument is the measurement of ocean salinity and soil moisture. This paper will discuss the instrument design, calibration, and digital beamforming techniques.

  18. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  19. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  20. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  1. An intercomparison of airborne nitric acid measurements

    SciTech Connect

    Gregory, G.L.; Hoell, J.M. Jr.; LeBel, P.J.; Vay, S.A. ); Huebert, B.J. ); Van Bramer, S.E. ); Marinaro, R.M. ); Schiff, H.I.; Hastie, D.R. ); Mackay, G.I.; Karecki, D.R. )

    1990-06-20

    Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a nylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. While results were somewhat soft and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominantly in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1,000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO{sub 3} techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO{sub 3} at levels often encountered in the free troposphere (e.g., 100 pptv). However, at the more elevated levels of HNO{sub 3} (e.g., >150 pptv), both the FILTER and DENUDER techniques reported the same levels of nitric acid, while as suggested by the results from the standards intercomparison, the TDLAS reported higher nitric acid values than the other two techniques.

  2. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  3. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  4. Seasat-A satellite scatterometer instrument evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Williams, L. A., Jr.; Bracalente, E. M.; Beck, F. B.; Grantham, W. L.

    1980-01-01

    The Seasat-A satellite scatterometer (SASS) was designed to measure ocean surface wind speed and direction in twenty-four independent cells over a 1000-km swath. It operated in the interrupted CW mode at a frequency of 14.6 GHz with four fan beam antennas and used Doppler filtering in the receiver for resolving the cells on the surface. The instrument began operating in space on July 6, 1978, and gathered normalized radar cross section data for approximately 2290 h. The purpose of this paper is to describe the in-orbit evaluation of the SASS hardware and its compatibility with the spacecraft. It has been determined that the scatterometer operated flawlessly throughout the mission, met all design requirements, and established a good data base for geophysical processing.

  5. Concept of the First Russian Spaceborne Scatterometer: a Review

    NASA Astrophysics Data System (ADS)

    Karaev, Vladimir; Titchenko, Yuriy; Panfilova, Maria; Balandina, Galina; Shlaferov, Alexey; Kuznetsov, Yurii

    Regular and global measurements of the wind speed over sea surface are required for a wide range of meteorological and oceanographic applications. Information about wind field is needed to drive ocean models and surface wave models, calculate surface fluxes of heat, moisture and construct climatology. Most of the satellite active radar systems can provide information about near surface wind speed, for example, altimeter, synthetic aperture radar. However, the special radar for measurements of the wind field is scatterometer. Two concepts of the spaceborne scatterometer are used now. First of all, it is a scatterometer with fixed antenna system, for example, ASCAT. SeaWinds is scatterometer with rotating antenna system and two pencil antenna beams at VV and HH polarizations for the different incidence angles. New concepts of scatterometers are developed and next year the first scatterometer (RFSCAT) with rotating fan beam (~ 1.3x25 degrees) and measurements at VV and HH polarizations for one incidence angle will be launched. In this research we are discussing the concept of the first Russian Ku-band spaceborne scatterometer. Scatterometer will have the 1х6 degrees antenna beam and will have measurements of radar cross section at vertical and horizontal polarizations for one incidence angle. Expected altitude of orbit is 650 km and a width of swath is 1500 km. Speed of antenna rotation is approximately 5.5 rotations per minute and the wind vector cell (25 x 25 km) will be observed during flight from 4 to 10 times at each polarization. Numerical model of scatterometer was developed and numerical simulation is started. Backscattered radar cross section in each wind vector cell was calculated and new wind vector retrieval algorithm was developed. Dependence of the backscattered radar cross section on the incidence angle, wind speed and wind fetch, azimuthal angle and intensity of swell, polarization and position of wind vector cell inside of swath was investigated

  6. Design and performance measurements of an airborne aerosol backscatter lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.; Brothers, Alan M.; Dermenjian, Stephen H.; Esproles, Carlos

    1990-01-01

    The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of atmospheric aerosol backscatter at infrared wavelengths. An airborne backscatter lidar is discussed, which has been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. The instrument characteristics and representative flight measurement results are presented.

  7. Airborne microwave measurements of the southern Greenland ice sheet

    SciTech Connect

    Swift, C.T.; Hayes, P.S.; Herd, J.S.; Jones, W.L.; Delmore, V.E.

    1985-02-01

    Microwave remote sensing measurements were collected over Greenland with the NASA C-130 aircraft used as a platform. The principal instruments were a C band radiometer and an X band scatterometer, which simultaneously collected both active and passive microwave remote sensing data. The data collected fully support the conclusions drawn by others that volume scattering from subsurface ice lenses and glands is the major influence on microwave signature. Both thermal emission and radar backscattering results are self-consistent with rather simple theories of volume scattering. The remote sensing measurements also provide a relative measure of the number density of scatterers; however, additional theoretical work is required to establish the cross section per scatterer in order to measure absolute number density. Along this avenue of thought, the data rule out Rayleigh scattering and strongly support a high frequency model. The measured anisotropy over the ice cap appears to be a new observation, and future exploitation of remote sensing techniques may provide information relating to the average shape of subsurface patterns and information relative to glacial flow. 14 references, 10 figures.

  8. Short pulse C-band Doppler scatterometer

    NASA Astrophysics Data System (ADS)

    Arakelyan, Artashes K.; Hambaryan, Astghik K.; Smolin, Aleksander I.; Karyan, Vanik V.; Hovhannesyan, Gagik G.; Alaverdyan, Eduard R.; Arakelyan, Arsen A.; Hambaryan, Vardan K.

    2005-05-01

    In this paper C-band (~5.75GHz), dual polarization, Doppler scatterometer is developed, for short distance remote sensing of water surface microwave reflective and spectrum characteristics simultaneous and coincident measurements, under laboratory-control conditions. Developed system will be set on a mobile bogie moving on the height of 6.5m along a stationary platform of 32m of length. It will allow carry out polarimetric (vv, vh, hh, hv), simultaneous and coincident microwave active measurements of pool water surface parameters at angles of incidence from the while of 0-40o.

  9. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  10. Retrieval of thin-ice thickness using the L-band polarization ratio measured by the helicopter-borne scatterometer HELISCAT

    NASA Astrophysics Data System (ADS)

    Kern, Stefan; Gade, Martin; Haas, Christian; Pfaffling, Andreas

    Climate warming makes an increasing thin-ice fraction likely to occur in the Arctic, underpinning the need for its regular observation. Synchronous helicopter-borne measurements of the sea-ice thickness and like-polarized L-band radar backscatter carried out along identical flight tracks north of Svalbard during winter are combined to develop an algorithm to estimate the thin-ice thickness solely from the L-band backscatter co-polarization ratio (LCPR). Airborne ice-thickness and LCPR data are smoothed along track (to reduce noise), co-located and compared. A linear and a logarithmic fit are applied using thickness values between 0.0 and 0.6 m and 0.0 and 1.0 m, respectively. The thin-ice thickness is derived from the LCPR data using these fits, first for dependent data (used to obtain the fits) and subsequently for independent data. The results are compared to airborne ice-thickness measurements for ice-thickness values between 0.0 and 0.6 m using linear regression. The logarithmic fit gives the most reliable results, with a correlation of 0.72 and a rms difference of 8 cm. It permits us to derive the thickness of thin ice (below 50-60 cm thickness) from airborne LCPR data with an uncertainty of about 10 cm.

  11. The First Russian Orbit-Borne Scatterometer: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Kuznetsov, Yu. V.; Shlaferov, A. L.

    2016-04-01

    We have chosen a "SeaWinds" scatterometer with an orbital altitude of about 800 km as a prototype of the first Russian orbital scatterometer. An involuntary decrease in the orbit altitude to 650 km made us choose between conservation of the initial swath width 1800 km or the incidence angles with the swath-width decrease to 1500 km. A wider swath width has the advantage of a better coverage of the world-ocean surface. However, it leads to an increase in the local incidence angles and, hence, a decrease in the reflected-signal power. As a result, the signalto-noise ratio decreases and an error in the wind velocity and direction reconstruction because of the equipment noise increases. The error of the wind-velocity vector reconstruction for the same drive and antenna is the choice criterion. During the study, the mathematical model of the scatterometer is developed, the numerical simulation for both swath widths is performed, the data are processed, and the reconstruction accuracies of the wind velocity and direction are compared. It is shown that the reconstruction accuracy can significantly be improved if the measurement for two polarizations is used. The results obtained also show that the wind velocity is sufficiently well reconstructed for both swaths, while the wind-direction reconstruction accuracy in the case of a wider swath is worse than that required by the technical specifications for the scatterometer. Therefore, the swath width of the new scatterometer should be 1500 km.

  12. The First Russian Orbit-Borne Scatterometer: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Kuznetsov, Yu. V.; Shlaferov, A. L.

    2016-05-01

    We have chosen a "SeaWinds" scatterometer with an orbital altitude of about 800 km as a prototype of the first Russian orbital scatterometer. An involuntary decrease in the orbit altitude to 650 km made us choose between conservation of the initial swath width 1800 km or the incidence angles with the swath-width decrease to 1500 km. A wider swath width has the advantage of a better coverage of the world-ocean surface. However, it leads to an increase in the local incidence angles and, hence, a decrease in the reflected-signal power. As a result, the signalto-noise ratio decreases and an error in the wind velocity and direction reconstruction because of the equipment noise increases. The error of the wind-velocity vector reconstruction for the same drive and antenna is the choice criterion. During the study, the mathematical model of the scatterometer is developed, the numerical simulation for both swath widths is performed, the data are processed, and the reconstruction accuracies of the wind velocity and direction are compared. It is shown that the reconstruction accuracy can significantly be improved if the measurement for two polarizations is used. The results obtained also show that the wind velocity is sufficiently well reconstructed for both swaths, while the wind-direction reconstruction accuracy in the case of a wider swath is worse than that required by the technical specifications for the scatterometer. Therefore, the swath width of the new scatterometer should be 1500 km.

  13. C-band polarimetric scatterometer for soil studies

    NASA Astrophysics Data System (ADS)

    D'Alessio, Angelo C.; Mongelli, Antonio; Notarnicola, Claudia; Paparella, Giuseppina; Posa, Francesco; Sabatelli, Vincenzo

    2003-03-01

    The aim of this study is to evaluate the performances of a polarimetric scatterometer. This sensor can measure the module of the electromagnetic backscattering matrix elements. The knowledge of this matrix permits the computation of all the possible polarisation combinations of transmitted and received signals through a Polarisation Synthesis approach. Scatterometer data are useful for monitoring a large number of soil physical parameters. In particular, the sensitivity of a C-band radar to different growing conditions of vegetation depends on the wave polarisation. As consequences, the possibility of acquiringi both polarisation components presents a great advantage in the vegetarian studies. In addition, this type of ground sensor can permit a fast coverage of the areas of interest. A first test of the polarimetric scatterometer has been performed over an asphalt surface, which has a well-known electromagnetic response. Moreover, a calibration procedure has been tested using both passive (Trihedral Corner Reflector, TCR) and active (Active Radar Calibrator, ARC) radar calibrator.

  14. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  15. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  16. Airborne Measurement of Ecosystem Carbon Dynamics over Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Wade, T. J.; Hill, T. C.; Clement, R.; Moncrieff, J.; Disney, M.; Nichol, C. J.; Williams, M. D.

    2009-12-01

    Terrestrial carbon sinks are currently believed to account for the removal and storage of approximately 25% of anthropogenic carbon emissions from the atmosphere. The processes involved are numerous and complex and many feedbacks are at play. The ability to study the dynamics of different ecosystems at scales meaningful to climatic forcing is essential for understanding the key processes involved and identifying crucial sensitivities and thresholds. Airborne platforms with the requisite instrumentation offer the opportunity to directly measure biological processes and atmospheric structures at scales that are not achievable by ground measurements alone. The current generation of small research aircraft such as the University of Edinburgh’s Diamond HK36TTC ECO Dimona present excellent platforms for measurement of both the atmosphere and terrestrial surface. In this study we present results from airborne CO2/H2O flux measuring campaigns in contrasting climatic systems to quantify spatial patterns in ecosystem photosynthesis. Several airborne campaigns were undertaken in Arctic Finland, as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (2008), and mainland UK as part of the UK Population Biology Network (UKPopNet) 2009 project, to explore the variability in surface CO2 flux across spatial scales larger than captured using conventional ground based eddy covariance. We discuss the application of our aircraft platform as a tool to address the challenge of understanding carbon dynamics within landscapes of heterogeneous vegetation class, terrain and hydrology using complementary datasets acquired from airborne eddy covariance and remote sensing.

  17. STATISTICAL MODEL OF LABORATORY DEATH RATE MEASUREMENTS FOR AIRBORNE BACTERIA

    EPA Science Inventory

    From 270 published laboratory airborne death rate measurements, two regression models relating the death rate constant for 15 bacterial species to aerosol age in the dark, Gram reaction, temperature, and an evaporation factor which is a function of RH and temperature were obtaine...

  18. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  19. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  20. Medium Earth Orbit Scatterometer (MEOScat) Concept Phase Study

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.

    2004-01-01

    In this report, advanced scatterometer concept options to operate in the post-SeaWinds era are examined. In order to meet the future requirements of scientific and operational users, a variety of scatterometer systems capable of producing improved wind vector products are evaluated. Special emphasis is placed on addressing concept options that operate at higher altitudes in order to improve the temporal revisit time. A preliminary set of generalized wind measurement goals designed to meet the future needs of both scientific and operational communities is put forth. Geophysically based measurement constraints (such as allowable carrier frequencies and measurement incidence angles) are identified. It was found that a potential key constraint at higher satellite altitudes is the longer time required to make all of the azimuth measurements. The revisit and coverage characteristics of a variety of platform orbits throughout the MEO range is studied in detail, and a discussion of the associated increase in radiation is presented. The "trade space" of scatterometer architectures and design options, along with associated advantages and disadvantages, is described for mission options in the MEO range. Finally, key technology studies that will enable further development of a MEO scatterometer mission are identified.

  1. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  2. Separability of agricultural crops with airborne scatterometry

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1983-01-01

    Backscattering measurements were acquired with airborne scatterometers over a site in Cass County, North Dakota on four days in the 1981 crop growing season. Data were acquired at three frequencies (L-, C- and Ku-bands), two polarizations (like and cross) and ten incidence angles (5 degrees to 50 degrees in 5 degree steps). Crop separability is studied in an hierarchical fashion. A two-class separability measure is defined, which compares within-class to between-class variability, to determine crop separability. The scatterometer channels with the best potential for crop separability are determined, based on this separability measure. Higher frequencies are more useful for discriminating small grains, while lower frequencies tend to separate non-small grains better. Some crops are more separable when row direction is taken into account. The effect of pixel purity is to increase the separability between all crops while not changing the order of useful scatterometer channels. Crude estimates of separability errors are calculated based on these analyses. These results are useful in selecting the parameters of active microwave systems in agricultural remote sensing.

  3. A system analysis of the 13.3 GHz scatterometer. [antenna patterns and signal transmission

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1977-01-01

    The performance of the 13.3 GHz airborne scatterometer system which is used as a microwave remote sensor to detect moisture content of soil is analyzed with respect to its antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principle and the sensitivity of the system, as well as data handling are also described. The dielectric property of the terrain surface, as far as the scatterometer is concerned, is contained in the assumed forms of the functional dependence of the backscattering coefficient of the incident angle.

  4. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  5. Airborne tunable diode laser measurements of formaldehyde

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce; Drummond, James R.

    1999-09-01

    Accurate measurements of formaldehyde (CH 2O) in the atmosphere are essential to further our understanding of various atmospheric cycles involving hydrogen and carbon-containing species. Comparisons among independent measurements of this gas and between measurements and model calculations have raised numerous questions regarding the veracity of both endeavors. The present paper describes a long-term effort by our group to develop and employ tunable diode laser absorption spectroscopy (TDLAS) for highly accurate measurements of this gas on both ground-based and aircraft platforms. A highly sensitive and selective TDLAS system, which has successfully flown on three different aircraft campaigns, will be described. Many new hardware and software features, which have been implemented, now make it possible to detect ambient CH 2O concentrations as low as 55 parts-per-trillion employing a 20-s integration time. This paper will also discuss the many aspects associated with high accuracy and its verification, including a brief discussion of our aircraft sampling system and inlet surface effects.

  6. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  7. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  8. Assessment of the corrected CMOD6 GMF using scatterometer data

    NASA Astrophysics Data System (ADS)

    Elyouncha, Anis; Neyt, Xavier; Stoffelen, Ad; Verspeek, Jeroen

    2015-10-01

    An assessment of the agreement between the ERS scatterometers (ERS-1 and ERS-2) and the Metop scatterometers (ASCAT-A and ASCAT-B) is essential for the consistency of the C-band scatterometry dataset. ERS-1, ERS-2, ASCAT-A and ASCAT-B are C-band fan-beam radar scatterometers covering a range of common incidence angles. During these C-band scatterometry missions, different calibration campaigns have been carried out mainly relying on active ground transponders and natural distributed targets such as the rainforest. Additionally, these missions differ in time with some overlapping periods. Therefore, an assessment of the agreement between ERS and ASCAT measurements is an important and challenging task. This assessment is usually performed over the rainforest but only considering the common incidence angles. In order to perform the comparison over the whole incidence angle range of both radars, a Geophysical Model Function (GMF) is needed. An empirical correction of the CMOD5.n GMF has been suggested recently by KNMI resulting in a new GMF called CMOD6. This correction was derived from the comparison of the ASCAT backscatter measurements and the CMOD5.n model. Taking ASCAT's measurements as reference, the differences between the CMOD5.n and ASCAT measurements were attributed to GMF errors. Additionally, an overview of the existing C-band models is given. The comparison of these models shows relatively large differences. The aim of this paper is the assessment of the CMOD6 GMF using ERS-1 and ERS-2 ocean backscatter measurements and the validation of the applicability of the corrected GMF to the whole C-band scatterometry dataset. Finally, a method is suggested to calibrate the residual bias of all the C-band scatterometers w.r.t CMOD6. It is shown that after calibration a consistent scatterometer data model is obtained.

  9. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  10. Scatterometer-Calibrated Stability Verification Method

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia A.; Cheetham, Craig M.; Huang, Shouhua; Fischman, Mark A.; CHu, Anhua J.; Freedman, Adam P.

    2011-01-01

    The requirement for scatterometer-combined transmit-receive gain variation knowledge is typically addressed by sampling a portion of the transmit signal, attenuating it with a known-stable attenuation, and coupling it into the receiver chain. This way, the gain variations of the transmit and receive chains are represented by this loop-back calibration signal, and can be subtracted from the received remote radar echo. Certain challenges are presented by this process, such as transmit and receive components that are outside of this loop-back path and are not included in this calibration, as well as the impracticality for measuring the transmit and receive chains stability and post fabrication separately, without the resulting measurement errors from the test set up exceeding the requirement for the flight instrument. To cover the RF stability design challenge, the portions of the scatterometer that are not calibrated by the loop-back, (e.g., attenuators, switches, diplexers, couplers, and coaxial cables) are tightly thermally controlled, and have been characterized over temperature to contribute less than 0.05 dB of calibration error over worst-case thermal variation. To address the verification challenge, including the components that are not calibrated by the loop-back, a stable fiber optic delay line (FODL) was used to delay the transmitted pulse, and to route it into the receiver. In this way, the internal loopback signal amplitude variations can be compared to the full transmit/receive external path, while the flight hardware is in the worst-case thermal environment. The practical delay for implementing the FODL is 100 s. The scatterometer pulse width is 1 ms so a test mode was incorporated early in the design phase to scale the 1 ms pulse at 100-Hz pulse repetition interval (PRI), by a factor of 18, to be a 55 s pulse with 556 s PRI. This scaling maintains the duty cycle, thus maintaining a representative thermal state for the RF components. The FODL consists

  11. Ultrasonic airborne insertion loss measurements at normal incidence (L).

    PubMed

    Farley, Jayrin; Anderson, Brian E

    2010-12-01

    Transmission loss and insertion loss measurements of building materials at audible frequencies are commonly made using plane wave tubes or as a panel between reverberant rooms. These measurements provide information for noise isolation control in architectural acoustics and in product development. Airborne ultrasonic sound transmission through common building materials has not been fully explored. Technologies and products that utilize ultrasonic frequencies are becoming increasingly more common, hence the need to conduct such measurements. This letter presents preliminary measurements of the ultrasonic insertion loss levels for common building materials over a frequency range of 28-90 kHz using continuous-wave excitation. PMID:21218864

  12. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  13. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  14. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  15. Coastal and rain-induced wind variability depicted by scatterometers

    NASA Astrophysics Data System (ADS)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.

  16. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  17. Measurement of airborne 218Po--a Bayesian approach.

    PubMed

    Groer, P G; Lo, Y

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called Bateman equations adapted to the sampling process. These equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne 218Po can be characterized as an "immigration-death process" in the widely adopted, biologically based jargon. The probability distribution for the number of 218Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency epsilon during a counting period T after the end of sampling, is also Poisson, with mean dependent on epsilon, t, T, the flowrate and N(o), the number of airborne 218Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes' Theorem we obtained the posterior density for N(o). This density characterizes the remaining uncertainty about the measured number of 218Po atoms per unit volume of air. PMID:8919080

  18. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  19. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  20. Airborne measurements of NO2 shipping emissions using imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas C.; Schönhardt, Anja; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Lindemann, Carsten; Wittrock, Folkard; Burrows, John P.

    2014-05-01

    NOx (NO and NO2) play a key role in tropospheric chemistry and affect human health and the environment. Shipping emissions contribute substantially to the global emissions of anthropogenic NOx. Due to globalization and increased trade volume, the relative importance emissions from ships gain even more importance. The Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP), developed at IUP Bremen, has been used to perform measurements of NO2 in the visible spectral range. The observations allow the determination of spatial distributions of column densities of NO2 below the aircraft. Airborne measurements were performed over Northern Germany and adjacent coastal waters during the NOSE (NO2 from Shipping Emissions) campaign in August 2013. The focus of the campaign activities was on shipping emissions, but NO2 over cities and power plants has been measured as well. The measurements have a spatial resolution below the order of 100 × 30 m2, and they reveal the large spatial variability of NO2 and the evolution of NO2 plumes behind point sources. Shipping lanes as well as plumes of individual ships are detected by the AirMAP instrument. In this study, first results from the NOSE campaign are presented for selected measurement areas.

  1. The INTEGRAL scatterometer SPI

    NASA Technical Reports Server (NTRS)

    Mandrou, P.; Vedrenne, G.; Jean, P.; Kandel, B.; vonBallmoos, P.; Albernhe, F.; Lichti, G.; Schoenfelder, V.; Diehl, R.; Georgii, R.; Teegarden, B.; Mandrou, P.; Vedrenne, G.; Kirchner, T.; Durouchoux, P.; Cordier, B.; Diallo, N.; Sanchez, F.; Payne, B.; Leleux, P.; Caraveo, P.; Matteson, J.; Slassi-Sennon, S.; Lin, R. P.; Skinner, G.

    1997-01-01

    The INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) mission's onboard spectrometer, the INTEGRAL spectrometer (SPI), is described. The SPI constitutes one of the four main mission instruments. It is optimized for detailed measurements of gamma ray lines and for the mapping of diffuse sources. It combines a coded aperture mask with an array of large volume, high purity germanium detectors. The detectors make precise measurements of the gamma ray energies over the 20 keV to 8 MeV range. The instrument's characteristics are described and the Monte Carlo simulation of its performance is outlined. It will be possible to study gamma ray emission from compact objects or line profiles with a high energy resolution and a high angular resolution.

  2. Compact airborne lidar for tropospheric ozone: description and field measurements.

    PubMed

    Ancellet, G; Ravetta, F O

    1998-08-20

    An airborne lidar has been developed for tropospheric ozone monitoring. The transmitter module is based on a solid-state Nd:YAG laser and stimulated Raman scattering in deuterium to generate three wavelengths (266, 289, and 316 nm) that are used for differential ozone measurements. Both analog and photon-counting detection methods are used to produce a measurement range up to 8 km. The system has been flown on the French Fokker 27 aircraft to perform both lower tropospheric (0.5-4-km) and upper tropospheric (4-12-km) measurements, with a 1-min temporal resolution corresponding to a 5-km spatial resolution. The vertical resolution of the ozone profile can vary from 300 to 1000 m to accommodate either a large-altitude range or optimum ozone accuracy. Comparisons with in situ ozone measurements performed by an aircraft UV photometer or ozone sondes and with ozone vertical profiles obtained by a ground-based lidar are presented. The accuracy of the tropospheric ozone measurements is generally better than 10-15%, except when aerosol interferences cannot be corrected. Examples of ozone profiles for different atmospheric conditions demonstrate the utility of the airborne lidar in the study of dynamic or photochemical mesoscale processes that control tropospheric ozone. PMID:18286036

  3. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  4. Results from 1984 airborne Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1986-01-01

    Observations made with the revised Airborne Doppler Lidar System (ADLS) during research flights in the summer of 1984 are described. The functioning of the ADLS system is described. The research flights measured the flow around Mt. Shasta about 3 km above the surrounding terrain as well as the flow in the area of the Carquenez Strait in the Sacramento River Valley. The flight tracks are described and the resulting scan radial velocities are shown and discussed. The results demonstrate the success of the modifications made in order to correct major error sources present in the 1981 flights of the ADLS system.

  5. Airborne UV and visible spectrometer for DOAS and radiometric measurements

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Giovanelli, Giorgio; Bonafe, U.; Bortoli, Daniele; Kostadinov, Ivan; Ravegnani, Fabrizio

    1999-10-01

    A UV/Vis spectrometer (named GASCOD) for Differentiated Optical Absorption Spectroscopy (DOAS) has been developed at ISAO Institute and deployed for ground based measurements of stratospheric trace gases for several years at mid-latitudes and the Antarctic region. An airborne version, called GASCOD/A has been installed on board a M55-Geophysica airplane, a stratospheric research platform, capable of flying at an altitude of up to 20 Km. After a test campaign in Italy, the GASCOD/A performed successfully during the Airborne Polar Experiment in the winter 95/96. More recently, the instrument was upgraded to achieve higher sensitivity and reliability. Two additional radiometric channels were added. The input optics can turn in order to collect solar radiation from five different channels: one for detection of the zenith scattered radiation through the roof window (for DOAS measurement), two for direct and diffused radiation through two lateral windows and two for radiometric measurements through two 2(pi) optical heads mounted on the upper and bottom part of the aircraft and linked to the instrument by means of optical guides. The radiometric channels give us the possibility of calculating the photodissociation rate coefficients (J-values) of photochemical reactions involving ozone and nitrogen dioxides. The mechanical and optical layout of the instrument are presented and discussed, as well as laboratory tests and preliminary results obtained during flights onboard the M55- Geophysica.

  6. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  7. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  8. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  9. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  10. Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    NASA Technical Reports Server (NTRS)

    McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.

    1973-01-01

    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.

  11. Comparison of Seasat scatterometer winds with tropical Pacific observations

    NASA Technical Reports Server (NTRS)

    Davison, Jerry; Harrison, D. E.

    1990-01-01

    The Seasat-A satellite scatterometer (SASS) observed near-surface vector winds over the world ocean from an 800-km orbit by measuring radar backscatter from the wind-roughened surface. To increase the geographical range of SASS and in situ comparison experiments, data from nine islands in the tropical Pacific and contemporaneous scatterometer winds were compared. The SASS-2 algorithm due to Wentz provides clearly better agreement in wind speed than the earlier SASS-1 algorithm. SASS-1 speeds tend to be higher than the island measurements by about 1 m/s, while daily mean SASS-2 minus island wind speed differences average -0.07 m/s. The rms differences between SASS-2 and the daily mean island data average 1.7 m/s, the SASS-1 rms differences average 2.2 m/s.

  12. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  13. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Numata, K.; Riris, H.; Li, S.; Wu, S.; Kawa, S. R.; Abshire, J. B.; Dawsey, M.; Ramanathan, A.

    2011-12-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 um and 1.65 um. We have demonstrated detection of methane at 3.3 μm and 1650 nm in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 um.

  14. Seasat scatterometer - Results of the Gulf of Alaska workshop

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Bracalente, E. M.; Black, P. G.; Boggs, D. M.; Halberstam, I. M.; Brown, R. A.; Dome, G.; Ernst, J. A.; Overland, J. E.; Peteherych, S.

    1979-01-01

    The Seasat microwave scatterometer was designed to measure, globally and in nearly all weather, wind speed to an accuracy of plus or minus 2 meters per second and wind direction to plus or minus 20 deg in two swaths 500 kilometers wide on either side of the spacecraft. For two operating modes in rain-free conditions, a limited number of comparisons to high-quality surface truth indicates that these specifications may have been met.

  15. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  16. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Technical Reports Server (NTRS)

    Suess, Helmut

    1990-01-01

    This paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1-degree high-quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is discussed.

  17. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  18. Scanning wind-vector scatterometers with two pencil beams

    NASA Technical Reports Server (NTRS)

    Kirimoto, T.; Moore, R. K.

    1984-01-01

    A scanning pencil-beam scatterometer for ocean windvector determination has potential advantages over the fan-beam systems used and proposed heretofore. The pencil beam permits use of lower transmitter power, and at the same time allows concurrent use of the reflector by a radiometer to correct for atmospheric attenuation and other radiometers for other purposes. The use of dual beams based on the same scanning reflector permits four looks at each cell on the surface, thereby improving accuracy and allowing alias removal. Simulation results for a spaceborne dual-beam scanning scatterometer with a 1-watt radiated power at an orbital altitude of 900 km is described. Two novel algorithms for removing the aliases in the windvector are described, in addition to an adaptation of the conventional maximum likelihood algorithm. The new algorithms are more effective at alias removal than the conventional one. Measurement errors for the wind speed, assuming perfect alias removal, were found to be less than 10%.

  19. MISR BRF measurements for various surface types: Intercomparison with coincident airborne and ground measurements.

    NASA Astrophysics Data System (ADS)

    Abdou, W. A.; Helmlinger, M.; Jovanovic, V. M.; Martonchik, J. V.; Diner, D. J.; Gatebe, C. K.; King, M. D.

    2005-05-01

    The BRF retrieved by the multiangle Imaging spectroRadimeter (MISR) are compared with those coincidently measured from aircraft, by the Cloud Absorption Radiometer (CAR) and MISR airborne simulator (AirMISR), and on the ground, by the Portable Apparatus for Rabid Acquisition of Bidirectional Observations of Land and Atmosphere (PARABOLA III). The intercomparisons are made for five types of surfaces: bright desert, salt pans, dark grassland, forests and dismal swamps. The results show that MISR BRF values are within +/- 10% in agreement with the corresponding airborne and ground measurements, independent of the surface type. This study is part of an effort to validate MISR surface products.

  20. Hydrological Balance in Tropical Cyclones with Scatterometer and TRMM Data

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Hua, Hu; Tang, Wenqing

    2000-01-01

    Precipitation over oceans can be estimated from the radar and the microwave radiometer of the Tropical Rain Measuring Mission (TRMM). It can also be estimated from the divergence of the vertically integrated water vapor transport, through the conservation principle, assuming evaporation is relatively small. In tropical cyclones, the divergence of vertically integrated water vapor is highly dependent on the vertical transport and, therefore, on the wind divergence. Spaceborne scatterometers provide surface wind velocity and, therefore, surface wind divergence at spatial resolutions that are much higher than products of numerical weather prediction (NWP). In this study, ocean surface winds derived from the observations of space-based scatterometers and surface precipitation measured by TRMM were objectively interpolated to the same time and location during the passage of a tropical cyclone. Surface precipitation distribution was derived from wind and humidity profiles provided by NWP. When the surface level winds of NWP were replaced by the scatterometer winds, the surface precipitation patterns computed with the conservation method were found to be significantly changed and the new patterns are much closer in agreement with the patterns observed by TRMM.

  1. Accuracy of wind measurements using an airborne Doppler lidar

    NASA Technical Reports Server (NTRS)

    Carroll, J. J.

    1986-01-01

    Simulated wind fields and lidar data are used to evaluate two sources of airborne wind measurement error. The system is sensitive to ground speed and track angle errors, with accuracy required of the angle to within 0.2 degrees and of the speed to within 1 knot, if the recovered wind field is to be within five percent of the correct direction and 10 percent of the correct speed. It is found that errors in recovered wind speed and direction are dependent on wind direction relative to the flight path. Recovery of accurate wind fields from nonsimultaneous sampling errors requires that the lidar data be displaced to account for advection so that the intersections are defined by air parcels rather than fixed points in space.

  2. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  3. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  4. Airborne microwave measurements at 89 and 157 GHz

    NASA Astrophysics Data System (ADS)

    Jones, David C.; English, Stephen J.; Saunders, Roger W.; Prigent, Catherine; Guillou, C.; Chedin, Alain; Claud, C.

    1993-08-01

    In support of the AMSU-B program, the UK Meteorological Office (UKMO) in collaboration with Laboratoire de Meteorologie Dynamique (LMD) have developed the Microwave Airborne Scanning Radiometer System (MARSS) which operates at 89 and 157 GHz, near the 'window' channels of AMSU-B. This total power radiometer is flown on board the C-130 aircraft of the UKMO which is well- equipped with sensors measuring thermodynamical and cloud microphysical parameters up to a height of 9 km. The instrument has a scanning cycle time of approximately 3 seconds, during which time the radiometer takes 9 upward and 9 downward views as well as two views of internal calibration targets. It has been found that the Liebe MPM model gives more consistent agreement with the observed brightness temperatures than other published transmission models.

  5. An Intercomparison of Airborne VOC and PAN Measurements

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Wisthaler, A.; Flocke, F.; Weinheimer, A.; Fall, R.; Goldan, P.; Hübler, G.; Fehsenfeld, F. C.

    2002-12-01

    As part of the Texas Air Quality Study (TexAQS 2000) an informal airborne intercomparison has been conducted to evaluate the state-of-the-art of fast-response, in-situ methods for analyzing Volatile Organic Compounds (VOCs) and peroxyacetyl nitrate (PAN). Instrumentation included a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS), the Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons (TACOH) and a gas chromatograph for PAN detection using electron capture (GC/ECD). The measurements were made in the Greater Houston area and East Texas in August/September 2000 during 13 flights with the NSF/NCAR ELECTRA aircraft. The intercomparison was conducted mainly in the boundary layer but included some encounters with air masses from the free troposphere. Final results from the intercomparison show that measurements of acetaldehyde, isoprene, the sum\\textsuperscript{*} of acetone and propanal, the sum\\textsuperscript{*} methyl vinyl ketone and methacrolein (\\textsuperscript{*} PTR-MS does not distinguish between isobaric species) and toluene agree very well. Poor agreement was achieved in the case of methanol and the underlying sensitivity problem in the PTR-MS or TACOH system is under investigation. The results of the PAN intercomparison indicate that the PTR-MS technique suffered from an interference most likely associated with the presence of peracetic acid in photochemically aged air. If this interfering signal was traced by periodically inserting a selective PAN scrubber (thermal decomposition) into the sample air stream and subtracted from the original signal, the corrected PTR-MS PAN data are in very good agreement with the GC/ECD results.

  6. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  7. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  8. An airborne study of microwave surface sensing and boundary layer heat and moisture fluxes for FIFE

    NASA Technical Reports Server (NTRS)

    Gogineni, S. P.

    1995-01-01

    The objectives of this work were to perform imaging radar and scatterometer measurements over the Konza Prairie as a part of the First International land surface climatology project Field Experiments (EIFE) and to develop an mm-wave radiometer and the data acquisition system for this radiometer. We collected imaging radar data with the University of Kansas Side-Looking Airborne Radar (SLAR) operating at 9.375 GHz and scatterometer data with a helicopter-mounted scatterometer at 5.3 and 9.6 GHz. We also developed a 35-GHz null-balancing radiometer and data acquisition system. Although radar images showed good delineation of various features of the FIFE site, the data were not useful for quantitative analysis for extracting soil moisture information because of day-to-day changes in the system transfer characteristics. Our scatterometer results show that both C and X bands are sensitive to soil moisture variations over grass-covered soils. Scattering coefficients near vertical are about 4 dB lower for unburned areas because of the presence of a thatch layer, in comparison with those for burned areas. The results of the research have been documented in reports, oral presentations, and published papers.

  9. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  10. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  11. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  12. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  13. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  14. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  15. Spacewire on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, Alex; Lang, Minh; Lux, James; Steffke, Richard

    2002-01-01

    The need for a high speed, reliable and easy to implement communication link has led to the development of a space flight oriented version of IEEE 1355 called SpaceWire. SpaceWire is based on high-speed (200 Mbps) serial point-to-point links using Low Voltage Differential Signaling (LVDS). SpaceWIre has provisions for routing messages between a large network of processors, using wormhole routing for low overhead and latency. {additionally, there are available space qualified hybrids, which provide the Link layer to the user's bus}. A test bed of multiple digital signal processor breadboards, demonstrating the ability to meet signal processing requirements for an orbiting scatterometer has been implemented using three Astrium MCM-DSPs, each breadboard consists of a Multi Chip Module (MCM) that combines a space qualified Digital Signal Processor and peripherals, including IEEE-1355 links. With the addition of appropriate physical layer interfaces and software on the DSP, the SpaceWire link is used to communicate between processors on the test bed, e.g. sending timing references, commands, status, and science data among the processors. Results are presented on development issues surrounding the use of SpaceWire in this environment, from physical layer implementation (cables, connectors, LVDS drivers) to diagnostic tools, driver firmware, and development methodology. The tools, methods, and hardware, software challenges and preliminary performance are investigated and discussed.

  16. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  17. First Airborne Laser Remote Measurements of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobbs, M. E.; Dobler, J.; Kooi, S.; Choi, Y.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2008-12-01

    A unique, multi-frequency, single-beam, laser absorption spectrometer (LAS) that operates at 1.57 μm has been developed for a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A prototype of the space-based LAS system was developed by ITT, and it has been successfully flight tested in five airborne campaigns conducted in different geographic regions over the last three years. Flight tests were conducted over Oklahoma, Michigan, New Hampshire, and Virginia under a wide range of atmospheric conditions. Remote LAS measurements were compared to high-quality in situ measurements obtained from instrumentation on the same aircraft on spirals under the ground track of the LAS. LAS flights were conducted over a wide range of land and water reflectances and in the presence of scattered clouds. An extensive data set of CO2 measurements has been obtained for evaluating the LAS performance. LAS CO2 measurements with a signal-to-noise in excess of 250 were obtained for a 1-s average over land and for a 10-s average over water. Absolute comparisons of CO2 remote and in situ measurements showed agreement over a range of altitudes to better than 2 percent. LAS oxygen (O2) measurements, which are needed to convert LAS CO2 density measurements to CO2 mixing ratios (XCO2), have been made in the 1.26-μm region in horizontal ground-based experiments and in initial flight tests. Details of flight test campaigns and measured versus modeled results are presented in this paper.

  18. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  19. Using an A-10 Aircraft for Airborne Measurements of TGFs

    NASA Astrophysics Data System (ADS)

    Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.

    2012-12-01

    Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  20. Scatterometer Observes Extratropical Transition of Pacific Typhoons

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Wen-Qing; Dunbar, R. Scott

    1997-01-01

    From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons-Violet and Tom-as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction, and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds. We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved, but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest trans-ocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas. NSCAT was successfully launched into a near-polar, sunsynchronous orbit on the Japanese Advanced Earth Observing Satellite (ADEOS) in August 1996 from Tanegashima Space Center in Japan. NSCAT's six antennas send microwave pulses at a frequency of 14 GHz to the Earth's surface and measure the backscatter.

  1. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  2. Detecting tropical forest biomass dynamics from repeated airborne Lidar measurements

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Saatchi, S. S.; Chave, J.; Dalling, J.; Bohlman, S.; Fricker, G. A.; Robinson, C.; Neumann, M.

    2013-02-01

    Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne Lidar measurements acquired about 10 yr apart over Barro Colorado Island (BCI), Panama from high and medium resolution airborne sensors. The estimation is calibrated with the forest inventory data over 50 ha that was surveyed every 5 yr during the study period. We estimated the aboveground forest biomass and its uncertainty for each time period at different spatial scales (0.04, 0.25, 1.0 ha) and developed a linear regression model between four Lidar height metrics and the aboveground biomass. The uncertainty associated with estimating biomass changes from both ground and Lidar data was quantified by propagating measurement and prediction errors across spatial scales. Errors associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Biomass changes derived from Lidar and ground estimates were largely (36 out 50 plots) in the same direction at the spatial scale of 1 ha. Lidar estimation of biomass was accurate at the 1 ha scale (R2 = 0.7 and RMSEmean = 28.6 Mg ha-1). However, to predict biomass changes, errors became comparable to ground estimates only at about 10-ha or more. Our results indicate that the 50-ha BCI plot lost a~significant amount of biomass (-0.8 ± 2.2 Mg ha-1 yr-1) over the past decade (2000-2010). Over the entire island and during the same period, mean AGB change is -0.4 ± 3.7 Mg ha-1 yr-1. Old growth forests lost biomass (-0.7 ± 3.5 Mg ha-1 yr-1), whereas the secondary forests gained biomass (+0.4 ± 3.4 Mg ha-1 yr-1). Our analysis demonstrates that repeated Lidar surveys, even with two different sensors, is able to estimate biomass changes in old

  3. Scatterometer observes extratropical transition of Pacific typhoons

    NASA Astrophysics Data System (ADS)

    Liu, W. Timothy; Tang, Wenqing; Dunbar, R. Scott

    From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons—Violet and Tom—as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction (Figure 1), and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds (Figure 2).We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved [e.g., Sinclair, 1993], but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest transocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas.

  4. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  5. Coordinated airborne and satellite measurements of equatorial plasma depletions

    SciTech Connect

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-12-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18/sup 0/ MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O/sup +/, were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O/sup +//sub 2/ for 6300 A and radiative recombination of O/sup +/ for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O/sup +/ biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar.

  6. Water depth measurement using an airborne pulsed neon laser system

    SciTech Connect

    Hoge, F.E.; Swift, R.N.; Frederick, E.B.

    1980-03-15

    Initial base-line field test performance results of the National Aeronautics and Space Administration's airborne oceanographic lidar (AOL) in the bathymetry mode are presented. Flight tests over the Atlantic Ocean yielded water depth measurements to 10 m. Water depths to 4.6 m were measured in the more turbid Chesapeake Bay. Water-truth measurements of depth and beam attenuation coefficients by boat were taken at the same time as the air craft overflights to aid in determining the system's operational performance. Beam attenuation coefficient and depth d product d was established early in the program as the performance criterion index. A performance product of 6 was determined to be the goal. This performance goal was successfully met or exceeded in the large number of field tests executed. Included are selected data from nadir-angle tests conducted at 0, 5, 10, and 15. Field-of-view data chosen from the 2-, 5-, 10-, and 20-mrad tests are also presented. Depth measurements obtained to altitudes of 456 m are given for additional comparison. This laser bathymetry system represents a significant improvement over prior models in that (1) the complete surface-to-bottom pulse waveform is digitally recorded on magnetic tape at a rate of 400 pulse waveforms/sec, and (2) wide-swath mapping data may be routinely acquired using the 30 full-angle conical scanner. Space does not allow all the 5,000,000 laser soundings to be included. Qualified interested users may obtain complete data sets for their own in-depth analysis. 15 references, 9 figures, 1 table.

  7. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  8. Using airborne LIDAR to measure tides and river slope

    NASA Astrophysics Data System (ADS)

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.

    2014-12-01

    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  9. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  10. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  11. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  12. Airborne measurement of peroxy radicals in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Andrés Hernández, Maria Dolores; Horstjann, Markus; Kartal, Deniz; Krebsbach, Marc; Linke, Christian; Lichtenstern, Michael; Andrey, Javier; Burrows, John P.

    2013-04-01

    The importance of peroxy radicals in the tropospheric chemistry is well recognized in the scientific literature. Hydroxy- and organic peroxy radicals (HO2 and RO2, R being an organic chain) are key intermediates in the OH radical initiated oxidation of CO and SO2, of volatile organic compounds (VOC), in the ozonolysis of alkenes and photo-oxidation of carbonyl species. Peroxy radicals are responsible for the ozone production in the troposphere, the formation of peroxides and other oxidants. Although radical chemistry in the troposphere has been subject of intensive research in the past three decades, it is still very few known about the vertical distribution of peroxy radicals. Airborne observations are scarce in spite of their particular importance to improve the understanding of the tropospheric chemistry and the oxidising capacity of the atmosphere at different altitudes. In situ trace gas measurements were carried out in summer 2010 on board of the INTA (Instituto Nacional de Técnicas Aeroespaciales) C212 aircraft over Spain in the frame of the EUFAR project VERDRILLT (VERtical Distribution of Radicals In the Lower Layers of the Troposphere), and in cooperation with the DLR (Deutsches Zentrum für Luft- und Raumfahrt), the University of Wuppertal, the CEAM (Centro de Estudios Ambientales del Mediterráneo) and the UPV-EHU University in Bilbao. VERDRILLT aimed at getting a deeper understanding of the vertical distribution of peroxy radicals in the lower layers of the troposphere. Measurements were taken over urban areas and extensions of different vegetation under meteorological conditions favouring active photochemistry and convection from the ground into close atmospheric layers. Results and main findings will be presented and discussed.

  13. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  14. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  15. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. PMID:24246149

  16. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  17. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  18. Science opportunities using the NASA scatterometer on N-ROSS

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.

    1985-01-01

    The National Aeronautics and Space Administration scatterometer (NSCAT) is to be flown as part of the Navy Remote Ocean Sensing System (N-ROSS) scheduled for launch in 1989. The NSCAT will provide frequent accurate and high-resolution measurements of vector winds over the global oceans. NSCAT data will be applicable to a wide range of studies in oceanography, meteorology, and instrument science. The N-ROSS mission, is outlined, are described. The capabilities of the NSCAT flight instrument and an associated NASA research ground data-processing and distribution system, and representative oceanographic meteorological, and instrument science studies that may benefit from NSCAT data are surveyed.

  19. Scatterometer Observes Extratropical Transition of Pacific Typhoons

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Wenqing; Dunbar, R. Scott

    1997-01-01

    From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons, Violet and Tom, as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction (Figure 1), and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds (Figure 2). We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved [e.g., Sinclair, 1993], but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest trans-ocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas. NSCAT was successfully launched into a near-polar, sun-synchronous orbit on the Japanese Advanced Earth Observing Satellite (ADEOS) in August 1996 from Tanegashima Space Center in Japan. NSCAT's six antennas send microwave pulses at a frequency of 14 GHz to the Earth's surface and measure the backscatter. The antennas scan two 600-km bands of the ocean, which are separated by a 330-km data gap. From NSCAT observations, surface wind vectors can be derived at 25-km spatial resolution, covering 77% of the ice-free ocean in one day and 97% of the ocean in two days, under both clear and cloudy conditions.

  20. Biweekly Maps of Wind Stress for the North Pacific from the ERS-1 Scatterometer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The European Remote-sensing Satellite (ERS-1) was launched in July 1991 and contained several instruments for observing the Earth's ocean including a wind scatterometer. The scatterometer measurements were processed by the European Space Agency (ESA) and the Jet Propulsion Laboratory (JPL). JPL reprocessed (Freilich and Dunbar, 1992) the ERS-1 backscatter measurements to produced a 'value added' data set that contained the ESA wind vector as well as a set of up to four ambiguities. These ambiguities were further processed using a maximum-likelihood estimation (MLE) and a median filter to produce a 'selected vector.' This report describes a technique developed to produce time-averaged wind field estimates with their expected errors using only scatterometer wind vectors. The processing described in this report involved extracting regions of interest from the data tapes, checking the quality and creating the wind field estimate. This analysis also includes the derivation of biweekly average wind vectors over the North Pacific Ocean at a resolution of 0.50 x 0.50. This was done with an optimal average algorithm temporally and an over-determined biharmonic spline spatially. There have been other attempts at creating gridded wind files from ERS-1 winds, e.g., kriging techniques (Bentamy et al., 1996) and successive corrections schemes (Tang and Liu, 1996). There are several inherent problems with the ERS-1 scatterometer. Since this is a multidisciplinary mission, the satellite is flown in different orbits optimized for each phase of the mission. The scatterometer also shares several sub-systems with the Synthetic Aperture Radar (SAR) and cannot be operated while the SAR is in operation. The scatterometer is also a single-sided instrument and only measures backscatter along the right side of the satellite. The processing described here generates biweekly wind maps during the wktwo years analysis period regardless of the satellite orbit or missing data.

  1. Airborne measurements of the photolysis frequency of NO2

    NASA Astrophysics Data System (ADS)

    Volz-Thomas, Andreas; Lerner, Ansgar; PäTz, Hans-Werner; Schultz, Martin; McKenna, Daniel S.; Schmitt, Rainer; Madronich, Sasha; RöTh, Ernst Peter

    1996-08-01

    A set of photoelectric detectors for airborne measurements of the photolysis frequency of NO2, i.e., JNO2, was developed and integrated aboard the research aircraft Hercules C-130 operated by the U.K. Meteorological Office. The instrument consists of two separate sensors, each of which provides an isotropic response over a solid angle of 2π steradian (sr). The sensors are mounted on top and below the aircraft, respectively, to obtain a field of view of 4π sr, and permit the discrimination of the upwelling and downwelling components of the actinic flux. From experimental tests and model calculations it is demonstrated that small differences between the spectral sensitivity of the sensors and the spectral response of JNO2 can lead to significant errors in the determination of JNO2, especially under cloudy conditions. We present correction factors for clear sky conditions and suggest the use of a new filter combination in the sensors which requires only small corrections and provides acceptable accuracy, even under cloudy conditions. A climatology of JNO2 values is presented from a series of flights made in 1993 at latitudes of 36°-59°N. For clear sky conditions and solar zenith angles of 33°-35°, JNO2 was 8.3 × 10-3 s-1 at sea level and increased with altitude to values of 13 × 10-3 s-1 at 7.5 km altitude. Above clouds, JNO2 reached maximum values of 24 × 10-3 s-1, and peak values of 29 × 10-3 s-1 were observed for very short periods in the uppermost layers of clouds. Enhancement of the actinic flux due to light scattered from clouds was also observed at altitudes below 0.5 km. Comparison of the clear sky data with predictions from different radiative transfer models reveals the best agreement for models of higher angular resolution. The Delta Eddington method underpredicts the measurements significantly, whereas the JNO2 values predicted by the discrete ordinate method and multidirectional model are only about 5% smaller than our measurements, a difference

  2. Scatterometer wind speed bias induced by the large-scale component of the wave field

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.; Pihos, G. G.; Ip, J.

    1988-01-01

    In order to determine if an environmental bias exists in the winds measured by the Seasat A satellite scatterometer (SASS), the SASS wind speed observations, U(s), colocated with the buoy wind speed data, U(b), were analyzed. There was a trend in the SASS wind speed error, U(b) - U(s), which was found to be related to the degree of the development of wind-generated gravity waves; this trend (estimated to be 0.5 m/sec per 100 km of the generalized wind fetch) is capable of introducing a well-pronounced environmental bias into the scatterometer-produced global distributions of wind.

  3. Airborne measurements of peroxy radicals using the PERCA technique.

    PubMed

    Green, Timothy J; Reeves, Claire E; Brough, Neil; Edwards, Gavin D; Monks, Paul S; Penkett, Stuart A

    2003-02-01

    The Peroxy Radical Chemical Amplifier (PERCA) technique is a proven method for measurement of ambient levels of peroxy radicals at ground level, but there are no published instances of the technique being used on an aerial platform. Here we describe deployment of a PERCA on the former UK Meteorological Office C-130 Hercules research aircraft. The instrument uses the established method of chemical amplification and conversion of peroxy radicals to nitrogen dioxide (NO2) by doping the sample air-flow matrix with CO and NO, subsequently measuring the NO2 yield with an improved 'Luminox' LMA-3 NO2 detector. NO2 from the amplification chemistry is distinguished from other sources of NO2 reaching the detector by periodically injecting CO approximately 1 s downstream of the NO injection point (termination mode). Chain lengths (CL's) for the amplification chemistry were typically approximately 260 (ground level) to approximately 200 (7,000 m). This variation with altitude is less than the variation associated with the 'age' of the PFA inlet material where the amplification chemistry occurs; CL's of approximately 200 with old tubing to approximately 300 with new clean tubing were typical (ground level values). The CL determinations were made in-flight using an onboard calibration unit based on the 254 nm photolysis of 7.5 to 10 parts per billion (by volume, ppbv) of CH3I in air, producing CH3O2 in a quantitative manner. The noise-equivalent detection limit for peroxy radicals (HO2 + RO2) is 2 parts per trillion (by volume, pptv) at 3,650 m when the background ambient ozone levels are stable, based on a 5 min average of five 30 s amplification cycles and five 30 s termination cycles. This detection limit is a function of several factors but is most seriously degraded when there is large variability in the ambient ozone concentration. This paper describes the instrument design, considers its performance and proposes design improvements. It concludes that the performance of an

  4. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  5. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Saatchi, S. S.; Chave, J.; Dalling, J. W.; Bohlman, S.; Fricker, G. A.; Robinson, C.; Neumann, M.; Hubbell, S.

    2013-08-01

    Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne lidar measurements of forest height acquired about 10 yr apart over Barro Colorado Island (BCI), Panama. We used the forest inventory data from the 50 ha Center for Tropical Forest Science (CTFS) plot collected every 5 yr during the study period to calibrate the estimation. We compared two approaches for detecting changes in forest aboveground biomass (AGB): (1) relating changes in lidar height metrics from two sensors directly to changes in ground-estimated biomass; and (2) estimating biomass from each lidar sensor and then computing changes in biomass from the difference of two biomass estimates, using two models, namely one model based on five relative height metrics and the other based only on mean canopy height (MCH). We performed the analysis at different spatial scales from 0.04 ha to 10 ha. Method (1) had large uncertainty in directly detecting biomass changes at scales smaller than 10 ha, but provided detailed information about changes of forest structure. The magnitude of error associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Method (2) was accurate at the 1 ha scale to estimate AGB stocks (R2 = 0.7 and RMSEmean = 27.6 Mg ha-1). However, to predict biomass changes, errors became comparable to ground estimates only at a spatial scale of about 10 ha or more. Biomass changes were in the same direction at the spatial scale of 1 ha in 60 to 64% of the subplots, corresponding to p values of respectively 0.1 and 0.033. Large errors in estimating biomass changes from lidar data resulted from the uncertainty in detecting changes at 1 ha from ground census data

  6. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  7. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  8. Phenomenological approach to scatterometer data interpretation

    NASA Technical Reports Server (NTRS)

    Alzofon, F. E.

    1970-01-01

    A graphic method of analyzing radar scatterometer sea clutter data leading to linear relations between scattering cross sections and tan angle of incidence of the radiation is proposed. This relation permits formulation of simple analytic relations without reference to the ocean surface spectrum. Parameters introduced depend on the wavelength of the incident radiation and its polarization, and on wind and sea states. The simplicity of the expressions derived suggests a corresponding simplicity in the physical mechanism of radar sea clutter return.

  9. An improved hurricane wind vector retrieval algorithm using SeaWinds scatterometer

    NASA Astrophysics Data System (ADS)

    Laupattarakasem, Peth

    Over the last three decades, microwave remote sensing has played a significant role in ocean surface wind measurement, and several scatterometer missions have flown in space since early 1990's. Although they have been extremely successful for measuring ocean surface winds with high accuracy for the vast majority of marine weather conditions, unfortunately, the conventional scatterometer cannot measure extreme winds condition such as hurricane. The SeaWinds scatterometer, onboard the QuikSCAT satellite is NASA's only operating scatterometer at present. Like its predecessors, it measures global ocean vector winds; however, for a number of reasons, the quality of the measurements in hurricanes are significantly degraded. The most pressing issues are associated with the presence of precipitation and Ku-band saturation effects, especially in extreme wind speed regime such as tropical cyclones (hurricanes and typhoons). Under this dissertation, an improved hurricane ocean vector wind retrieval approach, named as Q-Winds, was developed using existing SeaWinds scatterometer data. This unique data processing algorithm uses combined SeaWinds active and passive measurements to extend the use of SeaWinds for tropical cyclones up to approximately 50 m/s (Hurricane Category-3). Results show that Q-Winds wind speeds are consistently superior to the standard SeaWinds Project Level 2B wind speeds for hurricane wind speed measurement, and also Q-Winds provides more reliable rain flagging algorithm for quality assurance purposes. By comparing to H*Wind, Q-Winds achieves ˜9% of error, while L2B-12.5km exhibits wind speed saturation at ˜30 m/s with error of ˜31% for high wind speed (>40 m/s).

  10. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  11. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  12. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  13. Qualification of an integrated scatterometer for CD measurements of sub-100nm resist structures in a high-volume 300mm DRAM production environment

    NASA Astrophysics Data System (ADS)

    Marschner, Thomas; Fleischer, Goeran; Fuchs, Stefan; Friedrich, Michael; Kramer, Uwe; Voigt, Matthias; Hetzer, Dave

    2005-05-01

    In our work, Tokyo Electron's iODP103 (integrated Optical Digital Profilometry) technology is used for integrated measurements on a next-generation Lithius Clean Track on after develop inspect (ADI) 300mm wafers. We show that single tool precision and tool-to-tool matching of three integrated systems fulfill the precision requirements of the 70nm DRAM technology node. Further results from a long-term pilot test using integrated scatterometry in a full-volume DRAM production of the 110nm technology node on 300mm wafers are also discussed. The data from our experiment is collected and charted in fab monitored statistical process control (SPC) charts, and compared to the charts from the POR CD-SEM measurements. The sampling plans are optimized in such a way as to perform fully integrated measurements on all wafers per lot, without throughput loss of the litho cluster. We demonstrate that the possibility of measuring all wafers per lot directly after development, in combination with the sensitivity of the method, allows the identification of effects that could not previously be identified by CD-SEM measurements alone.

  14. The role of airborne eddy correlation measurements in global change studies

    NASA Technical Reports Server (NTRS)

    Ritter, J. A.; Barrick, J. D. W.; Sachse, G. W.; Collins, J. E., Jr.; Anderson, B. E.; Hill, G. F.; Woerner, M. A.; Harkleroad, J. E., Jr.

    1994-01-01

    We have obtained measurements of the mean and turbulent quantities of heat, moisture, momentum, O3, CO, and CH4 from an airborne platform. Species flux measurements obtained from these data provide unique regional-scale information which can be used to evaluate 'scaled-up' flux estimates based on smaller scale observations. Airborne flux data also provide a basis for assessing the uncertainties associated with large-scale ground level flux extrapolations. Airborne constituent budget analyses are possible with this suite of measurements. The local change in the mean value of a parameter can be explained in terms of horizontal advection, vertical turbulent transport, and, in the case of chemically reactive species (i.e., O3), in situ production or destruction. This technique is used to indicate a direct relationship between O3 precursors and the measured in situ production rate.

  15. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  16. Objective Operational Utilization of Satellite Microwave Scatterometer Observations of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Cardone, Vincent J.; Cox, Andrew T.

    2000-01-01

    This study has demonstrated that high-resolution scatterometer measurements in tropical cyclones and other high-marine surface wind regimes may be retrieved accurately for wind speeds up to about 35 mls (1-hour average at 10 m) when the scatterometer data are processed through a revised geophysical model function, and a spatial adaptive algorithm is applied which utilizes the fact that wind direction is so tightly constrained in tile inner core of severe marine storms that wind direction may be prescribed from conventional data. This potential is demonstrated through case studies with NSCAT data in a severe West Pacific Typhoon (Violet, 1996) and an intense North Atlantic hurricane (Lili, 1996). However, operational scatterometer winds from NSCAT and QuickScat in hurricanes and severe winter storms are biased low in winds above 25 m/s. We have developed an inverse model to specify the entire surface wind field about a tropical cyclone from operational QuickScat scatterometer measurements within 150 nm of a storm center with the restriction that only wind speeds up to 20 m/s are used until improved model function are introduced. The inverse model is used to specify the wind field over the entire life-cycle of Hurricane Floyd (1999) for use to drive an ocean wave model. The wind field compares very favorably with wind fields developed from the copious aircraft flight level winds obtained in this storm.

  17. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements. PMID:15074425

  18. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  19. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  20. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ɛ, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ɛ. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ɛ in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  1. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  2. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Howell, Burgess F.; Hardesty, Robert M.; Tratt, David M.; Darby, Lisa S.

    1999-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, Jet Propulsion Laboratory and NASA Marshall Space Flight Center jointly developed an airborne scanning coherent Doppler Lidar. We describe the system, present recent measurement (including the first wind fields measured within a hurricane using Doppler lidar), and describe prospective instrument improvements and research applications.

  3. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  4. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  5. Development of Airborne Eddy-Correlation Flux Measurement Capabilities for Reactive Oxides of Nitrogen

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.

  6. Using Spaceborne Ku-Band Scatterometer for Global Snow Cover Monitoring

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Tsai, W.-Y.

    1999-01-01

    We demonstrate for the first time the utility of spaceborne Ku-band scatterometer for global snow cover monitoring. Satellite radar data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on board the Japanese ADEOS spacecraft from September 1996 to June 1997, spanning the 1997 seasonal snow season. First, we present backscatter signature of dry and wet snow to facilitate the interpretation of NSCAT backscatter evolution over snow cover regions. Surface field experiments indicated that dry snow backscatter at Ku band is approximately 40 times stronger than that at C band. Thus, Ku-band scatterometer measurements are sensitive to snow cover, which is typically transparent to C-band scatterometer returns. Furthermore, Ku-band backscatter does not saturate for most of natural snow depths as compared to radar responses at 19 GHz and 37 GHz or higher frequencies which have more limited penetration depths into snow. Ku-band backscatter is also sensitive to wetness in snow, which is appropriate to detect early snow melt conditions. Using the snow backscatter characteristics, we investigate NSCAT backscatter evolution over global snow cover regions throughout the 1997 snow season. The results reveal detail delineations between different regional snow areas. We show the correlation of these delineations with the boundaries of different global snow classes defined by the U.S. Army Cold Regions Research and Engineering Laboratory snow classification system. Using in-situ snow depth data from the U.S. National Climatic Data Center, we show that Ku-band backscatter corresponds very well to the trend of snow melt while snow mapping products (U.S. Climate Prediction Center gridded snow charts) from visible sensors does not reflect the fast snow melt trend. To illustrate the practical application of global snow monitoring with spaceborne Ku-band scatterometer, we present NSCAT backscatter response corresponding to the snow event leading to the 1997

  7. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  8. LOREP 1993 summary report: Airborne measurements of meteorological variables, atmospheric particles and sulfur hexafluoride. Technical memo

    SciTech Connect

    Wilkison, S.W.; Wellman, D.L.

    1996-03-01

    Meteorological variables and sulfur hexafluoride (SF6) were measured using the NOAA King Air research aircraft during February and March, 1993, over the Sierra Nevada Range of northern California as part of the Lake Oroville Runoff Enhancement Prototype Program (LOREP 1993). Race track pattern flights were made from approximately Sierraville, CA, to Gasner, CA. Airborne sampling was used to locate a plume containing sulfur hexafluoride as a tracer and propane as a seeding agent. The aircraft also carried an optical imaging probe. This report introduces the program in general, discusses the objectives of LOREP 1993, the instrumentation used and the data obtained by the NOAA airborne operation.

  9. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  10. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  11. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam.

    PubMed

    Ling, Lin; Li, Yong-qing

    2013-02-15

    We demonstrate a method for optical trapping and Raman spectroscopy of micron-sized, airborne absorbing particles using a single focused laser beam. A single Gaussian beam at 532 nm is used to trap and precisely manipulate absorbing airborne particles. The fluctuation of the position of the trapped particles is substantially reduced by controlling the power of the laser beam with a position-sensitive detector and a locking circuit. Raman spectra of the position-stabilized particles or clusters are then measured with an objective and CCD spectrograph. PMID:23455087

  12. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  13. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  14. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  15. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  16. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    NASA Astrophysics Data System (ADS)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  17. Aircraft scatterometer observations of soil moisture on rangeland watersheds

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1983-01-01

    Extensive studies conducted by several researchers using truck-mounted active microwave sensors have shown the sensitivity of these sensors to soil moisture variations. The logical extension of these results is the evaluation of similar systems at lower resolutions typical of operational systems. Data collected during a series of aircraft flights in 1978 and 1980 over four rangeland watersheds located near Chickasha, Oklahoma, were analyzed in this study. These data included scatterometer measurements made at 1.6 and 4.75 GHz using a NASA aircraft and ground observations of soil moisture for a wide range of moisture conditions. Data were analyzed for consistency and compared to previous truck and aircraft results. Results indicate that the sensor system is capable of providing consistent estimates of soil moisture under the conditions tested.

  18. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  19. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  20. Results of a study on polarization mix selection for the NSCAT scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Dunbar, R. Scott; Shaffer, Scott; Freilich, Michael H.; Hsiao, S. Vincent

    1989-01-01

    The NASA scatterometer (NSCAT) is an instrument designed to measure the radar backscatter of the ocean's surface for estimating the near-surface wind velocity. A given resolution element is observed from several different azimuth angles. From these measurements the near-surface vector wind over the ocean may be inferred using a geophysical model function relating the normalized radar backscatter coefficient (sigma0) to the near-surface wind. The results of a study to select a polarization mix for NSCAT using an end-to-end simulation of the NSCAT scatterometer and ground processing of the sigma0 measurements into unambiguous wind fields using a median-filter-based ambiguity-removal algorithm are presented. The system simulation was used to compare the wind measurement accuracy and ambiguity removal skill over a set of realistic mesoscale wind fields for various polarization mixes. Considerations in the analysis and simulation are discussed, and a recommended polarization mix is given.

  1. Application of Bayesian decision theory to airborne gamma snow measurement

    NASA Technical Reports Server (NTRS)

    Bissell, V. C.

    1975-01-01

    Measured values of several variables are incorporated into the calculation of snow water equivalent as measured from an aircraft by snow attenuation of terrestrial gamma radiation. Bayesian decision theory provides a snow water equivalent measurement by taking into account the uncertainties in the individual measurement variables and filtering information about the measurement variables through prior notions of what the calculated variable (water equivalent) should be.

  2. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  3. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  4. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Riris, H.; Abshire, J. B.; Allan, G. R.; Stephen, M.; Hasselbrack, W.; Mao, J.

    2012-12-01

    We report on airborne atmospheric pressure measurements using fiber-based laser technology and the oxygen A-band at 765 nm. Remote atmospheric temperature and pressure measurements are needed for NASA's Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. ASCENDS will measure atmospheric CO2 dry mixing ratios on a global scale. Remote atmospheric pressure measurements are necessary to normalize ASCENDS CO2 measurements. Our work, funded by the ESTO IIP program, uses erbium doped fiber optic amplifiers and non-linear optics technology to tune laser radiation over the Oxygen A-band between 764.5 nm and 765 nm. Surface reflections are fiber-coupled from a receiver telescope to photon counting detectors. Our pulsed, time gated approach resolves ground reflections from cloud returns. This system successfully recorded O2 absorption spectra during two airborne campaigns aboard a NASA DC-8. Airborne data has been analyzed and fitted to HITRAN reference spectra based upon aircraft meteorological data. Our algorithm linearly scales the HITRAN reference until measurement errors are minimized. Atmospheric pressure changes are estimated by comparing the differential optical depth of the optimum scaled HITRAN spectra to the differential optical depth of the nominal HITRAN spectra. On flights over gradually sloping terrain, these results compare favorably with ground-based observations and predictions from computer models. Measurement uncertainty is commensurate with photon counting noise. We plan to reduce measurement uncertainty in future campaigns by improving transmitter pulse energy and increasing wavelength sweep frequency.

  5. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.

    1992-01-01

    Soil moisture measurements were obtained during the summer of 1987 and 1989 near Manhattan, Kansas, using the National Weather Service (NWS) airborne gamma radiation system. A network of 24 flight lines were established over the research area. Airborne surveys were flown daily during two intensive field campaigns. The data collected was sufficient to modify the NWS standard operational method for estimating soil moisture for the Field Experiment (FIFE) flight lines. The average root mean square error of the soil moisture estimates for shorter FIFE flight lines was found to be 2.5 percent, compared with a reported value of 3.9 percent for NWS flight lines. Techniques were developed to compute soil moisture estimates for portions of the flight lines. Results of comparisons of the airborne gamma radiation soil moisture estimates with those obtained using the NASA Pushbroom Microwave Radiation (PBMR) system and hydrological model are presented. The airborne soil moisture measurements, and real averages computed using all remotely sensed and ground data, have been in support of the research of the many FIFE investigators whose overall goal was the upscale integration of models and the application of satellite remote sensing.

  6. Assessment of water pollution by airborne measurement of chlorophyll

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  7. True airspeed measured by airborne laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Munoz, R.; Mocker, H. W.; Koehler, L. E.

    1973-01-01

    Velocimeter utilizing carbon dioxide laser measures true airspeed of aircraft. Results of flight tests indicate that clear-weather airspeeds can be measured with accuracy better than 0.1% at altitudes up to 3000 meters; measurements can be made at much greater altitudes in cloudy or turbid air.

  8. Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer.

    PubMed

    Petritoli, Andrea; Ravegnani, Fabrizio; Giovanelli, Giorgio; Bortoli, Daniele; Bonafè, Ubaldo; Kostadinov, Ivan; Oulanovsky, Alexey

    2002-09-20

    An airborne UV-visible spectrometer, the Gas Analyzer Spectrometer Correlating Optical Differences, airborne version (GASCOD/A4pi) was successfully operated during the Airborne Polar Experiment, Geophysica Aircraft in Antarctica airborne campaign from Ushuaia (54 degrees 49' S, 68 degrees 18' W), Argentina in southern spring 1999. The instrument measured scattered solar radiation through three optical windows with a narrow field of view (FOV), one from the zenith, two from the horizontal, as well as actinic fluxes through 2pi FOV radiometric heads. Only a few airborne measurements of scattered solar radiation at different angles from the zenith are available in the literature. With our configuration we attempted to obtain the average line-of-sight concentrations of detectable trace gases. The retrieval method, based on differential optical absorption spectroscopy, is described and results for ozone are shown and compared with measurements from an in situ instrument as the first method of validation. PMID:12269557

  9. Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Ravegnani, Fabrizio; Giovanelli, Giorgio; Bortoli, Daniele; Bonafè, Ubaldo; Kostadinov, Ivan; Oulanovsky, Alexey

    2002-09-01

    An airborne UV-visible spectrometer, the Gas Analyzer Spectrometer Correlating Optical Differences, airborne version (GASCOD/A4π) was successfully operated during the Airborne Polar Experiment, Geophysica Aircraft in Antarctica airborne campaign from Ushuaia (54°49'S, 68°18'W), Argentina in southern spring 1999. The instrument measured scattered solar radiation through three optical windows with a narrow field of view (FOV), one from the zenith, two from the horizontal, as well as actinic fluxes through 2π FOV radiometric heads. Only a few airborne measurements of scattered solar radiation at different angles from the zenith are available in the literature. With our configuration we attempted to obtain the average line-of-sight concentrations of detectable trace gases. The retrieval method, based on differential optical absorption spectroscopy, is described and results for ozone are shown and compared with measurements from an in situ instrument as the first method of validation.

  10. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

  11. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. Comparison between carbon monoxide measurements from spaceborne and airborne platforms

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Cahoon, D. R.; Reichle, H. G., Jr.; Scheel, H. E.

    1991-01-01

    The measurements of air pollution from satellites (MAPS) experiment measured the distribution of middle tropospheric carbon monoxide (CO) from the Space Shuttle during October 1984. A critical area of the experiment is the assessment of experimental error of the MAPS data. This error is determined by the comparison between the space-based CO data and concurrent, direct CO measurements taken aboard aircraft. Because of the variability in the CO measurements near land sources, a strategy for comparing the tropospheric CO measurements over the remote oceans is presented.

  13. A polarization-modulated multichannel Mueller-matrix scatterometer for smoke particle characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Qixing; Qiao, Lifeng; Wang, Jinjun; Fang, Jun; Zhang, Yongming

    2009-11-01

    The polarization properties of scattered light are being exploited to determine the optical and physical information of small particles. In this paper, a scatterometer is developed for simultaneously measuring the Mueller scattering matrix elements as functions of the scattering angle. The scatterometer uses an electro-optic modulator to modulate the polarization state of the incident light, and uses two photomultipliers provided with different polarization optics to consist multichannel polarization-state detector. The instrument takes advantage of combination of the polarizationmodulation technique and division-of -amplitude photopolarimeter, which make for a compact design and substantial increase in measurement throughput and speed. The methods of calibration and alignment using the polarizationmodulated light are established, with which the instrument is calibrated precisely. The methods of data processing and error analysis of the measured Mueller matrix elements are developed. A hybrid experimental/theoretical approach to study the light scattering properties of smoke particles is also presented.

  14. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  15. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  16. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  17. Airborne Doppler radar velocity measurements of precipitation seen in ocean surface reflection

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Matejka, T. J.

    1985-01-01

    The use of airborne or spaceborne radars to observe precipitation simultaneously directly and in reflection could provide significant new opportunities for measuring the properties of the precipitation, wind field, and ocean surface. Atlas and Meneghini (1983) have proposed that the difference between direct and reflected precipitation echo intensities observed with a nadir-directed beam is a measure of two-way attenuation and thus of path average rain rate, taking into account an employment of direct and reflected echoes from very near the ocean surface to normalize for ocean surface scatter. In the present paper, some key meteorological and oceanographic research applications are illustrated, giving particular attention to airborne Doppler radar velocity measurements of the precipitation.

  18. An intercomparison of airborne nitric oxide measurements - A second opportunity

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Torres, Arnold L.; Carroll, Mary Anne; Ridley, Brian A.

    1990-01-01

    Results are reported from a comparison of three tropospheric NO measurement instruments during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) in summer 1986. The instruments tested were those used in CITE 1 (Hoell et al., 1987): a two-photon LIF system and two chemiluminescence systems. It is found that the mixing ratios obtained with the three systems agreed to within 15-20 parts per trillion volume (pptv) for sampling perods of 1-6 min at mixing ratios less than 20 pptv; the average difference between pairs of measurements was 5-7 pptv, which is considered to be the uncertainty in state-of-the-art ambient NO measurements.

  19. Airborne tunable diode laser measurements of trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce E.; Drummond, James R.

    1998-05-01

    Highly sensitive and accurate measurements of numerous trace gases are required to further our understanding of atmospheric processes. Tunable diode laser systems, which offer many advantages in this regard, can be designed for reliable field measurements on both ground-based and aircraft platforms. The present paper describes the long term effort at the National Center for Atmospheric Research (NCAR) to develop, employ, and validate a highly sensitive tunable diode laser absorption spectrometer for the measurement of various trace gases, including formaldehyde and carbon monoxide. This system was successfully employed on three recent aircraft campaigns. The present paper describes the aircraft instrument along with hardware and software features incorporated for high sensitivity, with particular emphasis on major modifications to the NCAR aircraft system over the past year.

  20. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  1. Changes in airborne bacteria during a tropical burning season are correlated with satellite aerosol measurements

    NASA Astrophysics Data System (ADS)

    Mims, F., III

    Agricultural burning in the tropics generates vast quantities of smoke that can blanket entire countries and attenuate photosynthetically active radiation (PAR). Thick smoke also reduces the solar ultraviolet-B wavelengths that synthesize vitamin-D precur- sors in vertebrates and suppress many viruses and non-pigmented bacteria. As many pathogenic bacteria are non-pigmented, the latter finding may explain some of the in- creases in respiratory and other diseases that occur during episodes of severe aerosol loading. At Alta Floresta, Brazil, during the 1997 burning season, the correlation (r^2) of UV-B measured at the surface with the ratio of non-pigmented to total airborne bacteria colony forming units (CFUs) was 0.83. The correlation of the aerosol index measured from orbit by TOMS with the ratio of non-pigmented to total airborne bac- teria CFUs was 0.71. These findings suggest the application of satellite measurements of optical depth as a first approximation epidemiological tool for remote regions that have seasonally smokey skies. Further comparisons are warranted of surface measure- ments of airborne bacteria, UV-B and PAR with TOMS and MODIS observations of optical depth during severe air pollution events.

  2. Airborne eddy covariance measurements of methane over mid-latitude and sub-Arctic wetlands

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Hartmann, J.

    2011-12-01

    Methane fluxes between terrestrial ecosystems and the atmosphere are highly variable in space and time. This is especially valid for wetlands, which are often characterized by extremely small-scale spatial heterogeneity. While closed chambers and eddy covariance methods are well suited for identifying individual contributions from micro-sites, for local process studies, for controlled experiments, and for investigating the temporal variability of fluxes, they may not necessarily be representative of larger spatial scales and of resolving interactions between methane emissions and boundary layer processes. A comprehensive assessment of the role of natural wetlands in atmospheric CH4 dynamics would thus benefit greatly from regional, i.e. airborne flux and concentrations measurements. Airborne measurements allow sufficiently large spatial coverage and may therefore be significantly more representative than sparse ground-based measurements, especially in remote and extensive northern wetlands and permafrost areas. In June 2011 we used a Los Gatos RMT-200 Fast Methane Analyzer and the onboard turbulence nose boom of the Polar-5 research aircraft to conduct airborne eddy covariance measurements of methane emissions over a variety of anthropogenic and natural targets. These included rewetted areas in northeastern Germany and extensive boreal and sub-Arctic wetlands in near Hyytiälä, Sodankylä, and Kaamanen in Finland. We will present preliminary results obtained during repeated survey flights along flight tracks of several kilometers to tens of kilometers.

  3. Airborne Doppler measurements of the central California extended sea breeze

    NASA Technical Reports Server (NTRS)

    Carroll, J. J.

    1985-01-01

    One data acquisition flight was executed in the late summer of 1984. The flight paths were designed to obtain measurements of the extended sea breeze penetration into the central valley of California over several hours. Data from this flight are being processed at Marshall Space Flight Center prior to release for analysis.

  4. AIRBORNE LIDAR MEASUREMENTS OF STREAMBANK AND GULLY EROSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambank and gully erosion are significant factors contributing to soil loss from the landscape and for understanding sediment budgets. They need to be measured and evaluated quantitatively at large scales to understand their effects in natural and agricultural landscapes. It is difficult and ti...

  5. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    NASA Astrophysics Data System (ADS)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  6. Airborne measurements of formaldehyde employing a high-performance tunable diode laser absorption system

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Walega, James G.; Richter, Dirk A.; Potter, William T.

    2002-09-01

    Formaldehyde (CH2O) is a ubiquitous component of both the remote atmosphere as well as the polluted urban atmosphere. This important gas-phase intermediate is a primary emission product from hydrocarbon combustion sources as well as from oxidation of natural hydrocarbons emitted by plants and trees. Through its subsequent decomposition, formaldehyde is a source of reactive hydrogen radicals, which control the oxidation capacity of the atmosphere. Because ambient CH2O concentrations attain levels as high as several tens of parts-per-billion (ppbv) in urban areas to levels as low as tens of parts-per-trillion (pptv) in the remote background atmosphere, ambient measurements become quite challenging, particularly on airborne platforms. The present paper discusses an airborne tunable diode laser absorption spectrometer, which has been developed and refined over the past 6 years, for such demanding measurements. The results from a recent study will be presented.

  7. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  8. Airborne tunable diode laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Collins, J. E., Jr.; Hill, G. F.; Wade, L. O.; Burney, L. G.; Ritter, J. A.

    1991-01-01

    An airborne tunable diode laser instrument is described that is capable of operating in two measurement modes. One mode provides high precision (0.1 percent CH4; 1 percent CO) measurements of CH4 and CO with a 5 second response time, and a second mode achieves the very fast response time that is necessary to make airborne eddy correlation flux measurements. Examples of data from atmospheric expeditions of the Global Tropospheric Experiment are presented.

  9. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  10. Airborne time-series measurement of soil moisture using terrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas R.; Lipinski, Daniel M.; Peck, Eugene L.

    1988-01-01

    Terrestrial gamma radiation data and independent ground-based core soil moisture data are analyzed. They reveal the possibility of using natural terrestrial gamma radiation collected from a low-flying aircraft to make reliable real-time soil moisture measurements for the upper 20 cm of soil. The airborne data were compared to the crude ground-based soil moisture data set collected at the core sites.

  11. Radiative flux measurements during the Airborne Tropical Tropopause Experiment (ATTREX) Guam Deployment.

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.

    2015-12-01

    The Airborne Tropical Tropopause Experiment was a field program utilizing the NASA Global Hawk aircraft, to make extensive measurements of tropical tropopause layer (TTL) over the Pacific Ocean. In February and March of 2014, the NASA Global Hawk was deployed to Guam and flew six long duration science flights. The aircraft was outfitted with a suite of instruments to study the composition of the TTL. Measurements included: water vapor amount, cloud particle size and shape, various gaseous species (e.g. CO, CH4, CO2, O3), and radiation measurements. The radiation measurements were comprised of the Solar Spectral Flux Radiometer (SSFR) that made spectrally resolved measurements of upwelling and downwelling solar irradiance from 350 to 2200 nm and thermal broadband (4μm to 42 μm) upwelling and downwelling irradiance. Once airborne, the Global Hawk made numerous vertical profiles (14 - 18 km) through the TTL. In this work we present results of combined solar spectral irradiance and broadband thermal irradiance measurements. Solar spectral measurements are correlated, wavelength-by-wavelength, with broadband thermal measurements. The radiative impact in the TTL of water vapor and cirrus clouds are examined both in the solar and thermal wavelengths from both upwelling and downwelling irradiances. The spectral measurements are used in an attempt to attribute physical mechanisms to the thermal (spectrally integrated) measurements. Measurements of heating rates are also presented, highlighting the difficultly in obtaining reliable results from aircraft measurements.

  12. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  13. Retrieval of aerosol optical thickness over land from airborne polarized measurements in Tianjin and Tangshan

    NASA Astrophysics Data System (ADS)

    Wang, Han; Sun, Xiaobing; Hou, Weizhen; Chen, Cheng; Hong, Jin

    2015-03-01

    New developed sensor was called Atmosphere Multi-angle Polarization Radiometer (AMPR). It provides airborne multi-spectral, multi-angular and polarized measurements. Based on the measurements, a method to retrieve aerosol optical thickness (AOT) was developed. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained. Initial surface reflectance was estimated from measurements at 1640 nm. With iteration the surface polarized reflectance tends to the real value together with AOT. Retrieved cases were selected from measurements in Tianjin. Validation between AOTs from AMPR and CE318 is encouraging. The AOTs along the track shows reasonable temporal and spatial variation.

  14. Airborne Spectral Measurements of Ocean Anisotropy during CLAMS

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Arnold, G. T.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The Cloud Absorption Radiometer (CAR) aboard the University of Washington Convair CV-580 research aircraft obtained bidirectional reflectance-distribution function (BRDF) of Atlantic Ocean and Dismal Swamp between July 10 and August 2, 2001. The BRDF measurements (15 in total, 8 uncontaminated by clouds) obtained under a variety of sun angles and wind conditions, will be used to characterize ocean anisotropy in support of Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRDF models of the ocean. In this paper we present results of BRDF of the Ocean under different sun angles and wind conditions. The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micron), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micron). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and

  15. Evaluation of inlets used for the airborne measurement of formaldehyde

    NASA Astrophysics Data System (ADS)

    Wert, B. P.; Fried, A.; Henry, B.; Cartier, S.

    2002-07-01

    The performance of three aircraft inlets used for sampling gas-phase formaldehyde (CH2O) was evaluated. These 1.5 m long inlets were operated with the National Center for Atmospheric Research Tunable Diode Laser Absorption Spectrometer (TDLAS) at flow rates between 7 and 9 standard liters per minute. Laboratory tests were performed on the 1997 North Atlantic Regional Experiment (NARE 97) TDLAS inlet, involving a wide range of sample temperatures (-40° to 25°C), pressures (250-625 torr), relative humidities (<1 to 85%), and CH2O concentrations (0-25 ppbv). Standard additions on ambient air were performed in the field with another inlet. Sampling artifacts were not observed in either case at CH2O levels less than about 10 ppbv to within the measurement precision (25-120 parts per trillion by volume (1 min, 1σ)) and/or accuracy of standard generation (+/-6%). Desorption associated with the Herriott Cell was measured under highly polluted conditions, and was largely corrected for by subtracting a frequently acquired instrument background. Inlet shielding and heating minimized error due to liquid water collection. Common inlet materials such as PFA Teflon and silica-coated steel efficiently transmitted CH2O.

  16. Data composite of airborne in-situ sulfur dioxide measurements

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Wissmüller, Katharina; Arnold, Frank; Aufmhoff, Heinfried; Baumann, Robert; Reiter, Anja; Roiger, Anke

    2015-04-01

    We present sulfur dioxide (SO2) data summaries from a large number of aircraft campaigns performed during the years 2004 to 2014 covering a geographical range from 83°N to 65°S and 105°W to 135°E. The SO2 data have been sampled from the Falcon and Halo research aircraft by the Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen and the Max-Planck-Institut für Kernphysik, Heidelberg using chemical ionization mass spectrometry and cover altitudes up to 15 km. The SO2 measurements were gridded onto a 5° latitude by 5° longitude horizontal grid with a 1-km vertical resolution. For selected regions with sufficient data also averaged vertical profiles were generated. The maps and profiles provide information about the SO2 distribution at mid-latitudes, tropical and polar regions for different seasons and are very valuable for comparison with model and satellite data. Median SO2 mixing ratios measured in the different regions will be presented. We also discuss emission sources and transport pathways for specific observations in the upper troposphere and lower stratosphere with strongly enhanced SO2 mixing ratios.

  17. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  18. Airborne measurements of organosulfates over the continental U.S.

    PubMed Central

    Liao, Jin; Froyd, Karl D; Murphy, Daniel M; Keutsch, Frank N; Yu, Ge; Wennberg, Paul O; St Clair, Jason M; Crounse, John D; Wisthaler, Armin; Mikoviny, Tomas; Jimenez, Jose L; Campuzano-Jost, Pedro; Day, Douglas A; Hu, Weiwei; Ryerson, Thomas B; Pollack, Ilana B; Peischl, Jeff; Anderson, Bruce E; Ziemba, Luke D; Blake, Donald R; Meinardi, Simone; Diskin, Glenn

    2015-01-01

    Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2–0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. Key Points IEPOX sulfate is an isoprene SOA tracer at acidic and low NO conditions Glycolic acid sulfate

  19. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  20. Airborne Measurements of CO by MOPITT-A

    NASA Astrophysics Data System (ADS)

    Jounot, L.; Drummond, J.; Dufour, D.; Mikhailov, O.; Irvine, R.; Gero, J.; Deschambault, R.; Taylor, J.

    2004-05-01

    MOPITT (Measurements of Pollution In The Troposphere) is a carbon monoxide and methane remote sounder launched in 1999 on the Terra spacecraft. An aircraft version of MOPITT (MOPITT-A) has been developed at the University of Toronto to perform validation of MOPITT radiances as well as small scale pollution studies. MOPITT-A is based on the engineering model of MOPITT, modified for flight in NASA's ER-2 research aircraft. In August and September 2000, it participated in the SAFARI 2000 field campaign in South Africa, monitoring CO emissions from biomass burning. This talk will describe the method used to retrieve carbon monoxide concentrations from longwave channel radiances. Special attention will be paid to the September 7th 2000 mission, the highlight of which was the overflight of a large prescribed fire in the vicinity of the Kruger National Park. MOPITT-A is financed by the Canadian Space Agency and the Natural Sciences and Engineering Research Council.

  1. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  2. Passive Measurement of CO2 Column from an Airborne Platform

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. R.; Wilson, Emily; Georgleva, Elena

    2004-01-01

    We are in the third and final year of our IIP funding to develop a sensor for very precise determination of the CO2 Column. Global measurements of this sort from a satellite platform are needed to improve our understanding of the global carbon budget. In previous reports to this meeting we have described the method by which this system operates and presented data taken during ground based tests of the instrument. Work in the final year has concentrated on building the flight hardened version of the instrument that will be used in our field trials on the Dryden DC-8. The flight unit represents an integration of three channels into a single instrument. These three channels are the CO2 channel, the oxygen pressure sensing channel, and the oxygen temperature sensing channel. Integration of the three channels into a single unit significantly decreases the size of the instrument. The flight unit also employs more rugged optical mounts and integrated optical shielding. Light enters the instrument from below first striking the right angled mirror shown extending over the edge of the platform. The light is then focused through a pinhole to define the instrument field of view, chopped and recollimated. Dichroic mirrors are used to separate the CO2 wavelength from the O2 wavelength and that light is further divided by a 50-50 beamsplitter between the 2 oxygen channels - the pressure channel and the temperature channel. The six white boxes contain the detectors for each of the three channels. The detectors on the left in the photo serve the reference channels and the detectors on the right are for the Fabry-Perots. CO2 is measured by the pair of detectors farthest from the viewer. Pressure via O2 is detected by the central pair of detectors. The closest pair is used to determine temperature via O2.

  3. Detection and delineation of buildings from airborne ladar measurements

    NASA Astrophysics Data System (ADS)

    Swirski, Yoram; Wolowelsky, Karni; Adar, Renen; Figov, Zvi

    2004-11-01

    Automatic delineation of buildings is very attractive for both civilian and military applications. Such applications include general mapping, detection of unauthorized constructions, change detection, etc. For military applications, high demand exists for accurate building change updates, covering large areas, and over short time periods. We present two algorithms coupled together. The height image algorithm is a fast coarse algorithm operating on large areas. This algorithm is capable of defining blocks of buildings and regions of interest. The point-cloud algorithm is a fine, 3D-based, accurate algorithm for building delineation. Since buildings may be separated by alleys, whose width is similar or narrower than the LADAR resolution, the height image algorithm marks those crowded buildings as a single object. The point-cloud algorithm separates and accurately delineates individual building boundaries and building sub-sections utilizing roof shape analysis in 3D. Our focus is on the ability to cover large areas with accuracy and high rejection of non-building objects, like trees. We report a very good detection performance with only few misses and false alarms. It is believed that LADAR measurements, coupled with good segmentation algorithms, may replace older systems and methods that require considerable manual work for such applications.

  4. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  5. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  6. Downsizing of Georgia Tech's Airborne Fluorescence Spectrometer (AFS) for the Measurement of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurements (TTGAMG) endeavors to further downsize and stabilize the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE). It will mainly address the TTGAMG successes and failures as participants in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and time lines of the deliverables have been changed. Most of these changes have been covered in the preceding annual report. We are anticipating getting back on track with the original proposal's downsizing effort this summer, culminating in the GITALIFE no longer occupying a high bay rack and the loss of several hundred pounds.

  7. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  8. Footprint prediction of scalar fluxes - Reliability and implications for airborne flux measurements over the FIFE site

    NASA Technical Reports Server (NTRS)

    Schuepp, P. H.; Desjardins, R. L.; Macpherson, J. I.; Leclerc, M. Y.

    1990-01-01

    Estimates of the location and extension of the upwind ground area that affects flux observations most directly are examined to determine the reliability of airborne versus near-ground flux measurements. The theoretical issues regarding the 'footprint' are examined, and specific observations are analyzed by studying the data over a grid regarding sensible heat, latent heat, CO2, and greenness. The grid is footprint-corrected to correlate better with independently observed surface characteristics, and an optimized footprint is developed that satisfies the relationships between the observed variables. Optimized mapping of the surface flux is given which demonstrates the importance of considering local advection to correlate airborne and ground-based flux observations. The technique is particularly applicable to situations in which significant variations in the surface flux density exist.

  9. Airborne flux measurements of trace species in an Arctic boundary layer

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Sachse, Glen W.; Gregory, Gerald L.; Woerner, Mary A.; Watson, Catherine E.; Hill, Gerald F.; Collins, James E., Jr.

    1992-01-01

    In situ airborne flux values for O3, CO, an CH4 over selected wetlands of Alaska are reported, and airborne CH4 flux measurements are presented for the first time. The source/sink distribution over the Yukon-Kuskokwim Delta (YKD) is qualitatively correlated with surface vegetation type. The CH4 source strength over the YKD ranged from 25 to 85 mg/sq m/d. A spatially averaged, seasonally adjusted source strength of 51 mg/sq m/d was established for the YKD. Indirect CH4 flux estimates obtained over the Alaskan North Slope indicate a much lower source strength. The global CH4 emission from tundra are estimated to be 44 Tg/a at an upper limit. Airborne CO flux measurements over the YKD indicate low negative flux values over the coastal areas, while some positive fluxes were observed in the inland sparsely forested regions. An inspection of the cospectrum of CO with vertical velocity for sample runs in coastal areas indicate the possibility of in situ photochemical destruction/production of CO.

  10. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  11. Reconciling Discrepancies Between Airborne and Buoy-Based Measurements of Wind Stress Over Mixed Seas

    NASA Astrophysics Data System (ADS)

    García-Nava, Héctor; Ocampo-Torres, Francisco J.; Hwang, Paul A.

    2015-06-01

    In a previous study it was found that airborne and buoy-based measurements of wind stress made in the Gulf of Tehuantepc, México failed to agree. Here we revisit the issue and analyze data from both platforms in the context of flux-sampling strategies and find that there is now good agreement between wind-stress estimates from both experiments. The sampling strategies used for airborne and buoy-based sampling capture most of the contributing scales to the momentum flux and, correspondingly, the systematic errors for both stress estimates are low. On the other hand, the random error is much larger for the airborne measurements as compared with that for the buoy-based estimates. Increasing the averaging period for the aircraft-based estimates reduces the random error and brings the stress estimates into a better agreement with those from the buoy data. Since there is a good agreement between stress estimates, the apparent underestimation found earlier seems to be coincidental and caused by the interpolation method employed by the source paper.

  12. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  13. Temperature and wind measurements and model atmospheres of the 1989 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Bui, T. P.; Scott, S. G.; Bowen, S. W.; Dean-Day, J.

    1990-01-01

    The ER-2 Meteorological Measurement System provides accurate in situ measurements of atmospheric state variables. During the Airborne Arctic Stratospheric Expedition (AASE) the ER-2 flew over the polar region on 14 occasions in January and February, 1989. Vertical temperature profiles, during aircraft takeoff at about 60 deg N and during midflight descent and ascent at high latitudes, are presented. Latitudinal variations of the horizontal wind measurement are illustrated and discussed. Based on observation data, model atmospheres at 60 deg and 75 deg N, representative of the environment of the AASE campaign, are developed.

  14. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  15. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  16. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  17. [Measurement of airborne asbestos fibers on railroad rolling stock].

    PubMed

    Camilucci, L; Catasta, P F; Chiappino, G; Governa, M; Munafò, E; Verduchi, P; Paba, G

    2000-01-01

    In February 1995 the Italian Railways Health Department set up a special study group in order to assess the effectiveness of the measures adopted against hazards due to the presence of asbestos in rolling stock currently in use on the rail network. The group set up specific procedures for sampling and analysis, on the basis of the criteria fixed for civil buildings in Ministerial Decree of 6/9/94, which was subsequently applied to rolling stock by Ministerial Decree of 26/10/95. In accordance with these procedures the study group carried out environmental studies via test runs programmed by the Railways Technical Departments, on trains made up of different types of vehicles. Insulated, completely or partially deinsulated and originally non-insulated vehicles were studied. Samples were analysed via scanning electron microscopy (SEM) with elementary dispersion X spectroscopy (EDXS) carried out by highly qualified public laboratories (ISPESL--National Institute for Prevention and Work Safety, ARPA--Regional Environmental Protection Agency, CRA--Veneto Region, University Departments). Altogether, from the start of the programme up to September 1998, 1464 samples in 170 test runs on 619 rolling stock vehicles were examined. These involved 83 locomotives, 83 electric rail-cars and 453 carriages. The results showed that in over 99% of the samples the fibre concentrations were below 2 fibres/litre, which is the value fixed by law for buildings and rail vehicles in order to qualify for effective decontamination status. Values exceeding 2 fibres/litre were found in only 4 vehicles, which were withdrawn or blocked for further checks. As a precaution, 18 vehicles where concentrations over 1 but less than 2 fibres/litre were found, were also blocked and their return to service has been postponed for further checks and analyses until the results show concentrations below 1 fibre/litre. Environmental analyses carried out up to the present indicate an overall situation comparable

  18. Signal to Noise Ratio Analysis of the Data from the Pulsed Airborne CO2 Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2009-12-01

    We are developing a differential absorption lidar (DIAL) for measuring the CO2 column concentrations from space for the ASCENDS mission. Our technique uses two pulsed laser transmitters to simultaneously measure the total column absorption by CO2 in 1570 nm band and O2 extinction in the Oxygen A-band by periodically stepping the laser wavelength at predetermined wavelengths across the absorption lines. The reflected laser signals from the surface and clouds are collected by the receiver telescope and detected by a set of single photon counting detectors. We used pulsed lasers and time resolved photon detection to distinguish the surface echoes from cloud and aerosol backscattering and to measure the column height. . The total column absorption at a given wavelength is determined from the ratio of the received laser pulse energy to the transmitted energy. The column gas concentrations and the spectral line shape are determined from curve fitting of the column absorptions as a function of the wavelength. We have built an airborne lidar to demonstrate the CO2 column measurement technique from the NASA Lear-25 aircraft. The airborne lidar scans the laser wavelength across the CO2 absorption line in 20 steps. The line scan rate is 450 Hz, the laser pulse energy is 25 uJ, and laser pulse widths are 1 usec. The backscatter photons are collected by a 20 cm telescope and detected by a near infrared photomultiplier tube. The detected photons are binned according to their arrival times with the use of a multichannel scaler. Several airborne measurements were conducted during October and December 2008, and August 2009 with many hours of CO2 column measurement data at the 1571.4, 1572.02 and 1572.33 nm CO2 absorption lines. The measurements were made over a variety of land and water surfaces and some through thin clouds. We also made several improvements to the instrument for the later flights. Measurements from early flights showed the receiver signal and noise levels were

  19. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  20. Antecedent Wetness Conditions based on ERS scatterometer data in support to rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.

    2009-04-01

    , the SWI has been found quite reliable in representing the soil moisture at layer depth of 15 cm with average correlation coefficient equal to 0.81 and a root mean square error of ~ 0.04 m3/m3. In terms of AWC assessment at the catchment scale, the SWI has been found highly correlated with the observed S parameter with correlation coefficient equal to -0.90. Besides, SWI outperformed both API indices, poorly representative of AWC, and BFI. The methodology delineated in this study can be considered as a simple and entirely new approach to validate the remotely sensed soil moisture estimates at the catchment scale, mainly for coarse resolution sensors as scatterometers and radiometers. The obtained results indirectly reveal the usefulness of the SWI both for flood forecasting applications and for prediction in ungauged basins. Moreover, the correlation of in-situ soil moisture measurements with the SWI reveals the potential of scatterometer data, particularly considering the higher spatial resolution provided by the successor of ERS scatterometer, the Advanced Scatterometer, ASCAT, on board of the meteorological operational platforms, METOP.

  1. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  2. Airborne eddy correlation gas flux measurements - Design criteria for optical techniques

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Sachse, Glen W.; Anderson, Bruce E.

    1993-01-01

    Although several methods exist for the determination of the flux of an atmospheric species, the airborne eddy correlation method has the advantage of providing direct flux measurements that are representative of regional spatial domains. The design criteria pertinent to the construction of chemical instrumentation suitable for use in airborne eddy correlation flux measurements are discussed. A brief overview of the advantages and limitations of the current instrumentation used to obtain flux measurements for CO, CH4, O3, CO2, and water vapor are given. The intended height of the measurement within the convective boundary layer is also shown to be an important design criteria. The sensitivity, or resolution, which is required in the measurement of a scalar species to obtain an adequate species flux measurement is discussed. The relationship between the species flux resolution and the more commonly stated instrumental resolution is developed and it is shown that the standard error of the flux estimate is a complicated function of the atmospheric variability and the averaging time that is used. The use of the recently proposed intermittent sampling method to determine the species flux is examined. The application of this technique may provide an opportunity to expand the suite of trace gases for which direct flux measurements are possible.

  3. Tree Height Growth Measurement with Single-Scan Airborne, Static Terrestrial and Mobile Laser Scanning

    PubMed Central

    Lin, Yi; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Kaartinen, Harri

    2012-01-01

    This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: “Can the new technique characterize the height growth for each individual tree?” and “Can this technique refine the minimum growth-discernable temporal interval further?” To solve these two puzzles, the sampling principles of the three laser scanning modes were first examined, and their error sources against the task of tree-top capturing were also analyzed. Next, the three-year growths of 58 Nordic maple trees (Crimson King) for test were intermittently surveyed with one type of laser scanning each time and then analyzed by statistics. The evaluations show that the height growth of each individual tree still cannot be reliably characterized even by single-scan terrestrial laser scanning, and statistical analysis is necessary in this scenario. After Gaussian regression, it is found that the minimum temporal interval with distinguishable tree height growths can be refined into one month based on terrestrial laser scanning, far better than the two years deduced in the previous works based on airborne laser scanning. The associated mean growth was detected to be about 0.12 m. Moreover, the parameter of tree height generally under-estimated by airborne and even mobile laser scanning can be relatively revised by means of introducing static terrestrial laser scanning data. Overall, the effectiveness of the proposed technique is primarily validated. PMID:23112743

  4. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  5. Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar.

    PubMed

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B

    2012-12-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection integrated-path differential-absorption lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier pumped by a Nd:YAG laser, and the receiver used a photomultiplier detector and photon-counting electronics. The results follow the expected changes with aircraft altitude, and the measured line shapes and optical depths show good agreement with theoretical calculations. PMID:23207402

  6. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  7. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  8. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  9. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2015-07-01

    A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm. The proposed method was applied to measurements from the SALTRACE experiment in June-July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  10. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed. PMID:18071387

  11. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  12. Characterization of shallow marine convection in subtropical regions by airborne and spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Gutleben, Manuel; Schäfler, Andreas; Kiemle, Christoph; Wirth, Martin; Hirsch, Lutz; Ament, Felix

    2016-04-01

    One of the biggest challenges in present day climate research is still the quantification of cloud feedbacks in climate models. Especially the feedback from marine cumulus clouds in the boundary layer with maximum cloud top heights of 4 km introduces large uncertainties in climate sensitivity. Therefore a better understanding of these shallow marine clouds, as well as of their interaction with aerosols and the Earth's energy budget is demanded. To improve our knowledge of shallow marine cumulus convection, measurements onboard the German research aircraft HALO were performed during the NARVAL (Next-generation Aircraft Remote-sensing for Validation studies) mission in December 2013. During NARVAL an EarthCARE equivalent remote sensing payload, with the DLR airborne high spectral resolution and differential absorption lidar system WALES and the cloud radar of the HAMP (HALO Microwave Package) as its core instrumentation, was deployed. To investigate the capability of spaceborne lidar measurements for this kind of study several CALIOP underflights were performed. We will present a comparison of airborne and spaceborne lidar measurements, and we will present the vertical and horizontal distribution of the clouds during NARVAL based on lidar measurements. In particular we investigate the cloud top distribution and the horizontal cloud and cloud gap length. Furthermore we study the representativeness of the NARVAL data by comparing them to and analysing a longer time series and measurements at different years and seasons.

  13. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  14. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  15. Airborne in-situ spectral characterization and concentration estimates of fluorescent organics as a function of depth

    NASA Technical Reports Server (NTRS)

    Tittle, R. A.

    1988-01-01

    The primary purpose of many in-situ airborne light scattering experiments in natural waters is to spectrally characterize the subsurface fluorescent organics and estimate their relative concentrations. This is often done by shining a laser beam into the water and monitoring its subsurface return signal. To do this with the proper interpretation, depth must be taken into account. If one disregards depth dependence when taking such estimates, both their spectral characteristics and their concentrations estimates can be rather ambiguous. A simple airborne lidar configuration is used to detect the subsurface return signal from a particular depth and wavelength. Underwater scatterometer were employed to show that in-situ subsurface organics are very sensitive to depth, but they also require the use of slow moving boats to cover large sample areas. Also, their very entry into the water disturbs the sample it is measuring. The method described is superior and simplest to any employed thus far.

  16. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  17. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  18. Remotely Measured Terrestrial Chlorophyll Fluorescence Using Airborne G-LiHT and APFS Sensors

    NASA Astrophysics Data System (ADS)

    Cook, W. B.; Yee, J. H.; Corp, L. A.; Cook, B. D.; Huemmrich, K. F.

    2014-12-01

    In September 2014 the Goddard Lidar, Hyperspectral and Thermal (G-LiHT) and the APL/JHU Airborne Plant Fluorescence Sensor (APFS) were flown together on a NASA Langley King Air over vegetated targets in North Carolina and Virginia. The instruments provided high spatial and spectral resolution data in the visible and near infrared, down-welling irradiance, elevation maps, and thermal imagery. Ground validation data was also collected concurrently. Here we report the results of these measurements and show the feasibility of using these types of instruments for collection the fluorescence and other information essential for ecological and carbon cycle studies.

  19. Prediction and performance measures of atmospheric disturbances on an airborne imaging platform

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.; Martin, Jeffrey B.; Kovacs, Mark A.; Cardani, Joseph C.; Maia, Francisco; Aflalo, Tyson; Shilko, Michael L., Sr.

    2004-02-01

    A series of airborne imaging experiments have been conducted on the island of Maui. The imaging platform was a Twin Otter aircraft, which circled ground target sites. The typical platform altitude was 3000 meters, with a slant range to the target of 9000 meters. This experiment was performed during the day using solar illuminated target buildings, and at night with spotlights used to simulate point sources. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  20. Initial airborne CO{sub 2} DIAL measurements: Discussion of results and data analysis considerations

    SciTech Connect

    Tiee, J.J.; Foy, B.R.; Quick, C.R.

    1997-07-01

    A detailed discussion of airborne CO{sub 2}, DIAL measurements obtained from the first joint N-ABLE field campaign at INEL is presented. System performance characteristics, including return signal strength, averaging statistics, and temporal correlation as well as multi-line DIAL spectral data are discussed. In particular, we review data acquisition and analysis strategies pertinent to chemical detection from a moving platform, such as range determination and correction, and return signal processing (waveform vs. box-car integration, baseline correction). We also report observed effects and variations due to near-field light scattering, pointing and tracking stability, and stack-release plume dynamics.

  1. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  2. Wavelet analysis of airborne CO 2 measurements and related meteorological parameters over heterogeneous landscapes

    NASA Astrophysics Data System (ADS)

    Vadrevu, Krishna Prasad; Choi, Yonghoon

    2011-10-01

    In this study, we focus on the spatial variations in CO 2 and related meteorological parameters quantified in the planetary boundary layer (PBL) from airborne measurements over Illinois, Ohio and Nebraska, USA during the INTEX-NA campaign, July 8th, 2004. The airborne measurements were conducted during morning hours (8:47 a.m) in Nebraska whereas mostly during afternoon hours (1:00 pm and 1:50 pm) in Illinois and Ohio respectively. We perform wavelet analysis using a continuous wavelet transform and wavelet coherence functions for the CO 2 data and underlying meteorological variables to interpret the airborne observations. In addition, we also used LANDSAT derived land use/cover information to relate to CO 2 variations observed in the PBL. Maximum CO 2 mixing ratios were observed over Nebraska and the lowest CO 2 mixing ratios over Illinois followed by Ohio. Spectral decomposition of the CO 2 data using scalograms revealed lower frequency signals of shorter duration over Illinois compared to Ohio and Nebraska. Further, the high frequency CO 2 data for Illinois showed good cyclicity. The high frequency data in Illinois corresponded to low CO 2 values of less than 354 ppm, and the time localization of these frequencies closely matched with corn/soybeans mixed agricultural land use suggesting significant CO 2 uptake. Results from the wavelet coherence analysis between the CO 2 time series and meteorological parameters (potential temperature, relative humidity, water vapor partial pressure, water vapor mixing ratio, wind speed and infrared surface temperature) revealed significant differences in coherences as a function of sampling time. The scale and time dependent wavelet coherence variations observed for CO 2 and meteorological data over three different states were attributed to mesoscale variability including variations in the type of vegetation, topography, land-vegetation contrast, cloud cover, and overall landscape heterogeneity.

  3. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  4. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  5. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  6. Airborne pulsed lidar measurements over Railroad Valley Nevada compared with GOSAT observations

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; Allan, G. R.; Riris, H.; Hasselbrack, W.; Abshire, J. B.

    2010-12-01

    We present a comparison of observations from an airborne pulsed lidar taken during a GOSAT satellite overpass. This was part of the Active Sensing of CO2 Emissions over nights Days and Seasons (ASCENDS) 2010 campaign onboard the NASA DC-8 aircraft. The NASA Goddard pulse lidar system steps a pulsed wavelength-tunable laser transmitter across the 1572.33 nm (6360 cm-1) CO2 line in thirty steps at a 330 Hz repetition rate. The laser beam is co-aligned with the receiver and directed toward nadir. The energy of the laser echoes is measured. The result is a scan of a single line at high spectral resolution. We focus on the 12 July flight over Railroad Valley Nevada which was simultaneous with a GOSAT satellite overpass. The Band 2 of the Fourier Transform Spectrometer onboard GOSAT samples from 5200 to 6400 cm-1 which includes the 6360 cm-1 line measured by our airborne lidar. While the GOSAT observations are spectrally coarser (0.2 cm-1) and sampled from space, we will compare: observed and forward modeled line shapes, retrieved CO2 column densities from both instruments and in-situ measurements where available.

  7. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  8. The impact of scatterometer wind data on global weather forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.

    1984-01-01

    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.

  9. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  10. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  11. Observational results of microwave temperature profile measurements from the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.

    1988-01-01

    The Microwave Temperature Profiler, MTP, is installed on NASA's ER-2 aircraft. MTP measures profiles of air temperature versus altitude. Temperatures are obtained every 13.7 seconds for 15 altitudes in an altitude region that is approximately 5 km thick (at high flight levels). MTP is a passive microwave radiometer, operating at the frequencies 57.3 and 58.8 GHz. Thermal emission from oxygen molecules provides the signal that is converted to air temperature. MTP is unique in that it is the only airborne instrument of its kind. The MTP instrument was used during the Airborne Antarctic Ozone Experiment, AAOE, to enable potential vorticity to be measured along the flight track. Other uses for the MTP data have become apparent. The most intriguing unexpected use is the detection and characterization of mountain waves that were encountered during flights over the Palmer Peninsula. Mountain waves that propagate into the polar vortex may have implications for the formation of the ozone hole. Upward excursions of air parcels lead to a brief cooling. This can begin the process of cloud formation. It is important to determine how much additional formation of polar stratospheric cloud (PSC) material is possible by the passage of air parcels through a mountain wave pattern that endures for long periods. Other mountain wave effects have been suggested, such as a speeding up of the vortex, and a consequent cooling of large air volumes (which in turn might add to PSC production).

  12. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  13. Comparison of airborne measurements of greenhouse gases over Railroad Valley, Nevada to satellite and model results

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Yates, E. L.; Iraci, L. T.; Johnson, M. S.; Lopez, J.; Loewenstein, M.; Gore, W.; Tadic, J.; Kuze, A.; Kawakami, S.

    2014-12-01

    As part of the Alpha Jet Atmospheric eXperiment (AJAX) we have measured vertical profiles of greenhouse gases (GHGs) (i.e., carbon dioxide (CO2) and methane (CH4)) over Railroad Valley, NV (RRV) on a monthly basis since 2011. These GHG measurements are conducted to quantify trends of climatically important gases and to validate satellite-based GHG column estimates from Greenhouse Observing Satellite (GOSAT) and Orbiting Carbon Observatory-2 (OCO-2).The vertical profiles of GHGs observed over RRV show relatively uniform features below and above the boundary layer, and mixing ratios are increasing every year. Strong enhancements in the free troposphere are seen in these profiles in some instances. To assess possible sources of these enhancements and their effects on the GHG column average, GHG vertical profiles calculated by the 3-D GEOS-Chem chemical transport model (v9-01-03) and back-trajectory analysis from the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) are compared with airborne measurements. The main results that we will show are 1) the comparison of vertical GHG distribution calculated from GEOS-Chem and that measured by AJAX, 2) total column GHG values from the model, AJAX, and GOSAT, and 3) demonstrate the source apportionment in GHGs profiles measured at RRV.The RRV playa is a flat high altitude desert site where local sources and sinks of carbon-species are expected to be minimal except for a small oil field. RRV is a radiometrically flat region and has been used to calibrate various satellite radiometers before. These measurements are conducted as part of the Alpha Jet Atmospheric eXperiment (AJAX) which regularly measures GHGs, ozone, and 3-D winds over California and Nevada. The Alpha Jet is operated from NASA Ames Research Center at Moffett Field and airborne instruments are installed in an unpressurized wing pod.

  14. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  15. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  16. On error sources during airborne measurements of the ambient electric field

    NASA Technical Reports Server (NTRS)

    Evteev, B. F.

    1991-01-01

    The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.

  17. Double-Pulse Two-micron LPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2016-06-01

    An advanced double-pulse 2-μm integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-μm laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation up to 11 km altitude. This study is useful for defining CO2 measurement weighting function for adaptive targeting, instrument setting, validation and sensitivity trade-offs.

  18. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    NASA Astrophysics Data System (ADS)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  19. Characterization of surface wind and stress in tropical cyclone with scatterometer

    NASA Astrophysics Data System (ADS)

    Liu, W. T.; Tang, W.; Xie, X.

    2014-12-01

    Wind is air in motion and stress is the momentum exchange between ocean and atmosphere. While the strong wind of a tropical cyclone (TC) causes destruction at landfall, it is the surface stress that drags down the TC. The relations that were established to retrieve moderate wind speeds from the normalized radar cross-section, or backscatter power, measured by Ku-band and C-band scatterometers do not apply well to TC-scale winds. It has been difficult to establish new relations at strong winds because credible strong winds coincident with scatterometer measurements are not sufficient. We will give credence to our hypothesis that there is no distinct physics of radar backscatter from ocean surface for weather phenomenon like the TC. The relation between backscatter and surface roughness or stress does not change under TC, and the same retrieval algorithm can be extended to the TC. The need for changes in wind retrieval algorithm is explained through the change of the drag coefficient that relates wind to stress in TC. We aspire to separate the sensor parameters that affect backscatter, such as, incident angle, azimuth angle, polarization and backscatter frequencies, from the secondary factors related to the physics of the air-sea interface and turbulent transport, such as air stability (shear and buoyance), air density, sea states, and sea sprays, so that we can establish a simple approximation of surface stress from the backscatter averaged over the relevant spatial and temporal scales. We established a relation between backscatter and surface stress over a moderate range of wind speed, where wind measurements coincident with satellite observations are abundant, and the drag coefficient is well established to convert wind measurements to stress. This relation is applied to retrieve stress from the scatterometer measurement in the high wind range of TC. The characteristic of the drag coefficient in TC-scale winds will be discussed. The difference between wind and

  20. The Multi-Center Airborne Coherent Atmospheric Wind Sensor, MACAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1997-01-01

    In 1992 the atmospheric lidar remote sensing groups of the NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS, which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in the troposphere and lower stratosphere. A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise which were developed for previous atmospheric research by the respective institutions. The motivation for the MACAWS program Is three-fold: to obtain fundamental measurements of sub-synoptic scale processes and features which may be used as a basis to improve sub-grid scale parameterizations in large-scale models; to obtain similar datasets in order to improve the understanding and predictive capabilities on the mesoscale; and to validate (simulate) the performance of existing (planned) satellite-borne sensors. Examples of the latter include participation in the validation of the NASA Scatterometer and the assessment of prospective satellite Doppler lidar for global tropospheric wind measurement. Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  1. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  2. The Influence of Aircraft Speed Variations on Sensible Heat-Flux Measurements by Different Airborne Systems

    NASA Astrophysics Data System (ADS)

    Martin, Sabrina; Bange, Jens

    2014-01-01

    Crawford et al. (Boundary-Layer Meteorol 66:237-245, 1993) showed that the time average is inappropriate for airborne eddy-covariance flux calculations. The aircraft's ground speed through a turbulent field is not constant. One reason can be a correlation with vertical air motion, so that some types of structures are sampled more densely than others. To avoid this, the time-sampled data are adjusted for the varying ground speed so that the modified estimates are equivalent to spatially-sampled data. A comparison of sensible heat-flux calculations using temporal and spatial averaging methods is presented and discussed. Data of the airborne measurement systems , Helipod and Dornier 128-6 are used for the analysis. These systems vary in size, weight and aerodynamic characteristics, since the is a small unmanned aerial vehicle (UAV), the Helipod a helicopter-borne turbulence probe and the Dornier 128-6 a manned research aircraft. The systematic bias anticipated in covariance computations due to speed variations was neither found when averaging over Dornier, Helipod nor UAV flight legs. However, the random differences between spatial and temporal averaging fluxes were found to be up to 30 % on the individual flight legs.

  3. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  4. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  5. The effects of the Arctic haze as determined from airborne radiometric measurements during AGASP II

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Ackerman, Thomas P.; Gore, Warren J. Y.

    1989-01-01

    The effect of the Arctic-haze aerosol on the parameters of solar radiation was investigated using airborne radiometric measurements of radiation parameters during the second Arctic Gas and Aerosol Sampling Project. Simultaneously with absorption measurements, optical depths and total, direct, and scattered radiation fields were determined. The experimentally determined parameters were used to define an aerosol model, which was then used to calculate atmospheric heating rate profiles. It was found that, besides the increased absorption (30 to 40 percent) and scattering of radiation by the atmosphere, Arctic haze reduces the surface absorption of solar energy by 6 to 10 percent, and the effective planetary albedo over ice surfaces by 3 to 6 percent.

  6. Measurements of airborne 212Pb and 220Rn at varied indoor locations within the United States.

    PubMed

    Schery, S D

    1985-12-01

    Measurements have been made at varied locations within the United States comparing the concentration of 212Pb in air with that of the progeny of 222Rn to see if 212Pb is typically a significant contributor to indoor radioactivity. Auxiliary measurements were made comparing 220Rn with 222Rn. In terms of potential alpha-particle energy, 212Pb is significant (the ratio of its contribution to the combined contribution of 218Po, 214Pb, and 214Bi averaged about 0.6) and may warrant greater consideration as a component of indoor radioactivity. Correlations were found between the concentration of 220Rn progeny and 222Rn progeny, and the concentration of 220Rn and 222Rn. Environmental factors such as transport pathways and ventilation rates which exert a common influence on the concentrations of airborne isotopes provide a possible explanation for these correlations. PMID:4077512

  7. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  8. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  9. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  10. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  11. OH emission intensity measurements during the 1969 NASA Airborne Auroral Expedition

    NASA Technical Reports Server (NTRS)

    Moreels, G.; Blamont, J. E.; Chahrokhi, D.

    1976-01-01

    Absolute intensity measurements of the (8, 6) OH band obtained during 10 flights of the December 1969 NASA Auroral Airborne Expedition are presented. Nightglow intensities higher by a factor of 2 than the usual values are recorded during flights 8, 14, and 15. The OH variations are compared with the evolution of the green line and O2(1 Delta g) emissions measured by other experimenters on board the aircraft. Before sunrise the twilight variations of OH down to a solar depression angle of 5 deg show a rapid decrease. A theoretical prediction of the OH, O I 5577 A, and O2(1 Delta g) emissions is evaluated by means of an extensive time-dependent oxygen-hydrogen model of the 25- to 150-km region. Twilight decrease of the OH emission is interpreted in terms of mesospheric ozone photodissociation. Nighttime variations of the emissions may be reproduced if modifications of the dynamic regime are introduced into the model.

  12. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  13. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles.

    PubMed

    Kaye, P H; Barton, J E; Hirst, E; Clark, J M

    2000-07-20

    We describe a prototype laboratory light-scattering instrument that integrates two approaches to airborne particle characterization: spatial light-scattering analysis and intrinsic fluorescence measurement, with the aim of providing an effective means of classifying biological particles within an ambient aerosol. The system uses a single continuous-wave 266-nm ultraviolet laser to generate both the spatial elastic scatter data (from which an assessment of particle size and shape is made) and the particle intrinsic fluorescence data from particles in the approximate size range of 1-10-mum diameter carried in a sample airflow through the laser beam. Preliminary results suggest that this multiparameter measurement approach can provide an effective means of classifying different particle types and can reduce occurrences of false-positive detection of biological aerosols. PMID:18349949

  14. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  15. Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering.

    PubMed

    Dolgos, Gergely; Martins, J Vanderlei

    2014-09-01

    Global satellite remote sensing of aerosols requires in situ measurements to enable the calibration and validation of algorithms. In order to improve our understanding of light scattering by aerosol particles, and to enable routine in situ airborne measurements of aerosol light scattering, we have developed an instrument, called the Polarized Imaging Nephelometer (PI-Neph). We designed and built the PI-Neph at the Laboratory for Aerosols, Clouds and Optics (LACO) of the University of Maryland, Baltimore County (UMBC). This portable instrument directly measures the ambient scattering coefficient and phase matrix elements of aerosols, in the field or onboard an aircraft. The measured phase matrix elements are the P(11), phase function, and P(12). Lasers illuminate the sampled ambient air and aerosol, and a wide field of view camera detects scattered light in a scattering angle range of 3° to 176°. The PI-Neph measures an ensemble of particles, supplying the relevant quantity for satellite remote sensing, as opposed to particle-by-particle measurements that have other applications. Comparisons with remote sensing measurements will have to consider aircraft inlet effects. The PI-Neph first measured at a laser wavelength of 532nm, and was first deployed successfully in 2011 aboard the B200 aircraft of NASA Langley during the Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project. In 2013, we upgraded the PI-Neph to measure at 473nm, 532nm, and 671nm nearly simultaneously. LACO has deployed the PI-Neph on a number of airborne field campaigns aboard three different NASA aircraft. This paper describes the PI-Neph measurement approach and validation by comparing measurements of artificial spherical aerosols with Mie theory. We provide estimates of calibration uncertainties, which show agreement with the small residuals between measurements of P(11) and -P(12)/P(11) and Mie theory. We demonstrate the capability of the PI-Neph to measure

  16. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  17. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    NASA Astrophysics Data System (ADS)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  18. Topographic Signatures in Aquarius Radiometer/Scatterometer Response: Initial Results

    NASA Technical Reports Server (NTRS)

    Utku, C.; LeVine, D. M.

    2012-01-01

    The effect of topography on remote sensing at L-band is examined using the co-located Aquarius radiometer and scatterometer observations over land. A correlation with slope standard deviation is demonstrated for both the radiometer and scatterometer at topographic scales. Although the goal of Aquarius is remote sensing of sea surface salinity, the radiometer and scatterometer are on continuously and collect data for remote sensing research over land. Research is reported here using the data over land to determine if topography could have impact on the passive remote sensing at L-band. In this study, we report observations from two study regions: North Africa between 15 deg and 30 deg Northern latitudes and Australia less the Tasmania Island. Common to these two regions are the semi-arid climate and low population density; both favorable conditions to isolate the effect of topography from other sources of scatter and emission such as vegetation and urban areas. Over these study regions, topographic scale slopes within each Aquarius pixel are computed and their standard deviations are compared with Aquarius scatterometer and radiometer observations over a 36 day period between days 275 and 311 of 2011.

  19. NASA scatterometer data processing system: Features for validation

    NASA Technical Reports Server (NTRS)

    Callahan, Philip S.; Benada, J. R.

    1986-01-01

    The design of the N-ROSS scatterometer data system and the development of key processing algorithms are described. The data products and parts of the data system to be directly validated are listed. The main features of the Data Management Subsystem, which delivers data to science users and supports system validation are outlined.

  20. The importance of altimeter and scatterometer data for ocean prediction

    NASA Technical Reports Server (NTRS)

    Hurlburt, H. E.

    1984-01-01

    The prediction of ocean circulation using satellite altimeter data is discussed. Three classes of oceanic response to atmospheric forcing are outlined and examined. Storms, surface waves, eddies, and ocean currents were evaluated in terms of forecasting time requirements. Scatterometer and radiometer applications to ocean prediction are briefly reviewed.

  1. Effects of rainfall on scatterometer derived wind speeds

    NASA Technical Reports Server (NTRS)

    Bliven, L. F.; Norcross, G.

    1988-01-01

    Rainfall modification of scatterometer response from the sea surface was simulated in wind-wave tank experiments. Data show that for a given wind speed, radar cross section increases as rainfall rate increases, but this effect decreases as wind speed increases. An empirical model accounts for these observations.

  2. Effect of precipitation on choice of frequency for SEASAT scatterometer

    NASA Technical Reports Server (NTRS)

    Dome, G.

    1975-01-01

    Precipitation backscatter limits the effectiveness of a remote sensing radar in a satellite. Scatterometer operation on SEASAT is considered in one of the following frequency ranges: 12.5 GHz; 13.4-14.0 GHz; and 14.4-15.35 GHz. The effect of backscatter from precipitation in these frequency ranges is compared.

  3. Airborne Measurements of Methane Fluxes over Mid-Latitude and Sub-Arctic Wetlands

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Sachs, T.

    2012-04-01

    For a quantification of the natural GHG budget of the atmosphere the emission of methane from the vast arctic wetlands need to be assessed accurately. The conventional methods of flux measurements made by closed chambers and eddy towers need to be upscaled, introducing a potentially large source of uncertainty, due to the heterogeneity of the emitting sources at the surface. In order to obtain a large area coverage and thus a higher spacial representativeness we performed airborne measurements of methane fluxes over mid-latitude and sub-arctic wetlands, for flight legs of tens of kilometres length. We installed a fast trace gas analyser, a Los Gatos RMT200, in the research aircraft Polar 5, together with the noseboom mounted turbulence sensor package. Measurement flights have been carried out in June 2011 over wetlands in Germany and in northern Finland in a convectively mixed boundary layer. Reference data have been optained at the surface by tower mounted eddy correlation measurements. A spectral analysis of the first measurements shows that the system is well suitable to measure the vertical flux of methane from natural surfaces transported by the dominating eddies in the convective boundary layer. Our flux measurements compare well to those obtained at the surface. On the high-frequency end of the spectrum the measurement accuracy is not sufficient to resolve the inertial subrange.

  4. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  5. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  6. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  7. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Early, D.; Long, D.

    1994-01-01

    Coregistered ERS-1 SAR and Scatterometer data are presented for the Weddell Sea, Antarctica. Calibrated image backscatter statistics are extracted from data acquired in regions where surface measurements were made during two extensive international Weddell Sea experiments in 1992. Changes in summer ice-surface conditions, due to temperature and wind, are shown to have a large impact on observed microwave backscatter values. Winter calibrated backscatter distributions are also investigated as a way of describing ice thickness conditions in different location during winter. Coregistered SAR and EScat data over a manned drifting ice station are used to illustrate the seasonal signature changes occurring during the fall freeze-up transition.

  8. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  9. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  10. Airborne measurements of surface layer turbulence over the ocean during cold air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Shien; Yeh, Eueng-Nan

    1987-01-01

    The spectral characteristics of surface layer turbulence for the near-shore cloud street regions over the Atlantic Ocean were examined using 50-m level data of airborne measurements of atmospheric turbulence spectra above the western Atlantic Ocean during cold air outbreaks. The present study, performed for the Mesoscale Air-Sea Exchange (MASEX) experiment, extends and completes the preliminary analyses of Chou and Yeh (1987). In the inertial subrange, a near 4/3 ratio was observed between velocity spectra normal to and those along the aircraft heading. A comparison of the turbulent kinetic energy budgets with those of Wyngaard and Cote (1971) and Caughey and Wyngaard (1979) data indicates that the turbulent kinetic energy in the surface layer is dissipated less in the MASEX data than in data obtained by the previous groups.

  11. Diode-pumped Nd:YAG lidar for airborne cloud measurements

    NASA Astrophysics Data System (ADS)

    Mehnert, A.; Halldorsson, Th.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, Ch.

    1992-07-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  12. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  13. Airborne measurements of atmospheric methane over oil fields in western Siberia

    NASA Astrophysics Data System (ADS)

    Tohjima, Y.; Maksyutov, S.; Machida, T.; Inoue, G.

    Airborne measurements of atmospheric methane (CH4) over oil fields in western Siberia were carried out on August 1, 1994. Extremely sharp CH4 peaks were observed in the horizontal distribution of CH4 at an altitude of 150 m above the ground surface; the half widths of the peaks were 3-4 km and the concentration of the largest peak exceeded 2.9 ppmv. Since the CH4 distribution was considered to reflect the distribution of CH4 emission strength on the surface, there was strong CH4 emission at the peak positions. All of the observed CH4 peak positions were located at or near oil production sites and/or oil pipelines, suggesting that natural gas was emitted from the facilities. Leakage or venting of natural gas are the probable CH4 sources.

  14. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.

    PubMed

    Navarro, Maria A; Atlas, Elliot L; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R P; Meneguz, Elena; Ashfold, Matthew J; Manning, Alistair J; Cuevas, Carlos A; Schauffler, Sue M; Donets, Valeria

    2015-11-10

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  15. Wind field measurements for the mitigation of airborne health threats in a complex urban environment

    NASA Astrophysics Data System (ADS)

    Arend, Mark; Santoro, David; Abdelazim, Sameh; Moshary, Fred; Ahmed, Sam

    2009-05-01

    The Department of Homeland Security (DHS) sponsored Urban Dispersion Program (UDP) resulted in the strategic placement of weather instruments in New York City (NYC) and the transition of some instruments to the City College of New York (CCNY) operated NYC MetNet to provide timely and accurate information on "skimming field" winds above city building tops. In order to extend the observational capabilities of the NYC MetNet, a cost effective portable eye safe fiber optic based coherent wind lidar system is currently under development in CCNY laboratories. Wind lidar measurements, coupled with the continuous observations from the NYC MetNet, should support the initialization, feedback and development of plume models that would be used after an initial detection of airborne toxins. An overview of the lidar system design and the NYC MetNet will be given.

  16. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.

    PubMed

    Alrefae, Tareq

    2014-11-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring airborne radioactivity collected on filter paper, was based on Monte Carlo simulations using the toolkit GEANT4. Experimentally, the efficiency values of an HPGe detector were calculated for a multi-gamma disk source. These efficiency values were compared to their counterparts produced by a computer code that simulated experimental conditions. Such comparison revealed biases of 24, 10, 1, 3, 7, and 3% for the radionuclides (photon energies in keV) of Ce (166), Sn (392), Cs (662), Co (1,173), Co (1,333), and Y (1,836), respectively. The output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:25271933

  17. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  18. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  19. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  20. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings.

    PubMed

    Park, H K; Bradley, J S

    2009-07-01

    This paper reports the results of an evaluation of the merits of standard airborne sound insulation measures with respect to subjective ratings of the annoyance and loudness of transmitted sounds. Subjects listened to speech and music sounds modified to represent transmission through 20 different walls with sound transmission class (STC) ratings from 34 to 58. A number of variations in the standard measures were also considered. These included variations in the 8-dB rule for the maximum allowed deficiency in the STC measure as well as variations in the standard 32-dB total allowed deficiency. Several spectrum adaptation terms were considered in combination with weighted sound reduction index (R(w)) values as well as modifications to the range of included frequencies in the standard rating contour. A STC measure without an 8-dB rule and an R(w) rating with a new spectrum adaptation term were better predictors of annoyance and loudness ratings of speech sounds. R(w) ratings with one of two modified C(tr) spectrum adaptation terms were better predictors of annoyance and loudness ratings of transmitted music sounds. Although some measures were much better predictors of responses to one type of sound than were the standard STC and R(w) values, no measure was remarkably improved for predicting annoyance and loudness ratings of both music and speech sounds. PMID:19603878

  1. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    PubMed

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds. PMID:19739735

  2. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  3. Airborne boundary layer flux measurements of trace species over Canadian boreal forest and northern wetland regions

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Watson, Catherine E.; Sachse, Glen W.; Gregory, Gerald L.; Anderson, Bruce E.; Woerner, Mary A.; Collins, James E., Jr.

    1994-01-01

    Airborne heat, moisture, O3, CO, and CH4 flux measurements were obtained over the Hudson Bay lowlands (HBL) and northern boreal forest regions of Canada during July - August 1990. The airborne flux measurements were an integral part of the NASA/Arctic Boundary Layer Expedition (ABLE) 3B field experiment executed in collaboration with the Canadian Northern Wetlands Study (NOWES). Airborne CH4 flux measurements were taken over a large portion of the HBL. The surface level flux of CH4 was obtained from downward extrapolations of multiple-level CH4 flux measurements. Methane source strengths ranged from -1 to 31 mg m(exp -2)/d, with the higher values occurring in relatively small, isolated areas. Similar measurements of the CH4 source strength in the boreal forest region of Schefferville, Quebec, ranged from 6 to 27 mg m(exp -2)/d and exhibited a diurnal dependence. The CH4 source strengths found during the ABLE 3B expedition were much lower than the seasonally averaged source strength of 51 mg m(exp -2)/d found for the Yukon-Kuskokwim delta region of Alaska during the previous ABLE 3A study. Large positive CO fluxes (0.31 to 0.53 parts per billion by volume (ppbv) m/s) were observed over the inland, forested regions of the HBL study area, although the mechanism for the generation of these fluxes was not identified. Repetitive measurements along the same ground track at various times of day near the Schefferville site also suggested a diurnal dependence for CO emissions. Measurements of surface resistance to the uptake of O3 (1.91 to 0.80 s/cm) for the HBL areas investigated were comparable to those observed near the Schefferville site (3.40 to 1.10 s/cm). Surface resistance values for the ABLE 3B study area were somewhat less than those observed over the Yukon-Kuskokwim delta during the previous ABLE 3A study. The budgets for heat, moisture, O3, CO, and CH4 were evaluated. The residuals from these budget studies indicated, for the cases selected, a moderate net

  4. A day-to-day comparison study of Seasat scatterometer winds with winds observed from islands in the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Davison, Jerry; Harrison, D. E.

    1989-01-01

    The winds derived from the Seasat-A Satellite Scatterometer (SASS) measurements have been the subject of great interest since the 1978 mission, because of the promise of radically improved wind observations over the world ocean. Due to the early end of the mission, only a few of the planned ground truth validation experiments could be made, and the subsequent lack of sufficient high quality independent wind data for comparison has limited the ability to resolve critical issues regarding the scatterometer's performance and the correct interpretation of its signal. Operational weather observations were made of ocean winds independent of Seasat mission plans during the Seasat mission period; the results are reported of a comparison study using such observations. Previous verification with in situ winds has been primarily in middle latitudes (GOASEX, JASIN, and NDBO buoys); winds observed from nine tropical Pacific islands are compared with nearly contemporaneous measurements taken by SASS during overpasses of the islands.

  5. Microphysical Retrievals Over Stratiform Rain Using Measurements from an Airborne Dual-Wavelength Radar-Radiometer

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kumagai, Hiroshi; Wang, James R.; Iguchi, Toshio; Kozu, Toshiaki

    1997-01-01

    The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar

  6. *Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative strett potential - A workshop report and consensus statement

    EPA Science Inventory

    BACKGROUND: There is a strong need for laboratory in vitro test systems for the toxicity of airborne particulate matter and nanoparticles. The measurement of oxidative stress potential offers a promising way forward. OBJECTIVES: A workshop was convened involving leading workers f...

  7. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  8. Potential scientific research which will benefit from an airborne Doppler lidar measurement system

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1980-01-01

    Areas of research which can be significantly aided by the Doppler lidar airborne system are described. The need for systematic development of the airborne Doppler lidar is discussed. The technology development associated with the systematic development of the system will have direct application to satellite systems for which the lidar also promises to be an effective instrument for atmospheric research.

  9. Airborne laser scanner measurements for the detection of sinkholes and their changes

    NASA Astrophysics Data System (ADS)

    Bielenberg, Olaf; Meyer, Uwe; Heyde, Ingo

    2010-05-01

    The Dead Sea Transform (DST) is a system of left-lateral strike-slip faults that accommodates the relative motion between the African and Arabian plates. Furthermore the water level of the Dead Sea is sinking rapidly at an average of one meter per year. Because of this the salt lake has already lost one third of its surface and along the parched shores are formed daily new sinkholes that are up to 20 meters deep. About 1000 of these sudden incident sinkholes have formed in the meanwhile the shoreline of the Dead Sea. They represent danger both to life and property, disrupt life in the area, and aversely affect building and development. During the measurement campaign for the Dead Sea Integrated Research Project (DESIRE) 2007 the coastal area was flown to the south of Ein Gedi also with a laser mirror scanner constructed by RIEGL to detect relevant sinkholes. The airborne survey area covers a surface of approximately 20 by 4 km. The data acquisition was done by flights in North-South direction in 20 strips with an overlap of 50 percent. For the data analysis focused on the software TopPIT of Trimble Geospatial was used. The aim of the airborne survey was the calculation of a digital terrain model (DTM) but also the creation of an inventory of existing sinkholes, that can be used to detect temporal changes by comparison with future recordings. Moreover, the efficiency of the method used should be demonstrated as an appropriate procedure compared with traditional field data collection.

  10. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  11. Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000

    NASA Astrophysics Data System (ADS)

    Wert, B. P.; Trainer, M.; Fried, A.; Ryerson, T. B.; Henry, B.; Potter, W.; Angevine, W. M.; Atlas, E.; Donnelly, S. G.; Fehsenfeld, F. C.; Frost, G. J.; Goldan, P. D.; Hansel, A.; Holloway, J. S.; Hubler, G.; Kuster, W. C.; Nicks, D. K.; Neuman, J. A.; Parrish, D. D.; Schauffler, S.; Stutz, J.; Sueper, D. T.; Wiedinmyer, C.; Wisthaler, A.

    2003-02-01

    Airborne formaldehyde (CH2O) measurements were made by tunable diode laser absorption spectroscopy (TDLAS) at high time resolution (1 and 10 s) and precision (±400 and ±120 parts per trillion by volume (pptv) (2σ), respectively) during the Texas Air Quality Study (TexAQS) 2000. Measurement accuracy was corroborated by in-flight calibrations and zeros and by overflight comparison with a ground-based differential optical absorption spectroscopy (DOAS) system. Throughout the campaign, the highest levels of CH2O precursors and volatile organic compound (VOC) reactivity were measured in petrochemical plumes. Correspondingly, CH2O and ozone production was greatly enhanced in petrochemical plumes compared with plumes dominated by power plant and mobile source emissions. The photochemistry of several isolated petrochemical facility plumes was accurately modeled using three nonmethane hydrocarbons (NMHCs) (ethene (C2H4), propene (C3H6) (both anthropogenic), and isoprene (C5H8) (biogenic)) and was in accord with standard hydroxyl radical (OH)-initiated chemistry. Measurement-inferred facility emissions of ethene and propene were far larger than reported by inventories. Substantial direct CH2O emissions were not detected from petrochemical facilities. The rapid production of CH2O and ozone observed in a highly polluted plume (30+ parts per billion by volume (ppbv) CH2O and 200+ ppbv ozone) originating over Houston was well replicated by a model employing only two NMHCs, ethene and propene.

  12. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  13. Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.

    2014-12-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at 765 nm. Our approach uses a sequence of laser pulses at increasing wavelengths that sample a pair of absorption lines in the Oxygen A-band at 764.7 nm. The O2 lines were selected after careful spectroscopic analysis to minimize the O2 line temperature dependence and the availability of the transmitter and receiver technology to maximize transmitter power, doubling efficiency, and detector sensitivity. We compare our 2013 and 2014 Oxygen IPDA lidar measurements and evaluate the impact of receiver dynamic range, transmitter stability and signal to noise ratio on the differential optical depth measurements.

  14. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  15. Cloud shortwave radiative effect and cloud properties estimated from airborne measurements of transmitted and reflected light

    NASA Astrophysics Data System (ADS)

    LeBlanc, Samuel E.; Redemann, Jens; Segal-Rosenheimer, Michal; Kacenelenbogen, Meloë; Shinozuka, Yohei; Flynn, Connor; Russell, Philip; Schmid, Beat; Schmidt, K. Sebastian; Pilewskie, Peter; Song, Shi

    2015-04-01

    from aircraft by using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument. The 4STAR instrument was deployed on an airborne platform during SEAC4RS and TCAP. During SEAC4RS, the Solar Spectral Flux Radiometer (SSFR) was also deployed alongside 4STAR. The cloud optical thickness and effective radius from the retrieval based on transmitted shortwave radiation are compared to cloud properties obtained from above the cloud by using reflected shortwave radiation measured with SSFR, with the enhanced MODIS Airborne Simulator (eMAS), with the Research Scanning Polarimeter (RSP), and from in situ cloud probes. For TCAP, we compare cloud properties retrieved using 4STAR and the Moderate Resolution Imaging Spectroradiometer (MODIS).

  16. Validating CERES Radiative Fluxes in the Arctic with Airborne Radiative Flux Measurements from the ARISE Campaign

    NASA Astrophysics Data System (ADS)

    Corbett, J.; Bucholtz, A.; Kato, S.; Rose, F. G.; Smith, W. L., Jr.

    2015-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) instruments on board NASA's Terra, Aqua, and Soumi-NPP satellites provide the only measurements of reflected solar shortwave and emitted longwave radiative flux over the Arctic. Various methods have shown the uncertainty of CERES fluxes over sea ice to be higher than other scene types. However validation against an independent radiative flux measurement has never been attempted. We present here an attempt to better quantify the uncertainty of time-and-space averaged CERES flux measurements using airborne measurements from the Arctic Radiation - IceBridge Sea Ice Experiment (ARISE). The ARISE campaign took place during September of 2014 based out of Fairbanks, Alaska, with most of the measurements taken in the vicinity of the sea ice edge between 125°W and 150°W, and 71°N to 77°N. For six of the flights, measurements were taken in a lawnmower type pattern over either 100 x 200 km box regions at a constant altitude of >6 km, or 100 x 100 km box regions at an altitude of between 200 m to 500 m. They were designed to resemble the CERES Level 3 spatial averaging grids, and were located and timed to coincide with a high number of CERES overpasses. On board the aircraft were a set of upward and downward facing shortwave and longwave broadband radiometers (BBR), along with other instruments measuring meteorological conditions and cloud properties. We have compared the broadband radiative fluxes from BBR with those from CERES for the three days where the aircraft was flying the high altitude pattern. We use the Fu-Liou radiative transfer model to account for differences in the measurement altitude between BBR and CERES. We will present results of the comparisons between the computed fluxes and the measured longwave and shortwave radiative fluxes.

  17. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  18. Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Crawford, James; Olson, Jennifer; Walega, Jim; Potter, William; Wert, Bryan; Jordan, Carolyn; Anderson, Bruce; Shetter, Rick; Lefer, Barry; Blake, Donald; Blake, Nicola; Meinardi, Simone; Heikes, Brian; O'Sullivan, Daniel; Snow, Julie; Fuelberg, Henry; Kiley, Christopher M.; Sandholm, Scott; Tan, David; Sachse, Glen; Singh, Hanwant; Faloona, Ian; Harward, Charles N.; Carmichael, Gregory R.

    2003-10-01

    Airborne measurements of CH2O were acquired employing tunable diode laser absorption spectroscopy during the 2001 Transport and Chemical Evolution Over the Pacific (TRACE-P) study onboard NASA's DC-8 aircraft. Above ˜2.5 km, away from the most extreme pollution influences and heavy aerosol loadings, comprehensive comparisons with a steady state box model revealed agreement to within ±37 pptv in the measurement and model medians binned according to altitude and longitude. Likewise, a near unity slope (0.98 ± 0.03) was obtained from a bivariate fit of the measurements, averaged into 25 pptv model bins, versus the modeled concentrations for values up to ˜450 pptv. Both observations suggest that there are no systematic biases on average between CH2O measurements and box model results out to model values ˜450 pptv. However, the model results progressively underpredict the observations at higher concentrations, possibly due to transport effects unaccounted for in the steady state model approach. The assumption of steady state also appears to contribute to the scatter observed in the point-by-point comparisons. The measurement-model variance was further studied employing horizontal flight legs. For background legs screened using a variety of nonmethane hydrocarbon (NMHC) tracers, measurement and model variance agreed to within 15%. By contrast, measurement variance was ˜60% to 80% higher than the model variance, even with small to modest elevations in the NMHC tracers. Measurement-model comparisons of CH2O in clouds and in the lower marine troposphere in the presence of marine aerosols suggest rather significant CH2O uptake by as much as 85% in one extreme case compared to expectations based on modeled gas phase processes.

  19. Airborne Measurements of CO2 Exchange above a Heterogeneous Northern-latitude Forest

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Caulton, D.; Shepson, P. B.; Stirm, B. H.; Metzger, S.; Musinsky, J.; Munger, J. W.

    2014-12-01

    Northern latitude forests represent an important global sink for carbon dioxide (CO2). Estimating the landscape-scale exchange of CO2 is complicated by the heterogeneity of forested areas. Airborne eddy-covariance measurements can complement continuous tower-based measurements for determining the magnitude and spatial variability of carbon uptake in forested areas, and to assess means for scaling-up. While aircraft provide accessibility, the resulting flux measurements represent a narrow time slice, and average over a comparatively large source area. The goal of this study is to improve our ability to attribute aircraft flux data to finer spatial scales. We hypothesize that this can be achieved by (i) improving the spatial scale of the sampling method, (ii) examining inter-day variability, and (iii) relating airborne eddy-covariance flux estimates to remote sensing determinations of the land cover. For this purpose identical flight experiments were conducted on May 29 and June 1, 2014 over a 240 km2 region encompassing the Harvard University EMS eddy flux tower at Harvard Forest, MA, using the Purdue University ALAR aircraft. In the early afternoon of each day, 19 flight legs, 20 km in length, were flown over the heterogeneous forest canopy. The two replicate experiments allow assessment of inter-day variability in CO2 exchange under similar meteorological conditions. Furthermore, the experiments were coordinated with high-resolution (≤1 m) and medium-resolution (≤100 m) remote sensing retrievals of forest canopy structure and composition (NEON AOP) and soil moisture (NASA AirMOSS), respectively. This unprecedented hierarchy of observations enables evaluation of the ability of different data processing approaches to calculate finer scale CO2 exchange with the surface. Analyses of the flights conducted on May 29 and June 1 show a transect-averaged (± 1σ) CO2 uptake of 13 ± 3 µmol m-2s-1 and 11 ± 2 µmol m-2s-1, respectively. In complement to the aircraft

  20. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  1. SeaWinds Scatterometer Wind Vector Retrievals Within Hurricanes Using AMSR and NEXRAD to Perform Corrections for Precipitation Effects: Comparison of AMSR and NEXRAD Retrievals of Rain

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Hristova-Veleva, Svetla; Callahan, Philip

    2006-01-01

    The opportunity provided by satellite scatterometers to measure ocean surface winds in strong storms and hurricanes is diminished by the errors in the received backscatter (SIGMA-0) caused by the attenuation, scattering and surface roughening produced by heavy rain. Providing a good rain correction is a very challenging problem, particularly at Ku band (13.4 GHz) where rain effects are strong. Corrections to the scatterometer measurements of ocean surface winds can be pursued with either of two different methods: empirical or physical modeling. The latter method is employed in this study because of the availability of near simultaneous and collocated measurements provided by the MIDORI-II suite of instruments. The AMSR was designed to measure atmospheric water-related parameters on a spatial scale comparable to the SeaWinds scatterometer. These quantities can be converted into volumetric attenuation and scattering at the Ku-band frequency of SeaWinds. Optimal estimates of the volume backscatter and attenuation require a knowledge of the three dimensional distribution of reflectivity on a scale comparable to that of the precipitation. Studies selected near the US coastline enable the much higher resolution NEXRAD reflectivity measurements evaluate the AMSR estimates. We are also conducting research into the effects of different beam geometries and nonuniform beamfilling of precipitation within the field-of-view of the AMSR and the scatterometer. Furthermore, both AMSR and NEXRAD estimates of atmospheric correction can be used to produce corrected SIGMA-0s, which are then input to the JPL wind retrieval algorithm.

  2. The detection and measurement of microburst wind shear by an airborne lidar system

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A.; Bowles, Roland L.; Targ, Russell

    1993-01-01

    The NASA Lockheed Missiles and Space Company (LMSC) Coherent Lidar Airborne Shear Sensor (CLASS) employs coherent lidar technology as a basis for a forward-looking predictive wind shear detection system. Line of sight wind velocities measured ahead of the aircraft are combined with aircraft state parameters to relate the measured wind change (or shear) ahead of an aircraft to its performance loss or gain. In this way the system can predict whether a shear detected ahead of the aircraft poses a significant threat to the aircraft and provide an advance warning to the flight crew. Installed aboard NASA's Boeing 737 research aircraft, the CLASS system is flown through convective microburst wind shears in Denver, Co., and Orlando, Fl. Some preliminary flight test results are presented. It is seen that the system was able to detect and measure wind shears ahead of the aircraft in the relatively dry Denver environment, but its performance was degraded in the high humidity and heavy rain in Orlando.

  3. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  4. Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review

    PubMed Central

    Möller, Winfried; Pagels, Joakim H.; Kreyling, Wolfgang G.; Swietlicki, Erik; Schmid, Otmar

    2014-01-01

    Abstract Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100 nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30–70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data. PMID:24151837

  5. An inlet/sampling duct for airborne OH and sulfuric acid measurements

    NASA Astrophysics Data System (ADS)

    Eisele, F. L.; Mauldin, R. L.; Tanner, D. J.; Fox, J. R.; Mouch, T.; Scully, T.

    1997-12-01

    An inlet assembly has been designed, tested, and used for the airborne measurements of OH and sulfuric acid. The inlet sampling duct, which incorporates a shroud connected to two nested, restricted flow ducts, slows air velocity by approximately a factor of 16 while maintaining a uniform and well-defined flow. Qualitative wind tunnel tests showed that an inlet shroud that incorporates a 3:1 inner surface and 4.5:1 outer elliptical front surface can straighten the airflow at angles of attack of up to 18°-20° with no visible signs of turbulence. Tests using a Pitot tube to scan the flow velocity profile of the restricted flow ducts showed that the shroud, coupled to inlet ducts, could slow the flow and provide a relatively flat average velocity profile across the central portion of the ducts at angles of attack up to 17°. Tests performed using a chemical tracer showed that at angles of attack where the Pitot tube measurements began to indicate slight flow instabilities (17°-24°), there was no mixing from the walls into the center of the inlet. The inlet assembly also possesses the ability to produce a fairly uniform concentration of OH in the relatively constant velocity portion of the inner duct for instrument calibration. Actual measurements of rapidly changing OH and H2SO4 provide both additional evidence of proper inlet operation and new insight into H2SO4 production and loss in and around clouds.

  6. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review.

    PubMed

    Löndahl, Jakob; Möller, Winfried; Pagels, Joakim H; Kreyling, Wolfgang G; Swietlicki, Erik; Schmid, Otmar

    2014-08-01

    Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100 nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30-70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data. PMID:24151837

  7. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  8. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  9. Characterization of cloud microphysical parameters using airborne measurements by the research scanning polarimeter

    NASA Astrophysics Data System (ADS)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.; Ackerman, Andrew S.; Emde, Claudia

    2013-05-01

    We present the retrievals of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements made during the recent field campaign Development and Evaluation of satellite Validation Tools by Experimenters (DEVOTE, 2011). The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was built for the NASA Glory Mission project. This instrument measures both polarized and total reflectances in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering range between 135° and 165° where they exhibit the rainbow, the shape of which is determined mainly by single-scattering properties of the cloud particles. Two different retrieval methods were used: standard fitting of the observations with a model based on pre-assumed gamma distribution shape, and a novel non-parametric technique Rainbow Fourier Transform (RFT), which does not require any a priori assumptions about the droplet size distribution. The RSP measurements over cumulus clouds also allow for estimation of their geometry (cloud length, top and base heights), which, combined with the droplet size, can provide further insight into cloud processes.

  10. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.

    1983-06-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  11. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1983-01-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  12. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  13. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  14. A long-term climate data record of scatterometer winds

    NASA Astrophysics Data System (ADS)

    Belmonte Rivas, Maria; Stoffelen, Ad; Verhoef, Anton; de Kloe, Jos; Verspeek, Jeroen; Vogelzang, Jur

    2015-04-01

    The ocean surface wind stress is a key element of the air-sea interaction, which refers to the transfer of energy, momentum and trace gases between the ocean and the atmosphere, both essential components of the Earth's climate system. We propose to create a global and continuous climate data record (CDR) of ocean stress-equivalent winds from satellite scatterometers from 1991 to present date. This will be done by reprocessing the entire backscatter archives from the ERS1 and ERS2, Quikscat SeaWinds, Metop-A ASCAT and Oceansat-2 OSCAT instruments using publicly available wind retrieval packages and special emphasis on sensor inter-calibration. Along with a consistent long-term record of scatterometer wind stress, this CDR will deliver wind curl/divergence and sea ice extents. This contribution reports on progress made, applications envisioned and current status of this activity.

  15. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 μgm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ΔOA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  16. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  17. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  18. Results of airborne measurements in the plume near and far from the 2014 Bardarbunga-Holuhraun eruption.

    NASA Astrophysics Data System (ADS)

    Arnason, Gylfi; Eliasson, Jonas; Weber, Konradin; Boehlke, Christoph; Palsson, Thorgeir; Rognvaldsson, Olafur; Thorsteinsson, Throstur; Platt, Ulrich; Tirpitz, Lukas; Jones, Roderic L.; Smith, Paul D.

    2015-04-01

    The Volcanic Ash Research (VAR) group is focused on airborne measurement of ash contamination to support safe air travel. In relations to the recent eruption, the group measured ash and several gaseous species in the plume 10-300 km from the volcano. The eruption emitted ash turned out to be mostly in the fine aerosol range (much less than 10 micrometers in diameter). Our highest measured concentrations were lower than 1 mg/m3 indicating that commercial air traffic was not threatened (greater than 2 mg/m3) by the ash contamination. But we measured sulfur dioxide (SO2 ) up to 90 mg/m3, which presented a potentially dangerous pollution problem. However, airborne measurements indicate that the sulfur concentration decays (probably due to scavenging) as the plume is carried by the wind from the volcano, which limits the area of immediate danger to the public. Here we present size distribution for particulate matter collected during flights, near and far from the crater at various times. The particle data is then compared with simultaneously collected sulfur dioxide data and the rate of decay of is estimated. Sulfur and particle concentration variations with height in the far plume are presented. Some airborne measurements for H2S, NO, NO2 and CO2 will also be presented. This includes correlation matrices for simultaneous measurements of these gases and comparison to National Air Quality Standards and background values.

  19. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  20. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-08-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur is also highest at coastal sites, with increasing values as a function of normalized difference vegetation index and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements, and the resulting data support the case for vanadium's catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 µm at a desert and coastal site with nearly all MSA mass (≥84%) in submicrometer sizes; MSA:non-sea-salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.

  1. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  2. Passive microwave airborne measurements of the sea surface response at 89 and 157 GHz

    NASA Astrophysics Data System (ADS)

    Guillou, C.; English, S. J.; Prigent, C.; Jones, D. C.

    1996-02-01

    Microwave measurements of the ocean-roughened surface have been collected during several recent international experiments using an airborne radiometer observing at 89 and 157 GHz. The purpose of this project is to test and validate the sea emissivity model required for the future humidity sounder, advanced microwave sounder unit B, over a wide range of atmospheric and surface conditions. In this paper, the measurements are statistically analyzed and compared with a geometric optics model with special emphasis on the sensitivity to the input parameters. This model is shown to provide good overall agreement with the data when coupled to the wave slope description of Cox and Munk (1954), the liquid water dielectric permittivity of Liebe et al. (1991), and the foam coverage of Monahan and Lu (1990), after increasing the theoretical predictions by a bias of about 2.5 K at 89 GHz and 1.7 K at 157 GHz. In addition, an empirical emissivity algorithm derived from low-frequency observations (Hollinger, 1971; Stogryn, 1972) and widely used for satellite retrieval purposes is shown to be inappropriate for use at millimeter frequencies.

  3. Measuring methane concentrations from anthropogenic and natural sources using airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Frankenberg, C.; Roberts, D. A.

    2013-12-01

    Two quantitative retrieval techniques were developed for measuring methane (CH4) enhancements for concentrated plumes using high spatial and moderate spectral resolution data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). An Iterative Maximum a Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm performed well for a homogenous ocean scene containing natural CH4 emissions from the Coal Oil Point (COP) seeps near Santa Barbara, California. A hybrid approach using Singular Value Decomposition (SVD) was particularly effective for terrestrial surfaces given it could better account for highly variable surface reflectance of complex urban environments. These techniques permitted mapping of a distinct plume at COP consistent with known seep locations and local wind direction, with maximum near surface enhancements of 2.85 ppm CH4 above background. At the Inglewood Oil Field, a CH4 plume was observed immediately downwind of two hydrocarbon storage tanks with a maximum concentration of 8.45 ppm above background. Results from a field campaign using the next generation sensor (AVIRISng) and controlled CH4 releases will also be discussed. AVIRIS-like sensors offer the potential to better constrain both CH4 and CO2 emissions on local and regional scales, including sources of increasing concern like industrial point source emissions and fugitive CH4 from the oil and gas industry. Fig. 1. CH4 plumes and measured enhancements for the COP seeps (top) and hydrocarbon storage tanks (bottom).

  4. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    SciTech Connect

    Kawa, S.R.; Anderson, L.C. Univ. of Colorado, Boulder ); Fahey, D.W. ); Loewenstein, M.; Chan, K.R. )

    1990-03-01

    Composite distributions of measured total reactive nitrogen (NO{sub y}) from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical, and microphysical processes. In the latitudinal profile from 58{degree}N to within about 4{degree} poleward of the polar vortex boundary, NO{sub y} conforms closely to predictions of NO{sub y} based on N{sub 2}O measurements. The features of the distribution are apparently dynamically controlled. Poleward of 5{degree} of latitude within the boundary, the average NO{sub y} decreases sharply and is significantly lower than that predicted from N{sub 2}O. This feature is consistent with loss of NO{sub y} through sedimentation of particles containing NO{sub y} in polar stratospheric clouds. The observed loss is not as systematic as in the Antarctic, consistent with the observed differences in season and meteorological conditions between the two campaigns.

  5. Airborne Measurements of Trace Gases and Aerosols in Northern China: EAST-AIRE IOP 2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Marufu, L. T.

    2005-12-01

    To characterize the emission, transport and removal of pollutants and aerosols emitted from East Asia, a US-China joint field campaign was conducted from February to April in China under the EAST-AIRE project. Surface and airborne measurements of trace gases and aerosols were made at different locations in northern China. In early April, eight research flights were conducted around Shenyang, an industrialized city with a population of about 6 million, 600 km northeast of Beijing. Parameters measured include SO2, CO, O3, aerosol size distribution, aerosol scattering and absorption coefficients. During 4 of the 8 flights, the research aircraft made spirals over two suburban locations (~50 km south and north of the downtown area of Shenyang) to determine the detailed vertical distribution of trace gases and aerosols. Various weather patterns were encountered, allowing an examination of the roles of atmospheric circulation in transporting local pollutants to much larger areas. For example, the flights made ahead of the cold front showed fairly high concentrations of pollutants above the planetary boundary layer, probably lifted by the upward motion associated with the approaching cold fronts. On the other hand, much lower pollutant levels were found for the flights made behind the cold front. Also observed in one cold-sector flight is a level (~3000 m) with enhanced aerosol scattering but almost undetectable SO2. Back trajectory analysis using NOAA-HYSPLIT model suggests possible dust transport from source regions.

  6. A frontal cyclogenesis case study from Seasat scatterometer data

    NASA Technical Reports Server (NTRS)

    Cunningham, Glenn F.; Woiceshyn, Peter M.; Wurtele, Morton G.

    1989-01-01

    In June 1978, the Seasat satellite was launched carrying, among other instruments, the Seasat-A scatterometer system (SASS), which produced ambiguous wind speed and direction data at the ocean surface. A fifteen day subset of dealiased wind vector data with the inherent ambiguities removed was produced for the period of September 6-20, 1978. On September 8, SASS began to observe a development of frontal cyclogenesis in the South Pacific off the east coast of New Zealand, in an area of few surface observations. A large mature cyclone contained weak warm and cold fronts and an occlusion with a strong horizontal wind shear. Satellite imagery shows that a strong upper-level jet streak was moving rapidly over the area of the surface frontal occlusion and as the jet passed over this area a new vortex formed. This cyclogenesis event was studied using 50-km resolution scatterometer surface wind data. High-resolution fields of wind vectors, divergence and vorticity are computed and plotted from the scatterometer data to study the structure and development of the newly formed cyclonic vortex, not otherwise possible using conventional observations.

  7. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Karl, T.; Artaxo, P.; Blake, D. R.; Christian, T. J.; Griffith, D. W. T.; Guenther, A.; Hao, W. M.

    2007-05-01

    The Tropical Forest and Fire Emissions Experiment (TROFFEE) used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR), and proton-transfer mass spectrometry (PTR-MS) to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC). The Brazilian smoke/haze layers extended to 2-3 km altitude, which is much lower than the 5-6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF) were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC). Our EF for PM10 (17.8±4 g/kg) is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these fires created a massive "mega-plume" >500 km across that we sampled on September 8. The mega

  8. Filter measurements of chemical composition during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Grandrud, B. W.; Sperry, P. D.; Sanford, L.

    1988-01-01

    During the Airborne Antarctic Ozone Experiment campaign, a filter sampler was flown to measure the bulk composition of aerosol and gas phases. The background sulfate aerosol was measured in regions inside and outside of the chemically perturbed region (CPR) of the polar vortex. The mass ratio of sulfate outside to inside was 2.8. This is indicative of a cleansing mechanism effecting the CPR or of a different air mass inside versus outside. The absolute value of the sulfate mixing ratio shows that the background aerosol has not been influenced by recent volcanic eruptions. The sulfate measured on the ferry flight returning to NASA Ames shows a decrease towards the equator with increasing concentrations in the northern hemisphere. Nitrate in the aerosol phase was observed on two flights. The largest amount of nitrate measured in the aerosol was 44 percent of the total amount of nitrate observed. Other samples on the same flights show no nitrate in the aerosol phase. The presence of nitrate in the aerosol is correlated with the coldest temperatures observed on a given flight. Total nitrate (aerosol plus acidic vapor nitrate) concentrations were observed to increase at flight altitude with increasing latitude north and south of the equator. Total nitrate was lower inside the CPR than outside. Chloride and flouride were not detected in the aerosol phase. From the concentrations of acidic chloride vapor, the ratio of acidic vapor Cl to acidic vapor F and a summing of the individual chloride containing species to yield a total chloride concentration, there is a suggestion that some of the air sampled was dechlorinated. Acidic vapor phase fluoride was observed to increase at flight altitude with increasing latitude both north and south of the equator. The acidic vapor phase fluoride was the only compound measured with the filter technique that exhibited larger concentrations inside the CPR than outside.

  9. Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Feigl, C.; Schlager, H.; Schröder, F.; Gerbig, C.; van Velthoven, P.; Flatøy, F.; Théry, C.; Petzold, A.; Höller, H.; Schumann, U.

    2002-06-01

    Airborne in situ measurements of NO, NO2, NOy, CO, CO2, O3, J(NO2), and CN were performed in European thunderstorms during the field experiment EULINOX in July 1998. The measurements in the upper troposphere show enhanced NOx (= NO + NO2) concentrations within thunderstorms and their outflow at horizontal scales from 300 m to several 100 km. The maximum NO mixing ratio measured inside a thundercloud close to lightning (the aircraft was also hit by a small lightning strike) was 25 ppbv. A regional NOx enhancement of 0.5 ppbv over central Europe could be traced back to a thunderstorm event starting ~24 hours earlier over Spain. The fractions of NOx in thunderclouds which are produced by lightning and convectively transported from the polluted boundary layer are determined by using CO2 and CO as tracers for boundary layer air. The analyses show that on average about 70% of the NOx increase measured in the anvil region was found to result from production by lightning and about 30% from NOx in the boundary layer. Thunderstorms are also strong sources of small particles. The peak CN concentrations measured within thunderstorm outflows (>30,000 particles STP cm-3) were distinctly higher than in the polluted boundary layer. The amount of NOx produced per thunderstorm and NO produced per lightning flash was estimated. The results imply that the annual mean NOx budget in the upper troposphere over Europe is dominated by aircraft emissions (0.1 TgN yr-1) in comparison to lightning production (~0.03 TgN yr-1). On the global scale, NOx produced by lightning (mean 3 TgN yr-1) prevails over aircraft-produced NOx (0.6 TgN yr-1).

  10. Airborne Radar Sounding and Ice Thickness Measurements over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.; Holt, J. W.; Kempf, S. D.; Richter, T. G.; Falola, B.; Oliason, S.

    2002-05-01

    Lake Vostok was discovered using airborne ice-sounding radar in East Antarctica during the mid 1970's, but interest in this largest known subglacial lake has increased in recent years. Frozen microbial discoveries from ice cores taken just above Lake Vostok suggest its potential for being an isolated biological ecosystem. Also, the lake's unique combination of glaciologic, hydrologic and geological processes make it a possible terrestrial analogue for sub-ice water on other planetary bodies. Satellite radar has mapped the spatial extent of the lake from surface topography, and Russian ground traverses have gathered radar and seismic data along select profiles, but the full subglacial environment has remained uncharted. In response to a proposal by R.E. Bell and M. Studinger at Lamont Doherty Earth Observatory, the University of Texas Institute for Geophysics (UTIG) conducted an airborne geophysical survey over Lake Vostok and its surroundings during the 2000/01 field season. The survey included 21,000 line-km of geophysical observations with a line spacing of 7.5 km and a tie-line spacing of 11.25 or 22.5 km. The instrument suite included incoherent ice-sounding radar, laser altimetry, and precise GPS positioning and navigation, as well as airborne gravity and magnetics measurements. The radar system consisted of a 60 MHz, 8000 watt peak power transmitter operating in pulsed continuous-wave mode at 12.5 kHz (with 250 ns pulse width), a log-detection incoherent receiver (with 80 dB dynamic range), and a signal digitizer with a unique capability to average signals rapidly. Incoherent radar observations constructed from 2048 averaged transmissions occurred roughly every 12 m along-track. Ice thicknesses in excess of 4000 m were routinely sounded over Lake Vostok using this system. In addition to the incoherent radar, a new acquisition system was developed on an experimental basis to coherently integrate radar signals utilizing synthetic aperture radar techniques

  11. Airborne Multi-Angle Hyper-Spectral Measurements of White Caps on the Open Ocean

    NASA Astrophysics Data System (ADS)

    Laveigne, J.; Cairns, B.; Diner, D. J.

    2004-05-01

    The influence of whitecaps on the atmospheric correction of ocean color measurements is highly dependent on the spectral variation of albedo that is assumed for the whitecaps. Field measurements of breaking waves in the surf zone indicate a strong spectral variation in whitecap reflectance with the reflectance at 1650 nm nm decreasing by 95% relative to that at 440 nm. The cause of this spectral variation is thought to be the strong absorption by water at longer wavelengths that attenuates light reflected from submerged bubbles. Measurements made during an ocean cruise suggest that the magnitude of this decrease is typically less in the open ocean where the wave breaking is less violent and bubbles are not injected as deep into the water. Nonetheless, even in the open ocean, when whitecaps are large and bright similar decreases in reflectance from 440 nm to 860 nm to those observed in the surf zone are seen. Unfortunately, although measurements in the vicinity of 1600 and 2200 nm are important for remote sensing of aerosols and the atmospheric correction of ocean color measurements, the longest wavelength used for the open ocean measurements was 860 nm. Information about typical reflectance decreases from 440 nm to these longer wavelengths is therefore missing. One approach to remedying this absence of information about the spectral variation of white cap albedo across the solar spectrum is to use an airborne imaging spectrometer. However, a significant difficulty in using airborne, or ship-borne, instrumentation to measure the spectral albedo of whitecaps is the contamination of data by sun glitter. It is usually much more difficult than anticipated to filter data to reject glitter, even for ship-borne measurements with a television camera that provides a visual reference. This means that most data that is reported is obtained under overcast conditions. One approach to alleviating the problems caused by sun glitter is to using multi-angle remote sensing. If

  12. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign. PMID:21556111

  13. The Detection and Mitigation of RFI with the Aquarius L-Band Scatterometer

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Piepmeier, J. R.; Fischman, M. A.; McWatters, D. A.; Spencer, M. W.

    2008-01-01

    The Aquarius sea-surface salinity mission includes an L-band scatterometer to sense sea-surface roughness. This radar is subject to radio-frequency interference (RFI) in its passband from 1258 to 1262 MHz, a region also allocated for terrestrial radio location. Due to its received power sensitivity requirements, the expected RFI environment poses significant challenges. We present the results of a study evaluating the severity of terrestrial RFI sources on the operation of the Aquarius scatterometer, and propose a scheme to both detect and remove problematic RFI signals in the ocean backscatter measurements. The detection scheme utilizes the digital sampling of the ambient input power to detect outliers from the receiver noise floor which are statistically significant, and flags nearby radar echoes as potentially contaminated by RFI. This detection strategy, developed to meet tight budget and data downlink requirements, has been implemented and tested in hardware, and shows great promise for the detection and global mapping of L-band RFI sources.

  14. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  15. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  16. Boundary Layer CO2 mixing ratio measurements by an airborne pulsed IPDA lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Allan, G. R.

    2014-12-01

    Since the primary signature of CO2 fluxes at the surface occurs in the planetary boundary layer (PBL), remote sensing measurements of CO2 that can resolve the CO2 absorption in the PBL separate from the total column are more sensitive to fluxes than those that can only measure a total column. The NASA Goddard CO2 sounder is a pulsed, range-resolved lidar that samples multiple (presently 30) wavelengths across the 1572.335 nm CO2 absorption line. The range resolution and line shape measurement enable CO2 mixing ratio measurements to be made in two or more altitude layers including the PBL via lidar cloud-slicing and multi-layer retrievals techniques. The pulsed lidar approach allows range-resolved backscatter of scattering from ground and cloud tops. Post flight data analysis can be used split the vertical CO2 column into layers (lidar cloud-slicing) and solve for the CO2 mixing ratio in each layer. We have demonstrated lidar cloud slicing with lidar measurements from a flight over Iowa, USA in August 2011 during the corn-growing season, remotely measuring a ≈15 ppm drawdown in the PBL CO2. We will present results using an improved lidar cloud slicing retrieval algorithm as well as preliminary measurements from the upcoming ASCENDS 2014 flight campaign. The CO2 absorption line is also more pressure broadened at lower altitudes. Analyzing the line shape also allows solving for some vertical resolution in the CO2 distribution. By allowing the retrieval process to independently vary the column concentrations in two or more altitude layers, one can perform a best-fit retrieval to obtain the CO2 mixing ratios in each of the layers. Analysis of airborne lidar measurements (in 2011) over Iowa, USA and Four Corners, New Mexico, USA show that for altitudes above 8 km, the CO2 sounder can detect and measure enhanced or diminished CO2 mixing ratios in the PBL even in the absence of clouds. We will present these results as well as preliminary measurements from the upcoming

  17. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    NASA Astrophysics Data System (ADS)

    Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  18. Measurement of Airborne Fission Products in Chapel Hill, NC, USA from the Kukushima Dai-ichi Reactor Accident

    SciTech Connect

    MacMullin, S.; Giovanetti, G. K.; Green, M. P.; Henning, R.; Holmes, R.; Vorren, K.

    2012-01-01

    We present measurement results of airborne fission products in Chapel Hill, NC, USA, from 62 d following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products 131I and 137Cs were measured with maximum activity concentrations of 4.2 0.6 mBq/m3 and 0.42 0.07 mBq/m3 respectively. Additional activity from 131,132I, 134,136,137Cs and 132Te were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  19. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident.

    PubMed

    MacMullin, S; Giovanetti, G K; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

    2012-10-01

    We present measurement results of airborne fission products in Chapel Hill, NC, USA, from 62 d following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products (131)I and (137)Cs were measured with maximum activity concentrations of 4.2 ± 0.6 mBq/m(3) and 0.42 ± 0.07 mBq/m(3) respectively. Additional activity from (131,132)I, (134,136,137)Cs and (132)Te were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF). PMID:22348994

  20. Airborne MAX-DOAS Measurements Over California: Testing the NASA OMI Tropospheric NO2 Product

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Baidar, Sunil; Krotkov, Nickolay A.; Lamsal, Lok N.; Lechner, Michael; Volkamer, Rainer

    2013-01-01

    Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) measurements of NO2 tropospheric vertical columns were performed over California for two months in summer 2010. The observations are compared to the NASA Ozone Monitoring Instrument (OMI) tropospheric vertical columns (data product v2.1) in two ways: (1) Median data were compared for the whole time period for selected boxes, and the agreement was found to be fair (R = 0.97, slope = 1.4 +/- 0.1, N= 10). (2) A comparison was performed on the mean of coincident AMAX-DOAS measurements within the area of the corresponding OMI pixels with the tropospheric NASA OMI NO2 assigned to that pixel. The effects of different data filters were assessed. Excellent agreement and a strong correlation (R = 0.85, slope = 1.05 +/- 0.09, N= 56) was found for (2) when the data were filtered to eliminate large pixels near the edge of the OMI orbit, the cloud radiance fraction was<50%, the OMI overpass occurred within 2 h of the AMAX-DOAS measurements, the flight altitude was>2 km, and a representative sample of the footprint was taken by the AMAX-DOAS instrument. The AMAX-DOAS and OMI data sets both show a reduction of NO2 tropospheric columns on weekends by 38 +/- 24% and 33 +/- 11%, respectively. The assumptions in the tropospheric satellite air mass factor simulations were tested using independent measurements of surface albedo, aerosol extinction, and NO2 profiles for Los Angeles for July 2010 indicating an uncertainty of 12%.

  1. Airborne measurements of different trace gases during the AROMAT-2 campaign with an Avantes spectrometer

    NASA Astrophysics Data System (ADS)

    Bösch, Tim; Meier, Andreas; Schönhardt, Anja; Peters, Enno; Richter, Andreas; Ruhtz, Thomas; Burrows, John

    2016-04-01

    Differential Optical Absorption Spectroscopy (DOAS) is a well-known, versatile, and frequently used technique for the analysis of trace gases within the atmosphere. Although DOAS has been used for several decades, airborne DOAS has become more popular during the last years because of the possibility of measuring in high lateral resolutions with the help of imaging instruments. Here, we present results of the AROMAT-2 campaign in Romania in summer 2015. The introduced measurements were taken using a nadir viewing Avantes spectrometer on board of a Cessna aircraft which flew over Bucharest and the Turceni power plant in Romania. The instrument covers the wavelength region of 287 - 551nm at a spectral resolution of 0.13nm and has a temporal resolution of 0.5s, translating to about 450m in flight direction at 3000m flight attitude. The field of view of the instrument was set to 8.1 degrees, resulting in a pixel size across track of about 420m. Compared to the imaging DOAS instrument AirMAP which was also operated from the aircraft, the signal to noise ratio of the simple nadir viewing spectrometer is slightly better, which allows an analysis of less abundant species and interesting spectral features. The results show a day-to-day variation of NO2 over the city of Bucharest as well as spectral features over lakes in the city, which can be attributed to algae. Furthermore, we were able to measure large emission plumes of NO2 and SO2 over the Turceni power plant, which could be observed over long spatial distances. In addition, the results from the Avantes instrument were used for comparison with measurements of the imaging spectrometer AirMAP and good agreement was found, providing independent verification of the imager data.

  2. Seagrass biomass and productivity in the Florida Keys, USA: ground-level and airborne measurements

    NASA Astrophysics Data System (ADS)

    Yarbro, L.; Carlson, P. R., Jr.; McHan, C.; Carlson, D. F.; Hu, C.; Danielson, T.; Durnan, B.; English, D. C.; Muller-Karger, F. E.; Yates, K. K.; Herwitz, S.; Merrill, J.; Mewes, T.

    2013-12-01

    Seagrass communities serve as essential habitat for fish and shellfish, and recent research indicates that they can play a significant role in reducing ocean acidification. As part of a collaborative project funded by the NASA ROSES program and administered by the NASA UAV Collaborative, we collected hyperspectral imagery of seagrass beds and measured productivity of Thalassia testudinum at Sugarloaf Key, Florida, in May 2012, October 2012, and May 2013. Our primary goal was to evaluate the utility of hyperspectral sensors, in general, and UAV platforms, in specific, to measure seagrass health and productivity. Airborne measurements using the AISA Eagle hyperspectral imaging system were carried out simultaneously with ground measurements of Thalassia fluorescence, oxygen metabolism, growth, and biomass, as well as remote sensing reflectance and several in situ optical properties. Water depths at the study site ranged from less than 1 m to 5 m. Phytoplankton chlorophyll-a concentrations (0.09-0.72 ug l-1), ag(440) (0-0.02 m-1), and turbidity (0.12-4.1 ntu) were relatively low for all three deployments, facilitating the collection of excellent imagery and application of water-column radiative-transfer corrections. Aboveground Thalassia and macroalgal biomass, at 18 sites in the study area, ranged from 210 to 690 and 11 to 590 gDW m-2, respectively. One-sided green leaf area index of Thalassia ranged from 0.7 to 3.0. Preliminary findings show that the sensitivity of relationships between seagrass productivity and biomass parameters and remotely-sensed habitat spectra is reduced with increasing water depth and, even in shallow water, is complicated by epiphytic algae and sediment coverage of leaf surfaces.

  3. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon.

    PubMed

    Colls, J J; Micallef, A

    1999-09-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM10 and PM2.5) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data. PMID:10535122

  4. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2002-11-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact, passively Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulsewidths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on post-detection Poisson filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. The advantages of photon-counting detector arrays followed by multichannel timing receivers for high resolution topographic mapping are discussed. Practical technology issues, such as detector and/or receiver dead times and their impact on signal detection and ranging accuracy and resolution, have also been considered in the analysis. The theoretical results are reinforced by data from an airborne microlaser altimeter, developed under NASA's Instrument Incubator Program. The latter instrument has operated at several kHz rates from aircraft cruise altitudes up to 6.7 km with laser pulse energies on the order of a few microjoules. The instrument has successfully recorded decimeter accuracy or better single photon returns from man-made structures, tree canopies and underlying terrain and has demonstrated shallow water bathymetry at depths to a few meters. We conclude the discussion by analyzing a photon counting instrument designed to produce, over a mission life of 3 years, a globally contiguous map of the Martian surface, with 5 m horizontal resolution and decimeter vertical accuracy, from an altitude of 300 km. The transmitter power-receive aperture product required is comparable to the Geoscience Laser Altimeter System (GLAS) but the number of individual range measurements to the surface is increased by three to four orders of magnitude. For more modest scientific goals, on a

  5. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  6. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  7. Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Toon, G. C.; Farmer, C. B.; Schaper, P. W.; Lowes, L. L.; Norton, R. H.

    1992-01-01

    The paper reports simultaneous measurements of the stratospheric burdens of H2O, HDO, OCS, CO2, O3, N2O, CO, CH4, CF2Cl2, CFCl3, CHF2Cl, C2H6, HCN, NO, NO2, HNO3, ClNO3, HOCl, HCl, and HF made by the JPL MkIV interferometer on board the NASA DC-8 aircraft during January and early February 1989 as part of the Airborne Arctic Stratosphere Experiment. Data were obtained on 11 flights at altitudes of up to 12 km over a geographic region covering the NE Atlantic Ocean, Iceland, and Greenland. Analyses of the chemically active gases reveal highly perturbed conditions within the vortex. The ClNO3 abundance was chemically enhanced near the edge of the vortex but was then depleted inside. NO2 was severely depleted inside the vortex. In contrast to Antarctica, H2O and HNO3 were both more abundant inside the vortex than outside. It is suggested that although the Arctic vortex did not get cold enough to produce any dehydration, or as vertically extensive denitrification as occurred in Antarctica, nevertheless, enough heterogeneous chemistry occurred to convert over 90 percent of the inorganic chlorine to active forms in the 14- to 27-km altitude range by early February 1989.

  8. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  9. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms

    NASA Astrophysics Data System (ADS)

    Berg, N.; Mellqvist, J.; Jalkanen, J.-P.; Balzani, J.

    2012-05-01

    A unique methodology to measure gas fluxes of SO2 and NO2 from ships using optical remote sensing is described and demonstrated in a feasibility study. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. A simple geometric approximation is used to calculate the optical path. To obtain the total emission in kg h-1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h-1, and the average NO2 emission was (33 ± 8) kg h-1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h-1, NO2 was not measured here. The detection limit of the system made it possible to detect SO2 in the ship plumes in 60% of the measurements when the described method was used. A comparison exercise was carried out by conducting airborne optical measurements on a passenger ferry in parallel with onboard measurements. The comparison shows agreement of (-30 ± 14)% and (-41 ± 11)%, respectively, for two days, with equal measurement precision of about 20%. This gives an idea of the measurement uncertainty caused by errors in the simple geometric approximation for the optical light path neglecting scattering of the light in ocean waves and direct and multiple scattering in the exhaust plume under various conditions. A tentative

  10. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  11. Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, Akua; Moore, Richard H.; Nenes, Athanasios; Bahreini, Roya; Holloway, John S.; Brock, Charles A.; Middlebrook, Ann M.; Ryerson, Thomas B.; Jimenez, Jose L.; Decarlo, Peter F.; Hecobian, Arsineh; Weber, Rodney J.; Stickel, Robert; Tanner, Dave J.; Huey, Lewis G.

    2011-06-01

    Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (˜100 km × 100 km; CCN/CN is ˜0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter (κ = 0.16 or effective κ ˜ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.

  12. An airborne spectrometer with three infrared lasers for trace gas measurements applied to convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.

    2012-12-01

    An infrared absorption spectrometer named SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been built for airborne simultaneous online measurements of trace gases. SPIRIT is based on two recent technological advances, leading to optimal performances and miniaturization: continuous wave quantum cascade lasers (CW-QCL) operating near room temperature coupled to a new, patented, multipass optical cell (Robert, Appl. Optics, 2007). An essential electronic development allows the sequential use of three QCLs with the same single cell. With judicious selected spectral micro-windows, this potentially leads to the measurements of at least four species at 0.7 Hz frequency. The first deployment of SPIRIT was made onboard the DLR Falcon-20 aircraft during the campaign associated to the EU SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project in Nov.-Dec. 2011 over Malaysia. In the present paper, the flight of 19 Nov. is presented in detail as an example of the SPIRIT performances, with CO, CO2, CH4 and N2O as measured species. The aircraft crossed four times the anvil of a severe thunderstorm from 11.3 km to 12.8 km altitude corresponding to a large convective system near Borneo island (6.0°N-115.5°E). During the crossing, carbon monoxide mixing ratios increase by 5 to 10 ppbv from the ambient cloud free environment to the anvil cloud correlated with an increase of CH4 mixing ratio. Using these observations, the fraction of boundary layer air contained in fresh convective outflow has been calculated. Other convection cases were detected, allowing for other fractions to be calculated, with results ranging between 0.15 and 0.55 and showing the variability of the mixing taking place during convective transport.

  13. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    NASA Astrophysics Data System (ADS)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D.; Blake, D. R.; Wiedinmyer, C.

    2009-01-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10-15 g/g) including the International airport (e.g. 3-5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX- Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2-13%).

  14. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    NASA Astrophysics Data System (ADS)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D.; Blake, D.; Wiedinmyer, C.

    2008-07-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-average midday toluene and benzene fluxes are calculated to be on the order of 15.5±4.0 mg/m2/h and 4.7±2.3 mg/m2/h respectively. These values argue for an underestimation of toluene and benzene emissions in current inventories used for the Mexico City Metropolitan Area (MCMA). Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10 15) including the International airport (e.g. 3 5) and a mean flux (concentration) ratio of 3.2±0.5 (3.9±0.3) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (Benzene/Toluene/Ethylbenzene/m,p,o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >90% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds (0 10%) in the MCMA.

  15. Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. Roland

    1988-01-01

    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease.

  16. The Importance and Technology for Measuring Atmospheric Humidity in Airborne Applications

    NASA Astrophysics Data System (ADS)

    Bozóki, Zoltán; Tátrai, Dávid; Gulyás, Gábor; Varga, Attila; Szabó, Gábor

    2013-04-01

    The concentrations of atmospheric water vapour (i.e. humidity) and total water (i.e. water vapour plus liquid water and ice particles) are crucially important parameters for weather forecast and climate research, while these substances also play dominant roles in aircraft icing and contrail formation. Their concentration varies over more than three orders of magnitudes in the troposphere and stratosphere with high temporal and spatial variation especially when being measured by an instrument operated on-board of a research or commercial aircraft. Therefore an instrument for their measurement has to have short response time, long-term maintenance free operation, small size, low weight, as well as accurate and reliable operation even under extreme conditions. We have developed a diode laser based dual channel instrument (Hilase-Hygro) which operates on a special type of optical absorption methods (i.e. the photoacoustic principle) and which can measure the concentration of water vapour and total water simultaneously while meeting the strictest requirements listed above. One of our instruments is in operation as a part of an automatic laboratory deployed intermittently into the cargo bay of a passenger aircraft within the framework of the CARIBIC project since 2002. Other instrument takes part in various measurement campaigns within the framework of the EUFAR (European Facility for Airborne Research) project. Recently the instrument has been improved in several topics: The wavelength of the applied laser now can be locked with 10^-8 relative accuracy, what results a maximum of 0.1% error in the measured optical absorption, i.e. in the measured humidity levels. The calibration method was also improved, what also increased the performance of the whole instrument. This new calibration method gives the possibility for real time mixing ratio calculation both for water vapour and total water content. Altogether now the instrument is capable for measuring humidity with 1

  17. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  18. Designing Scatterometer Constellations for Sampling Global Ocean Vector Winds

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Chelton, D. B.; Stoffelen, A.; Schlax, M.

    2012-12-01

    The rapid temporal variations in ocean vector winds make it impossible to obtain synoptic global snapshots of winds and wind stress from a single spaceborne sensor. Even when multiple sensors are present, the peculiarities of the resulting space-time sampling pattern require that significant smoothing in space and time be performed to limit spatially and temporally inhomogeneous error characteristics in the merged data. Based on the collected common experience in its member states, the World Meteorological Organization collects requirements for spatio-temporal sampling in meteorological applications such as global and regional Numerical Weather Prediction, nowcasting, and climate. An additional concern, when constructing data sets from sun-synchronous missions, is that undersampling of diurnal and sub-diurnal variability may result in aliasing of the climate data record. Indeed, examination of climatologies constructed from different satellite missions, such as NASA's QuikSCAT and EUMETSAT's ASCAT scatterometers, show systematic differences that cannot be explained as being due solely to unresolved incoherent diurnal and sub-diurnal variability. Some of these differences, especially in the tropics, are probably explained by systematic diurnal and sub-diurnal variations. Other differences may be due to the difficulty of cross-calibrating sun-synchronous satellites with different local times. Forthcoming satellite missions may offer the possibility of overcoming or mitigating the space-time sampling and calibration challenges using multiple coordinated platforms. In the next decade, there is an expectation that ocean vector winds will be measured simultaneously by multiple satellites from the European community, India, China, and the United States. The coordination and suitable merging of the data from these satellites to produce a climate data record will be a challenge to the ocean vector winds community. In this presentation, we use climatologies constructed from

  19. Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

    2013-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were

  20. NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Schlager, H.; Lichtenstern, M.; Roiger, A.; Stock, P.; Minikin, A.; Höller, H.; Schmidt, K.; Betz, H.-D.; Allen, G.; Viciani, S.; Ulanovsky, A.; Ravegnani, F.; Brunner, D.

    2009-07-01

    During the SCOUT-O3/ACTIVE field phase in November-December 2005 airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228). Here a case study from 19 November is presented in large detail on the basis of airborne trace gas measurements (NO, NOy, CO, O3) and stroke measurements from the German LIghtning Location NETwork (LINET), set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: 1) a continental thunderstorm developing in a tropical airmass near Darwin, 2) a mesoscale convective system (MCS) developing within the tropical maritime continent (Tiwi Islands) known as Hector, and 3) a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol-1 in the main anvil outflow at ~11.5-12.5 km altitude. The mean NOx (=NO+NO2) mixing ratios during these penetrations (~100 km width) varied between 2.2 and 2.5 nmol mol-1. The NOx contribution from the boundary layer (BL), transported upward with the convection, to total anvil-NOx was found to be minor (<10%). On the basis of Falcon measurements, the mass flux of lightning-produced NOx (LNOx) in the well-developed Hector system was estimated to 0.6-0.7 kg(N) s-1. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s-1 (here only strokes with peak currents ≥10 kA contributing to LNOx were considered). The LNOx mass flux and the stroke rate were combined to estimate the LNOx production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with Lightning Imaging Sensor (LIS

  1. NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Schlager, H.; Lichtenstern, M.; Roiger, A.; Stock, P.; Minikin, A.; Höller, H.; Schmidt, K.; Betz, H.-D.; Allen, G.; Viciani, S.; Ulanovsky, A.; Ravegnani, F.; Brunner, D.

    2009-11-01

    During the SCOUT-O3/ACTIVE field phase in November-December 2005, airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228. Here a case study from 19 November is presented in detail on the basis of airborne trace gas measurements (NO, NOy, CO, O3) and stroke measurements from the German LIghtning Location NETwork (LINET), set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: (1) a continental thunderstorm developing in a tropical airmass near Darwin, (2) a mesoscale convective system (MCS), known as Hector, developing within the tropical maritime continent (Tiwi Islands), and (3) a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol-1 in the main anvil outflow at ~11.5-12.5 km altitude. The mean NOx (=NO+NO2) mixing ratios during these penetrations (~100 km width) varied between 2.2 and 2.5 nmol mol-1. The NOx contribution from the boundary layer (BL), transported upward with the convection, to total anvil-NOx was found to be minor (<10%). On the basis of Falcon measurements, the mass flux of lightning-produced NOx (LNOx) in the well-developed Hector system was estimated to 0.6-0.7 kg(N) s-1. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s-1 (here only strokes with peak currents ≥10 kA contributing to LNOx were considered). The LNOx mass flux and the stroke rate were combined to estimate the LNOx production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with Lightning Imaging Sensor (LIS

  2. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  3. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  4. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; Pittman, J.; Atlas, E.; Kim, J.

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  5. A Transport Analysis of In Situ Airborne Ozone Measurements from the 2011 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Arkinson, H. L.; Brent, L. C.; He, H.; Loughner, C.; Stehr, J. W.; Weinheimer, A. J.; Dickerson, R. R.

    2013-12-01

    Baltimore and Washington are currently designated as nonattainment areas with respect to the 2008 EPA National Ambient Air Quality Standard (NAAQS) for 8-hour Ozone (O3). Tropospheric O3 is the dominant component of summertime photochemical smog, and at high levels, has deleterious effects on human health, ecosystems, and materials. The University of Maryland (UMD) Regional Atmospheric Measurement Modeling and Prediction Program (RAMMPP) strives to improve understanding of air quality in the Mid-Atlantic States and to elucidate contributions of pollutants such as O3 from regional transport versus local sources through a combination of modeling and in situ measurements. The NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project investigates the connection between column measurements and surface conditions to explore the potential of remote sensing observations in diagnosing air quality at ground level where pollutants can affect human health. During the 2011 DISCOVER-AQ field campaign, in situ airborne measurements of trace gases and aerosols were performed along the Interstate 95 corridor between Baltimore and Washington from the NASA P3B aircraft. To augment this data and provide regional context, measurements of trace gases and aerosols were also performed by the RAMMPP Cessna 402B aircraft over nearby airports in Maryland and Virginia. This work presents an analysis of O3 measurements made by the Ultraviolet (UV) Photometric Ambient O3 Analyzer on the RAMMPP Cessna 402B and by the NCAR 4-Channel Chemiluminescence instrument on the NASA P3B. In this analysis, spatial and temporal patterns of O3 data are examined within the context of forward and backward trajectories calculated from 12-km North American Mesoscale (NAM) meteorological data using the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model and from a high resolution Weather Research and

  6. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    yields, we were able to predict ~50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA and have an impact on aerosol composition on a regional scale.

  7. Soil moisture estimates from the SMOS Validation Rehearsal Campaign in Valencia using EMIRAD airborne measurements

    NASA Astrophysics Data System (ADS)

    Saleh Contell, K.; López-Baeza, E.; Antolín, C.; Millán, C.; Cano, A.; Wigneron, J. P.; Balling, J.; Schmidl, S. S.; Skou, N.; Kerr, Y. H.; Richaume, P.; Juglea, S.; Delwart, S.; Bouzinac, C.; Wursteisen, P.

    2009-04-01

    The European Space Agency conducted a series of flights in 2008 over the main SMOS Validation sites in Europe, amongst them at the Valencia site. The scope of these campaigns was to help in the preparation of operational soil moisture outputs to be generated by the validation teams during the SMOS commissioning phase and beyond. For that purpose, several activities were scheduled at the Valencia site as part of the SMOS Validation Rehearsal campaign. These included: i) Airborne measurements at L-band to improve the parameterisation of the microwave model L-MEB (L-band Microwave Emssion model of the Biosphere) in the area, in order to improve the match between measured brightness temperatures by SMOS, and simulations using ground-truth soil moisture. ii) Intensive soil moisture sampling in a 10 km x 10 km area to support both current studies on soil moisture spatialisation based on SVAT modelling, and the definition of homogeneous land units for the future characterisation of soil moisture at the scale of a SMOS pixel (~ 50 km). The Valencia Site is located in SE Spain, about 80 km inland to the west of Valencia. Within the Valencia validation site, an area of 10 km x 10 km was selected for the experiment. The land use in this area is dominated by vineyards and bare soil (>70%), and orchards (~18 %). Flights over this area were conducted on four different days between April 22nd and May 2nd 2008. During that period, soil moisture near the surface (0-6 cm) slowly decreased with the last rainfall having occurred on April 20. Radiometric measurements were acquired by EMIRAD (L-band, 1.4 GHz) onboard the Skyvan aircraft. The flight plan, repeated across the four days, included 4 parallel lines crossing the 10 km x 10 km area at ~2300 m above the ground level. One diagonal flight was also performed at ~900 m above the ground level on each day. EMIRAD measured the L-band radiation emitted by the surface using two horns, one close to nadir, and the other one at 43 deg

  8. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  9. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Vodacek, Anthony; Swift, Robert N.; Yungel, James K.; Blough, Neil V.

    1995-10-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed

  10. Surface and Airborne Measurements of Organosulfur and Methanesulfonate Over the Western United States and Coastal Areas

    PubMed Central

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-01-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime, and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur (TS) is also highest at coastal sites, with increasing values as a function of Normalized Difference Vegetation Index (NDVI) and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements and the resulting data support the case for vanadium’s catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32—0.56 μm at a desert and coastal site with nearly all MSA mass (≥ 84%) in sub-micrometer sizes; MSA:non-sea salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas, and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed. PMID:26413434

  11. Retrievals of Column CO2 Densities from Pulsed Airborne Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; Abshire, J. B.; Allan, G.; Hasselbrack, W.; Kawa, S. R.; Mao, J.

    2011-12-01

    We present results from our summer 2010 CO2 measurement campaign using the NASA Goddard CO2 lidar sounder onboard the NASA DC-8 aircraft platform. This instrument is a candidate for NASA's ASCENDS space mission. The airborne instrument steps a pulsed wavelength-tunable laser transmitter across the 1572.33 nm CO2 line in thirty steps at a 300 Hz repetition rate. The line transmission shape, optical depth, and column densities for the CO2 are obtained from a retrieval algorithm that fits the observed scan while accounting for atmospheric temperature, pressure, water vapor and the lidar's wavelength response. We present results from flights over Railroad Valley Nevada, the ARM site in Oklahoma, and a flight over the Pacific Ocean. During our most recent summer 2011 campaign we flew our instrument over solid and broken cloud as well as smoke from forest fires. Preliminary results from these more challenging conditions will be presented. A second part of the presentation asks how many independent pieces of information about the CO2 vertical profile are retrievable for a given CO2 lidar instrument configuration. We explore how changing the instrument signal to noise and changing the number of wavelengths where the absorption is measured impacts the amount of information in the retrieved CO2 vertical profile. For example if we want CO2 concentrations from 2 independent altitude layers how many wavelength samples, at a given signal to noise, are needed? We consider instrument configurations where only two wavelengths are sampled (simple on-line off-line) up to configurations where 30 wavelengths are sampled.

  12. Dual channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight inter-comparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2014-06-01

    This paper describes a tunable diode laser based dual channel photoacoustic (PA) humidity measuring system called WaSul-Hygro primarily designed for aircraft based environment research. It is calibrated for total pressures and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range which might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne inter-comparisons, which proved that the repeatability, the estimated accuracy and the response time of the system is 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  13. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2015-01-01

    This paper describes a tunable diode laser-based dual-channel photoacoustic (PA) humidity measuring system primarily designed for aircraft-based environment research. It is calibrated for total pressure and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure-dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range that might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne intercomparisons, which proved that the repeatability, the estimated accuracy and the response time of the system are 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is theoretically about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines, and was experimentally verified up to 20 000 ppmV. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  14. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-05-01

    We report airborne differential optical absorption spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. Two soundings are presented, performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04±0.005 km-1 and 1.9±0.3 × 109 molec cm-3. A second extinction layer of 0.01±0.003 km-1 is found at 4 km altitude. During the second sounding, clouds prevented us to retrieve profile parts under 3 km altitude but a layer with enhanced extinction (0.025±0.005 km-1) and NO2 (1.95±0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  15. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-09-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. We present results from two soundings performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04 ± 0.005 km-1 and 1.9 ± 0.3 × 109 molec cm-3. A second extinction layer of 0.01 ± 0.003 km-1 is found at 4 km altitude where the NO2 concentration is 0.32 ± 0.2 × 109 molec cm-3. During the second sounding, clouds prevent retrieval of profile parts under 3 km altitude but a layer with enhanced extinction (0.025 ± 0.005 km-1) and NO2 (1.95 ± 0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  16. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  17. Application of SeaWinds Scatterometer Data to the Study of Antarctic Icebergs

    NASA Astrophysics Data System (ADS)

    Stuart, Keith M.

    Knowledge of iceberg location and size is important for safety reasons as well as for understanding many geophysical and biological processes. This dissertation analyzes large tabular icebergs in the Southern Ocean using the SeaWinds scatterometer. SeaWinds is a spaceborne radar designed to measure the microwave backscatter from the Earth's surface. Using resolution-enhancement techniques, backscatter measurements are processed into backscatter images in which icebergs can be observed. An iceberg detection methodology is formalized using daily scatterometer images. Radar profiles from common Antarctic scatterers are quantified and an iceberg detection methodology is formalized using daily scatterometer images. Iceberg positions are determined in real-time and a time-series of iceberg positions is maintained in an Antarctic iceberg database. Using the Antarctic iceberg database, characteristic iceberg motion trends are identified. Iceberg detection and tracking is demonstrated through real-time operational support of the 2005, 2008, and 2009 National Science Foundation Antarctic cruises. To supplement iceberg position reports, I develop multiple algorithms to estimate iceberg size and rotational orientation from backscatter images and from raw backscatter measurements. Estimates derived from SeaWinds images are found to be more accurate. Using iceberg size parameters in conjunction with Newton's equations of motion and forcing profiles (e.g., ocean and air currents), I also develop an iceberg motion model to predict the translational and rotational motion of large tabular icebergs. To improve model results, a Kalman filter is used to incorporate actual iceberg measurements into the motion model, and statistics from the Kalman filter are used to evaluate model performance. Simulated iceberg motion is found to best coincide with observed iceberg motion in regions where slower iceberg drift speeds are observed. The model is less accurate at high speeds. The iceberg

  18. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    NASA Astrophysics Data System (ADS)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  19. Using airborne measurements and modelling to determine the leak rate of the Elgin platform in 2012

    NASA Astrophysics Data System (ADS)

    Mobbs, Stephen D.; Bauguitte, Stephane J.-B.; Wellpott, Axel; O'Shea, Sebastian

    2013-04-01

    On the 25th March 2012 the French multinational oil and gas company Total reported a gas leak at the Elgin gas field in the North Sea following an operation on well G4 on the wellhead platform. During operations to plug and decommission the well methane leaked out which lead to the evacuation of the platform. Total made immense efforts to quickly stop the leak and on the 16th May 2012 the company announced the successful "Top kill". The UK's National Centre for Atmospheric Science (NCAS) supported the Total response to the leak with flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. Between the 3rd of April and the 4th of May five missions were flown. The FAAM aircraft was equipped with a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200, Los Gatos Research Inc., US) to measure CH4 mixing ratios with an accuracy of 0.07±2.48 ppbv. The measurement strategy used followed closely NOAA's during the Deepwater Horizon (DWH) spill in the Gulf of Mexico in 2010. The basis of the method is to sample the cross-wind structure of the plume at different heights downwind of the source. The measurements were then fitted to a Gaussian dispersion model which allowed the calculation of the leak rate. The first mission was flown on the 30th March 2012 only 5 days after Total reported the leak. On this day maximum CH4 concentrations exceeded 2800 ppbv. The plume was very distinct and narrow especially near the platform (10km) and it showed almost perfect Gaussian characteristics. Further downwind the plume was split up into several filaments. On this day the CH4 leak rate was estimated to be 1.1 kg/s. Between the 1st and 2nd mission (03/04/2012) the leak rate decreased significantly to about 0.5 kg/s. From the 2nd flight onwards only a minor decrease in leak rate was calculated. The last mission - while the platform was still leaking - was flown on the 4th of May, when the leak rate was estimated to be 0.3 kg/s. The FAAM aircraft measurements

  20. Assessment of EDGAR emission inventory using carbon monoxide (CO) MOZAIC/IAGOS airborne measurements over Europe

    NASA Astrophysics Data System (ADS)

    Boschetti, Fabio; Chen, Huilin; Marshall, Julia; Gerbig, Christoph; Thouret, Valerie; Nedelec, Philippe

    2014-05-01

    The main advantage of using airborne data is their ability to collect mole fraction measurements covering most of the troposphere. However, mainly due to the cost of rental aircraft, the number of flights is usually quite limited, with direct consequences on measurement availability. Making use of commercial airliners, the MOZAIC/IAGOS program provides CO mole fraction measurements on a regular basis, avoiding this disadvantage. In this study MOZAIC/IAGOS measurements have been used together with a Lagrangian particle dispersion model (STILT) to evaluate the representativeness of the EDGAR version-4.2 emission inventory at 3 different locations (Frankfurt, Paris and Vienna) for the time frame 2004-2011. We make use of the concept of the mixed layer, where signals resulting from CO emissions are reasonable well mixed, and lead to an enhancement of CO within the mixed layer. We investigate the CO enhancement relative to values in the free troposphere (specifically at two km above the mixing height), for both the upper and lower half of the mixed layer. The hypothesis is that the CO enhancement in the upper half of the mixed layer is more representative for larger spatial scales, as the vertical distance to the surface and its emission sources is increased compared to that of the lower half. CO enhancements calculated from CO mole fractions modeled by STILT coupled with the emission inventory at 10 km horizontal resolution are compared with the corresponding values from observed CO mole fractions for both the lower and the upper half of the mixed layer. The transport model domain is roughly coincident with the EU territory; simulations show that most of the Lagrangian particles exit the domain to the north and to the west. On these sides of the domain, boundaries are represented by oceans, characterized by small CO vertical gradients. Modeled global CO fields from the MACC project will be used in this study as lateral boundary conditions. We found that the simulation

  1. Airborne measurement of tropospheric ice nuclei aerosols using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Sierau, B.; Lohmann, U.

    2009-04-01

    Ice clouds and mixed phase clouds have different microphysical and radiative properties that need to be assessed in order to understand their impact on the climate. Indeed, on one hand ice crystals found in the ice phase have the ability to scatter incoming solar radiation and absorb terrestrial radiation. On the other hand, about 70% of the tropical precipitation forms via the ice-phase, this means an impact on the hydrological cycle. Investigation of the ability of an aerosol to act as Ice Nuclei (IN) requires knowledge of the thermodynamics conditions, i.e. relative humidity and temperature at which this aerosol form ice crystal. The PerformPINC project was a research campaign within the Education & Training program of the EUropean Fleet for Airborne Research (EUFAR). The project objectives were to measure the number concentration of IN in free and upper troposphere using the Portable Ice Nucleation Chamber (PINC) recently developed by the Institute for Atmospheric Climate Sciences at the ETH Zürich, and thus as a primary objective, testing the technical performance of the instrument during in-situ airborne measurements at different conditions within the chamber. The PINC is the portable version of the Zurich Ice Nucleation Chamber (ZINC) (Stetzer et al., 2008) and is meant for in-situ measurements. Both ZINC and PINC follow the same principle as the Continuous Flow Diffusion Chamber of the Colorado University (Rogers, 1988) that has proven to be of good performance in previous airborne in-situ campaigns (DeMott et al., 2003a). Unlike the CFDC, the PINC has a flat design composed of a main chamber, and an evaporation part. The cooling system of the PINC is also different and consists for the warm side of two BD120 compressors mounted in parallel. For the cold side, it is four BD120 compressors in parallel mounted to another BD120 compressor in serial, thus allowing us to reach lower temperature than the warm side. Aerosols are collected through an inlet where

  2. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  3. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures.

    PubMed

    Coudrain, Christophe; Bernhardt, Sylvie; Caes, Marcel; Domel, Roland; Ferrec, Yann; Gouyon, Rémi; Henry, Didier; Jacquart, Marc; Kattnig, Alain; Perrault, Philippe; Poutier, Laurent; Rousset-Rouvière, Laurent; Tauvy, Michel; Thétas, Sophie; Primot, Jérôme

    2015-06-15

    More and more, hyperspectral images are envisaged to improve the aerial reconnaissance capability of airborne systems, both for civilian and military applications. To confirm the hopes put in this new way of imaging a scene, it is necessary to develop airborne systems allowing the measurement of the spectral signatures of objects of interest in real conditions, with high spectral and spatial resolutions. The purpose of this paper is to present the design and the first in-flight results of the dual-band infrared spectro-imaging system called Sieleters. This system has demonstrated simultaneously a ground sampling distance of 0.5m, associated with a spectral resolution of 11 cm(-1) for the Mid-Wave InfraRed (MWIR) and 5 cm(-1) for the Long-Wave InfraRed (LWIR). PMID:26193589

  4. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  5. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km. PMID:24085100

  6. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  7. Airborne measurements of the atmospheric emissions from a fuel ethanol refinery

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J. B.; Graus, M.; Hanisco, T.; Holloway, J. S.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K.-E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M.

    2015-05-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the U.S. The ethanol is produced in over 200 fuel ethanol refineries across the nation. We report airborne measurements downwind from Decatur, Illinois, where the third largest fuel ethanol refinery in the U.S. is located. Estimated emissions are compared with the total point source emissions in Decatur according to the 2011 National Emissions Inventory (NEI-2011), in which the fuel ethanol refinery represents 68.0% of sulfur dioxide (SO2), 50.5% of nitrogen oxides (NOx = NO + NO2), 67.2% of volatile organic compounds (VOCs), and 95.9% of ethanol emissions. Emissions of SO2 and NOx from Decatur agreed with NEI-2011, but emissions of several VOCs were underestimated by factors of 5 (total VOCs) to 30 (ethanol). By combining the NEI-2011 with fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities, defined as the emissions per ethanol mass produced. Emission intensities of SO2 and NOx are higher for plants that use coal as an energy source, including the refinery in Decatur. By comparing with fuel-based emission factors, we find that fuel ethanol refineries have lower NOx, similar VOC, and higher SO2 emissions than from the use of this fuel in vehicles. The VOC emissions from refining could be higher than from vehicles, if the underestimated emissions in NEI-2011 downwind from Decatur extend to other fuel ethanol refineries. Finally, chemical transformations of the emissions from Decatur were observed, including formation of new particles, nitric acid, peroxyacyl nitrates, aldehydes, ozone, and sulfate aerosol.

  8. Polarimetric, Ka-band, combined, short-pulse scatterometer, and radiometer system for platform application

    NASA Astrophysics Data System (ADS)

    Arakelyan, Artashes K.; Alaverdyan, Eduard R.; Arakelyan, Arsen A.; Darbinyan, Sargis A.; Hambaryan, Astghik K.; Hambaryan, Vardan K.; Karyan, Vanik V.; Ogannesyan, Gagik G.; Poghosyan, Nubar G.; Smolin, Aleksander I.

    2005-05-01

    In this paper Ka-band (37GHz), dual polarization, combined short-pulse scatterometer-radiometer is described, for short distance remote sensing of bare soil and land snow cover and for simultaneous and coincident measurements of observed media microwave reflective and emissive characteristics, under laboratory-control conditions. Developed system is set on a mobile bogie moving on the height of 6.5m along a stationary platform of 26m of length. It allows carry out polarimetric (vv, vh, hh, hv), simultaneous and coincident microwave active-passive measurements of observed surface (soil, soil vegetation, snow and water surface) parameters at angles of incidence from the while of 0-60o.

  9. The design of an onboard digital Doppler processor for a spaceborne scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Chi, Chong-Yung; Li, Fuk K.

    1988-01-01

    A digital Doppler processor, which will permit the Doppler center frequency of the measurement cell bandwidths to be adjusted to compensate for the effects of the earth's rotation, will be used in the next NASA spaceborn scatterometer known as NSCAT. The authors describe the design and genesis of the NSCAT digital Doppler processor and discusses the performance tradeoff issues that were evaluated during the design phase. In this FFT (fast Fourier transform)-based technique, computation of the adjustment to the cell center frequencies will be done onboard using an approximate expression for the Doppler shift of the cell center versus orbit time. This technique also permits modification of the parameters used to locate the radar-backscatter-coefficient measurement cells by ground command in response to orbit changes.

  10. A two-scale scattering model with application to the JONSWAP '75 aircraft microwave scatterometer experiment

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1977-01-01

    The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.

  11. Oceanographic measurement capabilities of the NASA P-3 aircraft. [ERS-1 mission

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Jackson, F. C.; Walsh, E. J.; Hoge, F.

    1986-01-01

    Instrumentation on NASA P3 aircraft available to provide ground truth for ERS-1 is described. The wave sensors include the 36 GHz Surface Contour Radar (SCR), the Ku-band Radar Ocean Wave Spectrometer (ROWS), and the Airborne Oceanographic Lidar. The other sensors include a C-band scatterometer, video camera, radiation thermometer, and AXRTs. The SCR and ROWS directional spectrum measurements are discussed. When planning for an underflight mission, the limited endurance of the aircraft (6 hr) and flight cost (2.7 K$/hr) must be considered. The advantage of the redundancy afforded by the several wave instruments is another important consideration.

  12. Effect of spectral time-lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Vanderbeek, Richard G.; Gotoff, Steven W.; D'Amico, Francis M.

    1997-10-01

    The effects of flight geometry, signal averaging and time- lag correlation coefficient on airborne CO2 dial lidar measurements are shown in simulations and field measurements. These factors have implications for multi- vapor measurements and also for measuring a shingle vapor with a wide absorption spectra for which one would like to make DIAL measurements at many wavelengths across the absorption spectra of the gas. Thus it is of interest to know how many wavelengths and how many groups of wavelengths can be used effectively in DIAL measurements. Our data indicate that for our lidar about 80 wavelengths can be used for DIAL measurements of a stationary vapor. The lidar signal is composed of fluctuations with three time scales: a very short time scale due to system noise which is faster than the data acquisition sampling rate of the receiver, a medium time scale due to atmospheric turbulence, and a long time scale due to slow atmospheric transmission drift from aerosol in homogeneities. The decorrelation time scale of fluctuations for airborne lidar measurements depends on the flight geometry.

  13. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    PubMed Central

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  14. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  15. MODTRAN3: An update and recent validations against airborne high resolution interferometer measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Gail P.; Wang, Jinxue; Chetwynd, James H.

    1995-01-01

    accuracy of the code is very important because any errors in the radiative transfer calculation will directly translate into errors in the derived surface reflectance. In this paper, the new solar irradiance calculated by Kurucz, which is adopted in MODTRAN3, will be presented. Recent validations of MODTRAN3 with airborne high resolution interferometer measurements over ocean will be discussed. Good agreeement between model calculations and measurements was achieved.

  16. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  17. Detection of soil properties with airborne hyperspectral measurements of bare fields.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne remote sensing data, using a hyperspectral (HSI) camera, were collected for a flight over two fields with a total of 128 ha. of recently seeded and nearly bare soil. The within-field spatial distribution of several soil properties was found by using multiple linear regression to select the ...

  18. A Coordinated Ice-based and Airborne Snow and Ice Thickness Measurement Campaign on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S.; Elder, B. C.; Gardner, J. M.; Brozena, J. M.

    2011-12-01

    A rare opportunity presented itself in March 2011 when the Naval Research Laboratory (NRL) and NASA IceBridge teamed with scientists from the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) to coordinate a multi-scale approach to mapping snow depth and sea ice thickness distribution in the Arctic. Ground-truth information for calibration/validation of airborne and CryoSat-2 satellite data were collected near a manned camp deployed in support of the US Navy's Ice Expedition 2011 (ICEX 2011). The ice camp was established at a location approximately 230 km north of Prudhoe Bay, Alaska, at the edge of the perennial ice zone. The suite of measurements was strategically organized around a 9-km-long survey line that covered a wide range of ice types, including refrozen leads, deformed and undeformed first year ice, and multiyear ice. A highly concentrated set of in situ measurements of snow depth and ice thickness were taken along the survey line. Once the survey line was in place, NASA IceBridge flew a dedicated mission along the survey line, collecting data with an instrument suite that included the Airborne Topographic Mapper (ATM), a high precision, airborne scanning laser altimeter; the Digital Mapping System (DMS), nadir-viewing digital camera; and the University of Kansas ultra-wideband Frequency Modulated Continuous Wave (FMCW) snow radar. NRL also flew a dedicated mission over the survey line with complementary airborne radar, laser and photogrammetric sensors (see Brozena et al., this session). These measurements were further leveraged by a series of CryoSat-2 under flights made in the region by the instrumented NRL and NASA planes, as well as US Navy submarine underpasses of the 9-km-long survey line to collect ice draft measurements. This comprehensive suite of data provides the full spectrum of sampling resolutions from satellite, to airborne, to ground-based, to submarine and will allow for a careful determination of

  19. Geltape method for measurement of work related surface contamination with cobalt containing dust: correlation between surface contamination and airborne exposure.

    PubMed Central

    Poulsen, O M; Olsen, E; Christensen, J M; Vinzent, P; Petersen, O H

    1995-01-01

    OBJECTIVES--The geltape method is a new method for optical measurement of total amount of dust on surfaces. The objectives were to study the potential applicability of this method to measurements of work related cobalt exposure during painting of plates with cobalt dye. METHODS--Consecutive series of work related geltape prints were taken from surfaces inside and outside the ventilation cabins of two plate painters during two full working days. The amount of dust picked up by the geltapes was measured optically with a field monitor. Also, personal air samples were collected on filters at the different work processes. In the laboratory the contents of cobalt on the geltape prints and the filters were measured with inductive coupled plasma atomic emission spectroscopy. RESULTS--The key results were: (a) when the geltape prints were taken from surfaces inside the cabins the optically measured area of the geltapes covered with total dust (area (%)) correlated well with the chemically measured amount of cobalt present on the geltapes. Linear correlation coefficient (R2) was 0.91 for geltape prints taken on the floor and 0.94 for prints taken on the ceiling; (b) the cumulative airborne cobalt exposure, calculated from data on work related exposure by personal sampling, correlated with the area (%) of geltape prints taken from the ceiling of the cabin (R2 = 0.98); (c) the geltape method could be used to distinguish both between work processes with different levels of cobalt exposure, and between plate painters subjected to significant differences in airborne cobalt exposure. CONCLUSION--The geltape method could produce measures of the work related exposures as well as whole day exposure for cobalt. The geltape results correlated with measurements of personal airborne cobalt exposure. In this industry the profile of exposure is well-defined in time, and it seems reasonable to apply this fast and low cost method in routine exposure surveillance to obtain a more detailed

  20. Airborne gravity measurement over sea-ice: The western Weddel Sea

    SciTech Connect

    Brozena, J.; Peters, M. ); LaBrecque, J.; Bell, R.; Raymond, C. )

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative of the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.

  1. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign: Measurement Analysis

    NASA Astrophysics Data System (ADS)

    Ramanathan, A.; Mao, J.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W.; Riris, H.; Sun, X.; Abshire, J. B.

    2012-12-01

    Trace gas LIDAR has the potential to actively sense greenhouse gas concentrations in the earth's atmosphere continuously without being affected by day or night. This will enable identifying greenhouse gas sources and sinks, which will help better predict future atmospheric trends of these gases. However, in order to ensure reliable and accurate measurements, it is important to establish metrics to quantify performance. As part of the ASCENDS (Active Sensing of Co2 over Nights, Days and Seasons) program, we conducted an airborne campaign of our CO2 pulsed LIDAR system in August 2011, flying over a variety of terrain and conditions, including snow, ocean, clouds, desert and mountains. Our instrument uses an IPDA (Integrated Path Differential Absorption) approach probing 30 wavelengths across a 1572 nm CO2 absorption line. Our multi-wavelength approach provides redundancy for evaluating the stability of the instrument, and also allows us to perform spectroscopic analysis of the atmosphere. Here, we present our detailed analysis and results. Tracking long-term stability of our instrument by using the Allan deviation formalism for wavelengths away from the absorption line-center, we find that the measured pulse energy (normalized to eliminate ground reflectivity) is stable down to 0.2% across varying terrain, surface reflectivity, flight altitude and LIDAR range. Comparing our measured CO2 absorption line-shape (at regions of constant, known CO2 concentrations) with the predicted line-shape based on the LIDAR range, flight altitude and relevant atmosphere parameters (based on in situ measurements by instruments aboard the aircraft), we find the agreement to be better than 1% (RMS error), once we average 50 s to eliminate shot noise. Our multi-wavelength approach also allows us to track the position of the line-center. The altitude dependence of the atmospheric pressure causes a shift in the CO2 absorption as a function of aircraft altitude. Our measured pressure shift

  2. Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements

    PubMed Central

    Song, Ahram; Chang, Anjin; Choi, Jaewan; Choi, Seokkeun; Kim, Yongil

    2015-01-01

    Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR algorithms, computational complexity issues still remain and these algorithms cannot consider the case where spectrally mixed materials are extracted as final endmembers. A sequential endmember extraction-based algorithm may be more effective when the number of endmembers to be extracted is unknown. In this study, we propose a simple but accurate method to automatically determine the optimal endmembers using such a method. The proposed method consists of three steps for determining the proper number of endmembers and for removing endmembers that are repeated or contain mixed signatures using the Root Mean Square Error (RMSE) images obtained from Iterative Error Analysis (IEA) and spectral discrimination measurements. A synthetic hyperpsectral image and two different airborne images such as Airborne Imaging Spectrometer for Application (AISA) and Compact Airborne Spectrographic Imager (CASI) data were tested using the proposed method, and our experimental results indicate that the final endmember set contained all of the distinct signatures without redundant endmembers and errors from mixed materials. PMID:25625907

  3. Aquarius L-band scatterometer and radiometer observations over a Tibetan Plateau site

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; van der Velde, Rogier; Su, Zhongbo; Wen, Jun

    2016-03-01

    In this paper, the impact of freeze-thaw, soil moisture and vegetation on L-band backscatter and emission is studied using Aquarius scatterometer/radiometer measurements collected from August 2011 to May 2013 over the northeastern part of the Tibetan Plateau. The study area is the Maqu region that holds a regional-scale monitoring network consisting of twenty soil moisture/temperature stations, which is selected as one of the core international Calibration/Validation (Cal/Val) sites for NASA's Soil Moisture Active Passive (SMAP) mission. Comparisons of Aquarius scatterometer/radiometer measurements with soil moisture recorded by capacitance probes installed at a 5-cm soil depth illustrate that (i) L-band microwave observations are also sensitive to the amount of liquid water in soil below freezing point, and (ii) the sensitivity of Aquarius observations over the Maqu area dissipates above soil moisture contents of 0.3 m3 m-3. Further effects of vegetation become directly noticeable only within passive microwave observations at moisture levels larger than 0.4 m3 m-3. The impact of vegetation is studied in more detail through analysis of the Radar Vegetation Index (RVI). Although seasonal variability is captured, the dynamic range of the RVI is insufficient for a meaningful signal-to-noise. Further vegetation optical depth (τ) is estimated using the τ-ω concept by reconstructing the Microwave Polarization Difference Index (MPDI) derived from Aquarius radiometer data. Peaks in the τ estimates are noted in the months January/February and July/August. Evidence suggests that the magnitude of τ is a measure for the frost depth when temperatures are below freezing point whereas the behavior of τ in the warm season is in line with the vegetation dynamics.

  4. Airborne measurements of solar and planetary near ultraviolet radiation during the NASA/ESA CV-900 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Sivjee, G. G.

    1977-01-01

    Results from a comparative study of the feasibility of employing experiment operators on the space shuttle to acquire scientifically worthwhile data are presented. The experiments performed during these tests included spectral observations of the Sun and Venus in the near ultraviolet region. The solar measurements were analyzed to determine ozone abundance in the terrestrial atmosphere. Using a detailed spectral matching technique to compare airborne solar UV measurements with synthetic spectral profiles of sunlight, it is deduced that in winter the total atmospheric ozone abundance is about 0.33 atm/cm at midlatitudes in the northern hemisphere.

  5. Design and Performance Assessment of a Stable Astigmatic Herriott Cell for Trace Gas Measurements on Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Dyroff, Christoph; Fried, Alan; Richter, Dirk; Walega, James G.; Zahniser, Mark S.; McManus, J. Barry

    2005-01-01

    The present paper discusses a new, more stable, astigmatic Herriott cell employing carbon fiber stabilizing rods. Laboratory tests using a near-IR absorption feature of CO at 1564.168-nm revealed a factor of two improvement in measurement stability compared with the present commercial design when the sampling pressure was changed by +/-2 Torr around 50 Torr. This new cell should significantly enhance our efforts to measure trace gases employing pathlengths of 100 to 200-meters on airborne platforms with minimum detectable line center absorbances of less than 10(exp -6).

  6. Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. I - Algorithm description

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, Michael; Brown, Derek W.; Woodfield, Alan A.

    1991-01-01

    Since 1981 the Royal Signals and Radar Establishment and the Royal Aircraft Establishment, United Kindom, have made vertical and horizontal sounding measurements of aerosol backscatter coefficients at 10.6 microns, using an airborne continuous-wave-focused CO2 Doppler lidar, the Laser True Airspeed System (LATAS). In this paper, the heterodyne signal from the LATAS detector is spectrally analyzed. Then, in conjunction with aircraft flight parameters, the data are processed in a six-stage computer algorithm: set search window, search for peak signal, test peak signal, measure total signal, calculate signal-to-noise ratio, and calculate backscatter coefficient.

  7. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  8. Development and usage of a false color display technique for presenting Seasat-A scatterometer data

    NASA Technical Reports Server (NTRS)

    Jackson, C. B.

    1980-01-01

    A computer generated false color program which creates digital multicolor graphics to display geophysical surface parameters measured by the Seasat-A satellite scatterometer (SASS) is described. The data is incrementally scaled over the range of acceptable values and each increment and its data points are assigned a color. The advantage of the false color display is that it visually infers cool or weak data versus hot or intense data by using the rainbow of colors. For example, with wind speeds, levels of yellow and red could be used to imply high winds while green and blue could imply calmer air. The SASS data is sorted into geographic regions and the final false color images are projected onto various world maps with superimposed land/water boundaries.

  9. SEASAT: A satellite scatterometer illumination times of selected in situ sites

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Goodridge, D. R.; Boberly, J. C.; Hughes, J. K.; Sweet, J. L.

    1982-01-01

    A list of times that the SEASAT A Satellite Scatterometer (SASS) illuminated from directly above or directly abeam, selected surface sites where in situ winds were measured is provided. The list is ordered by the Greenwich Mean Time (GMT) of the midpoint of the illumination period (hit time) for a given surface site. The site identification, the orbit number and the direction from the subtrack in which the truth lies are provided. The accuracy of these times depends in part upon the ascending node times, which are estimated to be within +.1 sec, and on the illumination time relative to the ascending node, which is estimated to be within +6 seconds. The uncertainties in the times provided were judged to be sufficiently small to allow efficient and accurate extraction of SASS and in situ data at the selected surface sites. The list contains approximately six thousand hit times from 61 geographically dispersed sites.

  10. Characterization of Aerosols and Bidirectional Reflectance Distribution Function from Airborne Radiation Measurements over Snow, Sea Ice, Tundra, And Clouds

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; King, M. D.

    2009-12-01

    The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) provides a golden opportunity to study the Arctic from ground-, airborne-, and satellite-based measurements in an integrated manner. It also provides an opportunity to validate satellite retrievals that are complicated by the highly reflecting nature of snow-covered sea ice, low sun angles, extensive cloud cover, and seasonal changes. The bidirectional reflectance distribution function (BRDF) or accurate determination of surface albedo is a key to detecting changes in the arctic environment from remote sensing measurements. The Cloud Absorption Radiometer (CAR) has been used to acquire spectral BRDF of the ocean, sea ice, snow, tundra, savanna, smoke, vegetation, desert, salt pans, and clouds, and played a key role in the ARCTAS deployment in spring and summer of 2008. This airborne sensor has a wide aperture of 190°, an instantaneous Field of View of 1°, and can capture the full BRDF, including the hotspot under low sun angle conditions commonly found in the Arctic. The instrument was developed for low- to medium-altitude aircraft and can be used to obtain data with varying spatial resolutions that are important for addressing upscaling needs for satellite validation. The instrument has a unique ability to measure almost simultaneously, both downwelling and upwelling radiance at 14 narrow spectral bands located in the atmospheric window regions of the ultraviolet, visible and near-infrared. When combined with simultaneous airborne measurements of sun/sky radiance, the CAR sky radiance measurements provide information on aerosol (size distribution, single scattering albedo, refractive index) both above and below the aircraft. The intent of this paper is to highlight some of the key results obtained from the analysis of the CAR data from ARCTAS, including retrieval of aerosols and bidirectional reflectance factors over snow and validation of satellite & model snow

  11. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.; Allan, G. R.; Mao, J.; Hasselbrack, W.; Abshire, J. B.

    2013-12-01

    We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate atmospheric temperature and pressure measurements are required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. Since O2 in uniformly mixed in the atmosphere, its absorption spectra can be used to estimate atmospheric pressure. In its airborne configuration, the IPDA lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at multiple discrete wavelengths in the oxygen A-band near 765 nm. This instrument has been deployed three times aboard NASA's DC-8 airborne laboratory as part of campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes between 3 km and 13 km. The O2 IPDA lidar flew seven flights in 2011 and six flights in 2013 in the continental United States and British Columbia, Canada. Our results from 2011 showed good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km after a systematic bias correction of approximately 8% was applied. The random noise component was 2.5-3.0 %. The most recent data recorded in 2013 show better agreement between experimental optical depth measurements and theoretical predictions and much smaller systematic errors. The random error remained comparable with 2011 at 2-3%. The main source of random error is primarily the low energy (power) of the laser transmitter and the high solar background. We are in the process of addressing this issue with a new, higher energy amplifier that we anticipate will reduce the random noise component by a factor of 3-5 to less than 0.5%. The results from these flights show that the IPDA technique is a viable method

  12. A first attempt to derive soil erosion rates from 137Cs airborne gamma measurements in two Alpine valleys

    NASA Astrophysics Data System (ADS)

    Arata, Laura; Meusburger, Katrin; Bucher, Benno; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The application of fallout radionuclides (FRNs) as soil tracers is currently one of the most promising and effective approach for evaluating soil erosion magnitudes in mountainous grasslands. Conventional assessment or measurement methods are laborious and constrained by the topographic and climatic conditions of the Alps. The 137Cs (half-life = 30.2 years) is the most frequently used FRN to study soil redistribution. However the application of 137Cs in alpine grasslands is compromised by the high heterogeneity of the fallout due to the origin of 137Cs fallout in the Alps, which is linked to single rain events occurring just after the Chernobyl accident when most of the Alpine soils were still covered by snow. The aim of this study was to improve our understanding of the 137Cs distribution in two study areas in the Central Swiss Alps: the Ursern valley (Canton Uri), and the Piora valley (Canton Ticino). In June 2015, a helicopter equipped with a NaI gamma detector flew over the two study sites and screened the 137Cs activity of the top soil. The use of airborne gamma measurements is particularly efficient in case of higher 137Cs concentration in the soil. Due to their high altitude and high precipitation rates, the Swiss Alps are expected to be more contaminated by 137Cs fallout than other parts of Switzerland. The airborne gamma measurements have been related to several key parameters which characterize the areas, such as soil properties, slopes, expositions and land uses. The ground truthing of the airborne measurements (i.e. the 137Cs laboratory measurements of the soil samples collected at the same points) returned a good fit. The obtained results offer an overview of the 137Cs concentration in the study areas, which allowed us to identify suitable reference sites, and to analyse the relationship between the 137Cs distribution and the above cited parameters. The authors also derived a preliminary qualitative and a quantitative assessment of soil redistribution

  13. Spatial variability in near-surface chlorophyll a fluorescence measured by the Airborne Oceanographic Lidar (AOL)

    NASA Astrophysics Data System (ADS)

    Yoder, James A.; Aiken, James; Swift, Robert N.; Hoge, Frank E.; Stegmann, Petra M.

    The primary purpose of the aircraft remote sensing component of the North Atlantic Bloom Experiment (NABE) was to: (1) quantify spatial patterns of surface Chl a variability and co-variability with temperature ( T) within the NABE study regions along the 20°W meridian near 48 and 60°N; and (2) determine if the major NABE ship and mooring locations were representative of surrounding ocean waters with respect to large-scale distributions of surface Chl a and T. The sampling platform was a NASA P-3 aircraft equipped with the Airborne Oceanographic Lidar (AOL) system, which measures laser-induced Chl a fluorescence (LICF), upwelling spectral radiance and surface temperature ( T). Results collected during nine AOL missions conducted between 26 April and 3 June show considerable mesoscale variability in LICF and T. Spatial statistics (structure functions) showed that the dominant scales of LICF and T were significantly correlated in the range 10-290 km. Spectral analysis of the results of long flight lines showed spectral slopes averaging -2 for both LICF and T for spatial scales in the range 1.2-50 km. As for previous investigations of this type, we interpret the correlation between LICF and T as evidence that physical processes such as upwelling and mixing are dominant processes affecting spatial variations in Chl a distributions in the North Atlantic during the period of our sampling. The minimum dominant T and LICF spatial scales (ca 10 km) we determined from structure functions are similar to minimum scales predicted from models ( WOODS, 1988, In: Toward a theory on biological-physical interactions in the world ocean, Kluwer Academic, Boston, pp. 7-30) of upwelling induced by vortex contraction on the anticyclonic side of mesoscale jets. The NABE experiment was planned with the explicit assumption that major biological and chemical gradients are in the north-south direction in the northeast Atlantic. Our results support this assumption, and we observed no large

  14. NO2 Profile Retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe

    NASA Astrophysics Data System (ADS)

    Bruns, M.; Buehler, S. A.; Burrows, J. P.; Richter, A.; Rozanov, A.; Wang, P.; Heue, K.-P.; Platt, U.; Pundt, I.; Wagner, T.

    2006-01-01

    A recent development in ground-based remote sensing of atmospheric constituents by UV/visible absorption measurements of scattered light is the simultaneous use of several directions with small elevation angles in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers such as NO2, BrO or O3 to be retrieved. In this study, the amount of profile information that can be retrieved from such measurements on aircraft is investigated for the trace gas NO2. A Sensitivity study on synthetic data is performed for a combination of four lines of sight (LOS) (0° (nadir), 88°, 92°, and 180° (zenith)) and three wavelength regions [center wavelengths: 362.5 nm, 437.5 nm, and 485.0 nm]. This investigation demonstrates the potential of this LOS/wavelengths setup to retrieve a significant amount of profile information from airborne multiaxis differential optical absorption spectrometer (AMAXDOAS) measurements with a vertical resolution of 3.0 to 4.5 km in the lower troposphere and 2.0 to 3.5 km near flight altitude. Above 13 km the profile information content of AMAXDOAS measurements is sparse. Further, retrieved profiles with a significant amount (up to 3.2 ppbv) of NO2 in the boundary layer over the Po-valley (Italy) are presented. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere.

  15. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  16. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  17. Personalized ventilation as a control measure for airborne transmissible disease spread.

    PubMed

    Pantelic, Jovan; Sze-To, Gin Nam; Tham, Kwok Wai; Chao, Christopher Y H; Khoo, Yong Chuan Mike

    2009-12-01

    The protective role of personalized ventilation (PV) against plausible airborne transmissible disease was investigated using cough droplets released from a 'coughing machine' simulating the human cough at different distances (1, 1.75 and 3 m) from the PV user. Particle image velocimetry was used to characterize and visualize the interaction between the cough-generated multiphase flow and PV-induced flow in the inhalation zone of the thermal breathing manikin. A dose-response model for unsteady imperfectly mixed environment was used to estimate the reduction in infection risk of two common diseases that can be transmitted by airborne mode. PV was able to both reduce the peak aerosol concentration levels and shorten the exposure time at all the examined injection distances. PV could reduce the infection risks of two diseases, influenza A and tuberculosis, by between 27 and 65 per cent. The protection offered by PV is less effective at a distance of 1.75 m than the other distances, as shown in the risk assessment results, as the PV-generated flow was blown off by the cough-generated flow for the longest time. Results of this study demonstrate the ability of desktop PV to mitigate the infection risk of airborne transmissible disease. PMID:19812074

  18. Personalized ventilation as a control measure for airborne transmissible disease spread

    PubMed Central

    Pantelic, Jovan; Sze-To, Gin Nam; Tham, Kwok Wai; Chao, Christopher Y. H.; Khoo, Yong Chuan Mike

    2009-01-01

    The protective role of personalized ventilation (PV) against plausible airborne transmissible disease was investigated using cough droplets released from a ‘coughing machine’ simulating the human cough at different distances (1, 1.75 and 3 m) from the PV user. Particle image velocimetry was used to characterize and visualize the interaction between the cough-generated multiphase flow and PV-induced flow in the inhalation zone of the thermal breathing manikin. A dose–response model for unsteady imperfectly mixed environment was used to estimate the reduction in infection risk of two common diseases that can be transmitted by airborne mode. PV was able to both reduce the peak aerosol concentration levels and shorten the exposure time at all the examined injection distances. PV could reduce the infection risks of two diseases, influenza A and tuberculosis, by between 27 and 65 per cent. The protection offered by PV is less effective at a distance of 1.75 m than the other distances, as shown in the risk assessment results, as the PV-generated flow was blown off by the cough-generated flow for the longest time. Results of this study demonstrate the ability of desktop PV to mitigate the infection risk of airborne transmissible disease. PMID:19812074

  19. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  20. Satellite observation of winter season subsurface liquid melt water retention on the Greenland ice sheet using spectroradiometer and scatterometer data

    NASA Astrophysics Data System (ADS)

    Miller, J. Z.; Forster, R. R.; Long, D. G.; Brewer, S.

    2013-12-01

    The recently discovered perennial firn aquifer (PFA) represents a new glacier facie and a previously undefined liquid water storage mechanism on the Greenland ice sheet (GrIS). The current hypothesis suggests that at least two geophysical processes control the formation of the PFA: 1) high melt rates that saturate snow and firn layers with liquid water during the melt season, and 2) high snow accumulation rates that subsequently insulate this saturated layer allowing it to be retained in liquid form during the winter season. The PFA is potentially an important component in ice sheet mass and energy budget calculations, however, large-scale observations linking surface melt, subsurface liquid melt water retention, and the PFA currently do not exist. Satellite-borne spectroradiometers and scatterometers are frequently used to detect the presence of liquid water content over the GrIS. The sensor's penetration depth is dependent on the frequency (which determines wavelength) and time-varying geophysical properties (which determine absorption and scattering characteristics). At shorter spectral wavelengths, penetration depths are limited at the interface between the ice sheet surface and the atmosphere. Spectroradiometer-derived retrievals of liquid water content represent an integrated response on the order of a few millimeters. At longer microwave wavelengths (C- and Ku-band), penetration depths are increased. Scatterometer-derived retrievals of liquid water content represent an integrated response on the order of a few centimeters to several meters. We combine spectroradiometer data acquired from the Moderate Resolution Imaging Spectroradiometer aboard Terra and Aqua (MODIS) and C- and Ku-band scatterometer data acquired from MetOP-A (ASCAT) and OceanSAT-2 (OSCAT) to investigate the spatiotemporal variability of subsurface liquid water content on the GrIS. Penetration depth differences are exploited to distinguish between the detection of liquid water content

  1. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  2. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  3. Global Tropical Cyclone Winds from the QuikSCAT and OceanSAT-2 Scatterometers

    NASA Astrophysics Data System (ADS)

    Stiles, B. W.; Danielson, R. E.; Poulsen, W. L.; Fore, A.; Brennan, M. J.; Shen, T. J.; Hristova-Veleva, S. M.

    2012-12-01

    We have produced a comprehensive set of tropical cyclone storm wind retrieval scenes for all ten years of QuikSCAT data and one year of OceanSAT-2 data. The wind speeds were corrected for rain and optimized to avoid saturation at high winds using an artificial neural network method similar to that in [1] and [2]. The QuikSCAT wind imagery and the quantitative speed, direction, and backscatter data can be obtained at http://tropicalcyclone.jpl.nasa.gov. The QuikSCAT wind speeds have been validated against best track intensity (i.e., maximum wind speeds), H*WIND tropical cyclone wind model analysis fields, and wind speeds from aircraft overflights (GPS drop wind sondes and step frequency microwave radiometer (SFMR) wind measurements). Storms from all basins are included for a total of 21600 scenes over the ten years of nominal QuikSCAT operations. Of these, 11435 scenes include the best track center of the cyclone in the retrieved wind field. Among these, 3295 were of tropical storms and 788, 367, 330, 289, and 55 were of category 1, 2, 3, 4 and 5 hurricanes, respectively, on the Saffir-Simpson Hurricane Wind Scale. In addition to the QuikSCAT hurricane winds, we have also processed one year of wind fields from the Indian Space Research organization (ISRO) OceanSAT-2 satellite. OceanSAT-2 employs a scanning pencil beam Ku-band scatterometer with a design similar to QuikSCAT. JPL and NOAA have been working extensively with ISRO to aid in cross calibration between OceanSAT-2 and QuikSCAT. Toward this end the QuikSCAT instrument has been repointed in order to acquire data at the OceanSAT-2 incidence angles, and several meetings in India between the teams have taken place. The neural network that was trained on QuikSCAT data was used to retrieve OceanSAT-2 winds. The backscatter inputs to the network were transformed to match the histograms of the corresponding values in the QuikSCAT data set. We examine the scatterometer winds to investigate the relationship between

  4. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    NASA Astrophysics Data System (ADS)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    2013-04-01

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  5. Airborne Measurements of Important Ozone-depleting and Climate-forcing Trace Gases from 1991 to HIPPO and Beyond

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Montzka, S. A.; Hurst, D. F.; Oltmans, S. J.; Gao, R.; Fahey, D. W.; Wofsy, S. C.

    2012-12-01

    Through collaborations with the National Aeronautics and Space Administration (NASA) and the National Science Foundation, the National Oceanographic and Atmospheric Administration Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL/GMD) has measured a number of trace gases from manned and unmanned aircraft up to 21 km, and balloon platforms up to 32 km since 1991 at locations spanning the globe. Over 40 trace gases, including nitrous oxide (N2O), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), methyl halides, numerous other halocarbons, sulfur gases (COS, SF6, CS2), and selected hydrocarbons, have been measured at Earth's surface and at altitude. This presentation will highlight our recent observations of halocarbons and other trace gases during the NSF and NOAA sponsored HIAPER Pole-to-Pole Observations (HIPPO) campaigns (2009-2011) that included flyovers of NDACC (Network for the Detection of Atmospheric Composition Change), AGAGE (Advanced Global Atmospheric Gases Experiment), and NOAA stations. Other observations from the recent NASA and NOAA sponsored Unmanned Aircraft Systems (UAS) GloPac and ATTREX campaigns (2010 - present) will also be highlighted, along with comparisons to proximate NDACC and satellite observations (ACE-FTS, Aura MLS and TES instruments). Our goal is to assemble a complete data set of geolocated airborne observations of halocarbons and other important trace gases measured by NOAA/ESRL airborne gas chromatographs for the purpose of facilitating model development and studies of atmospheric chemistry and transport processes in the troposphere and lower stratosphere.

  6. Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Fahey, D. W.; Gilligan, J. M.; Dutton, G. S.; Baring, T. J.; Volk, C. M.; Dunn, R. E.; Myers, R. C.; Montzka, S. A.; Wamsley, P. R.; Hayden, A. H.; Butler, J. H.; Thompson, T. M.; Swanson, T. H.; Dlugokencky, E. J.; Novelli, P. C.; Hurst, D. F.; Lobert, J. M.; Ciciora, S. J.; McLaughlin, R. J.; Thompson, T. L.; Winkler, R. H.; Fraser, P. J.; Steele, L. P.; Lucarelli, M. P.

    A new instrument, the Airborne Chromatograph for Atmospheric Trace Species IV (ACATS-IV), for measuring long-lived species in the upper troposphere and lower stratosphere is described. Using an advanced approach to gas chromatography and electron capture detection, the instrument can detect low levels of CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2F-CClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), nitrous oxide (N2O), sulfur hexafluoride (SF6), Halon-1211 (CBrClF2), hydrogen (H2), and methane (CH4) acquired in ambient samples every 180 or 360 s. The instrument operates fully-automated onboard the NASA ER-2 high-altitude aircraft on flights lasting up to 8 hours or more in duration. Recent measurements include 24 successful flights covering a broad latitude range (70°S-61°N) during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign in 1994.

  7. A compact PTR-ToF-MS instrument for airborne measurements of VOCs at high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Müller, M.; Mikoviny, T.; Feil, S.; Haidacher, S.; Hanel, G.; Hartungen, E.; Jordan, A.; Märk, L.; Mutschlechner, P.; Schottkowsky, R.; Sulzer, P.; Crawford, J. H.; Wisthaler, A.

    2014-06-01

    Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer for airborne measurements of volatile organic compounds (VOCs). The new instrument resolves isobaric ions with a mass resolving power (m/Δm) of ~ 1000, provides accurate m/z measurements (Δm < 3 mDa), records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α-pinene), aromatic VOCs (benzene, toluene, xylenes) and ketones (acetone, methyl ethyl ketone) range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1km) which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical and horizontal resolution in situ data of VOCs and ammonia for validation of satellite retrievals and chemistry transport models.

  8. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Müller, M.; Mikoviny, T.; Feil, S.; Haidacher, S.; Hanel, G.; Hartungen, E.; Jordan, A.; Märk, L.; Mutschlechner, P.; Schottkowsky, R.; Sulzer, P.; Crawford, J. H.; Wisthaler, A.

    2014-11-01

    Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) for airborne measurements of volatile organic compounds (VOCs). The new instrument resolves isobaric ions with a mass resolving power (m/Δm) of ~1000, provides accurate m/z measurements (Δm < 3 mDa), records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes), aromatic VOCs (benzene, toluene, xylenes) and ketones (acetone, methyl ethyl ketone) range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km), which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.

  9. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Eichler, Philipp; Mikoviny, Tomas; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Yang, Melissa; Yokelson, Robert; Weinheimer, Andrew; Fried, Alan; Wisthaler, Armin

    2015-04-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.