Science.gov

Sample records for airborne science community

  1. NASA's Coastal and Ocean Airborne Science Testbed

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Hooker, S.; Myers, J.; Kudela, R. M.; Dunagan, S.; Soulage, M.; Ellis, T.; Clinton, N. E.; Lobitz, B.; Martin, K.; Zell, P.; Berthold, R. W.; Smith, C.; Andrew, D.; Gore, W.; Torres, J.

    2011-12-01

    The Coastal and Ocean Airborne Science Testbed (COAST) Project is a NASA Earth-science flight mission that will advance coastal ecosystems research by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. Teaming NASA Ames scientists and engineers with Biospherical Instruments, Inc. (San Diego) and UC Santa Cruz, the airborne COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data will be accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Based on optical detectors called microradiometers, the NASA Ocean Biology and Biogeochemistry Calibration and Validation (cal/val) Office team has deployed advanced commercial off-the-shelf instrumentation that provides in situ measurements of the apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems (e.g., lakes, estuaries, coral reefs). A complimentary microradiometer instrument package (Biospherical Instruments, Inc.), optimized for use above water, will be flown for the first time with the airborne instrument suite. Details of the October 2011 COAST airborne mission over Monterey Bay demonstrating this new airborne instrument suite capability will be presented, with associated preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  2. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  3. A configurable information display environment for airborne science

    NASA Astrophysics Data System (ADS)

    van Gilst, D. P.

    2010-12-01

    With the introduction the multi-instrument, long duration Global Hawk UAV to the the airborne science community and increasing network connectivity on other airborne platforms, there is growing need for tools to provide real-time aircraft data to a wide range of personnel, many of whom may not e located on site. With the web based tools developed for the NASA Global Hawk and DC-8, we aimed to enhance awareness of engineering, science and aircraft operations to personnel both on-site and off over extended periods of time to allow for the effective management of 24+ hour flights. A system for building user-configurable displays was created based on web-based open standards to provide science, engineering and weather data to science and operations personnel, with off site personnel utilizing the same tools as those who were present in the control center. These tools have significantly improved the ability of teams to utilize personnel who would not otherwise be accessible to support mission activities through the monitoring of the instruments, data gathering and aircraft status.

  4. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  5. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  6. Proceedings of the 11th JPL Airborne Earth Science Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2002-01-01

    This publication contains the proceedings of the JPL Airborne Earth Science Workshop forum held to report science research and applications results with spectral images measured by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web http://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html

  7. Building Natural Science Communities.

    ERIC Educational Resources Information Center

    Brady, Thomas E.

    2002-01-01

    Describes how a community collaborative focused on math and science and involving the University of Texas at El Paso--the El Paso Collaborative for Academic Excellence--has worked to ensure academic opportunity and success for a diverse community. Emphasis is placed on a standards-based curriculum, better teacher preparation, and the increased…

  8. A Metagenomic Framework for the Study of Airborne Microbial Communities

    PubMed Central

    Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B.; Fadrosh, Douglas; Glass, John; Adams, Mark D.; Friedman, Robert; Venter, J. Craig

    2013-01-01

    Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria. PMID:24349140

  9. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  10. NASA'S Coastal and Ocean Airborne Science Testbed (COAST): Early Results

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Kudela, R. M.; Myers, J. S.; Livingston, J.; Lobitz, B.; Torres-Perez, J.

    2012-12-01

    The NASA Coastal and Ocean Airborne Science Testbed (COAST) project advances coastal ecosystems research and ocean color calibration and validation capability by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. The COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data is accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Coastal Airborne In situ Radiometers (C-AIR, Biospherical Instruments, Inc.), developed for COAST for airborne campaigns from field-deployed microradiometer instrumentation, will provide measurements of apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems. Ship-based measurements allowed validation of airborne measurements. Radiative transfer modeling on in-water measurements from the HyperPro and Compact-Optical Profiling System (C-OPS, the in-water companion to C-AIR) profiling systems allows for comparison of airborne and in-situ water leaving radiance measurements. Results of the October 2011 Monterey Bay COAST mission include preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  11. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  12. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  13. Landscape-scale variation in plant community composition of an African savanna from airborne species mapping.

    PubMed

    Baldeck, C A; Colgan, M S; Féret, J B; Levick, S R; Martin, R E; Asner, G P

    2014-01-01

    Information on landscape-scale patterns in species distributions and community types is vital for ecological science and effective conservation assessment and planning. However, detailed maps of plant community structure at landscape scales seldom exist due to the inability of field-based inventories to map a sufficient number of individuals over large areas. The Carnegie Airborne Observatory (CAO) collected hyperspectral and lidar data over Kruger National Park, South Africa, and these data were used to remotely identify > 500 000 tree and shrub crowns over a 144-km2 landscape using stacked support vector machines. Maps of community compositional variation were produced by ordination and clustering, and the importance of hillslope-scale topo-edaphic variation in shaping community structure was evaluated with redundancy analysis. This remote species identification approach revealed spatially complex patterns in woody plant communities throughout the landscape that could not be directly observed using field-based methods alone. We estimated that topo-edaphic variables representing catenal sequences explained 21% of species compositional variation, while we also uncovered important community patterns that were unrelated to catenas, indicating a large role for other soil-related factors in shaping the savanna community. Our results demonstrate the ability of airborne species identification techniques to map biodiversity for the evaluation of ecological controls on community composition over large landscapes. PMID:24640536

  14. Spatial distribution of marine airborne bacterial communities.

    PubMed

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-06-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters - temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  15. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  16. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  17. Challenges and Successes Managing Airborne Science Data for CARVE

    NASA Astrophysics Data System (ADS)

    Hardman, S. H.; Dinardo, S. J.; Lee, E. C.

    2014-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission collects detailed measurements of important greenhouse gases on local to regional scales in the Alaskan Arctic and demonstrates new remote sensing and improved modeling capabilities to quantify Arctic carbon fluxes and carbon cycle-climate processes. Airborne missions offer a number of challenges when it comes to collecting and processing the science data and CARVE is no different. The biggest challenge relates to the flexibility of the instrument payload. Within the life of the mission, instruments may be removed from or added to the payload, or even reconfigured on a yearly, monthly or daily basis. Although modification of the instrument payload provides a distinct advantage for airborne missions compared to spaceborne missions, it does tend to wreak havoc on the underlying data system when introducing changes to existing data inputs or new data inputs that require modifications to the pipeline for processing the data. In addition to payload flexibility, it is not uncommon to find unsupported files in the field data submission. In the case of CARVE, these include video files, photographs taken during the flight and screen shots from terminal displays. These need to captured, saved and somehow integrated into the data system. The CARVE data system was built on a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This well-tested and proven infrastructure allows the CARVE data system to be easily adapted in order to handle the challenges posed by the CARVE mission and to successfully process, manage and distribute the mission's science data. This

  18. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    Indoor environmental quality has significant effects on human health. It is reported that adults in China spent about 80%-90% of their time in indoor environments, and a number of physically handicapped people such as the elderly and infants stayed in the room even up to 95% of their total time. Moreover, air conditioner in indoor environments becomes more and more important in modern life, and a closed circulatory system can be formed among human body, room and air conditioner in indoor environments with an air conditioner, which can make the microbes such as bacteria, viruses and mold indoors propagate rapidly or abundantly. Therefore, studies on the microbial pollution in the air at places such as mall, classroom, office, and family home have been the research hotspots recently. In the present study, the community composition and concentration variation pattern of airborne fungi were investigated from Nov 2009 to Oct 2010 in 31 family homes with children in Beijing. Results showed that 24 generas of airborne fungi in family homes were identified from 225 isolates. The most common fungi were Penicillium, Cladosporium, Aspergillus, Alternaria and Phoma. The frequency of Penicillium, Cladosporium, Aspergillus, Alternaria and Monilia was much higher than those of other fungal genera in family home, and the frequency of Penicillium was more than 90%. As for the concentration percentage, airborne fungi with most high concentrations were Penicillium, Cladosporium, Aspergillus, No-sporing, and Alternaria, and totally accounted for more than 65.0%. Penicillium contributed to 32.2% of the total airborne fungi in family homes. In the 31 family homes selected, the fungal concentration in the air ranged from 62-3 498 CFU x m(-3), and the mean concentration was 837 CFU x m(-3). Seasonal variation pattern of total fungi, and Cladosporium, Aspergillus, Alternaria concentration was consistent, and the highest fungal concentration was observed in summer, followed by spring and

  19. Scanning Web-based ICARTT File Tool (SWIFT): an online tool used to validate ICARTT-formatted airborne science data

    NASA Astrophysics Data System (ADS)

    Lucker, P. L.; Mangosing, D. C.; Chen, G.; Rinsland, P.; Brennan, J. H.; Clodius, B. F.

    2011-12-01

    The ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) file format was recently endorsed by the NASA Earth Science Data Systems Standards Process Group (ESDS SPG) as a standard (ESDS-RFC-019) for specifying airborne-based Earth System Data Records (ESDR). In order to accelerate adoption of the new standard in the airborne science data community, SWIFT (Scanning Web-based ICARTT File Tool) was developed to provide a means for data providers to validate their own originated ICARTT-formatted file before submission to data archival facilities provided by NASA Langley's Atmospheric Science Data Center and the NASA Langley Airborne Science Data for Atmospheric Composition group. SWIFT builds upon a predecessor, a software utility named: FSCAN (File Scan). A major upgrade to FSCAN, the objective of SWIFT is to support all valid ICARTT files and to extract and store the file metadata in an ESDR relational database. The SWIFT-validated search metadata make it possible for COTS software and web applications to leverage the built-in spatial and temporal query capabilities of the relational database and to enable file and parameter sub-setting capabilities, as well as facilitating the generation of airborne science data merge products. These enhancements help to minimize development time of other related web applications and open up opportunities for robust data queries.

  20. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  1. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  2. Progress Report on the ASCII for Science Data, Airborne and Geospatial Working Groups of the 2014 ESDSWG for MEaSUREs

    NASA Astrophysics Data System (ADS)

    Evans, K. D.; Krotkov, N. A.; Mattmann, C. A.; Boustani, M.; Law, E.; Conover, H.; Chen, G.; Olding, S. W.; Walter, J.

    2014-12-01

    The Earth Science Data Systems Working Groups (ESDSWG) were setup by NASA HQ 10 years ago. The role of the ESDSWG is to make recommendations relevant to NASA's Earth science data systems from users experiences. Each group works independently focussing on a unique topic. Participation in ESDSWG groups comes from a variety of NASA-funded science and technology projects, NASA information technology experts, affiliated contractor staff and other interested community members from academia and industry. Recommendations from the ESDSWG groups will enhance NASA's efforts to develop long term data products. The ASCII for Science Data Working Group (WG) will define a minimum set of information that should be included in ASCII file headers so that the users will be able to access the data using only the header information. After reviewing various use cases, such as field data and ASCII data exported from software tools, and reviewing ASCII data guidelines documentation, this WG will deliver guidelines for creating ASCII files that contain enough header information to allow the user to access the science data. The Airborne WG's goal is to improve airborne data access and use for NASA science. The first step is to evaluate the state of airborne data and make recommendations focusing on data delivery to the DAACs (data centers). The long term goal is to improve airborne data use for Earth Science research. Many data aircraft observations are reported in ASCII format. The ASCII and Airborne WGs seem like the same group, but the Airborne WG is concerned with maintaining and using airborne for science research, not just the data format. The Geospatial WG focus is on the interoperability issues of Geospatial Information System (GIS) and remotely sensed data, in particular, focusing on DAAC(s) data from NASA's Earth Science Enterprise. This WG will provide a set of tools (GIS libraries) to use with training and/or cookbooks through the use of Open Source technologies. A progress

  3. The "Science in the Stratosphere" Program: Developing a Role for Airborne Astronomy in Elementary Science Education

    NASA Astrophysics Data System (ADS)

    Lester, D.; Hemenway, M.; Stryker, P.; Willis, M.

    1993-05-01

    The Science in the Stratosphere program on the Kuiper Airborne Observatory (KAO) is an opportunity for selected elementary and middle school teachers from the central Texas area to participate in airborne astronomy, working with researchers on the ground and in the air. Through their experiences, the excitement of hands-on space astronomy can be conveyed to their colleagues and students. These experiences serve as a vehicle for introducing many scientific concepts, as well as the planning, instrument development, cooperation and teamwork that are essential components of scientific research. The airborne setting instills this vignette of modern astronomical research with a spirit of exploration and excitement that inspires even the youngest school children. The inaugural session of this program was held during the summer of 1992. Two school teachers with science specialization were chosen, at grade levels (K and 8) that spanned those targeted by the program. These teachers spent more than a week working with KAO visiting scientists and staff, learning about the research being done, and the operation of this remarkable observatory. Presentations based on their work were made at several science teacher workshops in the months following their trip, and curriculum development is in progress. More so than any other NASA space astronomy facility, airborne telescopes are tangible, accessible, and highly visible. As space astronomy laboratories that are highly fault tolerant, such telescopes (the KAO now, to be followed by SOFIA later) are equipped with instrumentation that is at the leading edge of technology, and thus serve well as educational flagships for modern astronomy. This program receives funds from the NASA Astrophysics AGSE program, and is sponsored by the McDonald Observatory of the University of Texas.

  4. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  5. The Way Point Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2012-01-01

    JavaScript-controled Waypoint tool is planned to be integrated with the NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives. This presentation will discuss the development process of the Waypoint Planning Tool in responding to field campaign challenges, identifying new information technologies, and describing the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.

  6. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2010-01-01

    interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.

  7. Flight Test Safety Considerations for Airborne Science Aircraft

    NASA Technical Reports Server (NTRS)

    Reynolds, Randolph S.

    1997-01-01

    Most of the scientific community that require scientific data or scientific measurements from aircraft do not understand the full implications of putting certain equipment on board high performance aircraft. It is the duty of the NASA Flight Operations personnel to ensure that all Principal Investigators who are given space on NASA flight research aircraft, comply with stringent safety requirements. The attitude of the experienced Flight operations personnel given this duty has been and remains one of insuring that the PI's experiment is allowed to be placed on the aircraft (facility) and can be operated in a manner that will obtain the expected data. This is sometimes a challenge. The success that NASA has in this regard is due to the fact that it is its own authority under public law, to certify its aircraft as airworthy. Airworthiness, fitness for flight, is a complex issue which pulls together all aspects of configuration management, engineering, quality, and flight safety. It is often the case at each NASA Center that is conducting airborne research, that unique solutions to some challenging safety issues are required. These solutions permit NASA to do things that would not be permitted by the Department of Transportation. This paper will use examples of various flight research configurations to show the necessity of a disciplined process leading up to flight test and mission implementation. All new configurations required engineering flight test but many, as noted in this paper, require that the modifications be flight tested to insure that they do not negatively impact on any part of the aircraft operational profiles. The success of these processes has been demonstrated over many years and NASA has accommodated experimental packages that cannot be flown on any other aircraft.

  8. Rapid System to Quantitatively Characterize the Airborne Microbial Community

    NASA Technical Reports Server (NTRS)

    Macnaughton, Sarah J.

    1998-01-01

    Bioaerosols have been linked to a wide range of different allergies and respiratory illnesses. Currently, microorganism culture is the most commonly used method for exposure assessment. Such culture techniques, however, generally fail to detect between 90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting airborne microorganisms is essential. In this Phase II proposal, a portable air sampling device his been developed for the collection of airborne microbial biomass from indoor (and outdoor) environments. Methods were evaluated for extracting and identifying lipids that provide information on indoor air microbial biomass, and automation of these procedures was investigated. Also, techniques to automate the extraction of DNA were explored.

  9. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  10. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  11. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  12. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. PMID:23621155

  13. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source

    PubMed Central

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L ; Bohannan, B J M

    2014-01-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity – variation in outdoor bioaerosols, ventilation strategy, and occupancy load – we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. PMID:23621155

  14. NASA UAV Airborne Science Capabilities in Support of Water Resource Management

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.

  15. Comparison of airborne bacterial communities from a hog farm and spray field.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Sung, Jung-Suk

    2015-05-01

    Airborne bacteria from hog farms may have detrimental impacts on human health, particularly in terms of antibiotic resistance and pathogen zoonosis. Despite human health risks, very little is known about the composition and diversity of airborne bacteria from hog farms and hog-related spray fields. We used pyrosequencing analysis of 16S rRNA genes to compare airborne bacterial communities in a North Carolina hog farm and lagoon spray field. In addition, we isolated and identified antibiotic-resistant bacteria from both air samples. Based on 16S rRNA gene pyrosequence analysis, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla in airborne bacterial communities from both hog farm and spray field sites. Within the Firmicutes genera, Clostridium spp. were more abundant in the hog farm, whereas Staphylococcus spp. were higher in the spray field. The presence of opportunitic pathogens, including several Staphylococcus species and Propionibacterium acnes, was detected in both bioaerosol communities based on phylogenetic analysis. The isolation and identification of antibiotic-resistant bacteria from air samples also showed similar results with dominance of Actinobacteria and Proteobacteria in both hog farm and spray field air. Thus, the existence of opportunistic pathogens and antibiotic resistant bacteria in airborne communities evidences potential health risks to farmers and other residents from swine bioaerosol exposure. PMID:25406533

  16. Community centrality and social science research.

    PubMed

    Allman, Dan

    2015-12-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have. PMID:26440071

  17. Community centrality and social science research

    PubMed Central

    Allman, Dan

    2015-01-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have. PMID:26440071

  18. Thermal infrared spectral imager for airborne science applications

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Realmuto, Vincent; Eng, Bjorn T.

    2009-05-01

    An airborne thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz). A comparison is made using data from the ASTER spectral library.

  19. Changing the Way NASA Airborne Science Data Are Managed: Challenges and Benefits

    NASA Astrophysics Data System (ADS)

    Walter, J.; Ramapriyan, H. K.

    2011-12-01

    For many years NASA has supported the collection of in-situ and remotely sensed science data through the use of airborne platforms. The Airborne Science Program, as part of NASA's Earth Science Division (ESD), currently supports and manages these investigations. The data collected under this program have many uses including, but certainly not limited to, calibration and validation of satellite based measurements and retrieval algorithms, testing new sensor technologies, and measuring the vertical and horizontal distribution of atmospheric constituents. In the past, management of the data was typically the responsibility of the individual principal investigators. Along the way many highly customized strategies for dealing with data discovery, access, distribution, formatting, and preservation issues were developed. In an effort to assure that airborne science data are managed in a more coherent and uniform manner across the program, airborne missions are now being required to adhere to the NASA Earth science data policy and a specific set of Level 1 data management requirements derived from that policy. These requirements include use of NASA ESD-approved data formats and metadata specifications, elimination of periods of exclusive access, and the transfer of data products to a NASA ESD-assigned Data Center. In addition, the manner in which each mission plans to meet these requirements must be documented in a data management plan. The good news is that there is a significant Earth science data management infrastructure in place that can be leveraged to help meet these requirements. However, much of this infrastructure was developed to support satellite missions. Since airborne data are different than satellite data in many ways, this presents some challenges. This presentation will describe the challenges as well as the benefits of this new data management policy.

  20. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  1. NASA Airborne Science: Studying Earth From the Air

    NASA Video Gallery

    Journalists and social media followers were briefed on the goals of NASA's Earth science program and a half-dozen current or near-term Earth science missions, and learned about how a small fleet of...

  2. Global Learning Communities: Science Classrooms without Walls

    ERIC Educational Resources Information Center

    Kerlin, Steven C.

    2009-01-01

    The physical walls of a classroom have typically acted as the boundary of school science learning communities. The participants in these learning communities are the students and the teacher in individual classrooms. These participants contribute to scientific discourse about a specific content area under study. Scientific learning communities, on…

  3. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  4. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  5. Citizen Scientists: Investigating Science in the Community

    ERIC Educational Resources Information Center

    Jones, Gail; Childers, Gina; Stevens, Vanessa; Whitley, Blake

    2012-01-01

    Citizen science programs are becoming increasingly popular among teachers, students, and families. The term "citizen scientist" has various definitions. It can refer to those who gather information for a particular science research study or to people who lobby for environmental protection for their communities. "Citizen science" has been called…

  6. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  7. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  8. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  9. NEPTUNE Canada Community Science Experiments

    NASA Astrophysics Data System (ADS)

    Juniper, S.; Bornhold, B.; Barnes, C.; Phibbs, P.; Pirenne, B.

    2006-05-01

    In 2007 NEPTUNE Canada will install the first stage of a regional cabled observatory (RCO) in the northeast Pacific Ocean. Stage 2 of the RCO is being developed by the US-based ORION Project Office, through the National Science Foundation's Ocean Observatory Initiative (OOI). For Stage 1, a 800km fiber-optic cable will loop out from a shore station on Vancouver Island to the Juan de Fuca volcanic spreading ridge. Two seafloor nodes are planned, one to support studies of tectonic and hydrothermal activity on the Endeavour Segment of the Juan de Fuca Ridge, and the other for investigation of a broad range of processes in Barkley Canyon, on the continental slope of Vancouver Island. Each node will provide power and Ethernet communications to instruments that comprise multi-disciplinary community science experiments. These experiments were developed through a 2-year series of workshops and a final competition. Data from all instruments will be available on-line, through the NEPTUNE data management and archive system. Investigations at the Endeavour node will focus on links between seismic activity and hydrothermal emissions and their resulting impact on hydrothermal vent organisms and regional oceanic circulation and geochemical fluxes. This area provides a number of technical challenges, including the laying of the backbone cable over a volcanic terrain, and the placement of instruments and extension cables in areas of abundant high-temperature venting. Planned instruments include broad-band seismometers, acoustic Doppler current meters, video and digital still cameras and chemical sensors. Experiments at the Barkley Canyon site will emphasis the effects of water currents passing through the canyon, and seismic activity. Combined biological and physical oceanographic instruments will monitor the interaction between sediment transport along the axis of the canyon and the bioturbation activity of the fauna. A combined physical/biological experiment in the water column

  10. The Community as a Science Resource.

    ERIC Educational Resources Information Center

    Dawson, Cherie Anna

    1982-01-01

    Offers suggestions for science teaching related to the following community resources: butcher shops, bakeries, grocery stores, dairies, drugstores, music shops, health professionals, construction trades, weather forecasts, zoos, pet shops, farms and ranches, rocks and minerals, and others. (SK)

  11. Changes in the Airborne Bacterial Community in Outdoor Environments following Asian Dust Events

    PubMed Central

    Yamaguchi, Nobuyasu; Park, Jonguk; Kodama, Makiko; Ichijo, Tomoaki; Baba, Takashi; Nasu, Masao

    2014-01-01

    Bacterial abundance and community compositions have been examined in aeolian dust in order to clarify their possible impacts on public health and ecosystems. The influence of transcontinentally transported bacterial cells on microbial communities in the outdoor environments of downwind areas should be determined because the rapid influx of a large amount of bacterial cells can disturb indigenous microbial ecosystems. In the present study, we analyzed bacteria in air samples (approximately 100 m3 d−1) that were collected on both Asian dust days and non-Asian dust days over 2 years (between November 2010 and July 2012). Changes in bacterial abundance and community composition were investigated based on their 16S rRNA gene amount and sequence diversity. Seasonal monitoring revealed that airborne bacterial abundance was more than 10-fold higher on severe dust days, while moderate dust events did not affect airborne bacterial abundance. A comparison of bacterial community compositions revealed that bacteria in Asian dust did not immediately disturb the airborne microbial community in areas 3,000–5,000 km downwind of dust source regions, even when a large amount of bacterial cells were transported by the atmospheric event. However, microbes in aeolian dust may have a greater impact on indigenous microbial communities in downwind areas near the dust source. Continuous temporal and spatial analyses from dust source regions to downwind regions (e.g., from the Gobi desert to China, Korea, Japan, and North America) will assist in estimating the impact of atmospherically transported bacteria on indigenous microbial ecosystems in downwind areas. PMID:24553107

  12. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-04-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  13. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    PubMed

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites. PMID:25592734

  14. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities.

    PubMed

    Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O

    2014-07-15

    Dust coming from the large deserts on Earth, such as the Sahara, can travel long distances and be dispersed over thousands of square kilometers. Remote dust deposition rates are increasing as a consequence of global change and may represent a mechanism for intercontinental microbial dispersal. Remote oligotrophic alpine lakes are particularly sensitive to dust inputs and can serve as sentinels of airborne microbial transport and the ecological consequences of accelerated intercontinental microbial migration. In this study, we applied high-throughput sequencing techniques (16S rRNA amplicon pyrosequencing) to characterize the microbial communities of atmospheric deposition collected in the Central Pyrenees (NE Spain) along three years. Additionally, bacteria from soils in Mauritania and from the air-water interface of high altitude Pyrenean lakes were also examined. Communities in aerosol deposition varied in time with a strong seasonal component of interannual similarity. Communities from the same season tended to resemble more each other than those from different seasons. Samples from disparate dates, in turn, slightly tended to have more dissimilar microbial assemblages (i.e., temporal distance decay), overall suggesting that atmospheric deposition may influence sink habitats in a temporally predictable manner. The three habitats examined (soil, deposition, and air-water interface) harbored distinct microbial communities, although airborne samples collected in the Pyrenees during Saharan dust outbreaks were closer to Mauritian soil samples than those collected during no Saharan dust episodes. The three habitats shared c.a. 1.4% of the total number of microbial sequences in the dataset. Such successful immigrants were spread in different bacterial classes. Overall, this study suggests that local and regional features may generate global trends in the dynamics and distribution of airborne microbial assemblages, and that the diversity of viable cells in the high

  15. Management approach for NASA's Earth Venture-1 (EV-1) airborne science investigations

    NASA Astrophysics Data System (ADS)

    Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette

    2013-09-01

    The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.

  16. Management Approach for NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette

    2013-01-01

    The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.

  17. JORNEX: An airborne campaign to quantify rangeland vegetation change and plant community-atmospheric interactions

    SciTech Connect

    Ritchie, J.C.; Rango, A.; Kustas, W.P.

    1996-11-01

    The Jornada Experimental Range in New Mexico provides a unique opportunity to integrate hydrologic-atmospheric fluxes and surface states, vegetation types, cover, and distribution, and vegetation response to changes in hydrologic states and atmospheric driving forces. The Jornada Range is the site of a long-term ecological research program to investigate the processes leading to desertification. In concert with ongoing ground measurements, remotely sensed data are being collected from ground, airborne, and satellite platforms during JORNEX (the JORNada Experiment) to provide spatial and temporal distribution of vegetation state using laser altimeter and multispectral aircraft and satellite data and surface energy balance estimates from a combination of parameters and state variables derived from remotely sensed data. These measurements will be used as inputs to models to quantify the hydrologic budget and the plant response to changes in components in the water and energy balance. Intensive three day study periods for ground and airborne campaigns have been made in May 1995 (dry season) and September 1995 (wet season), February 1996 (Winter) and are planned for wet and dry seasons of 1996. An airborne platform is being used to collect thermal, multispectral, 3-band video, and laser altimetry profile data. Bowen ratio-energy balance stations were established in shrub and grass communities in May 1995 and are collecting data continuously. Additional energy flux measurements were made using eddy correlation techniques during the September 1995 campaign. Ground-based measurements during the intensive campaigns include thermal and multispectral measurements made using yoke-based platforms and hand-held instruments, LAI, and other vegetation data. Ground and aircraft measurements are acquired during Landsat overpasses so the effect of scale on measurements can be studied. This paper discusses preliminary results from the 1995 airborne campaign. 24 refs., 13 figs., 1 tab.

  18. Predicting Achievement in Community College Science Students.

    ERIC Educational Resources Information Center

    Dettloff, Janet May

    This study was designed to formulate a predictive equation to identify community college biology students (N=420) who most probably would not succeed in science courses. A College Biology Student Survey (developed for the study), Nelson Denny Reading Test (Form-F), College Guidance Placement (CGP) Arithmetic Test, and An Inventory of Piaget's…

  19. Seasonal Dynamics of the Airborne Bacterial Community and Selected Viruses in a Children's Daycare Center.

    PubMed

    Prussin, Aaron J; Vikram, Amit; Bibby, Kyle J; Marr, Linsey C

    2016-01-01

    Children's daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time. PMID:26942410

  20. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  1. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): User Interface Design and Development

    NASA Astrophysics Data System (ADS)

    Beach, A. L., III; Early, A. B.; Chen, G.; Parker, L.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. Given the sheer volume of data variables across field campaigns and instruments reporting data on different time scales, this data is often difficult and time-intensive for researchers to analyze. The TAD web application is designed to provide an intuitive user interface (UI) to facilitate quick and efficient discovery from a vast number of airborne variables and data. Users are given the option to search based on high-level parameter groups, individual common names, mission and platform, as well as date ranges. Experienced users can immediately filter by keyword using the global search option. Once the user has chosen their required variables, they are given the option to either request PI data files based on their search criteria or create merged data, i.e. geo-located data from one or more measurement PIs. The purpose of the merged data feature is to allow users to compare data from one flight, as not all data from each flight is taken on the same time scale. Time bases can be continuous or based on the time base from one of the measurement time scales and intervals. After an order is submitted and processed, an ASDC email is sent to the user with a link for data download. The TAD user interface design, application architecture, and proposed future enhancements will be presented.

  2. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): Common Variable Naming Schema

    NASA Astrophysics Data System (ADS)

    Chen, G.; Early, A. B.; Peeters, M. C.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. One particular issue is a lack of consistent variable naming across field campaigns, which makes cross-mission data discovery difficult. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. As part of this effort, a common naming system was developed to provide a link between variables from different aircraft field studies. This system covers all current and past airborne in-situ measurements housed at the ASDC, as well as select NOAA missions. The TAD common variable naming system consists of 6 categories and 3 sub-levels. The top-level category is primarily defined by the physical characteristics of the measurement: e.g., aerosol, cloud, trace gases. The sub-levels were designed to organize the variables according to nature of measurement (e.g., aerosol microphysical and optical properties) or chemical structures (e.g., carbon compound). The development of the TAD common variable naming system was in consultation with staff from the Global Change Master Directory (GCMD) and referenced/expanded the existing Climate and Forecast (CF) variable naming conventions. The detailed structure of the TAD common variable naming convention and its application in TAD development will be presented.

  3. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  4. The SOFIA Airborne Infrared Observatory - first science highlights and future science potential

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    2014-10-01

    SOFIA, short for Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP aircraft with a 2.7m telescope flying as high as 45000 ft in the stratosphere above 99 percent of the precipitable water vapor. SOFIA normally operates from its base in Palmdale, California, and a typical observing flight lasts for 10 hours before returning to base. SOFIA has started astronomical observations in Dec 2010 and has completed some 30 early science flights in 2011, delivering a number of exciting results and discoveries, both in mid-infrared imaging (5-40mu) and in far-infrared (THz) heterodyne high-resolution spectroscopy which were published in mid-2012 in special issues of ApJ Letters and A & A, respectively. Meanwhile, in July 2013, as part of Cycle 1, SOFIA has deployed to New Zealand for a total of 9 flights (all of them successful) and has observed key targets in the southern hemisphere at THz frequencies, including star forming regions in the Large and Small Magellanic Clouds. In this talk, I will present a few highlights of SOFIA early science and its future potential, when the full suite of 7 instruments will be implemented by the time of full operations in 2015. As Herschel ran out of cryogens in April 2013, SOFIA will be the premier FIR-astronomical facility for many years to come. Synergies with ALMA and CCAT must be explored. SOFIA is a major bilateral project between NASA and the German Space Agency (DLR), however as an international observatory it offers observing time to the whole astronomical community world-wide, not only to the US and German primary partners.

  5. Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria.

    PubMed

    Vokou, Despoina; Vareli, Katerina; Zarali, Ekaterini; Karamanoli, Katerina; Constantinidou, Helen-Isis A; Monokrousos, Nikolaos; Halley, John M; Sainis, Ioannis

    2012-10-01

    We studied the structure and diversity of the phyllosphere bacterial community of a Mediterranean ecosystem, in summer, the most stressful season in this environment. To this aim, we selected nine dominant perennial species, namely Arbutus unedo, Cistus incanus, Lavandula stoechas, Myrtus communis, Phillyrea latifolia, Pistacia lentiscus, Quercus coccifera (woody), Calamintha nepeta, and Melissa officinalis (herbaceous). We also examined the extent to which airborne bacteria resemble the epiphytic ones. Genotype composition of the leaf and airborne bacteria was analysed by using denaturing gradient gel electrophoresis profiling of a 16S rDNA gene fragment; 75 bands were cloned and sequenced corresponding to 28 taxa. Of these, two were found both in the air and the phyllosphere, eight only in the air, and the remaining 18 only in the phyllosphere. Only four taxa were found on leaves of all nine plant species. Cluster analysis showed highest similarity for the five evergreen sclerophyllous species. Aromatic plants were not grouped all together: the representatives of Lamiaceae, bearing both glandular and non-glandular trichomes, formed a separate group, whereas the aromatic and evergreen sclerophyllous M. communis was grouped with the other species of the same habit. The epiphytic communities that were the richest in bacterial taxa were those of C. nepeta and M. officinalis (Lamiaceae). Our results highlight the remarkable presence of lactic acid bacteria in the phyllosphere under the harsh conditions of the Mediterranean summer, the profound dissimilarity in the structure of bacterial communities in phyllosphere and air, and the remarkable differences of leaf microbial communities on neighbouring plants subjected to similar microbial inocula; they also point to the importance of the leaf glandular trichome in determining colonization patterns. PMID:22544345

  6. Software Reuse Within the Earth Science Community

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very

  7. Pointing stability and image quality of the SOFIA Airborne Telescope during initial science missions

    NASA Astrophysics Data System (ADS)

    Lampater, Ulrich; Keas, Paul; Brewster, Rick; Herter, Terry; Wolf, Juergen; Pfueller, Enrico; Wiedemann, Manuel; Teufel, Stefan; Harms, Franziska; Jakob, Holger; Roser, Hans-Peter

    2011-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory for astronomical observations at wavelengths ranging from 0.3-1600 µm. It consists of a telescope with an effective aperture of 2.5 m, which is mounted in a heavily modified Boeing 747SP. The aircraft features an open port cavity that gives the telescope an unobstructed view of the sky. Hence the optical system is subject to both aerodynamic loads from airflow entering the cavity, and to inertial loads introduced by motion of the airborne platform. A complex suspension assembly was designed to stabilize the telescope. Detailed end-to-end simulations were performed to estimate image stability based on the mechatronic design, the expected loads, and optical influence parameters. In December 2010 SOFIA entered its operational phase with a series of Early Science flights, which have relaxed image quality requirements compared to the full operations capability. At the same time, those flights are used to characterize image quality and image stability in order to validate models and to optimize systems. Optimization of systems is not based on analytical models, but on models derived from system identification measurements that are performed on the actual hardware both under controlled conditions and operational conditions. This paper discusses recent results from system identification measurements, improvements to image stability, and plans for the further enhancement of the system.

  8. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  9. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    PubMed Central

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  10. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    PubMed

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  11. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  12. Constructing a Community System-Based Social Science Curriculum.

    ERIC Educational Resources Information Center

    Muth, John W.; Senesh, Lawrence

    This guide is designed to aid social studies classroom teachers develop and implement programs using the community as a social sciences laboratory. The document describes how to prepare a social profile of the community. Based upon the Colorado System-Based Social Science Project which was sponsored by the National Science Foundation, the study…

  13. The Effects of Training Community Leaders in Prevention Science: Communities that Care in Pennsylvania.

    ERIC Educational Resources Information Center

    Feinberg, Mark E.; Greenberg, Mark T.; Osgood, D. Wayne; Anderson, Amy; Babinski, Leslie

    2002-01-01

    Examined the effects of training community leaders in prevention science in the context of the Communities That Care (CTC) model fo community empowerment. Data from an evaluation of CTC in 21 Pennsylvania communities and interviews with 203 community leaders show that training is positively, although modestly, associated with participant attitudes…

  14. Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Van Gilst, D. P.; Sorenson, C. E.

    2011-12-01

    Multi-instrument aircraft-based science campaigns require a baseline level of housekeeping service to record and distribute real time data, including timing signals, aircraft state and air data. As campaigns have become more sophisticated with greater integration between aircraft, ground instrumentation, satellites and forecasters in locations around the world, the scope of the services provided by the facility data systems on NASA's airborne science aircraft have increased to include situational awareness displays, real-time interchange of data between instruments and aircraft, and ingest of data to assist in real-time targeting of flights. As the scope of services has expanded, it has become increasingly important to provide standardized interfaces to experimenters to minimize integration complexity, and to make services sufficiently reliable for mission operations to depend upon them. Within the NASA airborne science program in recent years this has been provided by systems based around the core of the REVEAL/NASDAT system, with additional services including satellite communications, data display and ingest of outside data being provided by a mix of custom and COTS hardware and software. With a strong emphasis on transmission of data over industry standard IP and ethernet based networks, this system has been proven on numerous highly diverse missions on the DC-8 over the last 4 years and is being replicated on other NASA Airborne Science Platforms.

  15. Community College Students' Attitudes toward Postsecondary Science Education

    NASA Astrophysics Data System (ADS)

    Foster, Clint

    2011-12-01

    Students in the United States are avoiding taking the higher level science courses in secondary and postsecondary academic institutions (Ball, 2000; Braund & Reiss, 2006; Lee & Frank, 1990). There are many careers that do not require students to take those higher level science courses; therefore, students avoid registering for those classes (Madigan, 1997). Many students are pursing science-related degrees and/or certification from community colleges; however, they lack the academic foundations to succeed in science. The purpose of this study was to identify community college students' attitudes and perceptions toward postsecondary science education and the relationship of their attitudes and perceptions toward their academic achievement in postsecondary science. This study examined community college students that were registered in community college science course. Community college students were examined by answering 47 questions on the instrument, Attitudes Toward Science/ Learning Science. The instrument was composed of thirty-eight Likert items, eight demographic items, and one closed-ended item. The study investigated the relationship of community college students' attitudes toward their intended academic major, ethnicity, gender and academic achievement. A 6x5x2 Factorial ANOVA revealed that no significant relationships existed between community college students' intended major and their attitudes toward science education, F(5, 158) = 0.646, p = 0.665. The results of the 6x5x2 Factorial ANOVA revealed that there were no statistically significant differences between the community college students' ethnicity and attitude toward science, F(4, 158) = 1.835, p = 0.125. The results of 6x5x2 Factorial ANOVA revealed that no statistically significant differences existed between the community college students' gender and attitude toward science, F(1, 158) = 0.203, p = 0.653. The Pearson's R Coefficient provided results that indicated that there were no statistically

  16. SPHEREx: Science Opportunities for the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.; SPHEREx Science Team

    2016-01-01

    SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A study in July 2015, will perform an all-sky near-infrared spectral survey between 0.75 - 4.8 microns, reaching 19th mag (5sigma) in narrow R=40 filters. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.5 billion galaxies with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for all WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including several hundred bright QSOs seen during the epoch of reionization. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx could also produce all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will discuss the data release schedule and some example science studies the broader astronomical community will beable to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software tools and facilitate easy access on a timely

  17. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  18. Mathematics, Engineering Science Achievement (MESA). Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Growing Science, Technology, Education, and Mathematics (STEM) talent Washington MESA--Mathematics Engineering Science Achievement--helps under-represented community college students excel in school and ultimately earn STEM bachelor's degrees. MESA has two key programs: one for K-12 students, and the other for community and technical college…

  19. Community exposures to airborne agricultural pesticides in California: ranking of inhalation risks.

    PubMed

    Lee, Sharon; McLaughlin, Robert; Harnly, Martha; Gunier, Robert; Kreutzer, Richard

    2002-12-01

    We assessed inhalation risks to California communities from airborne agricultural pesticides by probability distribution analysis using ambient air data provided by the California Air Resources Board and the California Department of Pesticide Regulation. The pesticides evaluated include chloropicrin, chlorothalonil, chlorpyrifos, S,S,S-tributyl phosphorotrithioate, diazinon, 1,3-dichloropropene, dichlorvos (naled breakdown product), endosulfan, eptam, methidathion, methyl bromide, methyl isothiocyanate (MITC; metam sodium breakdown product), molinate, propargite, and simazine. Risks were estimated for the median and 75th and 95th percentiles of probability (50, 25, and 5% of the exposed populations). Exposure estimates greater than or equal to noncancer reference values occurred for 50% of the exposed populations (adults and children) for MITC subchronic and chronic exposures, methyl bromide subchronic exposures (year 2000 monitoring), and 1,3-dichloropropene subchronic exposures (1990 monitoring). Short-term chlorpyrifos exposure estimates exceeded the acute reference value for 50% of children (not adults) in the exposed population. Noncancer risks were uniformly higher for children due to a proportionately greater inhalation rate-to-body weight ratio compared to adults and other factors. Target health effects of potential concern for these exposures include neurologic effects (methyl bromide and chlorpyrifos) and respiratory effects (1,3-dichloropropene and MITC). The lowest noncancer risks occurred for simazine and chlorothalonil. Lifetime cancer risks of one-in-a-million or greater were estimated for 50% of the exposed population for 1,3-dichloropropene (1990 monitoring) and 25% of the exposed populations for methidathion and molinate. Pesticide vapor pressure was found to be a better predictor of inhalation risk compared to other methods of ranking pesticides as potential toxic air contaminants. PMID:12460795

  20. Community exposures to airborne agricultural pesticides in California: ranking of inhalation risks.

    PubMed Central

    Lee, Sharon; McLaughlin, Robert; Harnly, Martha; Gunier, Robert; Kreutzer, Richard

    2002-01-01

    We assessed inhalation risks to California communities from airborne agricultural pesticides by probability distribution analysis using ambient air data provided by the California Air Resources Board and the California Department of Pesticide Regulation. The pesticides evaluated include chloropicrin, chlorothalonil, chlorpyrifos, S,S,S-tributyl phosphorotrithioate, diazinon, 1,3-dichloropropene, dichlorvos (naled breakdown product), endosulfan, eptam, methidathion, methyl bromide, methyl isothiocyanate (MITC; metam sodium breakdown product), molinate, propargite, and simazine. Risks were estimated for the median and 75th and 95th percentiles of probability (50, 25, and 5% of the exposed populations). Exposure estimates greater than or equal to noncancer reference values occurred for 50% of the exposed populations (adults and children) for MITC subchronic and chronic exposures, methyl bromide subchronic exposures (year 2000 monitoring), and 1,3-dichloropropene subchronic exposures (1990 monitoring). Short-term chlorpyrifos exposure estimates exceeded the acute reference value for 50% of children (not adults) in the exposed population. Noncancer risks were uniformly higher for children due to a proportionately greater inhalation rate-to-body weight ratio compared to adults and other factors. Target health effects of potential concern for these exposures include neurologic effects (methyl bromide and chlorpyrifos) and respiratory effects (1,3-dichloropropene and MITC). The lowest noncancer risks occurred for simazine and chlorothalonil. Lifetime cancer risks of one-in-a-million or greater were estimated for 50% of the exposed population for 1,3-dichloropropene (1990 monitoring) and 25% of the exposed populations for methidathion and molinate. Pesticide vapor pressure was found to be a better predictor of inhalation risk compared to other methods of ranking pesticides as potential toxic air contaminants. PMID:12460795

  1. Comprehensive Science Evaluation Project: Hudson County Community College. Final Report.

    ERIC Educational Resources Information Center

    Oromaner, Mark

    A summary is provided of the goals, objectives, activities, and findings of Hudson County Community College's (HCCC's) comprehensive science evaluation project. After introductory material outlines the status of science education at HCCC, the project's objectives are presented; i.e., to analyze the college's science courses and their ability to…

  2. Science Fiction and the Community College: A Symbiosis.

    ERIC Educational Resources Information Center

    Steelman, Nell Vale

    This paper discusses science fiction in general, and argues that science fiction is a method for exploring present and future potentialities, for educating people about the possibilities of the future, for helping people condition themselves to change. A science fiction course taught at the community college level as a humanities elective is…

  3. Mobilizing community-based health insurance to enhance awareness & prevention of airborne, vector-borne & waterborne diseases in rural India

    PubMed Central

    Panda, Pradeep; Chakraborty, Arpita; Dror, David M.

    2015-01-01

    Background & objectives: Despite remarkable progress in airborne, vector-borne and waterborne diseases in India, the morbidity associated with these diseases is still high. Many of these diseases are controllable through awareness and preventive practice. This study was an attempt to evaluate the effectiveness of a preventive care awareness campaign in enhancing knowledge related with airborne, vector-borne and waterborne diseases, carried out in 2011 in three rural communities in India (Pratapgarh and Kanpur-Dehat in Uttar Pradesh and Vaishali in Bihar). Methods: Data for this analysis were collected from two surveys, one done before the campaign and the other after it, each of 300 randomly selected households drawn from a larger sample of Self-Help Groups (SHGs) members invited to join community-based health insurance (CBHI) schemes. Results: The results showed a significant increase both in awareness (34%, p<0.001) and in preventive practices (48%, P=0.001), suggesting that the awareness campaign was effective. However, average practice scores (0.31) were substantially lower than average awareness scores (0.47), even in post-campaign. Awareness and preventive practices were less prevalent in vector-borne diseases than in airborne and waterborne diseases. Education was positively associated with both awareness and practice scores. The awareness scores were positive and significant determinants of the practice scores, both in the pre- and in the post-campaign results. Affiliation to CBHI had significant positive influence on awareness and on practice scores in the post-campaign period. Interpretation & conclusions: The results suggest that well-crafted health educational campaigns can be effective in raising awareness and promoting health-enhancing practices in resource-poor settings. It also confirms that CBHI can serve as a platform to enhance awareness to risks of exposure to airborne, vector-borne and waterborne diseases, and encourage preventive practices

  4. The NASA Airborne Astronomy Program: A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1995-01-01

    The scientific, educational, and instrumental contributions from NASA's airborne observatories are deduced from the program's publication record (789 citations, excluding abstracts, involving 580 authors at 128 institutions in the United States and abroad between 1967-1990).

  5. Mining in subarctic Canada: airborne PM2.5 metal concentrations in two remote First Nations communities.

    PubMed

    Liberda, Eric N; Tsuji, Leonard J S; Peltier, Richard E

    2015-11-01

    Airborne particulate matter arising from upwind mining activities is a concern for First Nations communities in the western James Bay region of Ontario, Canada. Aerosol chemical components were collected in 2011 from two communities in northern Ontario. The chemical and mass concentration data of particulate matter collected during this study shows a significant difference in PM2.5 in Attawapiskat compared to Fort Albany. Elemental profiles indicate enhanced levels of some tracers thought to arise from mining activities, such as, K, Ni, and crustal materials. Both communities are remote and isolated from urban and industrial pollution sources, however, Attawapiskat First Nation has significantly enhanced levels of particulate matter, and it is likely that some of this arises from upwind mining activities. PMID:26255141

  6. Community science: creating an alternative place to stand?

    PubMed

    Kloos, Bret

    2005-06-01

    This article comments on two emerging views of community psychology's approaches to the use of research for responding to social problems in contemporary community contexts--(a) the formation of a new field of community science, or (b) the updating of community psychology research traditions. If community science is to become established as a field related to community psychology, its proponents will need to agree upon conventions of epistemology, foci of interest, methods, and standards by which its work can be judged so that it can be distinguished from other human sciences. These articles provide early sketches for what community science might be. However, as noted in this commentary, we need to heed signs of concern about community psychology's continued relevance in public discourse regarding the analysis of and responses to social problems. While this special issue offers some promising responses to the concern of what the field can contribute, the field would be well served if we broaden our dialogue about a renewal of community psychology's commitment to social justice and the need for its perspectives in the practice of research that seeks to address community-based issues in the early 21st century. PMID:15909800

  7. Community Science: Creating an Alternative Place to Stand?

    PubMed Central

    Kloos, Bret

    2008-01-01

    This article comments on two emerging views of community psychology's approaches to the use of research for responding to social problems in contemporary community contexts - (a) the formation of a new field of community science, or (b) the updating of community psychology research traditions. If community science is to become established as a field related to community psychology, its proponents will need to agree upon conventions of epistemology, foci of interest, methods, and standards by which its work can be judged so that it can be distinguished from other human sciences. These articles provide early sketches for what community science might be. However, as noted in this commentary, we need to heed signs of concern about community psychology's continued relevance in public discourse regarding the analysis of and responses to social problems. While this special issue offers some promising responses to the concern of what the field can contribute, the field would be well served if we broaden our dialogue about a renewal of community psychology's commitment to social justice and the need for its perspectives in the practice of research that seeks to address community-based issues in the early 21st century. PMID:15909800

  8. Evaluating Community-Based Participatory Research to Improve Community-Partnered Science and Community Health

    PubMed Central

    Hicks, Sarah; Duran, Bonnie; Wallerstein, Nina; Avila, Magdalena; Belone, Lorenda; Lucero, Julie; Magarati, Maya; Mainer, Elana; Martin, Diane; Muhammad, Michael; Oetzel, John; Pearson, Cynthia; Sahota, Puneet; Simonds, Vanessa; Sussman, Andrew; Tafoya, Greg; Hat, Emily White

    2013-01-01

    Background Since 2007, the National Congress of American Indians (NCAI) Policy Research Center (PRC) has partnered with the Universities of New Mexico and Washington to study the science of community-based participatory research (CBPR). Our goal is to identify facilitators and barriers to effective community–academic partnerships in American Indian and other communities, which face health disparities. Objectives We have described herein the scientific design of our National Institutes of Health (NIH)-funded study (2009–2013) and lessons learned by having a strong community partner leading the research efforts. Methods The research team is implementing a mixed-methods study involving a survey of principal investigators (PIs) and partners across the nation and in-depth case studies of CBPR projects. Results We present preliminary findings on methods and measures for community-engaged research and eight lessons learned thus far regarding partnership evaluation, advisory councils, historical trust, research capacity development of community partner, advocacy, honoring each other, messaging, and funding. Conclusions Study methodologies and lessons learned can help community–academic research partnerships translate research in communities. PMID:22982842

  9. Seasonal variability in airborne bacterial communities at a high elevation site and their relationship to other air studies and to potential sources

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.

    2012-12-01

    Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the

  10. Advancing the Science of Community-Level Interventions

    PubMed Central

    Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.

    2011-01-01

    Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923

  11. Seasonal Dynamics of the Airborne Bacterial Community and Selected Viruses in a Children’s Daycare Center

    PubMed Central

    Prussin, Aaron J.; Vikram, Amit; Bibby, Kyle J.; Marr, Linsey C.

    2016-01-01

    Children’s daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time. PMID:26942410

  12. Math and Science Community College Faculty: A Culture Apart

    ERIC Educational Resources Information Center

    Bradley, Jane

    2012-01-01

    This is a quantitative, survey-based study of Iowa community college faculty members. The survey was administered in the spring of 2011 to all faculty members identified by their colleges as being employed full time. This study compares the demographics of math and science faculty members to faculty within the arts and sciences who do not teach…

  13. Science Centres: A Resource for School and Community

    ERIC Educational Resources Information Center

    Pilo, Miranda; Mantero, Alfonso; Marasco, Antonella

    2011-01-01

    We present a science centre established in Genoa on an agreement between Municipality of Genoa and Department of Physics of University of Genoa. The aim is to offer children, young people and community an opportunity to approach science in a playful way. The centre staffs guide the visitors through the exhibits, attracting their interests towards…

  14. Measuring the Impact of a Science Center on Its Community

    ERIC Educational Resources Information Center

    Falk, John H.; Needham, Mark D.

    2011-01-01

    A range of sources support science learning, including the formal education system, libraries, museums, nature and Science Centers, aquariums and zoos, botanical gardens and arboretums, television programs, film and video, newspapers, radio, books and magazines, the Internet, community and health organizations, environmental organizations, and…

  15. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  16. Study of airborne science experiment management concepts for application to space shuttle. Volume 3: Appendixes

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729.

  17. CosmoQuest: Building community around Citizen Science Collaboration

    NASA Astrophysics Data System (ADS)

    Gay, P.

    2015-12-01

    CosmoQuest was envisioned in 2011 with a singular goal: to create a place where people of all backgrounds can learn and do science in a virtual research community. Like a brick-and-mortar center, CosmoQuest includes facilities for doing science and for educating its members through classes, seminars, and other forms of professional development. CosmoQuest is unique with its combination of public engagement in doing science—known as "citizen science"— and its diversity of learning opportunities that enable STEM education. Our suite of activities is able maximize people's ability to learn and do science, while improving scientific literacy. Since its launch on January 1, 2012, CosmoQuest has grown to become the most trafficked astronomy citizen science site on the English-language internet. It has hosted five citizen science portals supporting NASA SMD science and is the only citizen science site to have produced peer-reviewed surface science results [Robbins, et al. 2014]. CosmoQuest, however, is more than just citizen science. It is a virtual research center for the public, and for the educators who teach in classrooms and science centers. Like with with any research center, CosmoQuest's success hinges on its ability to build a committed research community, and the challenge has been creating this community without the benefit of real-world interactions. In this talk, we overview how CosmoQuest has built a virtual community through screen-to-screen interactions using a suite of technologies that must constantly evolve as the internet evolves.

  18. Science education as/for participation in the community

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael; Lee, Stuart

    2004-03-01

    In this paper, we take up and advance the project of rethinking scientific literacy by Eisenhart, Finkel, and Marion (American Educational Research Journal, 1996, 33, 261-295). As part of a project of rethinking science education, we advance three propositions. First, because society is built on division of labor, not everybody needs to know the same basic sets of concepts; it is more important to allow the emergence of scientific literacy as a collective property. Second, scientific knowledge ought not to be privileged in democratic collective decision making but ought to be one of many resources. Third, rethinking science education as and for participation in community life sets up the potential for lifelong participation in and learning of science-related issues. To show the viability of these propositions, we provide a case study based on a 3-year, multisite ethnographic research project as part of which we investigated science in the community. Framing our work in terms of activity theory, we provide descriptions of science in a local middle school, where students learn science while participating in a community effort to contribute to the knowledge base about a local creek. The children's activities are continuous with those of adults concerned about environmental health. In this way, rather than preparing for life after school, science education allows students to participate in legitimate ways in community life and therefore provides a starting point for uninterrupted lifelong learning across the presently existing boundary separating formal schooling from everyday life outside schools.

  19. Communities Count: Community Based Sourcebook for Promoting Mathematics & Science Education.

    ERIC Educational Resources Information Center

    Crespo, Hilda; Cid, Nadine

    In the increasingly technological workforce, greater competency in mathematics, science, and computers among Latino and other minority students takes on a new urgency. Hispanic Americans are a vital pool of workers to tap for the nation's future growth. Schools must ensure that Hispanic Americans have the skills they need to enter the labor force…

  20. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  1. Doing Climate Science in Indigenous Communities

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Bennett, B.

    2009-12-01

    Historically, the goal of broadening participation in the geosciences has been expressed and approached from the viewpoint of the majority-dominated geoscience community. The need for more students who are American Indian, Native Hawaiian, or Alaska Native is expressed in terms of the need to diversify the research community, and strategies to engage more students are often posed around the question “what can we do to get more indigenous students interested in coming to our institutions to do geosciences?” This approach can lead to neglecting indigenous ways of knowing, inadvertently prioritizes western values over traditional ones, and doesn’t necessarily honor tribal community’s desire to hold on to their talented youth. Further, while this approach has resulted in some modest success, the overall participation in geoscience by students from indigenous backgrounds remains low. Many successful programs, however, have tried an alternate approach; they begin by approaching the geosciences from the viewpoint of indigenous communities. The questions they ask center around how geosciences can advance the priorities of indigenous communities, and their approaches focus on building capacity for the geosciences within indigenous communities. Most importantly, perhaps, these efforts originate in Tribal communities themselves, and invite the geoscience research community to partner in projects that are rooted in indigenous culture and values. Finally, these programs recognize that scientific expertise is only one among many skills indigenous peoples employ in their relation with their homelands. Climate change, like all things related to the landscape, is intimately connected to the core of indigenous cultures. Thus, emerging concerns about climate change provide a venue for developing new, indigenous-centered, approaches to the persistent problem of broadening participation in the geoscience. This presentation will highlight three indigenous-led efforts in to

  2. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, Kimberly

    2010-05-01

    Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of the three-year program, teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 70% and another site by 120%.

  3. Building Scientific Community Support for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Sullivan, S. M.; Awad, A. A.; Robeck, E.

    2015-12-01

    The Next Generation Science Standards offer an opportunity to teach Earth and space science in ways that are closer to how scientists practice, and more relevant to students and to societal issues. However, the level of scientific community involvement required to capitalize on this opportunity is high. Building on the results of the Summit Meeting on the Implementation of the NGSS at the State Level , this presentation proposes a set of mechanisms and practices by which the NGSS Earth and space science community can support NGSS implementation at the national, state and local levels. Based on work with summit attendees, classroom teachers, informal educators and undergraduate faculty, this presentation proposes ways to build a network of practitioners with shared communication, approaches and resources. A set of mechanisms whereby the community can build relationships and share practices will be described, along with an emerging set of strategies for supporting groups as they take the first steps into implementation.

  4. Creating a community resource for protein science.

    PubMed

    Berman, Helen M

    2012-11-01

    In addition to being one of the early pioneers in protein crystallography, Carl Brändén made significant contributions to science education with his elegant and beautifully illustrated book Introduction to Protein Structure (Brändén and Tooze, New York: Garland, 1991). It is truly an honor to receive this award in their names. This award and the 40th anniversary of the Protein Data Bank (PDB; Berman et al., Structure 2012;20:391-396) have given me an opportunity to reflect on the various components that have contributed to building a resource for protein science and to try to quantify the impact of having PDB data openly available. PMID:22969036

  5. Discovery day: A community coalition for science awareness

    SciTech Connect

    Maruyama, X.K.; Sanders, J.; Bull, E.

    1994-12-31

    This is a science awareness outreach program which drew approximately half a percent of Monterey County`s inhabitants for one day of hands-on science activities. Monterey County is about half the size of Massachusetts, but with a relatively small population (376,000). Yet, children from more than 120 rural and urban schools, along with their parents participated in DISCOVERY DAY 1993. Discovery Day is an outgrowth of a 1989 science fair workshop attended by about 60 students. Explosive growth came after changing from a goal-oriented workshop theme to an activity-based hands-on program emphasizing participation, enjoyment and the fascination value of science. Scaled to larger metropolitan areas, this six hour science program drew as many attendees as a professional sports team; the difference for our event being that participants far outnumbered spectators. The event is sponsored by the Monterey County Science and Engineering Fair Coalition, which includes the Monterey County Herald, First National Bank of Central California, Monterey Bay Aquarium, Monterey County Office of Education, Lyceum of Monterey County, Junior League of Monterey County, Naval Postgraduate School and the California American Water Company. The ownership of this event has expanded to a truly community-wide coalition as members of other organizations interested in science education provide activities, experiments and personnel. These include teachers from local elementary, middle and high schools, both public and private, community colleges, staff from the community hospital and the Monterey City Library, members of MOOSE (Monterey Organization Of Science Educators) and the local Sigma Xi Club. Local merchants contributed to insure success of this science awareness day. It was gratifying to observe that support for science education extended beyond our parocial circle of scientists.

  6. Integrating "Ubunifu," Informal Science, and Community Innovations in Science Classrooms in East Africa

    ERIC Educational Resources Information Center

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-01-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ("Ubunifu") and what students learn in secondary schools in Kenya, Tanzania, and…

  7. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    ERIC Educational Resources Information Center

    Lohwasser, Karin

    2013-01-01

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the…

  8. Developing Metadata Requirements for NASA Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Parker, L.; Rinsland, P. L.; Kusterer, J.; Chen, G.; Early, A. B.; Beach, A. L., III; Wang, D.; Typanski, N. D.; Rutherford, M.; Rieflin, E.

    2014-12-01

    The common definition of metadata is "data about data". NASA has developed metadata formats to meet the needs of its satellite missions and emerging users. Coverage of satellite missions is highly predictable based on orbit characteristics. Airborne missions feature complicated flight patterns to maximize science return and changes in the instrument suites. More relevant to the airborne science data holding, the metadata describes the airborne measurements, in terms of measurement location, time, platform, and instruments. The metadata organizes the data holdings and facilitates the data ordering process from the DAAC. Therefore, the metadata requirements will need to fit the type of airborne measurements and sampling strategies as well as leverage current Earth Science and Data Information System infrastructure (ECHO/Reverb, GCMD). Current airborne data is generated/produced in a variety of formats (ICARRT, ASCII, etc) with the metadata information embedded in the data file. Special readers are needed to parse data file to generate metadata needed for search and discovery. With loosely defined standards within the airborne community this process poses challenges to the data providers. It is necessary to assess the suitability of current metadata standards, which have been mostly developed for satellite observations. To be presented are the use case-based assessments of the current airborne metadata standards and suggestions for future changes.

  9. Capabilities of the Amateur-Science Community

    NASA Astrophysics Data System (ADS)

    Buchheim, Robert

    2016-06-01

    Devoted non-professional astronomers can offer useful service to researchers by collecting data that can’t be fit into funded observing programs, pursuing low-probability-of-success projects, stretching the limits of commercial technology, and mentoring the next generation of scientists. These individuals are performing photometry of stars and asteroids, astrometry of visual binary systems, and spectroscopy of variable stars. This report will illustrate some of the activities being done by the small-telescope research community-of-practice, and offer suggestions on how to take advantage of their capabilities and enthusiasm.

  10. Designing Web-Based Science Lesson Plans That Use Problem-Based Learning To Inspire Middle School Kids: KaAMS (Kids as Airborne Mission Scientists).

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Grabowski, Barbara; Kim, Younghoon

    Problem-based learning (PBL) has great potential for inspiring K-12 learning. KaAMS (Kids as Airborne Mission Scientists), an example of PBL, was designed to help teachers inspire middle school students to learning science, math, technology, and geography. The children participate as scientists investigating environmental problems using NASA…

  11. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    NASA Astrophysics Data System (ADS)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  12. Engaging a Rural Community with Science through a Science Café

    NASA Astrophysics Data System (ADS)

    Adams, P. E.

    2012-12-01

    Public awareness about science and science issues is often lacking in the general community; in a rural community there are even fewer options for an interested person to engage with others on science topics. One approach to address this issue is through the use of the Science Café model of citizen science at the local level. The Science Café concept, for the United States, originated in Boston (http://www.sciencecafes.org/). Science Café events are held in informal settings, such as restaurants, pubs, or coffee houses with presentations being provided by experts on the subject. The format is designed to promote discussion and questions. Fort Hays State University Science and Mathematics Institute (SMEI), located in Hays, KS, is now in its fifth year of hosting a science café in a community of 20,000 people. The program in Hays started as a grassroots effort from an area high school teacher asking SMEI to organize and support the program. Attendance at the Science Café has range from 14 to 75 people (fire code capacity!), with an average attendance of 30 people. The audience for our Science Café has been citizens, college students, high school students, and university faculty. The presenters at the Hays Science Café have ranged from scientists to engineers, high school students to hobbyists. Our topics have ranged from searching for life in the universe, wind energy, paleo-life in Kansas, climate change, honey bees, and planetary science. The program has developed a strong following in the community and has led to the formation of additional Science Café programs in Kansas. Selection of topics is based on community interest and timeliness. Publicity occurs through posters, e-mail, and social media outlets. Participants have found the sessions to be of interest and a place to learn more about the world and become informed about issues in the news. The Science Café in Hays has had a positive impact on the community.

  13. The Power of Online Community and Citizen Science

    NASA Astrophysics Data System (ADS)

    Cook, J.; Nuccitelli, D. A.; Winkler, B.; Cowtan, K.; Brimelow, J.

    2012-12-01

    The Internet offers innovative and creative means of disseminating content. But where the Internet comes into its own is in the non-linear power of community. Not only can communicators interact directly with their audience, more importantly, the audience can network with each other. This enables publishers to build communities rallied around common topics of interest. Online communities lead to exciting opportunities such as citizen science where communities crowd-source the collection or analysis of data. Skeptical Science is a case study in the development of a volunteer community that produces regular content developed within an internal review system that ensures a high level of accuracy and quality. The community also engages with the peer-reviewed literature, submitting responses to peer-reviewed papers, collecting meta-data used in other scientific research and conducting the largest ever survey of climate papers. Thus this online community both contributes to the outreach effort of climate communication and also seeks to add to the body of scientific knowledge.

  14. Improving Health with Science: Exploring Community-Driven Science Education in Kenya

    NASA Astrophysics Data System (ADS)

    Leak, Anne Emerson

    This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their

  15. Mind the Gap: Political Science Education in Community Colleges

    ERIC Educational Resources Information Center

    Yanus, Alixandra B.; O'Connor, Karen; Weakley, Jon L.

    2012-01-01

    Community colleges occupy a growing role in the American education system. Their unique cross-section of students poses a challenge for teachers of political science. This paper uses information from a survey completed by over 2,000 students at 20 colleges and universities across the United States to shed light on some of the most significant…

  16. Imprinting Community College Computer Science Education with Software Engineering Principles

    ERIC Educational Resources Information Center

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  17. Youth As Community Science Experts in Green Energy Technology

    ERIC Educational Resources Information Center

    Calabrese Barton, Angela; Birmingham, Daniel; Sato, Takumi; Tan, Edna; Calabrese Barton, Scott

    2013-01-01

    In this paper, the authors examine what it means to become a community science expert (CSE) and why this goal is important for youth in afterschool environments. Using "Green Energy Technology in the City" (GET City) as a case study, they describe how this afterschool program nurtures youth as CSEs. They draw on data gathered in…

  18. Imprinting Community College Computer Science Education with Software Engineering Principles

    NASA Astrophysics Data System (ADS)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  19. Staff Perceptions of Higher Education Science and Engineering Learning Communities

    ERIC Educational Resources Information Center

    Campbell, Alison; Kunnemeyer, Rainer; Prinsep, Michele R.

    2008-01-01

    This paper presents staff perceptions of higher education science and engineering learning communities derived from a cross-case analysis of four case studies across the New Zealand university and polytechnic sectors. First we report staff expectations and experiences in terms of infrastructure and resources, and their own careers. Staff…

  20. Rock Showdown: Learning Science through Service with the Community

    ERIC Educational Resources Information Center

    Laroder, Aris; Tippins, Deborah; Handa, Vicente; Morano, Lourdes

    2007-01-01

    Many middle school students often report that what they learn in school science has little meaning or relevance to their lives. This is not surprising, as schools and students are frequently separated from what is happening in their community. "Service learning" is a pedagogy that has the potential to connect young adolescents with their community…

  1. Spice Products Available to The Planetary Science Community

    NASA Technical Reports Server (NTRS)

    Acton, Charles

    1999-01-01

    This paper presents the availability of SPICE products to the Planetary Science Community. The topics include: 1) What Are SPICE Data; 2) SPICE File Types; 3) SPICE Software; 4) Examples of What Can Be Computed Using SPICE Data and Software; and 5) SPICE File Avalability.

  2. The Community Science Workshop Network Story: Becoming a Networked Organization

    ERIC Educational Resources Information Center

    St. John, Mark

    2014-01-01

    The Community Science Workshops (CSWs)--with funding from the S.D. Bechtel, Jr. Foundation, and the Gordon and Betty Moore Foundation--created a network among the CSW sites in California. The goals of the CSW Network project have been to improve programs, build capacity throughout the Network, and establish new sites. Inverness Research has been…

  3. Institutional Factors Affecting Student Participation in Community College Science Programs.

    ERIC Educational Resources Information Center

    Cohen, Arthur M.

    Drawing upon the responses of 268 instructors of randomly selected class sections offered at the Los Angeles Community College District during Fall 1980, this paper assesses the role of the faculty in remedying the underrepresentation of women, minorities, and the handicapped in science education. The paper first summarizes probable causes of this…

  4. Opportunities and challenges for the life sciences community.

    PubMed

    Kolker, Eugene; Stewart, Elizabeth; Ozdemir, Vural

    2012-03-01

    Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19-20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16-17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org ) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  5. Opportunities and Challenges for the Life Sciences Community

    PubMed Central

    Stewart, Elizabeth; Ozdemir, Vural

    2012-01-01

    Abstract Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19–20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16–17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  6. Integrating Ubunifu, informal science, and community innovations in science classrooms in East Africa

    NASA Astrophysics Data System (ADS)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-12-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.

  7. An Overview of the Challenges with and Proposed Solutions for the Ingest and Distribution Processes For Airborne Data Management

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Beach, A. L., III; Early, A. B.; Kusterer, J.; Quam, B.; Wang, D.; Chen, G.

    2015-12-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable, and there lacks a standard variable naming convention among the many airborne measurement variables. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data. There also exists a substantial amount of airborne data distributed by websites designed for science team use that are less friendly to users unfamiliar with operations of airborne field studies. A number of efforts are underway to help overcome the issues with airborne data discovery and distribution. The ICARTT Refresh Earth Science Data Systems Working Group (ESDSWG) was established to enable a platform for atmospheric science data providers, users, and data managers to collaborate on developing new criteria for the file format in an effort to enhance airborne data usability. In addition, the NASA Langley Research Center Atmospheric Science Data Center (ASDC) has developed the Toolsets for Airborne Data (TAD) to provide web-based tools and centralized access to airborne in situ measurements of atmospheric composition. This presentation will discuss the aforementioned challenges and attempted solutions in an effort to demonstrate how airborne data management can be improved to streamline data ingest and discoverability to a broader user community.

  8. Fredrickson Park: From Toxic Hazard to Community Science Education Center

    NASA Astrophysics Data System (ADS)

    Craft, R. P.; Warren, J.; Bridges, P. J.; Gilot, G.; St. Clair, P.; Sakimoto, P. J.

    2008-06-01

    Fredrickson Park is an on-going venture, the result of collaborative planning and development in South Bend, Indiana. This city park lies within a low-income residential neighborhood not far from the University of Notre Dame and until recently was a casual dump, an eye-sore, and a toxic hazard. Through a unique coalition of community organizations, the area has been converted to a prairie-ecosystem park available for community use, has become the home of the administrative offices of the Boy Scouts of America-LaSalle Council, and is the pilot site for curriculum-based field trips for children in the South Bend Community Schools with Notre Dame, Saint Mary's, and Indiana University-South Bend students assisting. Priority plans include enhanced nature and physical fitness trails with expanded earth and space science inquiry stations for school, Scout, and community use. In addition, a scale model of the Solar System is planned to start at the park and extend into the heart of the city. Fredrickson Park is a community success serving South Bend students and families through formal and informal science education.

  9. Community research in other contexts: learning from sustainability science.

    PubMed

    Silka, Linda

    2010-12-01

    In health research, community based participatory research (CBPR) has seen remarkable growth as an approach that overcomes many of the ethical concerns raised by traditional approaches. A community of CBPR scholars is now sharing ideas and devising new approaches to collaborative research. Yet, this is occurring in isolation from similar efforts using different nomenclature and occurring outside of health research areas. There is much to be gained by bringing these parallel discussions together. In sustainability science, for example, scholars are struggling with the question of how stakeholders and scientists can coproduce knowledge that offers useful solutions to complex and urgent environmental problems. Like CBPR in health, sustainability science is denigrated for perceived lack of rigor because of its applied problem focus and lack of positivist approach. Approaches to knowledge creation in sustainability science involve "new" ideas such as wicked problems and agent-based modeling, which would be equally applicable to CBPR. Interestingly, sustainability research is motivated less by recognition of the corrosive effects of the inequality of power than from frustration at how limited the impact of research has been, a perspective that might be useful in CBPR, particularly in conjunction with the use of some borrowed tools of sustainability science such as wicked problem analysis and agent-based modeling. Importantly, the example of sustainability science has the potential to keep CBPR from entering into a new orthodoxy of how research should be done. PMID:21133782

  10. Earth Science Informatics Community Requirements for Improving Sustainable Science Software Practices: User Perspectives and Implications for Organizational Action

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Lenhardt, W. C.; Robinson, E.

    2014-12-01

    Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.

  11. Basis Set Exchange: A Community Database for Computational Sciences

    SciTech Connect

    Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd O.; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared M.; Li, Jun; Windus, Theresa L.

    2007-05-01

    Basis sets are one of the most important input data for computational models in the chemistry, materials, biology and other science domains that utilize computational quantum mechanics methods. Providing a shared, web accessible environment where researchers can not only download basis sets in their required format, but browse the data, contribute new basis sets, and ultimately curate and manage the data as a community will facilitate growth of this resource and encourage sharing both data and knowledge. We describe the Basis Set Exchange (BSE), a web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities. The BSE leverages and enables continued development of the basis set library originally assembled at the Environmental Molecular Sciences Laboratory.

  12. Unidata: Community, Science, and Technology; in that order.

    NASA Astrophysics Data System (ADS)

    Young, J. W.; Ramamurthy, M. K.; Davis, E.

    2015-12-01

    Unidata's mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation. The Unidata community has grown from around 250 individual participants in the early years to tens of thousands of users in over 150 countries. Today, Unidata's products and services are used on every continent and by every sector of the geoscience enterprise: universities, government agencies, private sector, and other non-governmental organizations. Certain traits and ethos are shared by and common to most successful organizations. They include a healthy organizational culture grounded by some core values and guiding principles. In that environment, there is an implicit awareness of the connection between mission of an organization, its values, and its day-to-day activities, and behaviours of a passionate staff. Distinguishing characteristics include: vigorous engagement of the community served by those organizations backed by strong and active governance, unwavering commitment to seek input and feedback from users, and trust of those users, earned over many years through consistent, dependable, and high-quality service. Meanwhile, changing data volumes and standards, new computing power, and expanding scientific questions sound continue to shape the geoscience community. These issues were the drivers for founding Unidata, a cornerstone data facility, in 1984. Advances in geoscience occur at the junction of community, science, and technology and this submission will feature lessons from Unidata's thirty year history operating at this nexus. Specifically, this presentation will feature guiding principles for the program, governance mechanisms, and approaches for balancing science and technology in a community-driven program.

  13. Underserved populations in science education: Enhancement through learning community participation

    NASA Astrophysics Data System (ADS)

    Gray, Jennifer Emily

    A positive relationship between college anatomy students' achievement and academic language proficiency in the context of a learning community was established. For many students the barrier to learning science is language. A relationship exists between low academic language proficiency and lack of success among students, in particular failure among at-risk minority and language-minority students. The sample consisted of Anatomy classes during the Fall semesters of the academic years, 2000, 2001, and 2002 at a community college in Central California having a high percentage of culturally and linguistically diverse students. Students from each semester participated in the academic language proficiency and science achievement studies. Twenty-two of the Fall 2002 students (n = 65) enrolled in the Learning Community (LC) that included instruction in academic language in the context of the anatomy course content. Fall 2002 students (n = 19) also participated in Peer-led Support (PLS) sessions. Fall 2001 students participated in a textbook use study (n = 44) and in a Cooperative-Learning (CL) (n = 35) study. Students in the LC and Non-LC groups took the academic language assessment; their results were correlated with course grades and attendance. Fall 2002 students were compared for: (1) differences regarding self-expectations, (2) program impressions, and (3) demographics. Fall 2001 student reading habits and CL participation were analyzed. Results identified: (1) selected academic language tasks as good predictors of science success, (2) a significant positive relationship between science success and participation in support interventions, (3) no differences in self expectations or demographic characteristics of participants and non-participants in the LC group, and (4) poor textbook reading habits. Results showed a significant positive relationship between academic language proficiency and science achievement in participatory instruction.

  14. Cumulative Environmental Impacts: Science and Policy to Protect Communities.

    PubMed

    Solomon, Gina M; Morello-Frosch, Rachel; Zeise, Lauren; Faust, John B

    2016-03-18

    Many communities are located near multiple sources of pollution, including current and former industrial sites, major roadways, and agricultural operations. Populations in such locations are predominantly low-income, with a large percentage of minorities and non-English speakers. These communities face challenges that can affect the health of their residents, including limited access to health care, a shortage of grocery stores, poor housing quality, and a lack of parks and open spaces. Environmental exposures may interact with social stressors, thereby worsening health outcomes. Age, genetic characteristics, and preexisting health conditions increase the risk of adverse health effects from exposure to pollutants. There are existing approaches for characterizing cumulative exposures, cumulative risks, and cumulative health impacts. Although such approaches have merit, they also have significant constraints. New developments in exposure monitoring, mapping, toxicology, and epidemiology, especially when informed by community participation, have the potential to advance the science on cumulative impacts and to improve decision making. PMID:26735429

  15. Successful Strategies for Earth Science Research in Native Communities

    NASA Astrophysics Data System (ADS)

    Redsteer, M. H.; Anderson, D.; Ben, N.; Bitsuie, R.; Blackhorse, A.; Breit, G.; Clifford, A.; Salabye, J.; Semken, S.; Weaver, K.; Yazzie, N.

    2004-12-01

    A small U.S. Geological Survey pilot project utilizes strategies that are successful at involving the Native community in earth science research. This work has ignited the interest of Native students in interdisciplinary geoscience studies, and gained the recognition of tribal community leaders from the conterminous United States, Alaska, and Canada. This study seeks to examine land use, climatic variability, and their related impacts on land-surface conditions in the ecologically sensitive Tsezhin Bii' region of the Navajo Nation. Work conducted by predominantly Native American researchers, includes studies of bedrock geology, surficial processes, soil and water quality, and plant ecology, as well as the history of human habitation. Community involvement that began during the proposal process, has helped to guide research, and has provided tribal members with information that they can use for land use planning and natural resource management. Work by Navajo tribal members who have become involved in research as it has progressed, includes K-12 science curriculum development, community outreach and education on environmental and geologic hazards, drought mitigation, grazing management, and impacts of climate change and land use on medicinal plants.

  16. A Key to Sharing Science: Listening to Community Needs

    NASA Astrophysics Data System (ADS)

    Varga, M.; Phartiyal, P.; Johnson, C.

    2015-12-01

    To achieve greater effectiveness in science communication and outreach, we need to shift the paradigm from one-way communication from scientists to the (bystander) public to a two-way, listen-learn-respond exchange with concerned and knowledgeable public. Scientists need to not only know their audiences but also the needs of their audiences. Society can benefit tremendously when personal and public decisions are informed by independent and best available science. But on a variety of issues from climate to chemicals, local decision makers and public groups often struggle to know what questions to ask and to find independent information, data and analysis. Scientists also face barriers in sharing knowledge with community members. Fortunately, scientists all across the country are making such connections and forging trusted relationships with the public. The speaker will present examples of scientist-community engagement where researchers have taken the path of communicating and partnering with their local communities to address everyday issues of concern to them, from food to fracking. While such engagement efforts gain from effective communication and strategic outreach with public groups, they also has the attendant benefits of challenging scientists to consider the broader, societal implications of their work; consider how their research can serve the needs of the public; and how they can aspire to become, more than educators, learners and allies in effecting change in their communities.

  17. Earth Sciences data user community feedbacks to PARSE.Insight

    NASA Astrophysics Data System (ADS)

    Giaretta, David; Guidetti, Veronica

    2010-05-01

    The presentation in point reports on the topic of long term availability of environmental data as perceived by the Earth Science data user community. In the context of the European strategy for preserving Earth Observation (EO) data and as partner of the EU FP7 PARSE.Insight project (http://www.parse-insight.eu/), the European Space Agency (ESA) issued a public consultation on-line targeting its EO data user base. The timely and active participation confirmed the high interest in the addressed topic. Primary target of such an action is to provide ESA teams dedicated to environmental data access, archiving and re-processing with the first insight from the Earth Science community on the preservation of space data in the long-term. As a significant example, ESA's Climate Change Initiative requires activities like long-term preservation, recalibration and re-processing of data records. The time-span of EO data archives extends from a few years to decades and their value as scientific time-series increases considerably regarding the topic of global change. Future research in the field of Earth Sciences is of invaluable importance: to carry it on researchers worldwide must be enabled to find and access data of interest quickly. At present several thousands of scientists, principal investigators and operators, access EO missions' metadata, data and derived information daily. Main objectives may be to study the global climate change, to check the status of the instrument and the quality of EO data. There is a huge worldwide scientific community calling for the need to keep EO data accessible without time constrains, easily and quickly. The scientific community's standpoint is given over the stewardship of environmental data and the appropriateness of current EO data access systems as enabling digital preservation and offering HPC capabilities. This insight in the Earth Sciences community provides a comprehensive illustration of the users' responses over topics like use

  18. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    ERIC Educational Resources Information Center

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  19. What "Ideas-about-Science" Should Be Taught in School Science? A Delphi Study of the Expert Community

    ERIC Educational Resources Information Center

    Osborne, Jonathan; Collins, Sue; Ratcliffe, Mary; Millar, Robin; Duschl, Rick

    2003-01-01

    Recent arguments in science education have proposed that school science should pay more attention to teaching the nature of science and its social practices. However, unlike the content of science, for which there is well-established consensus, there would appear to be much less unanimity within the academic community about which…

  20. Examining Classroom Science Practice Communities: How Teachers and Students Negotiate Epistemic Agency and Learn Science-as-Practice

    ERIC Educational Resources Information Center

    Stroupe, David

    2014-01-01

    The Next Generation Science Standards and other reforms call for students to learn science-as-practice, which I argue requires students to become epistemic agents--shaping the knowledge and practice of a science community. I examined a framework for teaching--ambitious instruction--that scaffolds students' learning of science-as-practice as…

  1. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Hara, Kazutaka; Kobayashi, Fumihisa; Kurosaki, Yasunori; Kakikawa, Makiko; Matsuki, Atsushi; Chen, Bin; Shi, Guangyu; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2015-10-01

    Bacterial populations transported from ground environments to the atmosphere get dispersed throughout downwind areas and can influence ecosystem dynamics, human health, and climate change. However, the vertical bacterial distribution in the free troposphere was rarely investigated in detail. We collected aerosols at altitudes of 3000 m, 1000 m, and 10 m over the Noto Peninsula, Japan, where the westerly winds carry aerosols from continental and marine areas. During the sampling period on March 10, 2012, the air mass at 3000 m was transported from the Chinese desert region by the westerly winds, and a boundary layer was formed below 2000 m. Pyrosequencing targeting 16S rRNA genes (16S rDNA) revealed that the bacterial community at 3000 m was predominantly composed of terrestrial bacteria, such as Bacillus and Actinobacterium species. In contrast, those at 1000 m and 10 m included marine bacteria belonging to the classes Cyanobacteria and Alphaproteobacteria. The entire 16S rDNA sequences in the clone libraries were identical to those of the terrestrial and marine bacterial species, which originated from the Chinese desert region and the Sea of Japan, respectively. The origins of air masses and meteorological conditions contribute to vertical variations in the bacterial communities in downwind atmosphere.

  2. Benefits of community-based education to the community in South African health science facilities

    PubMed Central

    Flack, Penny

    2013-01-01

    Abstract Background Community-based education (CBE) is utilised by health science faculties worldwide to provide a relevant primary care experience for students and a service to underserved communities and, hopefully, to affect student career choices. The benefits to training institutions and students are well documented, but it may well be that communities, too, will be able to benefit from a more balanced partnership, where they are consulted in the planning of such training programmes. Method An exploratory qualitative study was undertaken by three South African universities in the provinces of Limpopo, KwaZulu-Natal and the Western Cape. Focus group interviews were conducted in their local languages with groups of community leaders, patients and supervisors at community sites involved in CBE training. A thematic analysis of their views was undertaken with the aid of NVivo (version 9). Ethics approval was obtained from the respective universities and health care training sites. Results Benefits to the community could be categorised into short-term and long-term benefits. Short-term benefits included improved service delivery, reduction in hospital referrals, home visits and community orientated primary health care, improved communication with patients and enhanced professionalism of the health care practitioner. Long-term benefits included improved teaching through a relationship with an academic institution and student familiarity with the health care system. Students also became involved in community upliftment projects, thereby acting as agents of change in these communities. Conclusion Communities can certainly benefit from well-planned CBE programmes involving a training site - community site partnership.

  3. PCBs in schools--where communities and science come together.

    PubMed

    Osterberg, David; Scammell, Madeleine Kangsen

    2016-02-01

    A novel aspect of the 8th International PCB Workshop at Woods Hole, MA, was the interaction between scientists and activists. While earlier workshops in this series had mentioned policy making, this Workshop focused on the problem of PCBs in schools. Focus on a problem brought an activist to give a plenary talk and facilitated a 1-day registration for other non-scientists to attend. The workshop was cohosted by the Superfund Research Programs at University of Iowa and Boston University and included active participation of each Program's Research Translation and Community Engagement Cores. A mandate of each National Institute of Environmental Health Science (NIEHS)-funded Superfund Research Program is bidirectional communication between scientists and community groups. The authors describe the events leading up to community involvement in the Workshop and the substance of the community engagement aspects of the workshop, in particular the participation by a parent-teacher group, Malibu Unites. The authors also discuss the value of such communication in terms of making important research accessible to those who are most affected by the results and poised to use it and the value of making scientists aware of the important role they play in society in addressing difficult questions that originate in community settings. PMID:26194237

  4. Math and science community college faculty: A culture apart

    NASA Astrophysics Data System (ADS)

    Bradley, Jane

    This is a quantitative, survey-based study of Iowa community college faculty members. The survey was administered in the spring of 2011 to all faculty members identified by their colleges as being employed full time. This study compares the demographics of math and science faculty members to faculty within the arts and sciences who do not teach math or science. Comparisons of how the two groups interact with students and what they identify as barriers to student success are included, as well as their attitudes about mentoring, encouraging students, and their roles in student recruitment and student retention. Highly correlated variables are grouped as factors and used in the construction of prediction models for faculty engagement in student recruitment and student retention efforts. A contrast in the cultures of the math/science faculty members as compared to the non-math/science faculty is considered for its impact on faculty engagement with students and those variables believed to support undergraduate student success.

  5. Knowing and Learning about Science in Primary School "Communities of Science Practice": The Views of Participating Scientists in the "MyScience" Initiative

    ERIC Educational Resources Information Center

    Forbes, Anne; Skamp, Keith

    2013-01-01

    "MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. One component of this initiative involves professional scientists interacting with primary school communities which are navigating their way towards sustainable "communities of practice" around the "domain" of…

  6. Earth Science community support in the EGI-Inspire Project

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, H.

    2012-04-01

    The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to

  7. [Characterizing Beijing's Airborne Bacterial Communities in PM2.5 and PM1 Samples During Haze Pollution Episodes Using 16S rRNA Gene Analysis Method].

    PubMed

    Wang, Bu-ying; Lang, Ji-dong; Zhang, Li-na; Fang, Jian-huo; Cao, Chen; Hao, Ji-ming; Zhu, Ting; Tian, Geng; Jiang, Jing-kun

    2015-08-01

    During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere. PMID:26591997

  8. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  9. The Community Coordinated Modeling Center - An Evolving Cyberinfrastructure for the Space Science Community

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Rastaetter, L.; Mays, M. L.; MacNeice, P. J.; Zheng, Y.; Chulaki, A.; Shim, J. S.; Collado-Vega, Y. M.; Mendoza, A. M. M.; Taktakishvili, A.; Mullinix, R.; Boblitt, J.; Bakshi, S. S.; Patel, K.; Pembroke, A. D.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center was established in 2000 as an essential element of the National Space Weather Program and was designed to be a long-term & flexible solution to the Research-to-Operations (R2O) transition problem. Over its 15-year existence, the CCMC has changed how state-of-the-art space weather models are utilized in research, and has also facilitated the transition of many research models into operational environments. The CCMC currently hosts a large and expanding collection of physics-based space weather models that have been developed by the international research community, and has amassed a peta-byte of model simulation output that represents advances in space weather modeling and space science research for the past 15 years.The ability of the CCMC to engage the international research community and support community challenges, campaigns, studies, and general research is vital to its success - so a flexible cyberinfrastructure that facilitates data discovery and interoperability with external systems is a necessity. There are many challenges associated with supporting a large number of disparate, physics-based models and the computational infrastructure to support them. This paper will highlight the CCMC's past, present, and future computational infrastructure, and showcase several examples of how the CCMC continues to support many self-organized efforts in the space science community.

  10. ECHO Responds to NASA's Earth Science User Community

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  11. Community Petascale Project for Accelerator Science and Simulation

    SciTech Connect

    Warren B. Mori

    2013-02-01

    The UCLA Plasma Simulation Group is a major partner of the "Community Petascale Project for Accelerator Science and Simulation. This is the final technical report. We include an overall summary, a list of publications and individual progress reports for each years. During the past five years we have made tremendous progress in enhancing the capabilities of OSIRIS and QuickPIC, in developing new algorithms and data structures for PIC codes to run on GPUS and many future core architectures, and in using these codes to model experiments and in making new scientific discoveries. Here we summarize some highlights for which SciDAC was a major contributor.

  12. Effective Broader Impacts - Lessons Learned by the Ocean Science Community

    NASA Astrophysics Data System (ADS)

    Scowcroft, G.

    2014-12-01

    Effective broader impact activities have the potential for scientists to engage with educators, students, and the public in meaningful ways that lead to increased scientific literacy. These interactions provide opportunities for the results and discoveries of federally funded research projects, along with their implications for society, to reach non-scientist audiences. This is especially important for climate, ocean, and environmental science research that will aid citizens in better understanding how they affect Earth's systems and how these systems affect their daily lives. The National Centers for Ocean Sciences Excellence (COSEE) Network has over 12 years of experience in conducting successful broader impact activities and has provided thousands of ocean scientists the opportunity to share the fruits of their research well beyond the scientific enterprise. COSEE evaluators and principal investigators collaborated over several years to determine the impacts of COSEE broader impact activities and to identify best practices. The lessons learned by the ocean science community can help to inform other disciplines. Fruitful broader impact activities require key elements, no matter the composition of the audience. For example, a high degree of success can be achieved when a "bridge builder" facilitates the interactions between scientists and non-science audiences. This presentation will offer other examples of best practices and successful strategies for engaging scientists in broader impact activities, increasing societal impacts of scientific research, and providing opportunities for collaboration on a national scale. http://www.cosee.net

  13. Science Gateways, Scientific Workflows and Open Community Software

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Marru, S.

    2014-12-01

    Science gateways and scientific workflows occupy different ends of the spectrum of user-focused cyberinfrastructure. Gateways, sometimes called science portals, provide a way for enabling large numbers of users to take advantage of advanced computing resources (supercomputers, advanced storage systems, science clouds) by providing Web and desktop interfaces and supporting services. Scientific workflows, at the other end of the spectrum, support advanced usage of cyberinfrastructure that enable "power users" to undertake computational experiments that are not easily done through the usual mechanisms (managing simulations across multiple sites, for example). Despite these different target communities, gateways and workflows share many similarities and can potentially be accommodated by the same software system. For example, pipelines to process InSAR imagery sets or to datamine GPS time series data are workflows. The results and the ability to make downstream products may be made available through a gateway, and power users may want to provide their own custom pipelines. In this abstract, we discuss our efforts to build an open source software system, Apache Airavata, that can accommodate both gateway and workflow use cases. Our approach is general, and we have applied the software to problems in a number of scientific domains. In this talk, we discuss our applications to usage scenarios specific to earth science, focusing on earthquake physics examples drawn from the QuakSim.org and GeoGateway.org efforts. We also examine the role of the Apache Software Foundation's open community model as a way to build up common commmunity codes that do not depend upon a single "owner" to sustain. Pushing beyond open source software, we also see the need to provide gateways and workflow systems as cloud services. These services centralize operations, provide well-defined programming interfaces, scale elastically, and have global-scale fault tolerance. We discuss our work providing

  14. International initiative to engage Iraq's science and technology community : report on the priorities of the Iraqi science and technology community.

    SciTech Connect

    Littlefield, Adriane C.; Munir, Ammar M.; Alnajjar, Abdalla Abdelaziz; Pregenzer, Arian Leigh

    2004-05-01

    This report describes the findings of the effort initiated by the Arab Science and Technology Foundation and the Cooperative Monitoring Center at Sandia National Laboratories to identify, contact, and engage members of the Iraqi science and technology (S&T) community. The initiative is divided into three phases. The first phase, the survey of the Iraqi scientific community, shed light on the most significant current needs in the fields of science and technology in Iraq. Findings from the first phase will lay the groundwork for the second phase that includes the organization of a workshop to bring international support for the initiative, and simultaneously decides on an implementation mechanism. Phase three involves the execution of outcomes of the report as established in the workshop. During Phase 1 the survey team conducted a series of trips to Iraq during which they had contact with nearly 200 scientists from all sections of the country, representing all major Iraqi S&T specialties. As a result of these contacts, the survey team obtained over 450 project ideas from Iraqi researchers. These projects were revised and analyzed to identify priorities and crucial needs. After refinement, the result is approximately 170 project ideas that have been categorized according to their suitability for (1) developing joint research projects with international partners, (2) engaging Iraqi scientists in solving local problems, and (3) developing new business opportunities. They have also been ranked as to high, medium, or low priority.

  15. Promoting Disaster Science and Disaster Science Communities as Part of Sound Disaster Preparedness

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.

    2015-12-01

    During disasters, effectively engaging the vast expertise of the academic community can help responders make timely and critical decisions. A barrier to such engagement, however, is the cultural gap between reward systems in academia and in the disaster response community. Responders often are focused on ending the emergency quickly with minimal damage. Academic scientists often need to produce peer reviewed publications to justify their use of time and money. Each community is used to speaking to different audiences, and delivering answers on their own time scales. One approach to bridge this divide is to foster a cohesive community of interdisciplinary disaster scientists: researchers who focus on crises that severely and negatively disrupt the environment or threaten human health, and are able to apply scientific methods in a timely manner to understand how to prevent, mitigate, respond to, or recover from such events. Once organized, a disaster science community could develop its own unique culture. It is well known in the disaster response community that all the preparation that takes place before an event ever occurs is what truly makes the difference in reducing response time, improving coordination, and ultimately reducing impacts. In the same vein, disaster scientists would benefit from consistently interacting with the response community. The advantage of building a community for all disasters, rather than for just one type, is that it will help researchers maintain momentum between emergencies, which may be decades or more apart. Every disaster poses similar challenges: Knowing when to speak to the press and what to say; how to get rapid, actionable peer review; how to keep proprietary industry information confidential; how to develop "no regrets" actions; and how to communicate with decision makers and the public. During the Deepwater Horizonspill, I personally worked with members of the academic research community who cared not whether they got a peer

  16. Leveraging Open Standards and Technologies to Enhance Community Access to Earth Science Lidar Data

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Nandigam, V.; Krishnan, S.; Cowart, C.; Baru, C.; Arrowsmith, R.

    2011-12-01

    Lidar (Light Detection and Ranging) data, collected from space, airborne and terrestrial platforms, have emerged as an invaluable tool for a variety of Earth science applications ranging from ice sheet monitoring to modeling of earth surface processes. However, lidar present a unique suite of challenges from the perspective of building cyberinfrastructure systems that enable the scientific community to access these valuable research datasets. Lidar data are typically characterized by millions to billions of individual measurements of x,y,z position plus attributes; these "raw" data are also often accompanied by derived raster products and are frequently terabytes in size. As a relatively new and rapidly evolving data collection technology, relevant open data standards and software projects are immature compared to those for other remote sensing platforms. The NSF-funded OpenTopography Facility project has developed an online lidar data access and processing system that co-locates data with on-demand processing tools to enable users to access both raw point cloud data as well as custom derived products and visualizations. OpenTopography is built on a Service Oriented Architecture (SOA) in which applications and data resources are deployed as standards compliant (XML and SOAP) Web services with the open source Opal Toolkit. To develop the underlying applications for data access, filtering and conversion, and various processing tasks, OpenTopography has heavily leveraged existing open source software efforts for both lidar and raster data. Operating on the de facto LAS binary point cloud format (maintained by ASPRS), open source libLAS and LASlib libraries provide OpenTopography data ingestion, query and translation capabilities. Similarly, raster data manipulation is performed through a suite of services built on the Geospatial Data Abstraction Library (GDAL). OpenTopography has also developed our own algorithm for high-performance gridding of lidar point cloud data

  17. Community and inquiry: journey of a science teacher

    NASA Astrophysics Data System (ADS)

    Goldberg, Jennifer; Welsh, Kate Muir

    2009-09-01

    In this case study, we examine a teacher's journey, including reflections on teaching science, everyday classroom interaction, and their intertwined relationship. The teacher's reflections include an awareness of being "a White middle-class born and raised teacher teaching other peoples' children." This awareness was enacted in the science classroom and emerges through approaches to inquiry . Our interest in Ms. Cook's journey grew out of discussions, including both informal and semi-structured interviews, in two research projects over a three-year period. Our interest was further piqued as we analyzed videotaped classroom interaction during science lessons and discovered connections between Ms. Cook's reflections and classroom interaction. In this article, we illustrate ways that her journey emerges as a conscientization. This, at least in part, shapes classroom interaction, which then again shapes her conscientization in a recursive, dynamic relationship. We examine her reflections on her "hegemonic (cultural and socio-economic) practices" and consider how these reflections help her reconsider such practices through analysis of classroom interaction. Analyses lead us to considering the importance of inquiry within this classroom community.

  18. NASA's MEaSUREs Program Serving the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Tsaoussi, L.; Olding, S. W.

    2014-12-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. NASA has invested in the creation of consistent time series satellite data sets over decades, through both mission science team-based and measurement-based data product reprocessing and through solicitations for merged data products. The NOAA/NASA Pathfinder Program, carried out in the mid-1990's, resulted in the reprocessing of four long time-series datasets from existing archives. The Research, Education and Applications Solutions Network (REASoN) Program, initiated in 2002, consisted of several projects that provided data products, information systems and services capabilities, and/or advanced data systems technologies, to address strategic needs in Earth science research, applications, and education. The Program named Making Earth System data records for Use in Research for Earth Science, or MEaSUREs has had two requests for proposals, the first in 2006 and the second in 2012. With this Program, the Earth Science Division has focused on generating datasets for particular Earth science research measurement needs, and refers to such datasets as Earth System Data Records (ESDRs). Climate Data Records (CDRs) are a particular case of ESDRs. An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements in addressing science questions. Most of the MEaSUREs projects are five years long. They produce ESDRs using mature, peer-reviewed algorithms. The products are vetted by the user community in the respective scientific disciplines. They are made available publicly by the projects during their execution period. Before the projects end, the ESDRs are transferred to one of the NASA-assigned Distributed Active Archive Centers for longer-term archiving and distribution. Tens of millions of

  19. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Lohwasser, Karin

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice

  20. Science in the Community: Pre-service Teachers Learning Science Through Service Learning

    NASA Astrophysics Data System (ADS)

    Maes, S. M.; Cosgrove, M.; Benzing, P.; Smith, J. A.; Sturgess, K.

    2010-12-01

    Service learning is a valued component of Fundamentals of Science, a two course series required for Childhood and Special Education majors who are non-science concentrators at The College of Saint Rose. Service learning provides an opportunity for students to teach science content in the community and as a result, they begin to recognize the importance of science in the elementary classroom. A Day in the Life of the Hudson River and Project Learning Tree® (PLT) are two service learning opportunities in which the students participate. A Day in the Life of the Hudson River, an annual event sponsored by the New York State Department of Environmental Conservation Hudson River Estuary Program and Lamont-Doherty Earth Observatory, provides students with an opportunity to collect scientific data in the Hudson River. The undergraduate students partner with local K-6 classrooms and lead the collection of scientific data (chlorophyll, sediment cores, water quality) to create a snapshot of the river. The collected data are shared with the larger community and may be used by the K-6 teachers in science-based, multidiscipline lessons. Some of the findings contribute to ongoing research at Lamont-Doherty Earth Observatory. Project Learning Tree® is an environmental education program developed by the American Forest Foundation. This past year, undergraduate students participating in Project Learning Tree® were trained in a curriculum aligned with state and national science standards. In conjunction with Earth Day, the students planted trees and conducted the PLT activities in seven local schools. At the end of the service learning activity, the students wrote a reflection which provided a description of their project and indicated the connection it had with the content/skills learned in the classroom. The students also described the impact the activity had on their own learning Service learning in the pre-service teacher classroom promotes science literacy at all levels of

  1. Schooling girls in a rural community: An examination of female science identity and science career choices

    NASA Astrophysics Data System (ADS)

    Fowler, Melisa Diane Creasy

    There is a gap in existence between the number of males and females entering science careers. Research has begun to focus largely on how identity impacts the selection of such careers. While much research has been done to examine the factors that impact student identity, little work has been done to examine what happens to female students who have been successful in science in a rural K-12 school once they leave high school and enter the world of academia. Thus, this study examined the following questions: (1) How do three recent female high school graduates from rural K-12 high schools narrate their identity? (2) How do the females narrate their experiences in a rural community and high school in relation to their science identity? (3) What do the participants describe as influencing their academic and career choices as they transition into the life of a college student? This study involved three female participants from a small rural community in a southeastern state. Each female has lived their entire life in the community and has attended only one K-12 school. All three females ranked in the top ten of their senior class and excelled in their science coursework. Additionally, each female elected to attend college locally and to live at home. The study utilized the qualitative methodology of interpretive biography. The researcher used a guided interview protocol with participants which served as the basis for the creation of their narrative biographies. The biographies were then analyzed for emergent themes. Sociocultural theory, identity theory, and critical feminism provided the theoretical frameworks utilized in data analysis. Findings from this study suggested that there were many differing factors influencing the science identity and career choices of the females under study. However, the most salient factor impacting their choices was their desire to remain in their hometown. Directions for future research suggestions involve exploring female students who

  2. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's DC-8 Airborne Science platform shown against a background of a dark blue sky on February 20, 1998. The aircraft is shown from the right rear, slightly above its plane, with the right wing in the foreground and the left wing and horizontal tail in the background. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  3. Implementation science: issues of fidelity to consider in community nursing.

    PubMed

    Hanafin, Sinead; O'Reilly, Emma Dwan

    2015-09-01

    Programme implementation is a complex process, and literature around the area of implementation science is growing, particularly with respect to programme fidelity (Dusenbury et al, 2003; Carroll et al, 2007). This paper draws on the findings from an evaluation in one area involving restructuring of the Public Health Nursing service from a generalist, geographically based service, to a team-based specialist approach. From this evaluation, it is clear that careful consideration must be given to a number of key issues that could arise in moving from a pilot project to a more mainstream or widescale implementation. These issues could relate to workforce planning; the role of the team leader; formation, maintenance, and development of teams; expertise and knowledge, including knowledge of local communities; active caseload management; continuity across a range of areas; alignment with primary care teams; co-location; and the need for support, particularly in the IT infrastructure. PMID:26322991

  4. Retrieval of Atmospheric CO2 Concentration above Clouds and Cloud Top Pressure from Airborne Lidar Measurements during ASCENDS Science Campaigns

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Rodriguez, M.; Allan, G. R.; Hasselbrack, W. E.; Abshire, J. B.; Riris, H.; Kawa, S. R.

    2014-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric CO2 concentrations from space as a candidate for NASA's ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission. The approach uses pulsed lasers to measure both CO2 and O2 absorption simultaneously in the vertical path to the surface at a number of wavelengths across a CO2 line at 1572.335 nm and an O2 line doublet near 764.7 nm. Measurements of time-resolved laser backscatter profiles from the atmosphere allow the technique to estimate column CO2 and O2 number density and range to cloud tops in addition to those to the ground. This allows retrievals of CO2 column above clouds and cloud top pressure, and all-sky measurement capability from space. This additional information can be used to evaluate atmospheric transport processes and other remote sensing carbon data in the free atmosphere, improve carbon data assimilation in models and help global and regional carbon flux estimates. We show some preliminary results of this capability using airborne lidar measurements from the summers of 2011 and 2014 ASCENDS science campaigns. These show simultaneous retrievals of CO2 and O2 column densities for laser returns from low-level marine stratus clouds in the west coast of California. This demonstrates the supplemental capability of the future space carbon mission to measure CO2 above clouds, which is valuable particularly for the areas with persistent cloud covers, e.g, tropical ITCZ, west coasts of continents with marine layered clouds and southern ocean with highest occurrence of low-level clouds, where underneath carbon cycles are active but passive remote sensing techniques using the reflected short wave sunlight are unable to measure accurately due to cloud scattering effect. We exercise cloud top pressure retrieval from O2 absorption measurements during the flights over the low-level marine stratus cloud decks, which is one of

  5. Anxiety affecting parkinsonian outcome and motor efficiency in adults of an Ohio community with environmental airborne manganese exposure.

    EPA Science Inventory

    Manganese (Mn) is a nutrient and neurotoxicant sometimes associated with mood, motor and neurological effects. Reports of health effects from occupational exposure to Mn are well known, but the reported links to environmental airborne Mn (Mn-Air) are less conclusive. Marietta, OH...

  6. Building Local Infrastructure for Community Adoption of Science-Based Prevention: The Role of Coalition Functioning.

    PubMed

    Shapiro, Valerie B; Hawkins, J David; Oesterle, Sabrina

    2015-11-01

    The widespread adoption of science-based prevention requires local infrastructures for prevention service delivery. Communities That Care (CTC) is a tested prevention service delivery system that enables a local coalition of community stakeholders to use a science-based approach to prevention and improve the behavioral health of young people. This paper uses data from the Community Youth Development Study (CYDS), a community-randomized trial of CTC, to examine the extent to which better internal team functioning of CTC coalitions increases the community-wide adoption of science-based prevention within 12 communities, relative to 12 matched comparison communities. Specifically, this paper examines the potential of both a direct relationship between coalition functioning and the community-wide adoption of science-based prevention and a direct relationship between functioning and the coalition capacities that ultimately enable the adoption of science-based prevention. Findings indicate no evidence of a direct relationship between four dimensions of coalition functioning and the community-wide adoption of a science-based approach to prevention, but suggest a relationship between coalition functioning and coalition capacities (building new member skills and establishing external linkages with existing community organizations) that enable science-based prevention. PMID:26017632

  7. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    ERIC Educational Resources Information Center

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  8. Meaning Making in a Community of Learners: Struggles and Possibilities in an Urban Science Class.

    ERIC Educational Resources Information Center

    Varelas, Maria; Luster, Barbara; Wenzel, Stacy

    1999-01-01

    Examines how two dimensions of a community of urban science student learners--social-organizational and intellectual-thematic--evolved and influenced each other. Discusses the reasons why the teacher and student succeeded in developing a functional community but did not quite succeed in developing shared understandings in science. Contains 34…

  9. Pious Science: The Gulen Community and the Making of a Conservative Modernity in Turkey

    ERIC Educational Resources Information Center

    Arslan, Berna

    2009-01-01

    This dissertation explores the ways in which the Islamic Fethullah Gulen community engages with science as a response to globalization and modernity. Framed with the theoretical discussions on multiple modernities, it investigates how the community contests for hegemony in the field of science against the project of secular modernity, and…

  10. Student questions in urban middle school science communities of practice

    NASA Astrophysics Data System (ADS)

    Groome, Meghan

    This dissertation examines student questions within three Communities of Practice (CoP), all urban middle school science environments. The study analyzed student questions from a sociocultural perspective and used ethnographic research techniques to detail how the CoP's shaped questions in the classroom. In the first study, two case study girls attempted to navigate questioning events that required them to negotiation participation. Their access to participation was blocked by participation frameworks that elevated some students as "gatekeepers" while suppressing the participation of others. The next two studies detail the introduction of written questioning opportunities, one into a public middle school classroom and the other into an informal classroom. In both studies, students responded to the interventions differently, most notable the adoption of the opportunity by female students who do not participate orally. Dissertation-wide findings indicate all students were able to ask questions, but varied in level of cognitive complexity, and the diagnostic interventions were able to identify students who were not known to be "target students", students who asked a high number of questions and were considered "interested in science". Some students' roles were as "gatekeepers" to participation of their peers. Two out of three teachers in the studies reported major shifts in their teaching practice due to the focus on questions and the methods used here have been found to be effective in producing educational research as well as supporting high-need classrooms in prior research. In conclusion, these studies indicate that social factors, including participation frameworks, gender dynamics, and the availability of alternative participation methods, play an important role in how students ask science-related questions. It is recommended that researchers continue to examine social factors that reduce student questions and modify their teaching strategies to facilitate

  11. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    NASA Astrophysics Data System (ADS)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  12. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  13. A Professional Learning Community Activity for Science Teachers: How to Incorporate Discourse-Rich Instructional Strategies into Science Lessons

    ERIC Educational Resources Information Center

    Lewis, Elizabeth; Baker, Dale; Watts, Nievita Bueno; Lang, Michael

    2014-01-01

    In this article we describe current educational research underlying a comprehensive model for building a scientific classroom discourse community. We offer a professional development activity for a school-based professional learning community, providing specific science instructional strategies within this interactive teaching model. This design…

  14. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    NASA Astrophysics Data System (ADS)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings

  15. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  16. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  17. Open Source Software Reuse in the Airborne Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Khudikyan, S. E.; Hart, A. F.; Hardman, S.; Freeborn, D.; Davoodi, F.; Resneck, G.; Mattmann, C. A.; Crichton, D. J.

    2012-12-01

    Earth science airborne missions play an important role in helping humans understand our climate. A challenge for airborne campaigns in contrast to larger NASA missions is that their relatively modest budgets do not permit the ground-up development of data management tools. These smaller missions generally consist of scientists whose primary focus is on the algorithmic and scientific aspects of the mission, which often leaves data management software and systems to be addressed as an afterthought. The Airborne Cloud Computing Environment (ACCE), developed by the Jet Propulsion Laboratory (JPL) to support Earth Science Airborne Program, is a reusable, multi-mission data system environment for NASA airborne missions. ACCE provides missions with a cloud-enabled platform for managing their data. The platform consists of a comprehensive set of robust data management capabilities that cover everything from data ingestion and archiving, to algorithmic processing, and to data delivery. Missions interact with this system programmatically as well as via browser-based user interfaces. The core components of ACCE are largely based on Apache Object Oriented Data Technology (OODT), an open source information integration framework at the Apache Software Foundation (ASF). Apache OODT is designed around a component-based architecture that allows for selective combination of components to create highly configurable data management systems. The diverse and growing community that currently contributes to Apache OODT fosters on-going growth and maturation of the software. ACCE's key objective is to reduce cost and risks associated with developing data management systems for airborne missions. Software reuse plays a prominent role in mitigating these problems. By providing a reusable platform based on open source software, ACCE enables airborne missions to allocate more resources to their scientific goals, thereby opening the doors to increased scientific discovery.

  18. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  19. Community College Economics Instruction: Results from a National Science Foundation Project

    ERIC Educational Resources Information Center

    Maier, Mark; Chi, W. Edward

    2016-01-01

    The principal investigator of a National Science Foundation project, "Economics at Community Colleges," surveyed community college economics faculty and organized workshops, webinars, and regional meetings to address community college faculty isolation from new ideas in economics and economics instruction. Survey results, combined with…

  20. Extension Educators' Perceptions of Community Readiness, Knowledge of Prevention Science, and Experience with Collaboration

    ERIC Educational Resources Information Center

    Perkins, Daniel F.; Mincemoyer, Claudia C.; Lillehoj, Catherine J.

    2006-01-01

    This investigation compared Extension educators' perceptions of community readiness, knowledge of prevention science, and experience with community collaborations with the perceptions of community human service professionals. First, Cooperative Extension System (CES) educators and human service professionals were found to hold similar perceptions…

  1. Developing a Rural and Regional Science Challenge to Utilise Community and Industry-Based Partnerships

    ERIC Educational Resources Information Center

    Blake, Damian; Campbell, Coral

    2009-01-01

    Interest and participation in science in schools has been declining for many years and there is a genuine need to rejuvenate interest in science at the high school level. One possible solution is the completion of challenging science projects which fulfill an authentic purpose in the community. This paper discusses the results of ongoing research…

  2. How Does a Community of Principals Develop Leadership for Technology-Enhanced Science?

    ERIC Educational Resources Information Center

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2010-01-01

    Active principal leadership can help sustain and scale science curriculum reform. This study illustrates how principal leadership developed in a professional learning community to support a technology-enhanced science curriculum reform funded by the National Science Foundation. Seven middle school and high school principals in one urban-fringe…

  3. Science and Native American Communities: Legacies of Pain, Visions of Promise.

    ERIC Educational Resources Information Center

    James, Keith, Ed.

    The chapters in this volume are based on papers presented at Colorado State University, in June 1997, at a conference on finding ways to integrate American Indian community goals, needs, and traditions with mainstream science and science education. The book's core message is that two extreme opinions, are present in society--that science has…

  4. A Pilot Study on Needs in the Sciences in Community Colleges.

    ERIC Educational Resources Information Center

    Banks, Debra; Railsback, Gary

    In 1988, a national survey was conducted by the Center for the Study of Community Colleges to assess the needs of two-year colleges for faculty, equipment, and facilities for science, social science, mathematics, engineering, and science-based technology programs, and to identify innovative programs for recruiting students into these programs.…

  5. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    ERIC Educational Resources Information Center

    Ball, Lois A.

    2012-01-01

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which…

  6. ESA's Support To Science Element (STSE): A New Opportunity for the Science Community

    NASA Astrophysics Data System (ADS)

    Fernández Prieto, D.; Herland, E.-A.

    2009-04-01

    In 1998, the document ESA SP-1227: "The Science and Research Elements of ESA's Living Planet Programme", laid out the research objectives for the scientific component of the Living Planet Program. These were formulated around four themes: Earth Interior, Physical Climate, Geosphere/Biosphere and Atmosphere & Marine Environment: Anthropogenic Impact. These themes encompassed the full scope of Earth Science. Although no specific area of Earth Science was prioritised, the document emphasised the need to move towards an integrated Earth System Model, where the role of internationally coordinated scientific programmes and coordination with national programmes and other agencies and organisations were recognised as being a key aspect of the science strategy. In 2006, the EO Science Strategy was updated (ESA/PB-EO(2006)89) under the auspices of the ESA's Earth Science Advisory Committee (ESAC) in wide consultation with the scientific community. The resulting document: "The Changing Earth - New Scientific Challenges for ESA's Living Planet Programme" (ESA/SP-1304) outlines the new scientific direction for the future progress of the ESA Living Planet Programme. In particular, the document set out the 25 major challenges for our understanding of the Earth System with especial focus on those areas of knowledge where satellite data may make a major contribution. Achieving those challenges will require a large international effort involving, novel observation, enhanced data sets, improved models and coordinated research. ESA is contributing to those efforts through its missions (e.g., the ERS1 and 2, ENVISAT, the Meteorological satellites and the coming Earth Explorers and Sentinel series) and exploitation programs. However, in order to further reinforce the ESA support to the scientific community, a dedicated element of the Envelop program was launched in 2008, the Support To Science Element (STSE). STSE aims at providing "scientific support for both future and on

  7. The effect of science demonstrations as a community service activity on pre-service science teachers' teaching practices

    NASA Astrophysics Data System (ADS)

    Gurel, Derya Kaltakci

    2016-03-01

    In the scope of this study, pre-service science teachers (PSST) developed and carried out science demonstrations with everyday materials for elementary school students as a community service activity. 17 PSST enrolled in the community services practices course at Kocaeli University comprised the sample of the present study. Community service practices aim to develop consciousness of social responsibility and professional skills, as well as to gain awareness of social and community problems and find solutions for pre-service teachers. With this aim, each PSST developed five science demonstration activities and their brochures during a semester. At the end of the semester, a total of 85 demonstrations were carried out at public elementary schools, which are especially located in socioeconomically poor districts of Kocaeli, Turkey. In the present case study, the effect of developing and carrying out science demonstrations for elementary school students on six of the PSST' teaching practices on density and buoyancy concept was investigated. 30-minute interviews conducted with each PSST, videos recorded during their demonstration performances, brochures they prepared for their demonstration activities, and reflection papers were used as data collection tools of the study. The results showed that community service practices with science demonstrations had positive effects on PSST' science content knowledge and pedagogical content knowledge.

  8. Engaging students in the sciences--the community college experience

    NASA Astrophysics Data System (ADS)

    Bushaw-Newton, K. L.

    2015-12-01

    In today's pedagogy, "STEM" is the four letter word and "STEAM" is the next big thing. How do we as professors translate our passion for our discipline and our research into practical, yet rigorous and applied, learning experiences for students? Foundation courses (e.g., 100 level) often have a mixture of majors and non-majors for any given discipline, thus confounding student engagement. Experiential learning provides students with opportunities to apply theory with application. In any given course, a suite of methods may need to be employed to attain the highest level of engagement. Northern Virginia Community College is a two-year institution with a strong commitment to the sciences. In this presentation, a variety of methods for student engagement will be discussed including: in-class assignments, modules in the laboratory as well as modules involving the campus, independent research experiences, and activities linking students with professionals in the area. Within the context of these methods, there will also be discussions on expectations, limitations, and successes as well as failures.

  9. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  10. Science discourse in a middle-grade classroom attempting learning community-centered science instruction

    NASA Astrophysics Data System (ADS)

    Templin, Mark Arnold

    This dissertation focuses on the development of students' scientific literacy discourse in a middle grade science classroom as the teacher attempted to establish a learning community. Instructional design features included a change in teacher and students' roles such that authority over many classroom decisions was shared and students were encouraged to design their own investigations within the context of extended learning projects. The study followed the progress of two groups of four students, representing diversity in academic performance, gender, and ethnicity, over the course of four months. Target group discourse was recorded once every other school day and then transcribed. Accompanying field notes were written. Classroom artifacts, including a complete set of daily lesson plans, instructional materials, and student products, were collected. The interpretive framework, which highlighted different discourse practices and the instructional moves that supported them, evolved during data analysis as it was repeatedly tried out against the empirical materials through stages of data reduction, display, conclusion drawing, and verification. Analysis of the teacher's practice indicated that he initiated and maintained a classroom learning community by encouraging students to (a) think about their thinking by responding to questions that promoted such reflection; (b) share their reflections and other written products with each other and revise them through peer review; (c) decide for themselves which science content was relevant to their investigations; (d) share problem solving strategies; and (e) debate the meaning of terms so that a common understanding of science concepts could be developed. The teacher modeled and asked questions to promote these reflective and collaborative practices, successively withdrawing his active involvement in group dialogue as the term progressed. Analysis of students' discourse indicated that students increasingly developed

  11. 21st Century Science as a Relational Process: From Eureka! to Team Science and a Place for Community Psychology

    PubMed Central

    Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.

    2014-01-01

    In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718

  12. What do you see? A case study of community college science pedagogy

    NASA Astrophysics Data System (ADS)

    Calhoun, Chantae M.

    Community colleges educate almost half of all American undergraduates. These students include but are not limited to under-prepared high school graduates, and individuals who are working full-time while attending school, as well as students of diverse cultural, socioeconomic, and ethnic backgrounds. With such a diverse student population, science educators may find it difficult to teach science, especially since the language of science is exceptional and contains some inner hierarchy that most other disciplines do not (Osborne, 2002). This qualitative case study examined a community college science faculty member notion's learning to use visual illustrations in science instruction through a collaborative professional development approach. Through this study, insights were gained on how to implement relevant science pedagogy at this community college. Narratives are used to tell the story of a community college science instructor's experience using visual illustrations through science concepts (e.g. cell structure, cellular transport, and metabolism) taught. Narratives reflect the science instructor's story leading to further studies in multiliteracies, professional development, and student perception of visual images in community college setting.

  13. Information Fusion Issues in the UK Environmental Science Community

    NASA Astrophysics Data System (ADS)

    Giles, J. R.

    2010-12-01

    The Earth is a complex, interacting system which cannot be neatly divided by discipline boundaries. To gain an holistic understanding of even a component of an Earth System requires researchers to draw information from multiple disciplines and integrate these to develop a broader understanding. But the barriers to achieving this are formidable. Research funders attempting to encourage the integration of information across disciplines need to take into account culture issues, the impact of intrusion of projects on existing information systems, ontologies and semantics, scale issues, heterogeneity and the uncertainties associated with combining information from diverse sources. Culture - There is a cultural dualism in the environmental sciences were information sharing is both rewarded and discouraged. Researchers who share information both gain new opportunities and risk reducing their chances of being first author in an high-impact journal. The culture of the environmental science community has to be managed to ensure that information fusion activities are encouraged. Intrusion - Existing information systems have an inertia of there own because of the intellectual and financial capital invested within them. Information fusion activities must recognise and seek to minimise the potential impact of their projects on existing systems. Low intrusion information fusions systems such as OGC web-service and the OpenMI Standard are to be preferred to whole-sale replacement of existing systems. Ontology and Semantics - Linking information across disciplines requires a clear understanding of the concepts deployed in the vocabulary used to describe them. Such work is a critical first step to creating routine information fusion. It is essential that national bodies, such as geological surveys organisations, document and publish their ontologies, semantics, etc. Scale - Environmental processes operate at scales ranging from microns to the scale of the Solar System and

  14. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  15. Integrating Systems Science and Community-Based Participatory Research to Achieve Health Equity.

    PubMed

    Frerichs, Leah; Lich, Kristen Hassmiller; Dave, Gaurav; Corbie-Smith, Giselle

    2016-02-01

    Unanswered questions about racial and socioeconomic health disparities may be addressed using community-based participatory research and systems science. Community-based participatory research is an orientation to research that prioritizes developing capacity, improving trust, and translating knowledge to action. Systems science provides research methods to study dynamic and interrelated forces that shape health disparities. Community-based participatory research and systems science are complementary, but their integration requires more research. We discuss paradigmatic, socioecological, capacity-building, colearning, and translational synergies that help advance progress toward health equity. PMID:26691110

  16. Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2015-12-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally

  17. Entering the Community of Practitioners: A Science Research Workshop Model

    ERIC Educational Resources Information Center

    Streitwieser, Bernhard; Light, Gregory; Pazos, Pilar

    2010-01-01

    This article describes the Science Research Workshop Program (SRW) and discusses how it provides students a legitimate science experience. SRW, which is funded by the National Science Foundation, is an apprenticeship-style program in which students write proposals requesting resources to research an original question. The program creates a…

  18. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    ERIC Educational Resources Information Center

    Forbes, Anne; Skamp, Keith

    2016-01-01

    "MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups--primary teachers, primary students and mentors--interact around the "domain" of "investigating scientifically". This paper builds on three earlier…

  19. Blogging the Stories of Citizen Science to Inspire Participation, Build Community, and Increase Public Understanding of Science

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Cavalier, D.; Ohab, J.; Taylor, L.

    2011-12-01

    Sharing citizen science projects and the experiences that people have with science through blogs provides avenues to foster public understanding of science and showcase ways that people can get involved. Blogs, combined with other social media such as Twitter and Facebook, make science social - adding a human element to the process of scientific discovery. We have been sharing stories of citizen science through two blogs. Intended for a general public audience. The Science for Citizens blog (http://scienceforcitizens.net/blog/) was started in 2010 and links blog posts to a growing network of citizen science projects. Citizen Science Buzz (http://www.talkingscience.org/category/citizen-science-buzz/) was started in 2011 on the TalkingScience blog network, a project of the Science Friday Initiative. Both blogs aim to increase the exposure of citizen science projects, inspire people to do citizen science, and connect people with projects that interest them. The timeliness of blogs also provides a good platform for sharing information about one-time citizen science events and short-lived projects. Utilizing Facebook and Twitter increases traffic to blog posts about citizen science events in a timely manner and can help build community around events. Additionally, the timeliness of blogs provides the opportunity to connect citizen science and current events, helping to form geoscience teachable moments out of recent news. For example, highlighting citizen scientists near Birmingham, Alabama who collect weather data after the April 2011 tornado outbreak ravaged that area offers a positive note on how people are volunteering their time to help us all better understand the planet despite a catastrophic event.

  20. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    NASA Astrophysics Data System (ADS)

    Ball, Lois A.

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which influence their contributions to America's science literacy and school science education. This emergent design nested case study described how an innovative program provided professional development and enabled growth in participants' abilities to contribute to science literacy. Data were collected through interviews, participant observations, and class artifacts. The program by design and constituency was the overarching entity that accounted for members' experiences. Three principal aspects of the ISI certificate program and cohort which influenced perceptions and reported positive outcomes were (1) the cohort's composition and their collaborative activities which established a vigorous community of practice and fostered community building, mentoring, and networking, (2) long term program design and implementation which promoted experiential learning in a generative classroom, and (3) ability of some members who were able to be independent or autonomous learners to embrace science education reform strategies for greater self-efficacy and career advancement. This research extends the limited literature base for professional development of informal science educators and may benefit informal science institutions, informal and formal science educators, science education reform efforts, and public education and science-technology-society understanding. The study may raise awareness of the need to establish more professional development opportunities for ISEs and to fund professional development. Further, recognizing and appreciating informal science educators as a diverse committed community of professionals who positively

  1. EPA STAR Tribal Research: Community-engaged Research Integrating Traditional Ecological Knowledge and Western Science

    EPA Science Inventory

    This poster provides a discussion of current and past EPA NCER Tribal Research that have successfully integrated TEK and Western Science practices to address environmental and human health issues facing tribal communities.

  2. Globalization and science education in a community-based after-school program

    NASA Astrophysics Data System (ADS)

    Eisenhart, Margaret

    2008-04-01

    What are the effects of globalization and how are these manifested in local communities and in the learning of science there? These questions are unpacked within one local community in the United States, a place called "Uptown" where I examine the educational opportunities and pathways in science that are available for low-income Black American girls. The data comes from eight years of work both as an after-school science education program director and researcher in Uptown. The results suggest that globalization is taking hold, both in the social and economic circumstances of the community and in the everyday lives of the girls who live there. Further, there is possible evidence of globalization in the micro-dynamics of the after-school program. Yet opportunities for science education that could prepare the girls and their community for a globalizing world lag far behind.

  3. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  4. Explainers' development of science-learner identities through participation in a community of practice

    NASA Astrophysics Data System (ADS)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  5. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    NASA Astrophysics Data System (ADS)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  6. Falls in the community: state of the science.

    PubMed

    Hester, Amy L; Wei, Feifei

    2013-01-01

    Falls and fall-related injuries among older community-dwelling adults continue to be a major health concern in the US. Falls are the leading cause of disability and trauma-related death in persons over 65 years of age. This article discusses current approaches in community fall management and challenges with these approaches, and offers some insight for community providers regarding this issue. PMID:23776331

  7. Science Professional Learning Communities: Beyond a singular view of teacher professional development

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Gardner, Grant E.; Robertson, Laura; Robert, Sarah

    2013-07-01

    Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.

  8. Airborne Passive Microwave Measurements from the AMISA 2008 Science Campaign for Modeling of Arctic Sea Ice Heating

    NASA Astrophysics Data System (ADS)

    Zucker, M. L.; Gasiewski, A. J.; CenterEnvironmental Technology

    2011-12-01

    While climate changes in the Arctic are occurring more rapidly than anywhere else on Earth model-based predictions of sea ice extent are at once both more optimistic than the data suggest and exhibit a high degree of variability. It is believed that this high level of uncertainty is the result of an inadequate quantitative understanding of surface heating mechanisms, which in large part is due to a lack of high spatial resolution data on boundary layer and surface energy processes during melt and freezeup. In August 2008 the NASA Arctic Mechanisms of Interactions between the Surface and Atmosphere (AMISA) campaign, in conjunction with the Swedish-led Arctic Summer Cloud-Ocean Study (ASCOS) conducted coordinated high spatial resolution measurements of geophysical parameters in the Arctic relevant to atmospheric-sea ice interaction. The IPY-approved AMISA campaign used airborne radiometers, including the Polarimetric Scanning Radiometer (PSR) system, a suite of L-band to V-band fixed-beam radiometers for cloud liquid and water vapor measurement, short and longwave radiation sensors, meteorological parameters from cloud size distribution probes, GPS dropsondes, and aerosol sensors. Calibration of the PSR is achieved through periodic observations of stable references such as thermal blackbody targets and noise diodes. A combination of methods using both infrequent external thermal blackbody views and brief frequent internal noise sources has proven practical for airborne systems such as the PSR and is proposed for spaceborne systems such as GeoMAS. Once radiometric data is calibrated it is then rasterized into brightness temperature images which are then geo-located and imported into Google EarthTM. An example brightness temperature map from the AMISA 2008 campaign is included in this abstract. The analysis of this data provides a basis for the development of a heat flux model needed to decrease the uncertainly in weather and climate predictions within the Arctic. In

  9. Teaching by Choice: Community College Science and Mathematics Preparation of K-12 Teachers

    ERIC Educational Resources Information Center

    Barnett, Lynn, Ed.; San Felice, Faith, Ed.; Patton, Madeline

    2005-01-01

    Community college teacher preparation programs have grown significantly in the last decade, but, as the recommendations and examples from "Teaching by Choice" indicate, greater expansion and innovation is both desirable and possible. Community colleges can provide a diverse stream of K-12 educators highly qualified to teach science, mathematics,…

  10. Student Reported Growth: Success Story of a Master of Science in Education Learning Community Program

    ERIC Educational Resources Information Center

    Kabes, Sharon; Engstrom, John

    2010-01-01

    Quantitative and qualitative data collected from students who have completed a Master of Science in Education Learning Community Program support the effectiveness of the learning community model in facilitating professional growth and transformation. Instructors model constructivist theory. Peer review, collaboration, and reflective analysis of…

  11. Broadening Female Participation in Science, Technology, Engineering, and Mathematics: Experiences at Community Colleges

    ERIC Educational Resources Information Center

    Starobin, Soko S.; Laanan, Frankie Santos

    2008-01-01

    Over the past few decades, community colleges have helped increase the representation of female and minority students in the fields of science, technology, engineering, and mathematics (STEM). Flexible schedules, low tuition, proximity to jobs, and open access admissions make community colleges attractive to a diverse student body, especially…

  12. A Study of Professional Learning Communities and Science Achievement in Large High Schools

    ERIC Educational Resources Information Center

    Kincannon, Susan D.

    2010-01-01

    The purpose of this study was to compare the science achievement and high school completion rates of students in a large high school implementing professional learning community concepts and practices with two large high schools not participating in professional learning community concepts and practices. The primary methodology employed was a…

  13. A Community-University Exchange Project Modeled after Europe's Science Shops

    ERIC Educational Resources Information Center

    Tryon, Elizabeth; Ross, J. Ashleigh

    2012-01-01

    This article describes a pilot project of the Morgridge Center for Public Service at the University of Wisconsin-Madison for a new structure for community-based learning and research. It is based on the European-derived science shop model for democratizing campus-community partnerships using shared values of mutual respect and validation of…

  14. Life-Science Concept Development Among Beginning Kindergarten Children From Three Different Community Settings

    ERIC Educational Resources Information Center

    Riechard, Donald E.

    1973-01-01

    Kindergarten children from three communities were tested on the Life-Science Concept Acquisition Test. Regression analysis indicated that significant differences existed among children from inner-urban, outer-urban, and rural farm communities on verbal, nonverbal, and total measures. Major source of significance was between outer-urban and…

  15. Guidelines for the Louisiana Community College Campus Design of Associate of Science in Teaching Degrees

    ERIC Educational Resources Information Center

    Louisiana Board of Regents, 2005

    2005-01-01

    All community colleges, four year institutions, and districts are invited by the Board of Regents (BoR), Louisiana Community and Technical College System (LCTCS), and Board of Elementary and Secondary Education (BESE) to form partnerships to design Associate of Science in Teaching Degree Programs for paraprofessionals and other educators…

  16. School-Community Collaborations: Bringing Authentic Science into Schools

    ERIC Educational Resources Information Center

    Clark, John Cripps; Tytler, Russell; Symington, David

    2014-01-01

    There is increasing interest in collaborative arrangements between schools and community scientists to enhance student engagement with learning. We describe research in which we identify a wide range of such collaborations in Australia, and investigate through interviews with community participants their perspectives on the purposes of…

  17. Using Inexpensive Technology and Multimedia to Improve Science Education in Rural Communities of Nepal

    ERIC Educational Resources Information Center

    Neupane, Sujaya

    2014-01-01

    This article explores an ongoing project that promotes science education in rural communities of western Nepal by using affordable technology. With the advent of inexpensive technology and multimedia resources, teaching materials for science education can be accessed with a much smaller budget than was previously possible. A preliminary survey…

  18. Invertebrates and Organ Systems: Science Instruction and "Fostering a Community of Learners"

    ERIC Educational Resources Information Center

    Rico, Stephanie A.; Shulman, Judith H.

    2004-01-01

    This paper is the third in a set of papers that explores the understanding and implementation of the educational system, "Fostering a Community of Learners" (FCL) across subject matters. We examine how FCL is influenced by the discipline of science, the teaching of science, and the conceptions that teachers have surrounding these two topics. We…

  19. Teachers' Views of the School Community Support in the Context of a Science Curricular Reform

    ERIC Educational Resources Information Center

    Deslandes, Rollande; Barma, Sylvie; Massé-Morneau, Julie

    2016-01-01

    This study examines teachers' perceptions and comprehension of their school community support for change in implementing a new teaching approach in science and technology in the context of a reform initiative at the secondary level. It is part of a two-year research-intervention conducted with science teachers from a private school. Data was first…

  20. Methods and Strategies: Greenteam--A Community Collaboration Celebrates Environmental Science

    ERIC Educational Resources Information Center

    Walters, Debi Molina; Oliver, Jill

    2013-01-01

    When teachers, parents, and community members work together, children benefit (Henderson and Mapp 2002). This is especially true when the collaboration is coordinated and focused as it was for the Greenteam, a science ecology club and an event created by a network of educators, elementary students, and science professionals. The club and a…

  1. Steps to Fostering a Learning Community in the Primary Science Classroom

    ERIC Educational Resources Information Center

    Pressick-Kilborn, Kimberley

    2009-01-01

    "Teaching Science" has, as one of its predecessors, the "Investigating" journal, which first appeared in 1988. Looking back ten years, the winner of the "Most Valuable Paper Award" for 1999 was Kimberley Pressick-Kilborn for her article--"Steps to Fostering a Learning Community in the Primary Science Classroom". In this edition of "Teaching…

  2. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  3. The Application of Community Service Learning in Science Education

    ERIC Educational Resources Information Center

    Ng, Betsy Ling-Ling

    2012-01-01

    Learning of science has been traditionally conducted in classrooms or in the form of lectures. Science education is usually context-specific learning as students are taught a particular module of content in class. In problem-based learning, they are provided with examples of problems in which they learn how to solve these types of problems.…

  4. Teaching the Sciences. New Directions for Community Colleges, Number 31.

    ERIC Educational Resources Information Center

    Brawer, Florence B., Ed.

    1980-01-01

    Trends and innovations in science education at two-year colleges are explored in this series of 12 articles. The collection includes: (1) a discussion of alternative instructional modes by John Holleman; (2) a description of the development of a remedial science and biology course for homebound students by Leonard O'Hara; (3) an examination of…

  5. Rural School-Community Partnerships: The Case of Science Education

    ERIC Educational Resources Information Center

    Minner, Daphne D.; Hiles, Elisabeth

    2005-01-01

    The U.S. Department of Education (USDOE, 2004) administers a formula grant program to states that is intended to increase the academic achievement of students in mathematics and science by enhancing the content knowledge and teaching skills of classroom teachers. Partnerships between high-need school districts and the science, technology,…

  6. Teaching Social Science Research: An Applied Approach Using Community Resources.

    ERIC Educational Resources Information Center

    Gilliland, M. Janice; And Others

    A four-week summer project for 100 rural tenth graders in the University of Alabama's Biomedical Sciences Preparation Program (BioPrep) enabled students to acquire and apply social sciences research skills. The students investigated drinking water quality in three rural Alabama counties by interviewing local officials, health workers, and…

  7. Science and the "Good Citizen": Community-Based Scientific Literacy.

    ERIC Educational Resources Information Center

    Lee, Stuart; Roth, Wolff-Michael

    2003-01-01

    Suggests that when considering the contribution of scientific activity to the greater good, science must be seen as forming a unique hybrid practice, together with other mediating practices, that constitute scientifically-literate good citizenship. Presents examples of activities that embed science in good citizenship. (Contains 46 references.)…

  8. Energy Monitoring: Powerful Connections between Math, Science, and Community

    ERIC Educational Resources Information Center

    Farrin, Lynn; Mokros, Jan

    2012-01-01

    Middle school students need to know about energy concepts and how they can reduce their energy use. New energy-monitoring tools provide powerful opportunities for students to engage in authentic investigations rich in the science practices described in "A Framework for K-12 Science Education" (NRC 2012), while at the same time advancing their…

  9. Community College Students' Attitudes toward Postsecondary Science Education

    ERIC Educational Resources Information Center

    Foster, Clint

    2011-01-01

    Students in the United States are avoiding taking the higher level science courses in secondary and postsecondary academic institutions (Ball, 2000; Braund & Reiss, 2006; Lee & Frank, 1990). There are many careers that do not require students to take those higher level science courses; therefore, students avoid registering for those classes…

  10. Connecting school and community with science learning: Real world problems and school-community partnerships as contextual scaffolds

    NASA Astrophysics Data System (ADS)

    Bouillion, Lisa M.; Gomez, Louis M.

    2001-10-01

    A challenge facing many schools, especially those in urban settings that serve culturally and linguistically diverse populations, is a disconnection between schools and students' home communities, which can have both cognitive and affective implications for students. In this article we explore a form of connected science, in which real-world problems and school-community partnerships are used as contextual scaffolds for bridging students' community-based knowledge and school-based knowledge, as a way to provide all students opportunities for meaningful and intellectually challenging science learning. The potential of these scaffolds for connected science is examined through a case study in which a team of fifth-grade teachers used the student-identified problem of pollution along a nearby river as an interdisciplinary anchor for teaching science, math, language arts, and civics. Our analysis makes visible how diverse forms of knowledge were able to support project activities, examines the consequences for student learning, and identifies the features of real-world problems and school-community partnerships that created these bridging opportunities.

  11. Leveraging the Cloud to Deliver Scalable Capabilities to Earth Science Community

    NASA Astrophysics Data System (ADS)

    Law, E.; Crichton, D. J.

    2012-12-01

    Instrument technologies for making science observations have advanced considerably with datasets now in the petabyte range for Earth science. The scale and complexity of increasing science data, commonly referred to as "Big Data", posts challenges in many aspects for science data systems. For instance, today's image files managed by science data systems range from a few gigabytes to hundreds of gigabytes in size with new data arriving every day. Despite this ever-increasing amount of data, science data systems must make the data readily available in a timely manner for users to view and analyze. This talk describes these challenges and provides examples of how the NASA/JPL Earth Science Data Systems program is leveraging the cloud to deliver scalable capabilities to our science community.

  12. Museum Exhibits and Science Literacy: Using Technical Writing and Science to Make Connections among Disciplines and Communities

    ERIC Educational Resources Information Center

    Henning, Teresa B.; Desy, Elizabeth A.

    2008-01-01

    This article presents a model for increasing science literacy of P-16 students as well as community members by engaging university students in the design and development of university museum exhibits. While the design of this project was in large part motivated by time and budget constraints faced by the faculty members involved, the positive…

  13. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  14. Mutagenicity of fine airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure

    SciTech Connect

    Kado, N.Y.; Guirguis, G.N.; Flessel, C.P.; Chan, R.C.; Chang, K.I.; Wesolowski, J.J.

    1986-01-01

    A simple modification of the Salmonella liquid incubation assay previously developed for detecting mutagens in urine was used to determine mutagenic activity of airborne particulate matter. The modification consists of adding ten times more bacteria and five to ten times less metabolic enzymes compared to the plate incorporation method. The mixture volume is approximately 0.2 ml, and the mixture is incubated for 90 min before pouring it according to the standard protocol. The modified procedure was approximately ten times more sensitive than the standard plate incorporation test for detecting mutagens in air particulate extracts and approximately ten to 31 times more sensitive for the chemical mutagens 2-nitrofluorene, 4-nitroquinoline-N-oxide, 2-aminofluorene, and benzo(a)pyrene in bacterial strain TA98. Mutagenic activity was associated exclusively with fine particles (aerodynamic diameters of less than 2.5 ..mu..m). Diurnal patterns of mutagenic activity were investigated by measuring filter extracts from 2-hr samples collected in three San Francisco Bay Area cities during the summer or fall of 1982. Four criteria pollutants - lead, nitrogen dioxide, ozone, and sulfur dioxide - were simultaneously sampled at one location.

  15. The Growth of the User Community of the La Silla Paranal Observatory Science Archive

    NASA Astrophysics Data System (ADS)

    Romaniello, M.; Arnaboldi, M.; Da Rocha, C.; De Breuck, C.; Delmotte, N.; Dobrzycki, A.; Fourniol, N.; Freudling, W.; Mascetti, L.; Micol, A.; Retzlaff, J.; Sterzik, M.; Sequeiros, I. mV.; De Breuck, M. V.

    2016-03-01

    The archive of the La Silla Paranal Observatory has grown steadily into a powerful science resource for the ESO astronomical community. Established in 1998, the Science Archive Facility (SAF) stores both the raw data generated by all ESO instruments and selected processed (science-ready) data. The growth of the SAF user community is analysed through access and publication statistics. Statistics are presented for archival users, who do not contribute to observing proposals, and contrasted with regular and archival users, who are successful in competing for observing time. Archival data from the SAF contribute to about one paper out of four that use data from ESO facilities. This study reveals that the blend of users constitutes a mixture of the traditional ESO community making novel use of the data and of a new community being built around the SAF.

  16. Citizen Science Air Monitoring in the Ironbound Community

    EPA Science Inventory

    The Environmental Protection Agency’s (EPA) mission is to protect human health and the environment. To move toward achieving this goal, EPA is facilitating identification of potential environmental concerns, particularly in vulnerable communities. This includes actively supportin...

  17. Citizen Science Air Monitoring in the Ironbound Community

    EPA Science Inventory

    The Environmental Protection Agency’s (EPA) mission is to protect human health and the environment. To move toward achieving this goal, EPA is facilitating identification of potential environmental concerns, particularly in vulnerable communities. This includes actively sup...

  18. Regime, phase and paradigm shifts: making community ecology the basic science for fisheries

    PubMed Central

    Mangel, Marc; Levin, Phillip S.

    2005-01-01

    Modern fishery science, which began in 1957 with Beverton and Holt, is ca. 50 years old. At its inception, fishery science was limited by a nineteenth century mechanistic worldview and by computational technology; thus, the relatively simple equations of population ecology became the fundamental ecological science underlying fisheries. The time has come for this to change and for community ecology to become the fundamental ecological science underlying fisheries. This point will be illustrated with two examples. First, when viewed from a community perspective, excess production must be considered in the context of biomass left for predators. We argue that this is a better measure of the effects of fisheries than spawning biomass per recruit. Second, we shall analyse a simple, but still multi-species, model for fishery management that considers the alternatives of harvest regulations, inshore marine protected areas and offshore marine protected areas. Population or community perspectives lead to very different predictions about the efficacy of reserves. PMID:15713590

  19. Community Resilience, the Foundation for Earth Science and the ESIP Federation: Bouncing Forward with Collective Impact

    NASA Astrophysics Data System (ADS)

    Robinson, E.

    2015-12-01

    The Federal Government has a long history of cross-community coordination between the Scientific Research community, and the Earth Observations and Data Provider communities. Since 1998, the Federation of Earth Science Information Partners (ESIP), organically organized using a collective impact approach that fostered these interactions primarily around Earth science interoperability problems. Unlike most collaborations, collective impact initiatives named in 2011 by the Stanford Social Innovation Review, involve a backbone infrastructure, a dedicated staff, and a structured process that leads to a common agenda, shared measurement, continuous communication, and mutually reinforcing activities among all participants. Over the last ten years, the Foundation for Earth Science (FES) has a proven track record of providing backbone support to ESIP. This presentation will cover FES's general approach to providing backbone support that enables communities to define shared agenda and then will show these practices in two case studies: (1) ESIP at-large as a mature network of developed partnerships and (2) a new project, the Local Community Resilience cluster. This new cluster aims to bridge the gap from the established ESIP network to engage local communities in order to equip citizens, professionals, and other decision-makers with the scientific underpinning necessary to make informed decisions (bounce forward) for society by leveraging the strong existing ESIP community, the backbone capabilities of FES and extending Federal Earth Science, Technology and Innovation Investments.

  20. Global Science Share: Connecting young scientists from developing countries with science writing mentors to strengthen and widen the international science community

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2012-12-01

    Collaborative science in which scientists are able to form research questions based on the current body of scientific knowledge and get feedback from colleagues on their ideas and work is essential for pushing science forward. However, not all scientists are able to fully participate in the international science community. Scientists from developing countries can face barriers to communicating with the international community due to, among other issues: fewer scientists in their home country, difficulty in getting language-specific science writing training, fewer established pre-existing international collaborations and networks, and sometimes geographic isolation. These barriers not only result in keeping individual scientists from contributing their ideas, but they also slow down the progress of the scientific enterprise for everyone. Global Science Share (http://globalscienceshare.org/) is a new project, entering its pilot phase in Fall 2012, which will work to reduce this disparity by connecting young scientists and engineers from developing countries seeking to improve their technical writing with other scientists and engineers around the world via online collaborations. Scientist-volunteers act as mentors and are paired up with mentees according to their academic field and writing needs. The mentors give feedback and constructive technical and editorial criticisms on mentees' submitted pieces of writing through a four-step email discussion. Mentees gain technical writing skills, as well as make international connections with other scientists and engineers in fields related to their own. Mentors also benefit by gaining new international scientific colleagues and honing their own writing skills through their critiques. The Global Science Share project will begin its pilot phase by first inviting Mongolian science students to apply as mentees this fall. This abstract will introduce the Global Science Share program, present a progress report from its first

  1. Introducing Biospecimen Science to Communities: Tools from Two Cities

    PubMed Central

    Meade, Cathy D.; Rodriguez, Elisa M.; Arevalo, Mariana; Luque, John S.; Harris, Narseary; San Miguel, Gloria; Gwede, Clement K.; Erwin, Deborah O.

    2016-01-01

    Background This article describes community-engaged processes employed by two Community Network Program Center (CNPC) sites located in Tampa, Florida, and Buffalo, New York, toward the development of Spanish/English educational products about biobanking and biospecimen research. Methods Each CNPC carried out a community-based participatory research (CBPR) approach that underscored six essential components that moved concepts to a final educational product in a highly participatory fashion. The similar CBPR processes at the two locations focused on the same topic, resulted in different engagement approaches and tools for their respective communities: 1) DVD and brochure toolkit and 2) PowerPoint, group program with audience response system (ARS). Results We detail a comparison of methods and applications for using these tools among diverse community groups to advance understandings about genetic and biomedical research technologies. Conclusion Ultimately, these tools and associated educational efforts emphasize the critical value of co-learning among academic and community members in biobanking and biospecimen research. PMID:26213404

  2. Indoor-Biofilter Growth and Exposure to Airborne Chemicals Drive Similar Changes in Plant Root Bacterial Communities

    PubMed Central

    Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S.

    2014-01-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. PMID:24878602

  3. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  4. Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities

    NASA Astrophysics Data System (ADS)

    Castano, Carolina

    2012-09-01

    Current discourses about science education show a wide concern towards humanisation and a more socio-cultural perspective of school science. They suggest that science education can serve diverse purposes and be responsive to social and environmental situations we currently face. However, these discourses and social approaches to science education tend to focus on global issues. They do not respond to the immediate needs and local context of some communities. I discuss in this paper why the purposes of science education need to be extended to respond to the local issue of violence. For this, I present a case study with a group of 38 students from a poor population in Bogotá, Colombia, located in one of the suburbs with highest levels of crime in the city. I examine the ways that science education contributes to and embodies its own forms of violence and explore how a new approach to science education could contribute to break the cycle of violence.

  5. Building community partnerships to implement the new Science and Engineering component of the NGSS

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  6. Addressing Science and Policy Needs with Community Emissions Efforts

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; Tarrasón, L.; Granier, C.; Middleton, P.

    2012-12-01

    We present community-driven emissions efforts within the Global Emissions InitiAtive (GEIA, http://www.geiacenter.org/), a joint IGAC/iLEAPS/AIMES initiative of the International Geosphere-Biosphere Programme. Since 1990, GEIA has served as a forum for the exchange of expertise and information on emissions. GEIA's mission is to quantify anthropogenic emissions and natural exchanges of trace gases and aerosols, and to facilitate the use of this information by the research, assessment, and policy communities. GEIA supports a worldwide network of about 1300 developers and users in international scientific projects, providing a solid scientific foundation for atmospheric chemistry research. Moving forward, GEIA is broadening its role to help serve the emissions needs of the research, assessment, regulatory, operational, and policy communities. GEIA intends to demonstrate the potential for improving emission information by promoting the interoperability of datasets and tools and by making use of near-real-time observations. As a step toward these goals, GEIA is being linked with ECCAD (Emissions of chemical Compounds & Compilation of Ancillary Data, http://eccad.sedoo.fr/) and CIERA (Community Initiative for Emissions Research & Applications, http://ciera-air.org/). ECCAD is GEIA's new interactive emissions data portal, providing consistent access to emission inventories and ancillary data with easy-to-use tools for analysis and visualization. CIERA is a GEIA community project to develop interoperability in emissions datasets and tools and to support evaluations of inventories. GEIA is also implementing new approaches to communicate emissions information and to connect scientific and regulatory emissions efforts. We invite the AGU community to join the GEIA network and build partnerships with GEIA to advance emissions knowledge for the future.

  7. Building a Co-Created Citizen Science Program with Community Members Neighboring a Hazardous Waste Site

    NASA Astrophysics Data System (ADS)

    Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.

    2015-12-01

    A research project that is only expert-driven may ignore the role of local knowledge in research, often gives low priority to the development of a comprehensive strategy to engage the community, and may not deliver the results of the study to the community in an effective way. To date, only a limited number of co-created citizen science projects, where community members are involved in most or all steps of the scientific process, have been initiated at contaminated sites and even less in conjunction with risk communication. Gardenroots: The Dewey-Humboldt AZ Garden Project was a place-based, co-created citizen science project where community members and researchers together: defined the question for study, developed hypotheses, collected environmental samples, disseminated results broadly, translated the results into action, and posed new research questions. This co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels) that was not being evaluated in the current site assessment. Furthermore, co-producing science led to both individual learning and social-ecological outcomes. This approach illustrates the benefits of a co-created citizen-science program in addressing the complex problems that arise in communities neighboring a hazardous waste sites. Such a project increased the community's involvement in regional environmental assessment and decision-making, which has the potential to help mitigate environmental exposures and thereby reduce associated risks.

  8. A Kindergarten Teacher Bringing Science to a Community

    ERIC Educational Resources Information Center

    Theis, Becky; Galindo, Ed; Shockey, Tod

    2014-01-01

    The National Aeronautical and Space Administration (NASA) sponsored professional development of educators in the NASA Summer of Innovation (SOI) program. The Idaho, Montana, and Utah (IMU-SOI) program worked with educators and students from thirteen Native American communities. The summer sessions were focused on problem based learning and…

  9. Bringing Science To Life through Community-Based Watershed Education.

    ERIC Educational Resources Information Center

    Donahue, Timothy P.; Lewis, Lisa Bryce; Price, Lawrence F.; Schmidt, David C.

    1998-01-01

    Delineates four elements of successful student-scientist partnerships: (1) use of an inquiry-based approach; (2) employment of authentic, community-based investigations; (3) student in the role of scientist; and (4) student in the role educator. Contains 17 references. (DDR)

  10. Program Evaluation of a High School Science Professional Learning Community

    ERIC Educational Resources Information Center

    McLelland-Crawley, Rebecca

    2014-01-01

    Teachers may benefit more from a professional learning community (PLC) than from professional development initiatives presented in single day workshops. The purpose of this program evaluation study was to identify characteristics of an effective PLC and to determine how the members of the PLC have benefitted from the program. Fullan's educational…

  11. Assessing How Science Faculty Learning Communities Promote Scientific Teaching

    ERIC Educational Resources Information Center

    Sirum, Karen L.; Madigan, Dan

    2010-01-01

    Although there is a need for continued pedagogical advancement in science undergraduate education, what is needed more urgently is more widespread adaptation of pedagogical practices that research has already shown to promote learning. Those practices include interactive engagement pedagogies such as active learning and inquiry-based learning. The…

  12. Learning Science as Explorers: Historical Resonances, Inventive Instruments, Evolving Community

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2014-01-01

    Doing science as explorers, students observe, wonder and question the unknown, stretching their experience. To engage students as explorers depends on their safety in expressing uncertainty and taking risks. I create these conditions in my university seminar by employing critical exploration in the classroom, a pedagogy developed by Eleanor…

  13. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    NASA Astrophysics Data System (ADS)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  14. Differential workload calculation and its impact on lab science instruction at the community college level

    NASA Astrophysics Data System (ADS)

    Boyd, Beth Nichols

    The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based instruction, many community colleges assign less value to the time spent in science lab than in lecture in workload calculations. This discrepancy is inconsistent with both current state and nation-wide goals of science excellence and the standards set by the American Chemical Society (2009) and the American Association of Physics Teachers (2002). One implication of this differential lab-loading policy is that the science instructors must teach more hours per week to make the same workload as their colleagues in other disciplines which have no formal laboratory activities. Prior to this study, there was no aggregate data regarding the extent of this policy at the community college level nor of its possible impact upon instruction. The input of full-time two-year college members of four different professional science organizations was solicited and from their responses, it is clear that differential loading of lab hours is common and widely variable. A majority of the respondents to this study had their hours in lab assigned less credit than their hours in lecture, with multiple perceived impacts upon lab preparation, assistance, revision, and follow-up activities. In combination with open-ended comments made by study participants, the results suggest that science instructors do perceive impacts upon their ability to teach science labs in a pedagogically current and challenging manner when their hours spent in lab instruction are counted for less than their hours in lecture. It is hoped that the information from this study will be used to implement improvements in the working conditions needed to advance science

  15. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria.

    PubMed

    Ravva, Subbarao V; Hernlem, Bradley J; Sarreal, Chester Z; Mandrell, Robert E

    2012-02-01

    Airborne transmission of bacterial pathogens from point sources (e.g., ranches, dairy waste treatment facilities) to areas of food production (farms) has been suspected. Determining the incidence, transport and viability of extremely low levels of pathogens require collection of high volumes of air and characterization of live bacteria from aerosols. We monitored the numbers of culturable bacteria in urban aerosols on 21 separate days during a 9 month period using high volume cyclonic samplers at an elevation of 6 m above ground level. Culturable bacteria in aerosols fluctuated from 3 CFU to 6 million CFU/L of air per hour and correlated significantly with changes in seasonal temperatures, but not with humidity or wind speed. Concentrations of viable bacteria determined by fluorescence staining and flow cytometry correlated significantly with culturable bacteria. Members of the phylum Proteobacteria constituted 98% of the bacterial community, which was characterized using 16S rRNA gene sequencing using DNA from aerosols. Aquabacterium sp., previously characterized from aquatic environments, represented 63% of all clones and the second most common were Burkholderia sp; these are ubiquitous in nature and some are potential human pathogens. Whole genome amplification prior to sequencing resulted in a substantial decrease in species diversity compared to characterizing culturable bacteria sorted by flow cytometry based on scatter signals. Although 27 isolated colonies were characterized, we were able to culture 38% of bacteria characterized by sequencing. The whole genome amplification method amplified DNA preferentially from Phyllobacterium myrsinacearum, a minor member of the bacterial communities, whereas Variovorax paradoxus dominated the cultured organisms. PMID:22193549

  16. DC-8 Airborne Laboratory arrival at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's DC-8 Airborne Science platform landing at Edwards Air Force Base, California, to join the fleet of aircraft at NASA's Dryden Flight Research Center. The white aircraft with a blue stripe running horizontally from the nose to the tail is shown with its main landing gear just above the runway. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  17. Building Consensus on Community Standards for Reproducible Science

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Nielsen, R. L.

    2015-12-01

    As geochemists, the traditional model by which standard methods for generating, presenting, and using data have been generated relied on input from the community, the results of seminal studies, a variety of authoritative bodies, and has required a great deal of time. The rate of technological and related policy change has accelerated to the point that this historical model does not satisfy the needs of the community, publishers, or funders. The development of a new mechanism for building consensus raises a number of questions: Which aspects of our data are the focus of reproducibility standards? Who sets the standards? How do we subdivide the development of the consensus? We propose an open, transparent, and inclusive approach to the development of data and reproducibility standards that is organized around specific sub-disciplines and driven by the community of practitioners in those sub-disciplines. It should involve editors, program managers, and representatives of domain data facilities as well as professional societies, but avoid any single group to be the final authority. A successful example of this model is the Editors Roundtable, a cross section of editors, funders, and data facility managers that discussed and agreed on leading practices for the reporting of geochemical data in publications, including accessibility and format of the data, data quality information, and metadata and identifiers for samples (Goldstein et al., 2014). We argue that development of data and reproducibility standards needs to heavily rely on representatives from the community of practitioners to set priorities and provide perspective. Groups of editors, practicing scientists, and other stakeholders would be assigned the task of reviewing existing practices and recommending changes as deemed necessary. They would weigh the costs and benefits of changing the standards for that community, propose appropriate tools to facilitate those changes, work through the professional societies

  18. LIGO: Impacting science education through gravity-wave research in the local community and beyond

    NASA Astrophysics Data System (ADS)

    McGuire, Stephen

    2012-02-01

    We describe our integration of the science teacher pre-service and in-service education programs at Southern University (SUBR) with the Laser Interferometer Gravitational-wave Observatory (LIGO) Science Education Center (SEC). Inquiry-based interactive exhibits are employed wherein we emphasize classical physics concepts of oscillations, waves, wave propagation, interference, resonance, lasers, light and Newtonian gravity. An aggressive museum docent training program is providing a means for undergraduates to learn how to effectively communicate science concepts within informal learning environments. This local educational partnership will ultimately create a science education continuum of engagement, working at multiple levels and multiple audiences to strengthen science literacy within the targeted STEM African-American community. Following a brief overview of our program of LIGO-related optical materials research, we give a detailed presentation of our K-12 science teacher preparation program with results.

  19. Data Preservation and Curation for the Planetary Science Community

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Crichton, D. J.; Joyner, R.; Hardman, S.; Rye, E.

    2013-12-01

    The Planetary Data System (PDS) has just released PDS4 Version 1.0, its next generation data standards for the planetary science archive. These data standards are the result of a multi-year effort to develop an information model based on accepted standards for data preservation, data curation, metadata management, and model development. The resulting information model is subsequently used to drive information system development from the generation of data standards documentation to the configuration of federated registries and search engines. This paper will provide an overview of the development of the PDS4 Information Model and focus on the application of the Open Archive Information System (OAIS) Reference Model - ISO 14721:2003, the Metadata Registry (MDR) Standard - ISO/IEC 11179, and the E-Business XML Standard to help ensure the long-term preservation and curation of planetary science data. Copyright 2013 California Institute of Technology Government sponsorship acknowledged

  20. Using the Culture in Science As Another Platform for Your Collaborative Community

    NASA Astrophysics Data System (ADS)

    Caron, B. R.

    2014-12-01

    This talk will introduce notions of culture into the discussion of collaborative communities for the Earth sciences. One often hears that the problems of cyberinfrastructure, or of science in general are "half technical and half social." While this acknowledges that a purely technical solution is not possible, the reality is that nearly all of the funding for, and the attention and discussion about new collaborative communities is focused on technology. Recent attention to the need for governance (as opposed to management) has opened up some welcome conversations about the role of engagement in the success of collaborative communities. The talk will present the notion that the "half-social" side of the problem is also at least half again a cultural side. After clearing up some common misperceptions on the term "culture," the talk will explore the work of culture within science from its beginning and the availability of cultural tools to advance the vision and goals for collaborative communities in the Earth science. The emergence of organizational culture as the primary organizing feature of start-up companies in Silicon Valley and elsewhere presents new opportunities to reflect on the intentional use of cultural tools to sustain engagement in support of active, open science. Numerous critiques are now available for the cultural shortcomings of current scientific institutions, from universities, to agencies, to publishing houses. Indeed, institutional cultural factors are often seen as refractory to any intervention. The talk will present arguments that new models for intentional cultural work within emerging collaborative communities can serve to displace aspects of institutional culture that now work against the expansion of open science and shared data. Indeed, it may be that somewhat more than half of the remaining problems for open science can be solved through the use of reflexively applied intentional culture.

  1. From science teacher to teacher leader: Leadership development as meaning making in a community of practice

    NASA Astrophysics Data System (ADS)

    Howe, Ann C.; Stubbs, Harriett S.

    2003-03-01

    The process through which three science teachers became active, effective teacher leaders in their schools, their profession, and their communities was investigated. A model of leadership development, proposed by Palus and Drath (Evolving leaders: A model for promoting leadership development in programs, Center for Creative Leadership, Greensboro, NC, 1995), was used as a framework for analyzing and understanding the experiences and forces that led these teachers to become leaders. Development of the teacher leaders was prompted by their involvement in SCI-LINK, a program that began as a way to link environmental scientists and science teachers, and grew over a period of 6 years to become a constellation of activities and a learning community of teachers, scientists, and science educators. Four elements of SCI-LINK that promoted and supported leadership development are identified. Implications for leadership development in science education and other subject areas are discussed.

  2. Synthesizing Marketing, Community Engagement, and Systems Science Approaches for Advancing Translational Research.

    PubMed

    Kneipp, Shawn M; Leeman, Jennifer; McCall, Pamela; Hassmiller-Lich, Kristen; Bobashev, Georgiy; Schwartz, Todd A; Gilmore, Robert; Riggan, Scott; Gil, Benjamin

    2015-01-01

    The adoption and implementation of evidence-based interventions (EBIs) are the goals of translational research; however, potential end-users' perceptions of an EBI value have contributed to low rates of adoption. In this article, we describe our application of emerging dissemination and implementation science theoretical perspectives, community engagement, and systems science principles to develop a novel EBI dissemination approach. Using consumer-driven, graphics-rich simulation, the approach demonstrates predicted implementation effects on health and employment outcomes for socioeconomically disadvantaged women at the local level and is designed to increase adoption interest of county program managers accountable for improving these outcomes in their communities. PMID:26244479

  3. A comparative analysis of traditional and online lab science transfer courses in the rural community college

    NASA Astrophysics Data System (ADS)

    Scott, Andrea

    Through distance learning, the community college system has moved beyond geographical boundaries to serve all students and provide educational opportunities at a distance to individuals previously out of reach of the college community. With the inception of the Mississippi Virtual Community College (MSVCC) in January 2000, Mississippi's public community colleges have experienced unprecedented growth in online enrollments and online course offerings to include the laboratory sciences; however, transfer of online lab science courses are problematic for individuals who wish to gain admittance to Medical, Dental, and Pharmacy schools in Mississippi. Currently online lab science courses are not accepted for transfer for students seeking admission to Mississippi Medical, Dental, or Pharmacy schools. The need for this study, the statement of the problem, and the purpose of the study address transfer issues related to the transfer of online lab science courses in Mississippi and the impact of such on the student and community college. The study also addresses existing doubts regarding online course delivery as a viable method of lab science delivery. The purpose of the study was to investigate differences between online instructional delivery as compared to traditional face-to-face delivery with the following research questions to: (1) Investigate the perception of quality of online courses as compared to traditional face-to-face courses. (2) Investigate the difference in student performance in online transfer lab science courses as compared to student performance in traditional face-to-face lab science courses. The results of this 13 semester study show significant differences in both perception of quality and student performance between online instructional delivery as compared to traditional face-to-face delivery. The findings demonstrate a need for Mississippi Dental, Medical, and Pharmacy schools to reexamine the articulation agreement between IHL and Community and

  4. Assessment of Superflux relative to marine science and oceanography. [airborne remote sensing of the Chesapeake Bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1981-01-01

    A general assessment of the Superflux project is made in relation to marine science and oceanography. It is commented that the program clearly demonstrated the effectiveness of state-of-the-art technology required to study highly dynamic estuarine plumes, and the necessity of a broadly interdisciplinary, interactive remote sensing and shipboard program required to significantly advance the understanding of transport processes and impacts of estuarine outflows.

  5. APEX: current status of the airborne dispersive pushbroom imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Nieke, Jens; Itten, Klaus I.; Kaiser, Johannes W.; Schlapfer, Daniel R.; Brazile, Jason; Debruyn, Walter; Meuleman, Koen; Kempeneers, Pieter B.; Neukom, Andreas; Feusi, Hans; Adolph, Peter; Moser, Renzo; Schilliger, Thomas; van Quickelberghe, Marie; Alder, John; Mollet, Dominique; De Vos, Lieve; Kohler, Peter; Meng, Markus; Piesbergen, Jens; Strobl, Peter; Schaepman, Michael E.; Gavira, Jose; Ulbrich, Gerd J.; Meynart, Roland

    2004-10-01

    Recently, a joint Swiss/Belgian initiative started a project to build a new generation airborne imaging spectrometer, namely APEX (Airborne Prism Experiment) under the ESA funding scheme named PRODEX. APEX is a dispersive pushbroom imaging spectrometer operating in the spectral range between 380 - 2500 nm. The spectral resolution will be better then 10 nm in the SWIR and < 5 nm in the VNIR range of the solar reflected range of the spectrum. The total FOV will be +/- 14 deg, recording 1000 pixels across track with max. 300 spectral bands simultaneously. APEX is subdivided into an industrial team responsible for the optical instrument, the calibration homebase, and the detectors, and a science and operational team, responsible for the processing and archiving of the imaging spectrometer data, as well as for its operation. APEX is in its design phase and the instrument will be operationally available to the user community in the year 2006.

  6. The Planetary Data System — Renewing Our Science Nodes in Order to Better Serve Our Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; McLaughlin, S.; Grayzeck, E. J.; Knopf, W.; McNutt, R. L., Jr.; Crichton, D. J.; New, M. H.

    2015-12-01

    In order to improve NASA's ability to provide an agile response to the needs of the Planetary Science Community, the Planetary Data System (PDS) is being transformed. NASA has used the highly successful virtual institute model (e.g., for NASA's Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. We expect the new PDS will improve both archive searchability and product discoverability, continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the International community of space faring nations (through the International Planetary Data Alliance). PDS will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. In this presentation we discuss recent changes in the PDS, and our future activities to build on these changes. Please visit our User Support Area at the meeting (Booth #446) if you have questions accessing our data sets or providing data to the PDS or about the new PDS structure.

  7. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study.

    PubMed Central

    Kinney, P L; Aggarwal, M; Northridge, M E; Janssen, N A; Shepard, P

    2000-01-01

    Residents of the dense urban core neighborhoods of New York City (NYC) have expressed increasing concern about the potential human health impacts of diesel vehicle emissions. We measured concentrations of particulate matter [less than/equal to] 2.5 micro in aerodynamic diameter (PM(2.5)) and diesel exhaust particles (DEP) on sidewalks in Harlem, NYC, and tested whether spatial variations in concentrations were related to local diesel traffic density. Eight-hour (1000-1800 hr) air samples for PM(2.5 )and elemental carbon (EC) were collected for 5 days in July 1996 on sidewalks adjacent to four geographically distinct Harlem intersections. Samples were taken using portable monitors worn by study staff. Simultaneous traffic counts for diesel trucks, buses, cars, and pedestrians were carried out at each intersection on [Greater/equal to] 2 of the 5 sampling days. Eight-hour diesel vehicle counts ranged from 61 to 2,467 across the four sites. Mean concentrations of PM(2.5) exhibited only modest site-to-site variation (37-47 microg/m(3)), reflecting the importance of broader regional sources of PM(2.5). In contrast, EC concentrations varied 4-fold across sites (from 1.5 to 6 microg/m(3)), and were associated with bus and truck counts on adjacent streets and, at one site, with the presence of a bus depot. A high correlation (r = 0.95) was observed between EC concentrations measured analytically and a blackness measurement based on PM(2.5) filter reflectance, suggesting the utility of the latter as a surrogate measure of DEP in future community-based studies. These results show that local diesel sources in Harlem create spatial variations in sidewalk concentrations of DEP. The study also demonstrates the feasibility of a new paradigm for community-based research involving full and active partnership between academic scientists and community-based organizations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10706526

  8. Community Partnership Designed to Promote Lyme Disease Prevention and Engagement in Citizen Science

    PubMed Central

    Seifert, Veronica A.; Wilson, Shane; Toivonen, Samantha; Clarke, Benjamin; Prunuske, Amy

    2016-01-01

    The goal of this project is to promote Lyme disease prevention and to cultivate an interest in science through a citizen-science project coordinated by researchers at a public university and teachers at rural high schools. The lesson plan is designed to increase student interest in pursuing a science career through participation in an authentic research experience, utilizing a topic that has implications on the health of the surrounding community. Students are introduced in the classroom to zoonotic diseases transmitted by the Ixodes tick, the health risks of Lyme disease, and disease prevention strategies. Students then participate in a research experience collecting field data and ticks from their community, which are used in university research. To measure changes in student knowledge and attitudes toward Lyme disease and science careers, students completed surveys related to the learning objectives associated with the experience. We found participation in the activity increased student confidence and ability to correctly differentiate a deer tick from a wood tick and to recognize the symptoms of Lyme disease. In addition, students reported increased interest in pursuing a science degree in college or graduate school. Authentic research experience related to a disease relevant to the local community is effective at enhancing high school student engagement in science. PMID:27047593

  9. Student Researchers Reaching Out: Building Skills to Connect Science and Communities

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Haacker-Santos, R.; Hosansky, D.; Eastburn, T. A.; Carpenter, E.; Kennedy, M.; Pandya, R. E.

    2012-12-01

    Research has shown that many students from under-represented communities choose not to pursue graduate school in STEM in part because it offers fewer opportunities to serve their community than other fields. As one way to address this, protégés in the SOARS Program learn about and participate in science outreach. SOARS is an undergraduate-to-graduate bridge program designed to broaden participation in the atmospheric and related sciences, hosted at the National Center for Atmospheric Research (NCAR) in Boulder, CO. In 2012, students were offered several outreach opportunities to choose from: (1) facilitating hands-on science activities for school-age children visiting NCAR's Mesa Lab; (2) receiving media training and preparing for a possible interview with the local press about their work; or (3) writing about their research or other science related topics for in-house blogs. All of the outreach activities were designed to allow protégés to exercise and grow abilities to communicate science to a community outside of scientific research, whether to children, the media, or the general public. In this presentation, we will provide an overview of these three outreach opportunities as well as the results of formal and informal assessment of student experiences with outreach, the perspectives of mentors about protégé involvement in outreach, and considerations for engaging science students with outreach activities.

  10. Community Partnership Designed to Promote Lyme Disease Prevention and Engagement in Citizen Science.

    PubMed

    Seifert, Veronica A; Wilson, Shane; Toivonen, Samantha; Clarke, Benjamin; Prunuske, Amy

    2016-03-01

    The goal of this project is to promote Lyme disease prevention and to cultivate an interest in science through a citizen-science project coordinated by researchers at a public university and teachers at rural high schools. The lesson plan is designed to increase student interest in pursuing a science career through participation in an authentic research experience, utilizing a topic that has implications on the health of the surrounding community. Students are introduced in the classroom to zoonotic diseases transmitted by the Ixodes tick, the health risks of Lyme disease, and disease prevention strategies. Students then participate in a research experience collecting field data and ticks from their community, which are used in university research. To measure changes in student knowledge and attitudes toward Lyme disease and science careers, students completed surveys related to the learning objectives associated with the experience. We found participation in the activity increased student confidence and ability to correctly differentiate a deer tick from a wood tick and to recognize the symptoms of Lyme disease. In addition, students reported increased interest in pursuing a science degree in college or graduate school. Authentic research experience related to a disease relevant to the local community is effective at enhancing high school student engagement in science. PMID:27047593

  11. Acceptance of animal research in our science community.

    PubMed

    Bergmeister, Konstantin; Podesser, Bruno

    2016-01-01

    Animal research is debated highly controversial, as evident by the "Stop Vivi-section" initiative in 2015. Despite widespread protest to the initiative by researchers, no data is available on the European medical research community's opinion towards animal research. In this single-center study, we investigated this question in a survey of students and staff members at the Medical University of Vienna. A total of 906 participants responded to the survey, of which 82.8% rated the relevance of animal research high and 62% would not accept a treatment without prior animals testing. Overall, animal research was considered important, but its communication to the public considered requiring improvement. PMID:27239274

  12. Bringing Science to Life Through Community-Based Watershed Education

    NASA Astrophysics Data System (ADS)

    Donahue, Timothy P.; Lewis, Lisa Bryce; Price, Lawrence F.; Schmidt, David C.

    1998-03-01

    Four elements of successful student-scientist partnerships (SSPs) have been identified through experience in a wide variety of educational settings. SSPs should: use an inquiry-based approach to education; be built around authentic, community-based investigations; let students be scientists; and allow scientists to be educators. Each element is discussed and illuminated with examples from case studies of watershed education programs that are based on an interdisciplinary, action-oriented watershed education model developed by the Global Rivers Environmental Education Network (GREEN).

  13. The Art Of Planetary Science: An Exhibition - Bringing Together The Art And Science Communities To Engage The Public

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Keane, Jamies; Peacock, Sarah; Schaefer, Ethan; Tanquary, Hannah

    2014-11-01

    The University of Arizona’s Lunar and Planetary Laboratory (LPL) presents the 2nd Annual The Art of Planetary Science: An Exhibition (TAPS) on 17-19 October 2014. This art exhibition and competition features artwork inspired by planetary science, alongside works created from scientific data. It is designed to connect the local art and science communities of Tucson, and engage the public together in celebration of the beauty and elegance of the universe. The exhibition is organized by a team of volunteer graduate students, with the help of LPL’s Space Imaging Center, and support from the LPL administration. Last year’s inaugural event featured over 150 works of art from 70 artists and scientists. A variety of mediums were represented, including paintings, photography, digital prints, sculpture, glasswork, textiles, film, and written word. Over 300 guests attended the opening. Art submission and event attendance are free, and open to anyone.The primary goal of the event is to present a different side of science to the public. Too often, the public sees science as dull or beyond their grasp. This event provides scientists the opportunity to demonstrate the beauty that they find in their science, by creating art out of their scientific data. These works utilized, for example, equations, simulations, visual representations of spacecraft data, and images of extra-terrestrial material samples. Viewing these works alongside more traditional artwork inspired by those same scientific ideas provided the audience a more complex, multifaceted view of the content that would not be possible viewing either alone. The event also provides a way to reach out specifically to the adult community. Most science outreach is targeted towards engaging children in STEM fields. While this is vital for the long term, adults have more immediate control over the perception of science and public policy that provides funding and research opportunities to scientists. We hope this event raises

  14. Observatories, think tanks, and community models in the hydrologic and environmental sciences: How does it affect me?

    NASA Astrophysics Data System (ADS)

    Torgersen, Thomas

    2006-06-01

    Multiple issues in hydrologic and environmental sciences are now squarely in the public focus and require both government and scientific study. Two facts also emerge: (1) The new approach being touted publicly for advancing the hydrologic and environmental sciences is the establishment of community-operated "big science" (observatories, think tanks, community models, and data repositories). (2) There have been important changes in the business of science over the last 20 years that make it important for the hydrologic and environmental sciences to demonstrate the "value" of public investment in hydrological and environmental science. Given that community-operated big science (observatories, think tanks, community models, and data repositories) could become operational, I argue that such big science should not mean a reduction in the importance of single-investigator science. Rather, specific linkages between the large-scale, team-built, community-operated big science and the single investigator should provide context data, observatory data, and systems models for a continuing stream of hypotheses by discipline-based, specialized research and a strong rationale for continued, single-PI ("discovery-based") research. I also argue that big science can be managed to provide a better means of demonstrating the value of public investment in the hydrologic and environmental sciences. Decisions regarding policy will still be political, but big science could provide an integration of the best scientific understanding as a guide for the best policy.

  15. JPSS Science Data Services for the Direct Readout Community

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Lutz, Bob

    2014-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS.

  16. JPSS Science Data Services for the Direct Readout Community

    NASA Astrophysics Data System (ADS)

    Chander, G.; Lutz, R. J.

    2014-12-01

    The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS. "[Pending NASA Goddard Applied Engineering & Technology Directorate (AETD) Approval]"

  17. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA DC-8 in a right bank over the rugged Sierra Nevada Mountains. The former airliner is a 'dash-72' model and has a range of 5,500 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. In this photo, the aircraft is shown in flight from below, with the DC-8 silhouetted against a blue sky. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  18. Creating and Sustaining University-Community Partnerships in Science Education (Invited)

    NASA Astrophysics Data System (ADS)

    Finkelstein, N.

    2009-12-01

    Despite years of research and investment, we have yet to see the widespread implementation of a myriad research-proven instructional strategies in STEM education[1]. To address this challenge, we present and analyze one such strategy, a theoretically-grounded model of university-community partnership [2] that engages university students and children in a collective enterprise that has the potential to improve the participation and education of all. We document the impact of this effort on: university participants who learn about education, the community and science; children in the community who learn about science, the nature of science and develop their identities and attitudes towards science; and, shifts in institutional structures which may allow these programs to be part of standard practice. This project is designed to be sustained and scaled, and is analyzed through the application of a new framework [3] which brings together theories of STEM change that come from studies in higher education, faculty development and disciplinary-based education research in STEM. [1] National Research Council. (2003). Improving Undergraduate Instruction in Science, Technology, Engineering, and Mathematics: Report of A Workshop. Washington, D.C.: The National Academies Press. [2] Finkelstein, N. and Mayhew, L. (2008). Acting in Our Own Self-Interest: Blending University and Community. Proceedings of the 2008 Physics Education Research Conf, AIP Press. Melville NY, 1064, 19-22. [3] Henderson, C., Finkelstein, N. & Beach A. (to appear). Beyond Dissemination in College science teaching: An Introduction to Four Core Change Strategies. Accepted May 2009 in Journal of College Science Teaching.

  19. Community-based participatory research as a tool to advance environmental health sciences.

    PubMed Central

    O'Fallon, Liam R; Dearry, Allen

    2002-01-01

    The past two decades have witnessed a rapid proliferation of community-based participatory research (CBPR) projects. CBPR methodology presents an alternative to traditional population-based biomedical research practices by encouraging active and equal partnerships between community members and academic investigators. The National Institute of Environmental Health Sciences (NIEHS), the premier biomedical research facility for environmental health, is a leader in promoting the use of CBPR in instances where community-university partnerships serve to advance our understanding of environmentally related disease. In this article, the authors highlight six key principles of CBPR and describe how these principles are met within specific NIEHS-supported research investigations. These projects demonstrate that community-based participatory research can be an effective tool to enhance our knowledge of the causes and mechanisms of disorders having an environmental etiology, reduce adverse health outcomes through innovative intervention strategies and policy change, and address the environmental health concerns of community residents. PMID:11929724

  20. Medical Simulation in the Community College Health Science Curriculum: A Matrix for Future Implementation

    ERIC Educational Resources Information Center

    McLaughlin, Michael P.; Starobin, Soko S.; Laanan, Frankie Santos

    2010-01-01

    As the nation's healthcare education system struggles to keep pace with the demand for its services, educators are seeking creative and innovative solutions to meet the needs of a growing number of students. The integration of medical simulation technology into the community college health science curriculum is a creative solution that can meet…

  1. Sociocultural Perspective of Science in Online Learning Environments. Communities of Practice in Online Learning Environments

    ERIC Educational Resources Information Center

    Erdogan, Niyazi

    2016-01-01

    Present study reviews empirical research studies related to learning science in online learning environments as a community. Studies published between 1995 and 2015 were searched by using ERIC and EBSCOhost databases. As a result, fifteen studies were selected for review. Identified studies were analyzed with a qualitative content analysis method…

  2. Where's the Chicken? Virtual Reality Brings Poultry Science to the Community College

    ERIC Educational Resources Information Center

    Kloepper, Marcia Owens; Zweiacher, Ed; Curtis, Pat; Evert, Amanda

    2010-01-01

    This article highlights how two institutions--Redlands Community College (RCC) and Auburn University--teamed up to create a virtual world called Eagle Island, where learners enter to learn all they need to know about poultry science. Eagle Island, located in Second Life, provides an opportunity to tour a real-life food processing…

  3. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    ERIC Educational Resources Information Center

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-01-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning…

  4. Promoting Student Engagement in Science: Interaction Rituals and the Pursuit of a Community of Practice

    ERIC Educational Resources Information Center

    Olitsky, Stacy

    2007-01-01

    This study explores the relationship between interaction rituals, student engagement with science, and learning environments modeled on communities of practice based on an ethnographic study of an eighth grade urban magnet school classroom. It compares three interactional events in order to examine the classroom conditions and teacher practices…

  5. Women in Community College: Factors Related to Intentions to Pursue Computer Science

    ERIC Educational Resources Information Center

    Denner, Jill; Werner, Linda; O'Connor, Lisa

    2015-01-01

    Community colleges (CC) are obvious places to recruit more women into computer science. Enrollment at CCs has grown in response to a struggling economy, and students are more likely to be from underrepresented groups than students enrolled in 4-year universities (National Center for Education Statistics, 2008). However, we know little about why so…

  6. Science Teaching Reform through Professional Development: Teachers' Use of a Scientific Classroom Discourse Community Model

    ERIC Educational Resources Information Center

    Lewis, Elizabeth B.; Baker, Dale R.; Helding, Brandon A.

    2015-01-01

    This report outlines a 2-year investigation into how secondary science teachers used professional development (PD) to build scientific classroom discourse communities (SCDCs). Observation data, teacher, student, and school demographic information were used to build a hierarchical linear model. The length of time that teachers received PD was the…

  7. WVU--community partnership that provides science and math enrichment for underrepresented high school students.

    PubMed

    Rye, J A; Chester, A L

    1999-04-01

    In response to the need to help West Virginia secondary school students overcome educational and economic barriers and to increase the number of health professionals in the state, the Health Sciences and Technology Academy (hereafter, "the Academy") was established in 1994. The Academy is a partnership between West Virginia University (WVU)--including the Robert C. Byrd Health Sciences Center, Eberly College of Arts and Sciences, and the College of Human Resources and Education--and members of the community, including secondary-school teachers, health care professionals, and other community leaders. The Academy targets students from underrepresented groups (mainly African Americans and financially disadvantaged whites) in grades nine through 12. By November 1997, 290 students (69% girls and 33% African American) from 17 counties were Academy participants. Funding is from the W. K. Kellogg Foundation, Howard Hughes Medical Institute, the National Institutes of Health, the Coca-Cola Foundation, and other sources. Academy programs are an on-campus summer institute and community-based clubs, where students engage in activities for science and math enrichment, leadership development, and health careers awareness. In the Academy's clubs, students carry out extended investigations of problems related to human health and local communities. Most students report that the Academy has increased their interest in health care careers, and almost all who have continued to participate in Academy programs through their senior year have been accepted into college. PMID:10219208

  8. The Effect of Online Collaborative Learning on Middle School Student Science Literacy and Sense of Community

    ERIC Educational Resources Information Center

    Wendt, Jillian Leigh

    2013-01-01

    This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a…

  9. Developing Communities of Enquiry: Dealing with Social and Ethical Issues in Science at Key Stage 3

    ERIC Educational Resources Information Center

    Dunlop, Lynda; Humes, Gill; Clarke, Linda; Martin, Valerie McKelvey

    2011-01-01

    Reproductive technologies, drug discovery and exploration of the universe are areas of contemporary research that raise issues for individuals and society. Forward Thinking, Northern Ireland uses the development of communities of enquiry to promote discussion of these and other social and ethical issues in science with students aged 11-14 years.…

  10. Knowledge Construction, Meaning-Making and Interaction in CLIL Science Classroom Communities of Practice

    ERIC Educational Resources Information Center

    Evnitskaya, Natalia; Morton, Tom

    2011-01-01

    This paper draws on Wenger's model of community of practice to present preliminary findings on how processes of negotiation of meaning and identity formation occur in knowledge construction, meaning-making and interaction in two secondary Content and Language Integrated Learning (CLIL) science classrooms. It uses a multimodal conversation analysis…

  11. Integrating Geology and Physics To Enhance Science Learning Experience of Students and Serve the Community.

    ERIC Educational Resources Information Center

    Revetta, Frank A.; Das, Biman

    2002-01-01

    Suggests an integrated approach to make science teaching and learning more effective, interesting and motivating to students. Argues that team teaching by physics and geology departments enables students to learn concepts and principles of physics and apply them to solve geological problems facing the local community. Reports that a typical…

  12. Community Science Workshops: A Powerful and Feasible Model for Serving Underserved Youth. An Evaluation Brief

    ERIC Educational Resources Information Center

    Inverness Research Associates, 2007

    2007-01-01

    The people at Inverness Research Associates spent 12 years studying Community Science Workshops (CSW) in California and in six other states. They gathered statistics on the scale, scope, and cost-efficiency of CSW services to youth. They observed youth at work in the shops--taking apart computers, repairing bikes, growing plants, and so on--and…

  13. Sustainability Transdisciplinary Education Model: Interface of Arts, Science, and Community (STEM)

    ERIC Educational Resources Information Center

    Clark, Barbara; Button, Charles

    2011-01-01

    Purpose: The purpose of this paper is to describe the components of a sustainability transdisciplinary education model (STEM), a contemporary approach linking art, science, and community, that were developed to provide university and K-12 students, and society at large shared learning opportunities. The goals and application of the STEM curriculum…

  14. Learning Concurrency as an Entry Point to the Community of Computer Science Practitioners

    ERIC Educational Resources Information Center

    Kolikant, Yifat Ben-David

    2004-01-01

    Computer Science formal education brings together old-timers from two computer-literate cultures. The curriculum is oriented toward the academic community, whose interest is in the abstraction, solution, and proofs of algorithmic problems, whereas many students are technology users, whose main interest is the manipulation of the products of…

  15. Connecting Mathematics and Science: A Learning Community that Helps Math-Phobic Students

    ERIC Educational Resources Information Center

    Arnett, Amy; Van Horn, Doug

    2009-01-01

    Many undergraduate students admit to having a fear of math courses. To address this issue, the authors created a learning community that teaches math content in the context of science. This paper outlines the positive learning and dispositional results of freshman enrolled in this unique interdisciplinary course. (Contains 5 tables.)

  16. Natural Science Majors and Liberal Education: The Impact of a Living-Learning Community

    ERIC Educational Resources Information Center

    Hutt, Chris D.

    2012-01-01

    The purpose of this study was to explore the articulated experiences of natural science majors who were participating in a liberal arts living-learning community. Using the American Association of College and University's (2002) report, "Greater Expectations" as an organizing framework, this study sought to determine how--if at…

  17. Science in the community: An ethnographic account of social material transformation

    NASA Astrophysics Data System (ADS)

    Lee, Stuart Henry

    This dissertation is about the learning and use of science at the level of local community. It is an ethnographic account, and its theoretical approach draws on actor-network theory as well as neo-Marxist practice theory and the related notion of situated cognition. This theoretical basis supports a work that focuses on the many heterogeneous transformations that materials and people undergo as science is used to help bring about social and political change in a quasi-rural community. The activities that science becomes involved in, and the hybrid formations as it encounters local issues are stressed. Learning and knowing as outcomes of community action are theorized. The dissertation links four major themes throughout its narrative: scientific literacy, representations, relationships and participatory democracy. These four themes are not treated in isolation. Different facets of their relation to each other are stressed in different chapters, each of which analyze different particular case studies. This dissertation argues for the conception of a local scientific praxis, one that is markedly different than the usual notion of science, yet is necessary for the uptake of scientific information into a community.

  18. Navigating Community College Transfer in Science, Technical, Engineering, and Mathematics Fields

    ERIC Educational Resources Information Center

    Packard, Becky Wai-Ling; Gagnon, Janelle L.; Senas, Arleen J.

    2012-01-01

    Given financial barriers facing community college students today, and workforce projections in science, technical, engineering, and math (STEM) fields, the costs of unnecessary delays while navigating transfer pathways are high. In this phenomenological study, we analyzed the delay experiences of 172 students (65% female) navigating community…

  19. Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities

    ERIC Educational Resources Information Center

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-01-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…

  20. Moving Science off the "Back Burner": Meaning Making within an Action Research Community of Practice

    ERIC Educational Resources Information Center

    Goodnough, Karen

    2008-01-01

    In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers' beliefs about…

  1. A Community of Practice among Educators, Researchers and Scientists for Improving Science Teaching in Southern Mexico

    ERIC Educational Resources Information Center

    Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.

    2007-01-01

    This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…

  2. Negotiating Knowledge Contribution to Multiple Discourse Communities: A Doctoral Student of Computer Science Writing for Publication

    ERIC Educational Resources Information Center

    Li, Yongyan

    2006-01-01

    Despite the rich literature on disciplinary knowledge construction and multilingual scholars' academic literacy practices, little is known about how novice scholars are engaged in knowledge construction in negotiation with various target discourse communities. In this case study, with a focused analysis of a Chinese computer science doctoral…

  3. California Community Colleges Family and Consumer Sciences: A Plan for the 21st Century Update, 1998.

    ERIC Educational Resources Information Center

    Mount San Antonio Coll., Walnut, CA.

    This update of the 1998 Plan for the 21st Century was designed to augment the California Community College Family and Consumer Sciences in the 21st Century packet, produced in 1996. It summarizes a variety of activities, products and events that have taken place over the past two years, and suggests resources and contacts for learning more about…

  4. California Community College Family and Consumer Sciences in the 21st Century.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    Prepared as a companion to a 1996 California Community College plan for family and consumer sciences (FCS), this resource packet provides materials to help faculty, administrators, counselors, and other educators understand the elements of the plan, sharpen their focus on the dynamics of FCS programs, and increase support for programs at their…

  5. Service-Learning through Partnership with a Community High School: Impact on Minority Health Science Students

    ERIC Educational Resources Information Center

    Saleh, Suha M.; Hamed, Kastro M.

    2014-01-01

    Service-learning has been used to integrate an educational experience with community outreach, particularly among underserved populations. In this study, college students enrolled in a health science major were engaged in an educational outreach initiative with a group of students from a high school with a predominantly minority population. The…

  6. STEM Learning Community: An Interdisciplinary Seminar for First- and Second-Year College Science Majors

    ERIC Educational Resources Information Center

    Piper, Jon K.; Krehbiel, Dwight

    2015-01-01

    To attract and retain more academically qualified students to science and mathematics, we developed a merit-based scholarship program for incoming students with STEM interests. Scholarship recipients participate for the first two years in an interdisciplinary learning community and declare a STEM major by the sophomore year. STEM Learning…

  7. Court Reporting Curriculum for an Associate in Applied Science Degree at Alvin Community College.

    ERIC Educational Resources Information Center

    Bethscheider, John; Knapp, Mary

    The court reporting curriculum at Alvin Community College, which leads to an associate of applied science degree, has been praised by the National Shorthand Reporters Association, which sets the standards for court reporting schools. The court reporter uses a method of taking notes called stenotypy which entails taking down verbatim everything…

  8. Pedagogical Issues in Teaching Upper-Level Science Courses at a "Community University"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Jurutka, Peter W.; Marshall, Pamela A.

    2008-01-01

    The authors teach upper-level science courses in cell biology, genetics, and biochemistry at a public, four-year "community university" that serves a demographically diverse population of traditional and nontraditional students. In this article, they describe some of the issues they have found to be particularly significant at their "community…

  9. Professional Development of Secondary Science Teachers of English Learners in Immigrant Communities

    ERIC Educational Resources Information Center

    Manzo, Rosa D.; Cruz, Lisceth; Faltis, Christian; de la Torre, Adela

    2011-01-01

    This is a research study of secondary science teacher professional development, in which 30 teachers learned about and implemented a series of teaching strategies aimed at increasing the participation and learning of English Learners in schools serving largely Latino immigrant communities within California's Central Valley. This study focuses on…

  10. The Community Science Workshop Network Story: Case Studies of the CSW Sites

    ERIC Educational Resources Information Center

    St. John, Mark

    2014-01-01

    The Community Science Workshops (CSWs)--with funding from the S.D. Bechtel, Jr. Foundation, and the Gordon and Betty Moore Foundation--created a network among the CSW sites in California. The goals of the CSW Network project have been to improve programs, build capacity throughout the Network, and establish new sites. Inverness Research has been…

  11. Monkeying Around: Examining the Effects of a Community Zoo on the Science Achievement of Third Graders

    ERIC Educational Resources Information Center

    Kenny, Heather A.

    2010-01-01

    This investigation examined the efficacy of a model of integrated science and literacy instruction situated at a community zoo. Three intact cohorts of third grade urban students received instruction via different treatments: inquiry-based instruction at a zoo; inquiry-based instruction at school; and activity-based instruction at a zoo. All three…

  12. College Students Constructing Collective Knowledge of Natural Science History in a Collaborative Knowledge Building Community

    ERIC Educational Resources Information Center

    Hong, Huang-Yao; Chai, Ching Sing; Tsai, Chin-Chung

    2015-01-01

    This study investigates whether engaging college students (n = 42) in a knowledge building environment would help them work as a community to construct their collective knowledge of history of science and, accordingly, develop a more informed scientific view. The study adopted mixed-method analyses and data mainly came from surveys and student…

  13. Differential Workload Calculation and Its Impact on Lab Science Instruction at the Community College Level

    ERIC Educational Resources Information Center

    Boyd, Beth Nichols

    2013-01-01

    The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based…

  14. Community Partnership Grant Generates Preservice Teacher and Middle School Student Motivation for Authentic Science and Mathematics

    ERIC Educational Resources Information Center

    Selover, Nancy J.; Dorn, Denise; Dorn, Ronald I.; Brazel, Anthony J.

    2003-01-01

    Motorola Inc., research climatologists, preservice teachers taking a science requirement, and students in a Title I middle school explored whether a new major urban lake increases local humidity and decreases quality of life in a community dependent on "dry heat" during summers. Analysis of automated climate data reveals that the urban lake is too…

  15. Opening the Classroom Door: Professional Learning Communities in the Math and Science Partnership Program

    ERIC Educational Resources Information Center

    Hamos, James E.; Bergin, Kathleen B.; Maki, Daniel P.; Perez, Lance C.; Prival, Joan T.; Rainey, Daphne Y.; Rowell, Ginger H.; VanderPutten, Elizabeth

    2009-01-01

    This article looks at how professional learning communities (PLCs) have become an operational approach for professional development with potential to de-isolate the teaching experience in the fields of science, technology, engineering, and mathematics (STEM). The authors offer a short synopsis of the intellectual origins of PLCs, provide multiple…

  16. Developing a Community of Practice to Support Preservice Elementary Teachers' Nature of Science Instruction

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Donnelly, Lisa A.; Riggs, Morgan L.; Eastwood, Jennifer L.

    2012-01-01

    This study explored "To what extent will preservice teachers with adequate nature of science (NOS) conceptions and who participate in a community supporting NOS instruction teach NOS in their internship settings?" Using a combination of focus group discussions and peer feedback, five preservice teachers met with university personnel bi-monthly…

  17. How Agricultural Science Trumps Rural Community in the Discourse of Selected U.S. History Textbooks

    ERIC Educational Resources Information Center

    Howley, Marged; Howley, Aimee; Eppley, Karen

    2013-01-01

    Using narrative from 6 high school American history textbooks published between 1956 and 2009, this study investigated changes in how textbook authors presented the topics of agricultural science, farming, and community. Although some critical discourse analyses have examined textbooks' treatment of different population groups (e.g., African…

  18. Bridging Communities: Culturing a Professional Learning Community that Supports Novice Teachers and Transfers Authentic Science and Mathematics to the Classroom

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Miller, H. R.; Loving, C. L.; Pedersen, S.

    2006-12-01

    Professional Learning Community Model for Alternative Pathways (PLC-MAP) is a partnership of North Harris Montgomery Community Colleges, Texas A&M University, and 11 urban, suburban, and rural school districts in the Greater Houston area focused on developing a professional learning community that increases the retention and quality of middle and high school mathematics and science teachers who are being certified through the NHMCCD Alternative Certification Program. Improved quality in teaching refers to increased use of effective inquiry teaching strategies, including information technology where appropriate, that engage students to ask worthy scientific questions and to reason, judge, explain, defend, argue, reflect, revise, and/or disseminate findings. Novice teachers learning to adapt or designing authentic inquiry in their classrooms face two enormous problems. First, there are important issues surrounding the required knowledgebase, habit of mind, and pedagogical content knowledge of the teachers that impact the quality of their lesson plans and instructional sequences. Second, many ACP intern teachers teach under challenging conditions with limited resources, which impacts their ability to implement authentic inquiry in the classroom. Members of our professional learning community, including scientists, mathematicians and master teachers, supports novice teachers as they design lesson plans that engage their students in authentic inquiry. The purpose of this research was to determine factors that contribute to success or barriers that prevent ACP secondary science intern and induction year teachers from gaining knowledge and engaging in classroom inquiry as a result of an innovative professional development experience. A multi-case study design was used for this research. We adopted a two-tail design where cases from both extremes (good and poor gains) were deliberately chosen. Six science teachers were selected from a total of 40+ mathematics and science

  19. An Overview of the Challenges With and Proposed Solutions for the Ingest and Distribution Processes for Airborne Data Management

    NASA Technical Reports Server (NTRS)

    Beach, Aubrey; Northup, Emily; Early, Amanda; Wang, Dali; Kusterer, John; Quam, Brandi; Chen, Gao

    2015-01-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data.

  20. SciJourn is magic: construction of a science journalism community of practice

    NASA Astrophysics Data System (ADS)

    Nicholas, Celeste R.

    2016-01-01

    This article is the first to describe the discoursal construction of an adolescent community of practice (CoP) in a non-school setting. CoPs can provide optimal learning environments. The adolescent community centered around science journalism and positioned itself dichotomously in relationship to school literacy practices. The analysis focuses on recordings from a panel-style research interview from an early implementation of the Science Literacy Through Science Journalism (SciJourn) project. Researchers trained high school students participating in a youth development program to write science news articles. Students engaged in the authentic practices of professional science journalists, received feedback from a professional editor, and submitted articles for publication. I used a fine-grained critical discourse analysis of genre, discourse, and style to analyze student responses about differences between writing in SciJourn and in school. Students described themselves as agentic in SciJourn and passive in school, using an academic writing discourse of deficit to describe schooling experiences. They affiliated with and defined a SciJourn CoP, constructing positive journalistic identities therein. Educators are encouraged to develop similar CoPs. The discursive features presented may be used to monitor the development of communities of practice in a variety of settings.

  1. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  2. Missed Opportunities: Origin, Growth, and Decline of Community College Fire Science Degree Programs in Alabama, 1977 to 2002

    ERIC Educational Resources Information Center

    Laughlin, Jerry W.

    2007-01-01

    There was rapid growth of Alabama community colleges in the late 1960s. At the same time, there was rapid growth nationally of fire science associate degree programs. With these concurrent events, one would expect fire department personnel in Alabama to benefit from new community college opportunities in fire science and fire administration.…

  3. Parents as Leaders in Science and Mathematics Education Reform: A SourceBook for Parent and Community Leaders.

    ERIC Educational Resources Information Center

    National Council of La Raza, Washington, DC.

    This Project PRISM SourceBook was written for community leaders who wish to increase the awareness of parents about the need for reforming science and mathematics education and what they can do at home and in the schools and communities to work for better science and mathematics education. Resource sheets address 10 important topics for parents in…

  4. A Dialogue of Life: Integrating Service Learning in a Community-Immersion Model of Preservice Science-Teacher Preparation

    ERIC Educational Resources Information Center

    Handa, Vicente; Tippins, Deborah; Thomson, Norman; Bilbao, Purita; Morano, Lourdes; Hallar, Brittan; Miller, Kristen

    2008-01-01

    Dubbed a "dialogue of life," community immersion in preservice science-teacher education aims at providing a true-to-life and empowering opportunity for prospective science teachers (both elementary and secondary) to become active participants in community life through field and service-learning experiences. It consists of a three-unit course with…

  5. DC-8 Airborne Laboratory in flight over Palmdale, CA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The DC-8 Airborne Laboratory in a left banking turn above the airport at Palmdale, California. The right wing is silhouetted against the blue sky, while the left wing contrasts with the desert terrain. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  6. A Community Discussion about Sharing and Publishing Space Science Education Research and Evaluation

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Bartolone, L.; Fraknoi, A.; Plummer, J.; Brinkworth, C.; Schultz, G.

    2015-11-01

    There is ongoing concern in the community about the small number of space science education research articles being published. Additionally, there is a need to share evaluation results of our projects. This special interest group discussion brought together those interested in sharing results of their space science education and public outreach projects with those who actively publish in a variety of settings. The session introduced a set of concerns, generated during the previous ASP meeting including the lack of a central place to publish astronomy education research articles and the lack of resources that are readily available to the community of education and outreach professionals, for discussion. This session focused on sharing solutions to concerns and providing resources and opportunities to community members.

  7. Moving Science Off the ``Back Burner'': Meaning Making Within an Action Research Community of Practice

    NASA Astrophysics Data System (ADS)

    Goodnough, Karen

    2008-02-01

    In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers’ beliefs about science teaching and learning transformed? and (c) How does teachers’ knowledge of curriculum, instruction, assessment, and student learning change as a result of learning within a community of practice? In this instrumental case study (Stake 2000, In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435-454). Thousand Oaks, CA: Sage), a range of data collection sources and methods were adopted. Outcomes focus on how the design principles for cultivating a community of practice emerged in the action research group, as well as the types of teacher learning that occurred by engaging in action research.

  8. A Community Hydrometeorology Laboratory for Fostering Collaborative Research by the Atmospheric and Hydrologic Sciences

    USGS Publications Warehouse

    Warner, T.T.; Yates, D.N.; Leavesley, G.H.

    2000-01-01

    A new community laboratory for fostering collaborative research between the atmospheric and hydrologie sciences communities is described. This facility, located at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, allows scientists from both communities to more easily focus resources and attention on interdisciplinary problems in atmospheric, hydrologic, and other related sciences. Researchers can remotely access the computing tools to use them or to download them to their own facility, or they can visit NCAR and use the laboratory with other scientists in joint research projects. An application of this facility is described, where scientists from NCAR, the University of Colorado, and the United States Geological Survey used quantitative precipitation estimates from weather radar to simulate a flash flood in the Buffalo Creek watershed in the mountainous Front Range near Denver, Colorado.

  9. Writing-to-Learn in Undergraduate Science Education: A Community-Based, Conceptually Driven Approach

    PubMed Central

    Reynolds, Julie A.; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J.

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement. PMID:22383613

  10. Frontier Fields: A Cost-Effective Approach to Bringing Authentic Science to the Education Community

    NASA Astrophysics Data System (ADS)

    Eisenhamer, B.; Lawton, B.; Summers, F.; Ryer, H.

    2015-11-01

    For more than two decades, the Hubble EPO program has sought to bring the wonders of the universe to the education community and the public, and to engage audiences in the adventure of scientific discovery. Program components include standards-based, curriculum-support materials, exhibits and exhibit components, and professional development workshops. The main underpinnings of the program's infrastructure are scientist-educator development teams, partnerships, and an embedded program evaluation component. The Space Telescope Science Institute's Office of Public Outreach is leveraging this existing infrastructure to bring the Frontier Fields science program to the education community in a cost-effective way. Frontier Fields observations and results have been, and will continue to be, embedded into existing product lines and professional development offerings. We also are leveraging our new social media strategy to bring the science program to the public in the form of an ongoing blog.

  11. How Has the Economic Downturn Affected Communities and Implementation of Science-Based Prevention in the Randomized Trial of Communities That Care?

    PubMed Central

    Kuklinski, Margaret R.; Hawkins, J. David; Plotnick, Robert D.; Abbott, Robert D.; Reid, Carolina K.

    2013-01-01

    This study examined implications of the economic downturn that began in December 2007 for the Community Youth Development Study (CYDS), a longitudinal randomized controlled trial of the Communities That Care (CTC) prevention system. The downturn had the potential to affect the internal validity of the CYDS research design and implementation of science-based prevention in study communities. We used archival economic indicators and community key leader reports of economic conditions to assess the extent of the economic downturn in CYDS communities and potential internal validity threats. We also examined whether stronger economic downturn effects were associated with a decline in science-based prevention implementation. Economic indicators suggested the downturn affected CYDS communities to different degrees. We found no evidence of systematic differences in downturn effects in CTC compared to control communities that would threaten internal validity of the randomized trial. The Community Economic Problems scale was a reliable measure of community economic conditions, and it showed criterion validity in relation to several objective economic indicators. CTC coalitions continued to implement science-based prevention to a significantly greater degree than control coalitions 2 years after the downturn began. However, CTC implementation levels declined to some extent as unemployment, the percentage of students qualifying for free lunch, and community economic problems worsened. Control coalition implementation levels were not related to economic conditions before or after the downturn, but mean implementation levels of science-based prevention were also relatively low in both periods. PMID:23054169

  12. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    NASA Astrophysics Data System (ADS)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research

  13. Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Science Plan: A Community-based Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Wilson, J. L.; Dressler, K.; Hooper, R. P.

    2005-12-01

    The river basin is a fundamental unit of the landscape and water in that defined landscape plays a central role in shaping the land surface, in dissolving minerals, in transporting chemicals, and in determining species distribution. Therefore, the river basin is a natural observatory for examining hydrologic phenomena and the complex interaction of physical, chemical, and biological processes that control them. CUAHSI, incorporated in 2001, is a community-based research infrastructure initiative formed to mobilize the hydrologic community through addressing key science questions and leveraging nationwide hydrologic resources from its member institutions and collaborative partners. Through an iterative community-based process, it has been previously proposed to develop a network of hydrologic infrastructure that organizes around scales on the order of 10,000 km2 to examine critical interfaces such as the land-surface, atmosphere, and human impact. Data collection will characterize the stores, fluxes, physical pathways, and residence time distributions of water, sediment, nutrients, and contaminants coherently at nested scales. These fundamental properties can be used by a wide range of scientific disciplines to address environmental questions. This more complete characterization will enable new linkages to be identified and hypotheses to be tested more incisively. With such a research platform, hydrologic science can advance beyond measuring streamflow or precipitation input to understanding how the river basin functions in both its internal processes and in responding to environmental stressors. That predictive understanding is needed to make informed decisions as development and even natural pressures stress existing water supplies and competing demands for water require non-traditional solutions that take into consideration economic, environmental, and social factors. Advanced hydrologic infrastructure will enable research for a broad range of multidisciplinary

  14. Linked Vocabulary API for the Earth Sciences Community

    NASA Astrophysics Data System (ADS)

    Zednik, S.; Fox, P. A.; Fu, L.; West, P.; Ma, X.

    2014-12-01

    The Linked Vocabulary API is a specification for publishing RESTful APIs of vocabularies represented in the Simple Knowledge Organization System (SKOS) as Linked Data on the web. This work began as part of the Coastal and Marine Spatial Planning Vocabularies (CMSPV) project in response to the need for a standard manner for agencies to publish and consume hierarchical vocabularies on the web. The RESTful architecture of the API provides a simple mechanism for consumption of full vocabularies, single vocabulary terms, related terms, and searches on terms. The Linked Data nature of the API promotes interoperability by exposing vocabulary resources as resolvable URIs that may be referenced from other vocabularies or sources of Linked Data and by allowing the published vocabulary to contain references as links to terms from other vocabularies. The Linked Vocabulary API is formally defined in a Linked Data API specification and may be deployed using standard implementations of the Linked Data API such as the Epimorphics Linked Data API (ELDA). Recent presentations of work done with the Linked Vocabulary API as part of the CMSPV project have resulted in the API receiving growing interest from the broader scientific community. In this contribution we present the Linked Vocabulary API design and deployment process.

  15. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions About High School Students' Science Internship

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-05-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.

  16. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    NASA Astrophysics Data System (ADS)

    Jearld, A.; Liles, G.; Gutierrez, B. T.; Scott, O.

    2012-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. PEP is a direct result of the Woods Hole Diversity Initiative (WHDI). Participating institutions are the Marine Biological Laboratory, the Woods Hole Laboratory of NOAA's Northeast Fisheries Science Center, the Sea Education Association, the Woods Hole Coastal and Marine Science Center of the United States Geological Survey, Woods Hole Oceanographic Institution, and the Woods Hole Research Center. WHDI's primary academic partner is the University of Maryland Eastern Shore. PEP, a summer research internship program for undergraduate students, is open to students of all backgrounds but is designed especially to provide opportunities for individuals from populations underrepresented in science, technology, engineering, and mathematics (STEM) and who otherwise would not have had the opportunity to come to Woods Hole to study or do research. In four years, PEP has brought to Woods Hole 60 students from 39 colleges and universities, including many that previously had sent few or no students to Woods Hole. Many of the students come from community and four-year colleges and universities without strong research opportunities, part of the program's's strategy of coupling coursework and research in the marine and environmental sciences. As an evidence-based, promising practice for retaining students in STEM, the PEP model is emerging as an effective and sustainable approach. Beyond Woods Hole, PEP is gaining national recognition as information about PEP is disseminated via multiple channels, both electronic and non-electronic. PEP's applicant pool has increased from 24 in Year 1 to 70 in Year 4. As a collaborative, partnership initiative, PEP has established a critical mass of underrepresented students participating in the Woods Hole scientific communities who, through their research, are

  17. Peripheral and subversive: Women making connections and challenging the boundaries of the science community

    NASA Astrophysics Data System (ADS)

    Davis, Kathleen S.

    2001-07-01

    Researchers continue to report the underrepresentation of females in the science professions (AAUW, 1992; NSF, 1999; Vetter, 1992). Investigators have illuminated many factors that contribute to the insider status in the science community of some groups and the peripheral/outsider status of women and girls (Brickhouse, 1994; Delamont, 1989; Harding, 1991; Schiebinger, 1989). Some research has shown that supportive science networks have had a positive influence on women's participation and retention in science practices (AAUW, 1992; Keith & Keith, 1989; Kreinberg & Lewis, 1996; Varanka-Martin, 1996). In order to provide a better understanding of the role social capital plays in women's legitimate participation in science, I draw upon the findings of a qualitative study that examines the valued capital, ways, and practices of a support group for women working in the sciences at an academic research institution. Findings from this study indicate how women 1) were given little access to powerful networks in science that would provide them with opportunities to acquire the knowledge, skills, and resources necessary to be legitimate in the traditional sense, and 2) encountered many obstacles in their attempts to develop networks and make such connections between themselves and other women. Findings also indicate that, despite these impediments, the support group provided a meaningful and resourceful network through which they developed a critical perspective of legitimacy as they sought to make explicit the culture of science. Participants not only employed the traditional methods of scientific inquiry, but also acknowledged and valued the voices and experiences of those from nondominant groups. They constructed a new discourse that was inclusive of diverse voices, created new career pathways, and developed a vision of mentoring that facilitated females' development of a critical view of the science community and their legitimate participation.

  18. Information Model Translation to Support a Wider Science Community

    NASA Astrophysics Data System (ADS)

    Hughes, John S.; Crichton, Daniel; Ritschel, Bernd; Hardman, Sean; Joyner, Ronald

    2014-05-01

    The Planetary Data System (PDS), NASA's long-term archive for solar system exploration data, has just released PDS4, a modernization of the PDS architecture, data standards, and technical infrastructure. This next generation system positions the PDS to meet the demands of the coming decade, including big data, international cooperation, distributed nodes, and multiple ways of analysing and interpreting data. It also addresses three fundamental project goals: providing more efficient data delivery by data providers to the PDS, enabling a stable, long-term usable planetary science data archive, and enabling services for the data consumer to find, access, and use the data they require in contemporary data formats. The PDS4 information architecture is used to describe all PDS data using a common model. Captured in an ontology modeling tool it supports a hierarchy of data dictionaries built to the ISO/IEC 11179 standard and is designed to increase flexibility, enable complex searches at the product level, and to promote interoperability that facilitates data sharing both nationally and internationally. A PDS4 information architecture design requirement stipulates that the content of the information model must be translatable to external data definition languages such as XML Schema, XMI/XML, and RDF/XML. To support the semantic Web standards we are now in the process of mapping the contents into RDF/XML to support SPARQL capable databases. We are also building a terminological ontology to support virtually unified data retrieval and access. This paper will provide an overview of the PDS4 information architecture focusing on its domain information model and how the translation and mapping are being accomplished.

  19. Artisticc: An Art and Science Integration Project to Enquire into Community Level Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Vanderlinden, J. P.; Baztan, J.

    2014-12-01

    The prupose of this paper is to present the "Adaptation Research a Transdisciplinary community and policy centered appoach" (ARTisticc) project. ARTisticc's goal is to apply innovative standardized transdisciplinary art and science integrative approaches to foster robust, socially, culturally and scientifically, community centred adaptation to climate change. The approach used in the project is based on the strong understanding that adaptation is: (a) still "a concept of uncertain form"; (b) a concept dealing with uncertainty; (c) a concept that calls for an analysis that goes beyond the traditional disciplinary organization of science, and; (d) an unconventional process in the realm of science and policy integration. The project is centered on case studies in France, Greenland, Russia, India, Canada, Alaska, and Senegal. In every site we jointly develop artwork while we analyzing how natural science, essentially geosciences can be used in order to better adapt in the future, how society adapt to current changes and how memories of past adaptations frames current and future processes. Artforms are mobilized in order to share scientific results with local communities and policy makers, this in a way that respects cultural specificities while empowering stakeholders, ARTISTICC translates these "real life experiments" into stories and artwork that are meaningful to those affected by climate change. The scientific results and the culturally mediated productions will thereafter be used in order to co-construct, with NGOs and policy makers, policy briefs, i.e. robust and scientifically legitimate policy recommendations regarding coastal adaptation. This co-construction process will be in itself analysed with the goal of increasing arts and science's performative functions in the universe of evidence-based policy making. The project involves scientists from natural sciences, the social sciences and the humanities, as well as artitis from the performing arts (playwriters

  20. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  1. Investigating Community Factors as Predictors of Rural 11th-Grade Agricultural Science Students' Choice of Careers in Agriculture

    ERIC Educational Resources Information Center

    Adedokun, Omolola A.; Balschweid, Mark A.

    2008-01-01

    This study investigates the links between community contexts/factors and rural 11th-grade agricultural science students' choice of careers in agriculture. A logistic regression model was developed and tested to examine the extent to which nine measures of community contexts (i.e., membership in FFA, membership in 4-H, community attachment,…

  2. EUFAR the unique portal for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    Created in 2000 and supported by the EU Framework Programmes since then, EUFAR was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to research infrastructures, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geo-sciences. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 18 instrumented aircraft and 3 remote-sensing instruments through the 13 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and research activities focused on providing an enabling environment for and promoting airborne research. The EUFAR2 activities cover three objectives, supported by the internet website www.eufar.net: (I - Institutional) improvement of the access to the research infrastructures and development of the future fleet according to the strategic advisory committee (SAC) recommendations; (ii - Innovation) improvement of the scientific knowledge and promotion of innovating instruments, processes and services for the emergence of new industrial technologies, with an identification of industrial needs by the SAC; (iii - Service) optimisation and harmonisation of the use of the research infrastructures through the development of the community of young researches in airborne science, of the standards and protocols and of the airborne central database. With the launch of a brand new website (www.eufar.net) in mid-November 2015, EUFAR aims to improve user experience on the website, which serves as a source of information and a hub where users are able to collaborate, learn, share expertise and best practices, and apply for transnational access, and education and training funded opportunities within the network. With its newly designed eye-catching interface

  3. Schooling Girls in a Rural Community: An Examination of Female Science Identity and Science Career Choices

    ERIC Educational Resources Information Center

    Fowler, Melisa Diane Creasy

    2010-01-01

    There is a gap in existence between the number of males and females entering science careers. Research has begun to focus largely on how identity impacts the selection of such careers. While much research has been done to examine the factors that impact student identity, little work has been done to examine what happens to female students who have…

  4. Dropping Out of Computer Science: A Phenomenological Study of Student Lived Experiences in Community College Computer Science

    NASA Astrophysics Data System (ADS)

    Gilbert-Valencia, Daniel H.

    California community colleges contribute alarmingly few computer science degree or certificate earners. While the literature shows clear K-12 impediments to CS matriculation in higher education, very little is known about the experiences of those who overcome initial impediments to CS yet do not persist through to program completion. This phenomenological study explores insights into that specific experience by interviewing underrepresented, low income, first-generation college students who began community college intending to transfer to 4-year institutions majoring in CS but switched to another field and remain enrolled or graduated. This study explores the lived experiences of students facing barriers, their avenues for developing interest in CS, and the persistence support systems they encountered, specifically looking at how students constructed their academic choice from these experiences. The growing diversity within California's population necessitates that experiences specific to underrepresented students be considered as part of this exploration. Ten semi-structured interviews and observations were conducted, transcribed and coded. Artifacts supporting student experiences were also collected. Data was analyzed through a social-constructivist lens to provide insight into experiences and how they can be navigated to create actionable strategies for community college computer science departments wishing to increase student success. Three major themes emerged from this research: (1) students shared pre-college characteristics; (2) faced similar challenges in college CS courses; and (3) shared similar reactions to the "work" of computer science. Results of the study included (1) CS interest development hinged on computer ownership in the home; (2) participants shared characteristics that were ideal for college success but not CS success; and (3) encounters in CS departments produced unique challenges for participants. Though CS interest was and remains

  5. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    NASA Astrophysics Data System (ADS)

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-10-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.

  6. Science Courses Participated in and Completed by Students at Each of the Colleges in the Los Angeles Community College District.

    ERIC Educational Resources Information Center

    Friedlander, Jack

    The transcripts of 8,873 students, representing 7% of the enrollments in the Los Angeles Community College District, were examined to determine course participation and completion rates in science. Six curricular areas were investigated: (1) agriculture; (2) biological sciences; (3) engineering; (4) mathematics and computer science; (5) physical…

  7. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    NASA Astrophysics Data System (ADS)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  8. The Engaged Microbiologist: Bringing the Microbiological Sciences to the K–12 Community

    PubMed Central

    Westenberg, David J.

    2016-01-01

    Exposing K–12 students to cutting edge science that impacts their daily lives can bring classroom lessons to life. Citizen-science projects are an excellent way to bring high-level science to the classroom and help satisfy one of the cornerstone concepts of the Next Generation Science Standards (NGSS), “engaging in practices that scientists and engineers actually use.” This can be a daunting task for teachers who may lack the background or resources to integrate these projects into the classroom. This is where scientific societies such as the American Society for Microbiology (ASM) can play a critical role. ASM encourages its members to engage with the K–12 community by providing networking opportunities and resources for ASM members and K–12 teachers to work together to bring microbiology into the classroom. Journal of Microbiology & Biology Education PMID:27047585

  9. The Engaged Microbiologist: Bringing the Microbiological Sciences to the K-12 Community.

    PubMed

    Westenberg, David J

    2016-03-01

    Exposing K-12 students to cutting edge science that impacts their daily lives can bring classroom lessons to life. Citizen-science projects are an excellent way to bring high-level science to the classroom and help satisfy one of the cornerstone concepts of the Next Generation Science Standards (NGSS), "engaging in practices that scientists and engineers actually use." This can be a daunting task for teachers who may lack the background or resources to integrate these projects into the classroom. This is where scientific societies such as the American Society for Microbiology (ASM) can play a critical role. ASM encourages its members to engage with the K-12 community by providing networking opportunities and resources for ASM members and K-12 teachers to work together to bring microbiology into the classroom. Journal of Microbiology & Biology Education. PMID:27047585

  10. Educating Youth About Health and Science Using a Partnership Between an Academic Medical Center and Community-based Science Museum

    PubMed Central

    Griest, Susan; Howarth, Linda C.; Beemsterboer, Phyllis; Cameron, William; Carney, Patricia A.

    2009-01-01

    Declining student interest and scholastic abilities in the sciences are concerns for the health professions. Additionally, the National Institutes of Health is committed to promoting more research on health behaviors among US youth, where one of the most striking contemporary issues is obesity. This paper reports findings on the impact of a partnership between Oregon Health and Science University (OHSU) and the Oregon Museum of Science and Industry linked to a 17-week exhibition of BodyWorlds3 and designed to inform rural underserved youth about science and health research. Self-administered survey measures included health knowledge, attitudes, intended health behaviors, and interest in the health professions. Four hundred four surveys (88% of participants) were included in analyses. Ninety percent or more found both the Body-Worlds (n = 404) and OHSU (n = 239) exhibits interesting. Dental care habits showed the highest level of intended behavior change (Dental = 45%, Exercise = 34%, Eating = 30%). Overall, females and middle school students were more likely than male and high school students, respectively, to state an intention to change exercise, eating and dental care habits. Females and high school students were more likely to have considered a career in health or science prior to their exhibit visit and, following the exhibit, were more likely to report that this intention had been reinforced. About 6% of those who had not previously considered a career in health or science (n = 225) reported being more likely to do so after viewing the exhibits. In conclusion, high quality experiential learning best created by community-academic partnerships appears to have the ability to stimulate interest and influence intentions to change health behaviors among middle and high school students. PMID:19350372

  11. Towards science educational spaces as dynamic and coauthored communities of practice

    NASA Astrophysics Data System (ADS)

    Dhingra, Koshi

    2008-04-01

    In this essay review, four studies around the themes of identity and globalization are summarized and analyzed. The researchers' perspectives are generally grounded in Brown and Campione's ideas on situated knowledge ( Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229-270). Cambridge: The MIT Press/Bradford Books, 1994) and Lave and Wenger's definition of learning as an activity fostered through participation in communities of practice ( Situated learning. Legitimate peripheral participation. Cambridge: University of Cambridge Press, 1991). Questions about the goals of science education spaces, the nature of globalization in relation to practices in schools, the role of identities-in-practice in relation to participation in communities of practice such as classrooms are explored. Recommendations for key design features in effective science educational spaces, based upon the findings presented in the collection of four studies, are offered. School, it is suggested here, functions best as a clearing house for the myriad science-related stories student participants generate in their various communities of practice (e.g., within popular culture, family, community, informal educational sites). In this way, school has the potential to construct bridges between multiple student experiences and identities-in-practice.

  12. Laying a Community-Based Foundation for Data-Driven Semantic Standards in Environmental Health Sciences

    PubMed Central

    Mattingly, Carolyn J.; Boyles, Rebecca; Lawler, Cindy P.; Haugen, Astrid C.; Dearry, Allen; Haendel, Melissa

    2016-01-01

    Background: Despite increasing availability of environmental health science (EHS) data, development, and implementation of relevant semantic standards, such as ontologies or hierarchical vocabularies, has lagged. Consequently, integration and analysis of information needed to better model environmental influences on human health remains a significant challenge. Objectives: We aimed to identify a committed community and mechanisms needed to develop EHS semantic standards that will advance understanding about the impacts of environmental exposures on human disease. Methods: The National Institute of Environmental Health Sciences sponsored the “Workshop for the Development of a Framework for Environmental Health Science Language” hosted at North Carolina State University on 15–16 September 2014. Through the assembly of data generators, users, publishers, and funders, we aimed to develop a foundation for enabling the development of community-based and data-driven standards that will ultimately improve standardization, sharing, and interoperability of EHS information. Discussion: Creating and maintaining an EHS common language is a continuous and iterative process, requiring community building around research interests and needs, enabling integration and reuse of existing data, and providing a low barrier of access for researchers needing to use or extend such a resource. Conclusions: Recommendations included developing a community-supported web-based toolkit that would enable a) collaborative development of EHS research questions and use cases, b) construction of user-friendly tools for searching and extending existing semantic resources, c) education and guidance about standards and their implementation, and d) creation of a plan for governance and sustainability. Citation: Mattingly CJ, Boyles R, Lawler CP, Haugen AC, Dearry A, Haendel M. 2016. Laying a community-based foundation for data-driven semantic standards in environmental health sciences. Environ

  13. On using ethical principles of community-engaged research in translational science.

    PubMed

    Khodyakov, Dmitry; Mikesell, Lisa; Schraiber, Ron; Booth, Marika; Bromley, Elizabeth

    2016-05-01

    The transfer of new discoveries into both clinical practice and the wider community calls for reliance on interdisciplinary translational teams that include researchers with different areas of expertise, representatives of health care systems and community organizations, and patients. Engaging new stakeholders in research, however, calls for a reconsideration or expansion of the meaning of ethics in translational research. We explored expert opinion on the applicability of ethical principles commonly practiced in community-engaged research (CEnR) to translational research. To do so, we conducted 2 online, modified-Delphi panels with 63 expert stakeholders who iteratively rated and discussed 9 ethical principles commonly used in CEnR in terms of their importance and feasibility for use in translational research. The RAND/UCLA appropriateness method was used to analyze the data and determine agreement and disagreement among participating experts. Both panels agreed that ethical translational research should be "grounded in trust." Although the academic panel endorsed "culturally appropriate" and "forthcoming with community about study risks and benefits," the mixed academic-community panel endorsed "scientifically valid" and "ready to involve community in interpretation and dissemination" as important and feasible principles of ethical translational research. These findings suggest that in addition to protecting human subjects, contemporary translational science models need to account for the interests of, and owe ethical obligations to, members of the investigative team and the community at large. PMID:26773561

  14. Discoveries Within the Ice: Plans of the Ice Coring and Drilling Science Community

    NASA Astrophysics Data System (ADS)

    Albert, M. R.; Bentley, C. R.; Twickler, M.; Idpo/Iddo

    2010-12-01

    The search for answers to questions about our changing climate creates an urgent need to discover the clues to the past archived in glaciers and ice sheets, and to understand current ice sheet behavior. Recognizing that U.S. scientific productivity in this area depends upon a mechanism for ensuring continuity and international cooperation in ice coring and drilling efforts, along with availability of appropriate drills, drilling expertise, and innovations in drilling technology, the Ice Drilling Program Office (IDPO) and its partner, the Ice Drilling Design and Operations group (IDDO), collectively known as IDPO/IDDO, work with the science community to articulate integrated research, technological planning and delivery. This presentation highlights science goals articulated in the IDPO Long Range Science Plan, which lays out the scientific goals and future directions of the multidisciplinary research community and international partners. The science fits into four broad categories: Climate; Ice Dynamics and History; the Sub-ice Environment; and Ice as a Scientific Observatory. A companion plan, the IDDO Long Range Drilling Technology Plan, discusses details of the drills and new development driven by the Long Range Science Plan. The ice drilling technology described in the Long Range Drilling Technology Plan spans from the use of the multi-ton Deep Ice Sheet Coring (DISC) drill for deep drilling projects such as the West Antarctic Ice Sheet Divide, in Antarctica, to shallow drilling endeavors using hand augers, and beyond to identification of new drilling tools not yet in existence.

  15. Community-Based Participatory Research Contributions to Intervention Research: The Intersection of Science and Practice to Improve Health Equity

    PubMed Central

    Duran, Bonnie

    2010-01-01

    Community-based participatory research (CBPR) has emerged in the last decades as a transformative research paradigm that bridges the gap between science and practice through community engagement and social action to increase health equity. CBPR expands the potential for the translational sciences to develop, implement, and disseminate effective interventions across diverse communities through strategies to redress power imbalances; facilitate mutual benefit among community and academic partners; and promote reciprocal knowledge translation, incorporating community theories into the research. We identify the barriers and challenges within the intervention and implementation sciences, discuss how CBPR can address these challenges, provide an illustrative research example, and discuss next steps to advance the translational science of CBPR. PMID:20147663

  16. Iowa community college Science, Engineering and Mathematics (SEM) faculty: Demographics and job satisfaction

    NASA Astrophysics Data System (ADS)

    Rogotzke, Kathy

    Community college faculty members play an increasingly important role in the educational system in the United States. However, over the past decade, concerns have arisen, especially in several high demand fields of science, technology, engineering and mathematics (STEM), that a shortage of qualified faculty in these fields exists. Furthermore, the average age of community college faculty is increasing, which creates added concern of an increased shortage of qualified faculty due to a potentially large number of faculty retiring. To help further understand the current population of community college faculty, as well as their training needs and their satisfaction with their jobs, data needs to be collected from them and examined. Currently, several national surveys are given to faculty at institutions of higher education, most notably the Higher Education Research Institute Faculty Survey, the National Study of Postsecondary Faculty, and the Community College Faculty Survey of Student Engagement. Of these surveys the Community College Faculty Survey of Student Engagement is the only survey focused solely on community college faculty. This creates a problem because community college faculty members differ from faculty at 4-year institutions in several significant ways. First, qualifications for hiring community college faculty are different at 4-year colleges or universities. Whereas universities and colleges typically require their faculty to have a Ph.D., community colleges require their arts and science faculty to have a only master's degree and their career faculty to have experience and the appropriate training and certification in their field with only a bachelor's degree. The work duties and expectations for community college faculty are also different at 4-year colleges or universities. Community college faculty typically teach 14 to 19 credit hours a semester and do little, if any research, whereas faculty at 4-year colleges typically teach 9 to 12 credit

  17. Science Support Groups and Women Science Educators: Advocates for Women's and Girls' Legitimate Participation in the Science Community.

    ERIC Educational Resources Information Center

    Davis, Kathleen S.

    This paper contains descriptions of some of the specific kinds of capital that are needed, sought, and used within two academic science support groups for women and girls that aim to be gender-sensitive. The ways in which the capital (cultural, economic, symbolic, and social) is acquired, the ways in which the groups interacted with the larger…

  18. Building A Drought Science Learning Community: Education and Engagement in an NSF CAREER Grant

    NASA Astrophysics Data System (ADS)

    Quiring, S. M.

    2011-12-01

    This paper describes the education and engagement plan of the NSF CAREER award that I received in 2011 (Role of Soil Moisture in Seasonal to Interannual Climate Variability in the U.S. Great Plains; NSF Award #1056796). A key component of this plan is the development of a Drought Science Learning Community. A learning community is a program of courses and activities, which may include social and academic activities outside the classroom, that form a single program of instruction. Learning communities serve to increase faculty-student and student-student interaction, improve active and collaborative learning, and develop curricular coherence. The goal of a learning community is to encourage integration of learning across courses and to involve students with one of the grand challenges facing society. Students will be recruited from a Freshman Year Seminar (FYS) that I teach every Fall. Students who belong to the learning community will participate in the Water Management and Hydrological Sciences Seminar Series, relevant field trips, and monthly brown bag lunch meetings where students and faculty will discuss their current research projects and recently published scientific articles. Students who participate in learning community activities will benefit from a common intellectual experience that will help them to develop linkages between courses, regular interactions with faculty mentors, and the opportunity to contribute to faculty research. All students will be encouraged to complete an undergraduate thesis as the capstone experience of their participation in the learning community. In addition to describing the organization of the education and engagement plan, I will also discuss expected outcomes, best practices and lessons learned.

  19. Developing a Successful High School Science Research Program via Teacher Training, Student Internships, and Community Support

    NASA Astrophysics Data System (ADS)

    Danch, J. M.; Darytichen, F.

    2004-12-01

    The purpose of the Science Research Program is to allow students to perform authentic scientific research in disciplines of their choosing over a period of 3 years. The success of the program has allowed for expansion including community involvement, student mentorship, and a series of professional development programs. Through state and national competition and community symposia, student research is evaluated, showcased, and subsequently supported both idealistically and financially by local government and industrial partnerships. Student internships and university/industrial mentorship programs allow students to pursue research topics and utilize equipment exceeding the scope of the secondary science classroom. Involved teachers have developed and delivered professional development workshops to foster the successful implementation of scientific research programs at additional high schools throughout the state.

  20. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    ERIC Educational Resources Information Center

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  1. NASA DEVELOP Program: Students Extending Earth Science Research to Address Community Needs

    NASA Astrophysics Data System (ADS)

    Richards, A. L.; Ross, A. L.

    2006-12-01

    Eight years ago, several students at NASA Langley Research Center launched the DEVELOP Program. DEVELOP is now at six NASA centers and is a program element of the NASA Applied Sciences Human Capital Development Program that extends the use of Earth observation sources to address Earth science issues in local communities. Students in the program strengthen their leadership and academic skills by analyzing scientific data, experimenting with novel technology, and engaging in cooperative interactions. Graduate, undergraduate and high school students from across the United States collaborate to integrate NASA space-based Earth observation sources and partner agencies' science data, models and decision support tools. Information from these collaborations result in rapid prototype projects addressing local policy and environmental issues. Following a rigorous 10-week term, DEVELOP students present visual products demonstrating the application of NASA scientific information to community leaders at scientific and public policy forums such as the American Geophysical Union (AGU), the American Meteorological Society (AMS), and the Southern Growth Policies Board (SGPB). Submission of written products to peer-reviewed scientific publications and other public databases is also done. Student experiences and interactions working with NASA data, advanced technological programs and community leaders have, and continue to prove, beneficial to student professional development. DEVELOP's human capital development focus affords students real world experience, making them a valuable asset to the scientific and global community and to the continuation of a scientifically aware society. NASA's DEVELOP Program is more than scientific exploration and valuable results; DEVELOP fosters human capital development by bridging the gap between NASA science research and federal, state, local and tribal resource managers.

  2. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2003-12-01

    classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.

  3. Changes in primary science over the past decade: Implications for the research community

    NASA Astrophysics Data System (ADS)

    Appleton, Ken; Symington, David

    1996-09-01

    During the early 1980s in Australia there was a new wave of expectancy about primary science as new curricula were being considered or introduced and research findings were beginning to identify new directions for both teaching and research. In an expression of this, six authors were invited to present papers to a symposium on primary science held in 1984 to address the question: “What do you believe should be the state of primary science (in Australia) in 1995 and what are the steps which need to be taken to achieve the desired state?” This study set out to identify what had been said at that time, to compare that with actual developments, and to identify possible future directions for research. Relevant publications including Research in Science Education were analysed as a means of comparing what had happened since 1984 with the hopes of those authors. It was only in the latter half of the decade that some of the scenarios painted by the authors in 1984 began to emerge. A key implication for the research community drawn from the analysis shows that science education researchers have tended to neglect working in collaboration with education departments and authorities for the improvement of primary science education.

  4. The intelligence community and the war on terror: the role of behavioral science.

    PubMed

    Busch, Kenneth G; Weissman, Sidney H

    2005-01-01

    The United States intelligence community has been under intense scrutiny from both inside and outside in the aftermath of September 11. Post mortem assessments of intelligence breakdowns may judge the events as more predictable than was in fact the actual reality. In a troubled world, when threats to national security can materialize very quickly, the intelligence community must be able to effectively and swiftly develop and implement plans to prevent further terrorist attacks on the homeland. Numerous scenarios need to be considered for the management of crisis situations. Intelligence actions must make it more difficult for terrorists to strike at their targets. The war on terror must confront a new generation of enemies who threaten to attack the United States with weapons of mass destruction. This essay will focus on the role of behavioral science and how related reforms within the intelligence community could improve its capability to respond to a huge challenge. PMID:16094638

  5. Self-regulated learning and science achievement in a community college

    NASA Astrophysics Data System (ADS)

    Maslin, (Louisa) Lin-Yi L.

    Self-regulated learning involves students' use of strategies and skills to adapt and adjust towards achievement in school. This research investigates the extent to which self-regulated learning is employed by community college students, and also the correlates of self-regulated learning: Is it used more by students in advanced science classes or in some disciplines? Is there a difference in the use of it by students who complete a science course and those who do not? How does it relate to GPA and basic skills assessments and science achievement? Does it predict science achievement along with GPA and assessment scores? Community college students (N = 547) taking a science course responded to the Motivated Strategies for Learning Questionnaire (MSLQ). The scales measured three groups of variables: (1) cognitive strategies (rehearsal, elaboration, organization, and critical thinking); (2) metacognitive self-regulation strategies (planning, monitoring, and self-regulation); and (3) resource management strategies (time and study environment, effort regulation, peer learning, and help-seeking). Students' course scores, college GPA, and basic skills assessment scores were obtained from faculty and college records. Students who completed a science course were found to have higher measures on cumulative college GPAs and assessment scores, but not on self-regulated learning. Self-regulated learning was found not to be used differently between students in the advanced and beginning science groups, or between students in different disciplines. The exceptions were that the advanced group scored higher in critical thinking but lower in effort regulation than the beginning group. Course achievement was found to be mostly unrelated to self-regulated learning, except for several significant but very weak and negative relationships in elaboration, self-regulation, help-seeking, and effort regulation. Cumulative GPA emerged as the only significant predictor of science achievement

  6. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  7. Improved Instrumentation for the Detection of Atmospheric CO2 Concentration using an Airborne IPDA LIDAR for 2014 NASA ASCENDS Science Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W. E.; Rodriguez, M.; Ramanathan, A. K.; Sun, X.; Mao, J.; Abshire, J. B.

    2014-12-01

    NASA-GSFC is developing a twin-channel, Integrated-Path, Differential Absorption (IPDA) lidar to measure atmospheric CO2 from space as a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days, and Seasons). This lidar consists of two independent, tuned, pulsed transmitters on the same optical bench using a common 8" receiver telescope. The system measures CO2 abundance and O2 surface pressure in the same column to derive the dry volume mixing ratio (vmr). The system is being tested on an airborne platform up to altitudes of 13 Km. The lidar uses a cw scanning laser, externally pulsed and a fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure lineshape, range to scattering surfaces and backscatter profiles. The CO2 operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles to the O2 A-band absorption, around 765nm. Both lasers are scanned across the absorption feature measuring at a fixed number of discrete (~30) wavelengths per scan around ~300 scans/s. Each output pulse is slightly chirped <12MHz as the laser is tuning. Removing this chirp will improve our ability to infer vertical CO2 distribution from a more accurately measured line shape. A Step Tuned Frequency Locked (STFL) DBR diode laser system has been integrated into the CO2 lidar. Tuning and locking takes a ~30μs and the laser is locked to < ±100KHz. We have the ability to position these pulses anywhere on the absorption line other than within a few MHz of line center. While the telescope and fiber coupling scheme remains unchanged the detectors have been upgraded. The O2 system now uses eight SPCMs in parallel to improve count rates and increase dynamic range. Especially useful when flying over bright surfaces. This will improve our ability to measure the O2 pressure at cloud tops and aid in the determining the vmr above clouds. An HgCdTe e-APD detector with a quantum efficient of >80%, linear over five

  8. Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.

    2007-01-01

    Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.

  9. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    Belichesky, Jennifer

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational Living Learning Community (LLC) model on female persistence. This study employed a mixed-methods approach that was grounded in standpoint methodology. The qualitative data were collected through focus groups and one-on-one interviews with the female participants and was analyzed through a critical feminist lens utilizing standpoint methodology and coded utilizing inductive analysis. The quantitative data were collected and analyzed utilizing a simple statistical analysis of key academic variables indicative of student success: cumulative high school GPAs, SAT scores, first year cumulative GPAs, freshman persistence patterns in the intended major, and freshman retention patterns at the university. The findings of this study illustrated that the co-educational LLC model created an inclusive academic and social environment that positively impacted the female participants' experiences and persistence in STEM. The findings also found the inclusion of men in the community aided in the demystification of male superiority in the sciences for the female participants. This study also highlighted the significance of social identity in the decision making process to join a science LLC.

  10. Developing a Community of Practice to Support Preservice Elementary Teachers' Nature of Science Instruction

    NASA Astrophysics Data System (ADS)

    Akerson, Valarie L.; Donnelly, Lisa A.; Riggs, Morgan L.; Eastwood, Jennifer L.

    2012-06-01

    This study explored 'To what extent will preservice teachers with adequate nature of science (NOS) conceptions and who participate in a community supporting NOS instruction teach NOS in their internship settings?' Using a combination of focus group discussions and peer feedback, five preservice teachers met with university personnel bi-monthly during their internships to share NOS teaching and assessment ideas and ask questions. Field notes and voice recordings were used to track conversations at focus group settings and videotapes were made of science instruction in each internship setting. None of the preservice teachers had cooperating teachers who taught NOS, yet results showed that all five preservice teachers were able to explicitly teach NOS in their science lessons, albeit in different ways and to different degrees.

  11. What is the role of culture, diversity, and community engagement in transdisciplinary translational science?

    PubMed

    Graham, Phillip W; Kim, Mimi M; Clinton-Sherrod, A Monique; Yaros, Anna; Richmond, Alan N; Jackson, Melvin; Corbie-Smith, Giselle

    2016-03-01

    Concepts of culture and diversity are necessary considerations in the scientific application of theory generation and developmental processes of preventive interventions; yet, culture and/or diversity are often overlooked until later stages (e.g., adaptation [T3] and dissemination [T4]) of the translational science process. Here, we present a conceptual framework focused on the seamless incorporation of culture and diversity throughout the various stages of the translational science process (T1-T5). Informed by a community-engaged research approach, this framework guides integration of cultural and diversity considerations at each phase with emphasis on the importance and value of "citizen scientists" being research partners to promote ecological validity. The integrated partnership covers the first phase of intervention development through final phases that ultimately facilitate more global, universal translation of changes in attitudes, norms, and systems. Our comprehensive model for incorporating culture and diversity into translational research provides a basis for further discussion and translational science development. PMID:27012259

  12. Relating Coalition Capacity to the Adoption of Science-Based Prevention in Communities: Evidence from a Randomized Trial of Communities That Care

    PubMed Central

    Oesterle, Sabrina; Hawkins, J. David

    2015-01-01

    Coalition-based efforts that use a science-based approach to prevention can improve the wellbeing of community youth. This study measured several coalition capacities that are hypothesized to facilitate the adoption of a science-based approach to prevention in communities. Using data from 12 coalitions participating in a community-randomized trial of the prevention strategy Communities That Care (CTC), this paper describes select measurement properties of five salient coalition capacities (member substantive knowledge of prevention, member acquisition of new skills, member attitudes toward CTC, organizational linkages, and influence on organizations), as reported by coalition members, and examines the degree to which these capacities facilitated the community leader reports of the community-wide adoption of a science-based approach to prevention. Findings indicated that the five coalition capacities could be reliably measured using coalition member reports. Meta-regression analyses found that CTC had a greater impact on the adoption of a science-based prevention approach in 12 matched pairs of control and CTC communities where the CTC coalition had greater member (new skill acquisition) and organizational capacities (organizational linkages). PMID:25323784

  13. Community-Based Science: A Response to UCSD's Ongoing Racism Crisis

    NASA Astrophysics Data System (ADS)

    Werner, B.; Barraza, A.; Macgurn, R.

    2010-12-01

    In February, 2010, the University of California - San Diego's long simmering racism crisis erupted in response to a series of racist provocations, including a fraternity party titled "The Compton Cookout" and a noose discovered in the main library. Student groups led by the Black Student Union organized a series of protests, occupations and discussions highlighting the situation at UCSD (including the low fraction of African American students: 1.3%), and pressuring the university to take action. Extensive interviews (March-May, 2010) with participants in the protests indicate that most felt the UCSD senior administration's response was inadequate and failed to address the underlying causes of the crisis. In an attempt to contribute to a more welcoming university that connects to working class communities of color, we have developed an educational program directed towards students in the environmental- and geo-sciences that seeks to establish genuine, two-way links between students and working people, with a focus on City Heights, a multi-ethnic, multi-lingual diverse immigrant community 20 miles from UCSD. Elements of the program include: --critiquing research universities and their connection to working class communities --learning about and discussing issues affecting City Heights, including community, environmental racism, health and traditional knowledge; --interviewing organizers and activists to find out about the stories and struggles of the community; --working on joint projects affecting environmental quality in City Heights with high school students; --partnering with individual high school students to develop a proposal for a joint science project of mutual interest; --developing a proposal for how UCSD could change to better interface with City Heights. An assessment of the impact of the program on individual community members and UCSD students and on developing enduring links between City Heights and UCSD will be presented followed by a preliminary

  14. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The airborne transmission of bacterial pathogens from point sources (e.g. ranches, waste treatment facilities) to areas of food production (farms) has been suspected. However, there have been few studies monitoring the incidence, transport and viability of bacteria in aerosols. We monitored the numb...

  15. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    NASA Astrophysics Data System (ADS)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  16. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  17. R2R Eventlogger: Community-wide Recording of Oceanographic Cruise Science Events

    NASA Astrophysics Data System (ADS)

    Maffei, A. R.; Chandler, C. L.; Stolp, L.; Lerner, S.; Avery, J.; Thiel, T.

    2012-12-01

    Methods used by researchers to track science events during a science research cruise - and to note when and where these occur - varies widely. Handwritten notebooks, printed forms, watch-keeper logbooks, data-logging software, and customized software have all been employed. The quality of scientific results is affected by the consistency and care with which such events are recorded and integration of multi-cruise results is hampered because recording methods vary widely from cruise to cruise. The Rolling Deck to Repository (R2R) program has developed an Eventlogger system that will eventually be deployed on most vessels in the academic research fleet. It is based on the open software package called ELOG (http://midas.psi.ch/elog/) originally authored by Stefan Ritt and enhanced by our team. Lessons have been learned in its development and use on several research cruises. We have worked hard to find approaches that encourage cruise participants to use tools like the eventlogger. We examine these lessons and several eventlogger datasets from past cruises. We further describe how the R2R Science Eventlogger works in concert with the other R2R program elements to help coordinate research vessels into a coordinated mobile observing fleet. Making use of data collected on different research cruises is enabled by adopting common ways of describing science events, the science instruments employed, the data collected, etc. The use of controlled vocabularies and the practice of mapping these local vocabularies to accepted oceanographic community vocabularies helps to bind shipboard research events from different cruises into a more cohesive set of fleet-wide events that can be queried and examined in a cross-cruise manner. Examples of the use of the eventlogger during multi-cruise oceanographic research programs along with examples of resultant eventlogger data will be presented. Additionally we will highlight the importance of vocabulary use strategies to the success of the

  18. Enculturating science: Community-centric design of behavior change interactions for accelerating health impact.

    PubMed

    Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L

    2015-08-01

    Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning

  19. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  20. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  1. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  2. ESIP Federation: A Case Study on Enabling Collaboration Infrastructure to Support Earth Science Informatics Communities

    NASA Astrophysics Data System (ADS)

    Robinson, E.; Meyer, C. B.; Benedict, K. K.

    2013-12-01

    A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a

  3. Discover Earth: an earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.

    2011-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public's understanding of Earth's physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The Space Science Institute's National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. STAR-Net includes two exhibitions: Discover Earth and Discover Tech. The Discover Earth exhibition will focus on local earth science topics-such as weather, water cycle, and ecosystem changes-as well as a global view of our changing planet. The main take-away message (or Big Idea) for this exhibition is that the global environment changes - and is changed by - the host community's local environment. The project team is testing whether this approach will be a good strategy for engaging the public, especially in rural America. This presentation will provide an overview of the Discover Earth project and how it is integrating climate change ideas into the exhibit

  4. What K-12 Teachers of Earth Science Need from the Earth Science Research Community: Science Teaching and Professional Learning in the Earth Sciences (STAPLES), a Minnesota Case Study

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Pound, K. S.; Rosok, K.; Baumtrog, J.

    2009-12-01

    NSF-style Broader Impacts activities in the Earth Sciences take many forms, from long term partnerships between universities and informal science institutions to one-time K-12 classroom visits by scientists. Broader Impacts that include K-12 teachers range from those that convey broad Earth Science concepts to others stressing direct connections to very specific current research methods and results. Design of these programs is often informed by prior successful models and a broad understanding of teacher needs, but is not specifically designed to address needs expressed by teachers themselves. In order to better understand teachers’ perceived needs for connections to Earth Science research, we have formed the Science Teaching and Professional Learning in the Earth Sciences (STAPLES) research team. Our team includes a geology faculty member experienced in undergraduate and professional Earth Science teacher training, two in-service middle school Earth Science teachers, and the Education Director of the National Center for Earth-surface Dynamics (NCED), a National Science Foundation Science and Technology Center. Members of the team have designed, taught and experienced many of these models, from the Andrill ARISE program to NCED’s summer institutes and teacher internship program. We are administering the STAPLES survey to ask Earth Science teachers in our own state (Minnesota) which of many models they use to 1) strengthen their own understanding of current Earth Science research and general Earth Science concepts and 2) deepen their students’ understanding of Earth Science content. Our goal is to share survey results to inform more effective Broader Impacts programs in Minnesota and to stimulate a wider national discussion of effective Broader Impacts programs that includes teachers’ voices.

  5. Community-Driven Support in the Hydrologic Sciences through Data, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Clark, E.

    2015-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-profit funded by the National Science Foundation to support water science research and education. As outlined in the CUAHSI Education and Outreach Strategy, our objectives are: 1) helping the member institutions communicate water science; 2) cross-disciplinary water education; 3) dissemination of research; 4) place-based water education using data services; and 5) broadening participation. Through the CUAHSI Water Data Center, online tools and resources are available to discover, download, and analyze multiple time-series water datasets across various parameters. CUAHSI supports novel graduate student research through the Pathfinder Fellowship program which has enhanced the interdisciplinary breadth of early-career research. Public outreach through the Let's Talk About Water film symposium and cyberseminar programs have proven effective in distributing research, leading to more recent development of virtual training workshops. By refining and building upon CUAHSI's existing programs, new training opportunities, collaborative projects, and community-building activities for the hydrologic sciences have come to fruition, such as the recent National Flood Interoperability Experiment with the NOAA's National Water Center.

  6. Lesson Study-Building Communities of Learning Among Pre-Service Science Teachers

    NASA Astrophysics Data System (ADS)

    Hamzeh, Fouada

    Lesson Study is a widely used pedagogical approach that has been used for decades in its country of origin, Japan. It is a teacher-led form of professional development that involves the collaborative efforts of teachers in co-planning and observing the teaching of a lesson within a unit for evidence that the teaching practices used help the learning process (Lewis, 2002a). The purpose of this research was to investigate if Lesson Study enables pre-service teachers to improve their own teaching in the area of science inquiry-based approaches. Also explored are the self-efficacy beliefs of one group of science pre-service teachers related to their experiences in Lesson Study. The research investigated four questions: 1) Does Lesson Study influence teacher preparation for inquiry-based instruction? 2) Does Lesson Study improve teacher efficacy? 3) Does Lesson Study impact teachers' aspiration to collaborate with colleagues? 4) What are the attitudes and perceptions of pre-service teachers to the Lesson Study idea in Science? The 12 participants completed two pre- and post-study surveys: STEBI- B, Science Teaching Efficacy Belief Instrument (Enochs & Riggs, 1990) and ASTQ, Attitude towards Science Teaching. Data sources included student teaching lesson observations, lesson debriefing notes and focus group interviews. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. This study added to the body of research on teaching learning communities, professional development programs and teacher empowerment.

  7. Employing citizen science to study defoliation impacts on arthropod communities on tamarisk

    NASA Astrophysics Data System (ADS)

    Kruse, Audrey L.

    The invasive tamarisk tree is widespread across the southwestern landscape of the United States and has been dominant in regulated river reaches, outcompeting native vegetation and impacting trophic webs in riparian ecosystems. The changes in riparian habitat and recreation opportunities along southwestern rivers, like the San Juan River in Utah, led to the implementation of a biocontrol program in the form of the tamarisk leaf beetle (Diorhabda spp.). It is unknown what the long term effects on riparian ecosystems are as a result of the beetles' defoliation of tamarisk each summer. This study sought to identify the current arthropod community composition and abundance over one growing season on the San Juan River between Bluff and Mexican Hat, UT and second, to involve the public in this research through a citizen science component. I found that non-native insects, including the tamarisk leaf beetle, dominated the arboreal arthropod communities within the tamarisk and there are relatively few native arthropods residing in tamarisk throughout the summer season. Foliation levels (the quantity of leaves in the canopy of tamarisk) were inconclusive predictors of arthropod abundances but varied by species and by feeding guild. This may indicate that the defoliation of the tamarisk is not necessarily negatively impacting trophic interactions in tamarisk. I incorporated youth participants on educational river rafting trips to assist in data collection of arthropods from tamarisk trees as a way to educate and bring attention to the issue of invasive species in the Southwest. After completing my own citizen science project and after doing a literature review of other, similar citizen science projects, I found that striving for both rigorous scientific data and quality educational programming is challenging for a small scale project that does not target broad spatial, geographic, or temporal data. Citizen science project developers should clearly identify their objectives

  8. Data Science: History repeated? - The heritage of the Free and Open Source GIS community

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Neteler, Markus

    2014-05-01

    Data Science is described as the process of knowledge extraction from large data sets by means of scientific methods. The discipline draws heavily from techniques and theories from many fields, which are jointly used to furthermore develop information retrieval on structured or unstructured very large datasets. While the term Data Science was already coined in 1960, the current perception of this field places is still in the first section of the hype cycle according to Gartner, being well en route from the technology trigger stage to the peak of inflated expectations. In our view the future development of Data Science could benefit from the analysis of experiences from related evolutionary processes. One predecessor is the area of Geographic Information Systems (GIS). The intrinsic scope of GIS is the integration and storage of spatial information from often heterogeneous sources, data analysis, sharing of reconstructed or aggregated results in visual form or via data transfer. GIS is successfully applied to process and analyse spatially referenced content in a wide and still expanding range of science areas, spanning from human and social sciences like archeology, politics and architecture to environmental and geoscientific applications, even including planetology. This paper presents proven patterns for innovation and organisation derived from the evolution of GIS, which can be ported to Data Science. Within the GIS landscape, three strategic interacting tiers can be denoted: i) Standardisation, ii) applications based on closed-source software, without the option of access to and analysis of the implemented algorithms, and iii) Free and Open Source Software (FOSS) based on freely accessible program code enabling analysis, education and ,improvement by everyone. This paper focuses on patterns gained from the synthesis of three decades of FOSS development. We identified best-practices which evolved from long term FOSS projects, describe the role of community

  9. The effect of online collaborative learning on middle school student science literacy and sense of community

    NASA Astrophysics Data System (ADS)

    Wendt, Jillian Leigh

    This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a pretest consisting of the Misconceptions-Oriented Standards-Based Assessment Resources for Teachers (MOSART) Physical Science assessment and the Classroom Community Scale. Students in the control group received in-class assignments that were completed collaboratively in a face-to-face manner. Students in the experimental group received in-class assignments that were completed online collaboratively through the Edmodo educational platform. Both groups were members of intact, traditional face-to-face classrooms. The students were then post tested. Results pertaining to the MOSART assessment were statistically analyzed through ANCOVA analysis while results pertaining to the Classroom Community Scale were analyzed through MANOVA analysis. Results are reported and suggestions for future research are provided.

  10. Development, Implementation, and Evaluation of a Science Learning Community for Underrepresented Students

    NASA Astrophysics Data System (ADS)

    Garrett-Ruffin, Sherona; Martsolf, Donna S.

    Recruiting women, minorities, and first-generation students into the sciences, and retaining these students, is a challenge at many universities. Learning communities have been used in many university settings to promote the retention of students from the 1st to the 2nd year. The Science Learning Community (SLC) at Kent State University was developed to help minority and first-generation college students succeed in biology, chemistry, and nursing majors. Inaugurated in 2002, the SLC had 22 members in the first cohort and 22 members in the second. Each cohort lived in one residence hall, shared cocurricular activities - including mandatory study sessions and supplemental instruction, and attended the same sections of English and science classes during the 1st year. At the conclusion of year 1, retention rates for SLC students were compared to three control groups matched for gender, minority status, ACT score, and course registration. Students in the SLC were retained at a higher rate than control group members (82.6% compared with 73.7% for the first cohort; 81.8% compared with 79.3% for the second cohort) and expressed high satisfaction with the SLC experience during exit interviews.

  11. Promoting student engagement in science: Interaction rituals and the pursuit of a community of practice

    NASA Astrophysics Data System (ADS)

    Olitsky, Stacy

    2007-01-01

    This study explores the relationship between interaction rituals, student engagement with science, and learning environments modeled on communities of practice based on an ethnographic study of an eighth grade urban magnet school classroom. It compares three interactional events in order to examine the classroom conditions and teacher practices that can foster successful interaction rituals (IRs), which are characterized by high levels of emotional energy, feelings of group membership, and sustained interest in the subject. Classroom conditions surrounding the emergence of successful IRs included mutual focus, familiar symbols and activity structures, the permissibility of some side-talk, and opportunities for physical and emotional entrainment. Sustained interest in the topic beyond the duration of the IR and an increase in students' helping each other learn occurred more frequently when the mutual focus consisted of science-related symbols, when there were low levels of risk for participants, when activities involved sufficient challenge and time, and when students were positioned as knowledgeable and competent in science. The results suggest that successful interaction rituals can foster student engagement with topics that may not have previously held interest and can contribute to students' support of peers' learning, thereby moving the classroom toward a community-of-practice model.

  12. Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.

  13. Community petascale project for accelerator science and simulation : Advancing computational science for future accelerators and accelerator technologies.

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L. C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R & D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  14. Communities of practice: Participation patterns and professional impact for high school mathematics and science teachers

    NASA Astrophysics Data System (ADS)

    Printy, Susan M.

    Improving the quality of teachers in schools is a keystone to educational improvement. New and veteran teachers alike need to enhance their content knowledge and pedagogical skills, but they must also examine, and often change, their underlying attitudes, beliefs, and values about the nature of knowledge and the abilities of students. Best accomplished collectively rather than individually, the interactions between teachers as they undertake the process of collaborative inquiry create "communities of practice." This dissertation investigates the importance of science and mathematics teachers' participation in communities of practice to their professional capabilities. The study tests the hypothesis that the social learning inherent in community of practice participation encourages teachers to learn from others with expertise, enhances teachers' sense of competence, and increases the likelihood that teachers' will use student-centered, problem-based instructional techniques aligned with national disciplinary standards. The researcher conceptualizes communities of practice along two dimensions that affect social learning: legitimate participation in activities and span of engagement with school members. Differences in teachers' subject area and the curricular track of their teaching assignment contribute to variation in teachers' participation in communities of practice along those dimensions. Using data from the National Educational Longitudinal Study, first and second follow-up, the study has two stages of multi-level analysis. The first stage examines factors that contribute to teachers' participation in communities of practice, including teachers' social and professional characteristics and school demographic and organizational characteristics. The second stage investigates the professional impact of such participation on the three outcome variables: teacher learning, teacher competence, and use of standards-based pedagogy. Hierarchical linear models provide

  15. Preparing Women and Minorities for Careers in Math and Science: The Role of Community Colleges. ERIC Digest.

    ERIC Educational Resources Information Center

    Quimbita, Grace

    Community colleges can play an important role in increasing the number of people in the scientific talent pool and diversifying its ethnic and gender composition. In an effort to recruit more women and minorities into two-year college science, math, and engineering technology programs, community colleges are engaging in a wide range of special…

  16. Structured Communities, Science Instruction Development, and the Use of Blogging in a Pre-Service Elementary Teacher Education Program

    ERIC Educational Resources Information Center

    Wall, Steven C.; Anderson, Janice; Justice, Julie

    2014-01-01

    This study evaluates the use of blogging and what it reveals about the development of science teaching ability in pre-service elementary education majors. The investigation occurs in a structured community and takes into consideration interactions among community members as they reflect on their own experiences and respond to the blogs of other…

  17. The Impact of an Interdisciplinary Learning Community Course on Pseudoscientific Reasoning in First-Year Science Students

    ERIC Educational Resources Information Center

    Franz, Timothy M.; Green, Kris H.

    2013-01-01

    This case study examined the development and evaluation of an interdisciplinary first-year learning community designed to stimulate scientific reasoning and critical thinking. Designed to serve the needs of scholarship students majoring in mathematics and natural sciences, the six-credit learning community course was writing-intensive and…

  18. Essential Concepts of Nanoscale Science and Technology for High School Students Based on a Delphi Study by the Expert Community

    ERIC Educational Resources Information Center

    Sakhnini, Sohair; Blonder, Ron

    2015-01-01

    Nanoscale science and technology (NST) is an important new field in modern science. In the current study, we seek to answer the question: "What are the essential concepts of NST that should be taught in high school"? A 3-round Delphi study methodology was applied based on 2 communities of experts in nanotechnology research and science…

  19. Influence of Professional Learning Community (PLC) on Secondary Science Teachers' Culture of Professional Practice: The Case of Bangladesh

    ERIC Educational Resources Information Center

    Rahman, S. M. Hafizur

    2011-01-01

    While the current reform efforts in Bangladesh require a substantive change in how science is taught, an equally substantive change is needed in the culture of professional practice. This study will, therefore, investigate how science teachers' learning in a professional learning community (PLC) influences the ways in which participant teachers…

  20. The Foreign Born with Science and Engineering Degrees: 2010. American Community Survey Briefs. ACSBR/10-06

    ERIC Educational Resources Information Center

    Gambino, Christine; Gryn, Thomas

    2011-01-01

    This brief will discuss patterns of science and engineering educational attainment within the foreign-born population living in the United States, using data from the 2010 American Community Survey (ACS). The analysis is restricted to the population aged 25 and older, and the results are presented on science and engineering degree attainment by…

  1. Environmental and Science Education in Developing Nations: A Ghanaian Approach to Renewing and Revitalizing the Local Community and Ecosystems

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Bentley, Michael L.

    2009-01-01

    Curriculum reform in environmental and science education now taking place in Ghana focuses on the community and ecosystems as the context of education. In Ghana, students conduct science investigations that include games, word searches, crossword puzzles, case studies, role play, debates, projects, and ecological profiles. This curriculum reflects…

  2. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  3. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    generate flights enables humans to assess and analyze complex tradeoffs between fuel consumption, estimated science quality and the percentage of scheduled observations. Due to the changing nature of SOFIA scheduling problems, this functionality will play a crucial role in optimizing science and minimizing costs during operations. In the full paper, we will summarize the technical challenges that have been met in order to build this system. These include: design of the search algorithm, design of appropriate heuristics and approximations, and reduction in the size of the search space. We will also describe technical challenges that are currently being addressed, including the extension of the existing approach to handle new solution criteria. Finally, we will describe a variety of cultural challenges that the astronomical community must address in order to successfully use SOFIA, and describe how the AFT can be used to address some of these challenges. Specifically, many of the intended science users are accustomed to using ground-based or space-based observatories; we will identify some differences that arise due to the nature of airborne observatories, and how the AFT can be extended to provide useful services to ease these cultural differences.

  4. Talk and community: The place of reporting in a life sciences laboratory

    NASA Astrophysics Data System (ADS)

    Swieringa, Robert Cecil

    This study investigates the routine situated communicative practice within the weekly meetings of a life sciences laboratory. The key, constitutive discourse of "reporting" is examined as an activity in which participants jointly sustain the work community of the laboratory and manage their own work within this community. This study seeks to contribute to studies of small groups by focusing upon the multifunctionality and situated nature of the meeting interactions within this enduring "bona fide" group as participants undertake multiple goals associated with their own progress and with the overlapping contexts of the setting. It also seeks to contribute to investigations of institutional talk and activity by examining "reporting" as interaction with institutional and community consequences for members of the community. This study takes a practice-oriented perspective to investigate the laboratory as a community of practice, focusing upon the "activity" of interaction as the overall unit of analysis. Ethnographic materials (involving observation, interviews, conversations, and activity logs) and discourse analysis techniques (involving audiotaping and transcriptions of meetings) were used to locate and record data within a university entomology laboratory over a two year period. Through triangulation of data, "reporting" is identified as a key discourse activity within the laboratory. As situated communicative practice within the weekly meetings, reporting is found to be compelled discourse through which interactants interactively manage one's ongoing goals and activity while temporally situating that activity within the broader stream of laboratory work. This study provides an example of how engagement in situated discursive activity provides for the coordination of individual lines of progress within the ongoing work of a community.

  5. NERSC 'Visualization Greenbook' Future visualization needs of the DOE computational science community hosted at NERSC

    SciTech Connect

    Hamann, Bernd; Bethel, E. Wes; Simon, Horst; Meza, Juan

    2002-11-04

    This report presents the findings and recommendations that emerged from a one-day workshop held at Lawrence Berkeley National Laboratory (LBNL) on June 5, 2002, in conjunction with the NERSC User Group (NUG) Meeting. The motivation for this workshop was to solicit direct input from the application science community on the subject of visualization. The workshop speakers and participants included computational scientists from a cross-section of disciplines that use the NERSC facility, as well as visualization researchers from across the country. We asked the workshop contributors how they currently visualize their results, and how they would like to do visualization in the future. We were especially interested in each individual's view of how visualization tools and services could be improved in order to better meet the needs of future computational science projects. The outcome of this workshop is a set of findings and recommendations that are presented in more detail later in this report, and briefly summarized here.

  6. College Students Constructing Collective Knowledge of Natural Science History in a Collaborative Knowledge Building Community

    NASA Astrophysics Data System (ADS)

    Hong, Huang-Yao; Chai, Ching Sing; Tsai, Chin-Chung

    2015-10-01

    This study investigates whether engaging college students ( n = 42) in a knowledge building environment would help them work as a community to construct their collective knowledge of history of science and, accordingly, develop a more informed scientific view. The study adopted mixed-method analyses and data mainly came from surveys and student online discourse recorded in a database. Findings indicate that students' knowledge building activities were conducive to the development of their online collaboration as a learning process and the effective collective knowledge work concerning natural science history as a learning outcome. Moreover, students were able to attain a more constructivist-oriented epistemic view that sees scientific theories as invented, tentative, and improvable objects. Finally, based on course reflection, students also regarded their collective learning experiences in this course as meaningful and productive.

  7. Community-Based Groundwater Monitoring Network Using a Citizen-Science Approach.

    PubMed

    Little, Kathleen E; Hayashi, Masaki; Liang, Steve

    2016-05-01

    Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land-use change, and climatic variability. It is important to have a spatially distributed, long-term monitoring well network for sustainable groundwater resource management. Community-based monitoring involving citizen scientists provides an approach to complement existing government-run monitoring programs. This article demonstrates the feasibility of establishing a large-scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km(2) ) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web-based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5-year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community-based groundwater monitoring provides an effective and affordable tool for sustainable water resources management. PMID:25825253

  8. DCO-VIVO: A Collaborative Data Platform for the Deep Carbon Science Communities

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; West, P.; Erickson, J. S.; Ma, X.; Fox, P. A.

    2014-12-01

    Deep Carbon Observatory (DCO) is a decade-long scientific endeavor to understand carbon in the complex deep Earth system. Thousands of DCO scientists from institutions across the globe are organized into communities representing four domains of exploration: Extreme Physics and Chemistry, Reservoirs and Fluxes, Deep Energy, and Deep Life. Cross-community and cross-disciplinary collaboration is one of the most distinctive features in DCO's flexible research framework. VIVO is an open-source Semantic Web platform that facilitates cross-institutional researcher and research discovery. it includes a number of standard ontologies that interconnect people, organizations, publications, activities, locations, and other entities of research interest to enable browsing, searching, visualizing, and generating Linked Open (research) Data. The DCO-VIVO solution expedites research collaboration between DCO scientists and communities. Based on DCO's specific requirements, the DCO Data Science team developed a series of extensions to the VIVO platform including extending the VIVO information model, extended query over the semantic information within VIVO, integration with other open source collaborative environments and data management systems, using single sign-on, assigning of unique Handles to DCO objects, and publication and dataset ingesting extensions using existing publication systems. We present here the iterative development of these requirements that are now in daily use by the DCO community of scientists for research reporting, information sharing, and resource discovery in support of research activities and program management.

  9. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  10. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  11. Integrated assessment of emerging science and technologies as creating learning processes among assessment communities.

    PubMed

    Forsberg, Ellen-Marie; Ribeiro, Barbara; Heyen, Nils B; Nielsen, Rasmus Øjvind; Thorstensen, Erik; de Bakker, Erik; Klüver, Lars; Reiss, Thomas; Beekman, Volkert; Millar, Kate

    2016-12-01

    Emerging science and technologies are often characterised by complexity, uncertainty and controversy. Regulation and governance of such scientific and technological developments needs to build on knowledge and evidence that reflect this complicated situation. This insight is sometimes formulated as a call for integrated assessment of emerging science and technologies, and such a call is analysed in this article. The article addresses two overall questions. The first is: to what extent are emerging science and technologies currently assessed in an integrated way. The second is: if there appears to be a need for further integration, what should such integration consist in? In the article we briefly outline the pedigree of the term 'integrated assessment' and present a number of interpretations of the concept that are useful for informing current analyses and discussions of integration in assessment. Based on four case studies of assessment of emerging science and technologies, studies of assessment traditions, literature analysis and dialogues with assessment professionals, currently under-developed integration dimensions are identified. It is suggested how these dimensions can be addressed in a practical approach to assessment where representatives of different assessment communities and stakeholders are involved. We call this approach the Trans Domain Technology Evaluation Process (TranSTEP). PMID:27465504

  12. Cool learnings - extending and communicating polar science to students and the community.

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.

    2011-12-01

    Why should scientists incorporate education and extend communicate the results of their research to the general public? - Because it is the right thing to do; it is easy, fun and usually effective; can feedback to strengthen and improve research; and from an environmental science perspective - badly needed as evidenced by some of the very strange and ill-informed decisions society is making that will affect future generations for many years to come. This presentation focuses on two case studies that extended the research activities from a relatively young and small university research lab to two minority student and community audiences. The first case study focuses on the educational and outreach experience gained by minority graduate and undergraduate students and teachers participating in an Antarctic system Science study abroad course. Students completed an online class, visited with NSF and other federal agencies in Washington DC, and experienced Patagonia and the Antarctic Peninsula on a month long capstone field course. Participants also visited the classrooms of over 750 students in El Paso, Texas before and after their trip to Antarctica, and prepared a museum exhibit that has now been visited by thousands of people. Most participants have progressed to graduate school or careers in the sciences and several have already acquired substantial funding for research - largely because of their demonstrated capacity to link research, education and outreach. The second case study describes several instances where the provision of scientific data, information and other resources were extended through cyberinfrastructure to the community of a relatively small Inuit village in northernmost Alaska. Here science data products have been used to enhance town planning and other decision making, and improve the safety of hunters participating in traditional activities such as the Spring subsistence whale harvest. This takes place on sea ice that is more dynamic and does not

  13. Relationships Hold the Key to Trustworthy and Productive Translational Science: Recommendations for Expanding Community Engagement in Biomedical Research

    PubMed Central

    Yarborough, Mark; Edwards, Kelly; Espinoza, Paula; Geller, Gail; Sarwal, Alok; Sharp, Richard R.; Spicer, Paul

    2014-01-01

    Good relationships between research institutions and communities are an essential, but often neglected, part of the infrastructure of translational science. In an effort to create greater interest among translational science researchers in cultivating relationships with community members, we report the results of a workshop we convened to learn how relationships vital to research are best created and sustained. We highlight common barriers and challenges that hinder relationships. We also provide recommendations that individual research institutions and teams can use to expand and strengthen their relationships with community members. The improved relationships between universities and communities that could result from their implementation should build greater public trust in biomedical research, lead to a stronger commitment to see it succeed, and engender shared values and commitments that will give rise to new rewards, recognition and admonishment to sustain those values and commitments over time, all of which would facilitate translational science. PMID:23919367

  14. The Centers for Ocean Science Education Excellence: Partnering with Community Colleges to Enhance Ocean Education and Broaden Participation.

    NASA Astrophysics Data System (ADS)

    Hodder, J.

    2011-12-01

    The Centers for Ocean Science Education Excellence (COSEE) have developed collaborations between research scientists and educators to transform ocean sciences education. Several COSEE centers have worked with the two-year college (2YC) community to enhance the 2YC faculty's capacity to deliver high-quality educational programs in the ocean sciences, integrate ocean research into 2YC educational materials, and enable ocean researchers to gain a better understanding of the capacity and culture of the 2YC community. In addition, COSEE-Pacific Partnerships has developed the Promoting Research Investigations in the Marine Environment (PRIME) internship program, based at west coast marine laboratories, to provide community college students with opportunities to work with ocean research scientists. This presentation will highlight some of the programs developed by COSEE centers and discuss the impact of these activities on scientists, community college faculty and students.

  15. Influence of Precollege Experience on Self-Concept among Community College Students in Science, Mathematics, and Engineering

    NASA Astrophysics Data System (ADS)

    Starobin, Soko S.; Laanan, Frankie Santos

    Female and minority students have historically been underrepresented in the field of science, mathematics, and engineering at colleges and universities. Although a plethora of research has focused on students enrolled in 4-year colleges or universities, limited research addresses the factors that influence gender differences in community college students in science, mathematics, and engineering. Using a target population of 1,599 aspirants in science, mathematics, and engineering majors in public community colleges, this study investigates the determinants of self-concept by examining a hypothetical structural model. The findings suggest that background characteristics, high school academic performance, and attitude toward science have unique contributions to the development of self-concept among female community college students. The results add to the literature by providing new theoretical constructs and the variables that predict students' self-concept.

  16. DC-8 Airborne Laboratory in flight during research mission - view from above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The DC-8 Airborne Science Laboratroy is shown flying above a solid layer of clouds. The aircraft was transferred from the Ames Research Center to the Dryden Flight Research Center in late 1997. Over the past several years, it has undertaken a wide range of research in such fields as archeology, ecology, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, and other fields. In this photo, it is shown flying over a bank of clouds. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  17. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  18. Public Understanding of Science as Seen by the Scientific Community: Do We Need To Re-Conceptualize the Challenge and To Re-Examine Our Own Assumptions?

    ERIC Educational Resources Information Center

    Cobern, William W.

    This paper addresses the question of how the scientific community views the public understanding of science and whether there needs to be a re-conceptualization of the challenge to foster the public understanding of science, as well as whether there is a need to re-examine assumptions. It is argued that the science community's historic perspective…

  19. Building professional identity as computer science teachers: Supporting high school computer science teachers through reflection and community building

    NASA Astrophysics Data System (ADS)

    Ni, Lijun

    Computing education requires qualified computing teachers. The reality is that too few high schools in the U.S. have computing/computer science teachers with formal computer science (CS) training, and many schools do not have CS teacher at all. Moreover, teacher retention rate is often low. Beginning teacher attrition rate is particularly high in secondary education. Therefore, in addition to the need for preparing new CS teachers, we also need to support those teachers we have recruited and trained to become better teachers and continue to teach CS. Teacher education literature, especially teacher identity theory, suggests that a strong sense of teacher identity is a major indicator or feature of committed, qualified teachers. However, under the current educational system in the U.S., it could be challenging to establish teacher identity for high school (HS) CS teachers, e.g., due to a lack of teacher certification for CS. This thesis work centers upon understanding the sense of identity HS CS teachers hold and exploring ways of supporting their identity development through a professional development program: the Disciplinary Commons for Computing Educators (DCCE). DCCE has a major focus on promoting reflection on teaching practice and community building. With scaffolded activities such as course portfolio creation, peer review and peer observation among a group of HS CS teachers, it offers opportunities for CS teachers to explicitly reflect on and narrate their teaching, which is a central process of identity building through their participation within the community. In this thesis research, I explore the development of CS teacher identity through professional development programs. I first conducted an interview study with local HS CS teachers to understand their sense of identity and factors influencing their identity formation. I designed and enacted the professional program (DCCE) and conducted case studies with DCCE participants to understand how their

  20. Communities of practice in life sciences and the need for brokering

    PubMed Central

    Tierney, Anne

    2016-01-01

    Etienne Wenger’s work on communities of practice is influential in teaching and learning in higher education. A core work of many postgraduate certificate in teaching and learning (PGCert) courses for new lecturers, it is studied, in the main, as a means to understand how to support and encourage students to achieve more effective learning. Communities of practice can also be applied to academics. In the context of the Research Excellence Framework (REF) and its predecessors, the gulf between research-focused and teaching-Focused academics in life sciences has widened, so that in many institutions, these two groups have evolved into two distinct communities of practice; one whose priority is disciplinary research, the other’s learning and teaching. However, in 2015, the UK government announced that a Teaching Excellence Framework (TEF) would be introduced into higher education in England, as early as 2017. While the exact details of TEF remain unclear, it is certain that “excellence” and “student satisfaction” will be high on the agenda. It is vital, therefore, that the two communities of practice, research-focused and teaching-focused, find ways to come together in order to ensure high quality teaching and learning. Wenger proposes that this can be done through the process of “brokering”, which allows expertise from both communities of practice to cross from one to the other, strengthening both. This should be encouraged at departmental and institutional level, but another vital origin of brokering can be forged at a(n) (inter)national level at meetings such as the SEB Annual Conference, where teaching-focused academics have the opportunity to mix with research-active colleagues. While this paper is informed by recent and current events in the UK Higher Education sector, it is of interest to academics who work in an environment where research and teaching have become separate to any extent. PMID:26998239

  1. Barriers to Incorporating Climate Change Science into High School and Community College Energy Course Offerings

    NASA Astrophysics Data System (ADS)

    Howell, C.

    2013-05-01

    In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions

  2. Inclusive pedagogy for diverse learners: Science instruction, disability, and the community college

    NASA Astrophysics Data System (ADS)

    Moriarty, Mary A.

    The following study examined the use of inclusive pedagogy by science, technology, engineering, and mathematics (STEM) faculty at three community colleges. The study was developed in response to a gap in existing knowledge about inclusive instruction in two-year colleges. The purpose was to identify barriers to the adoption of inclusive teaching methods for diverse learners and students with disabilities, and to propose ways to break down these barriers. Three research questions designed for the study asked about (a) the current teaching styles and methods of curriculum delivery used by community college STEM faculty, (b) the levels of awareness and knowledge of community college STEM faculty about inclusive teaching practices, and (c) the personal, attitudinal, and environmental factors that inhibit community college STEM faculty from using inclusive pedagogical practices to better serve students with disabilities and other diverse students. A sequential method was used to obtain both quantitative and qualitative data regarding instructional practices, pedagogical knowledge, and beliefs about teaching and learning. Two hundred and eleven STEM faculty members responded to a questionnaire that was administered electronically and 11 faculty members were interviewed, 9 of whom were observed in the classroom. Findings revealed that a significant number of these community college faculty members have an inclusive mindset and believe in adapting their instruction in order to accommodate learner differences. These faculty members also appear more knowledgeable about pedagogical practices than what has been reported in previous literature about four-year faculty. Many of the faculty members are using multimodal instructional methods. However, a significant gap still exists between what they believe and know and what is actually put into instructional practice. A number of barriers that prohibit the use and development of inclusive practices were identified in this study

  3. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  4. MS PHD'S: A Synergistic Model for Diversifying the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Braxton, L.; Johnson, A.

    2013-05-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) program focuses on increasing the number of underrepresented minorities (URM) receiving advanced degrees in Earth system sciences (ESS). Subscribing to Aristotle's philosophy that the "whole is greater than the sum of its parts", MS PHD'S uses a synergistic model of tiered mentoring practices, successful minority scientist role models, peer-to-peer community building activities, professional development training techniques, networking opportunities, and state of the art virtual communication tools to facilitate the retention and advancement of underrepresented ESS scientists. Using a three-phase program structure supported by a virtual community, URM students in ESS are afforded opportunities to establish mentoring relationships with successful scientists, build meaningful ties with URM peers and future colleagues, strengthen oral and written communication skills, engage in networking opportunities within premier scientific venues, and maintain continuity of networks formed through program participation. Established in 2003, MS PHD'S is now in its ninth cohort. From the original cohort of 24 participants, the program has grown to support 213 participants. Of these 213 participants, 42 have obtained the doctorate and are employed within the ESS workforce. Another 71 are enrolled in doctoral programs. Looking to the future with the purpose of continually furthering its synergistic philosophy, MS PHD'S has developed a new initiative, Beyond the PhD, designed to support and advance the representation of URM scientists within a global workforce.

  5. Research and development in 2000: directions and priorities for the world's poultry science community.

    PubMed

    Sheldon, B L

    2000-02-01

    The challenges and targets facing the world's poultry science community in the immediate future are reviewed in the context of meeting the dietary needs for animal protein of the world population. The prior need to provide for the increasing demand for cereals, oil seeds, and grain legumes for human consumption is assessed at having a reasonable chance of success. If this need is met, the requirement for extra feed resources for increased poultry production targets is also assessed as having a reasonable chance of success. A major component of this equation is the prediction of improved efficiency of poultry production of a similar order to that of the last 50 yr arising from 1) extension of the 20th century revolution in poultry technology to over 50% of the world population compared with the present 20 to 25%; 2) recent advances in genetics, nutrition, health, housing, and husbandry still awaiting application in industry; 3) future applications from current and future research in molecular biotechnology, nutrition, health, and reproduction; and 4) the development of efficient, small-scale, extensive poultry production systems especially in countries where over 25% of the world population will still not be able to afford the products of a modern, intensive poultry industry, even in 50 yr. These challenges, targets, and predictions simply cannot be met unless the world's poultry science community increases its own efficiency, its professional initiatives to deal with the real challenges, and its social initiatives to influence socio-economic decisions on national and world stages. PMID:10735740

  6. Airborne Oceanographic Lidar (AOL) flight mission participation

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1988-01-01

    From February 1986 to the present, the AOL participated in six interagency flight missions. (1) Shelf Edge Exchange Processes (SEEP II) (Department of Energy). The SEEP experiments are designed to assess the assimilative capacity of the Continental Shelf to absorb the energy by-products introduced into the near-shore ocean environment from coastal communities and marine activities such as energy production plants and offshore oil operations. (2) BIOWATT II (Office of Naval Research). The major objective of this study was to provide a better understanding of the relationships between ocean physics, biology, bioluminescence, and optics in oligotrophic portions of the Atlantic Ocean. (3) Fall Experiment (FLEX) (Department of Energy). The FLEX studies were designed to determine the fate of low salinity water in the coastal boundary zone that is advected south towards the Florida coast during autumn. (4) Greenland Sea and Icelandic Marine Biological Experiments (NASA). The investigations were designed to evaluate the distribution of surface layer chlorophyll in the Greeland Sea and in the coastal waters in the vicinity of Iceland. (5) Submerged Oceanic Scattering Layer Experiment (Naval Ocean Systems Center). This flight experiment demonstrated for the first time the feasibility of detecting and metrically measuring the depth to submerged layers of particulate matter in the shelf break region and in the inner coastal zone. (6) Microbial Exchanges and Coupling in Coastal Atlantic Systems (National Science Foundation). This investigation was designed to study the transportation and fate of particulates in coastal waters and in particular the Chesapeake Bay/coastal Atlantic Ocean. Shortly after the conduct of the flight experiments, airborne laser-induced chlorophyll a and phycoerythrin fluorescence data, as well as sea surface temperature and airborne expendable bathythermograph water column temperature profiles are supplied to cooperating institutions.

  7. Airborne Oceanographic Lidar (AOL) flight mission participation

    NASA Astrophysics Data System (ADS)

    Hoge, F. E.

    From February 1986 to the present, the AOL participated in six interagency flight missions. (1) Shelf Edge Exchange Processes (SEEP II) (Department of Energy). The SEEP experiments are designed to assess the assimilative capacity of the Continental Shelf to absorb the energy by-products introduced into the near-shore ocean environment from coastal communities and marine activities such as energy production plants and offshore oil operations. (2) BIOWATT II (Office of Naval Research). The major objective of this study was to provide a better understanding of the relationships between ocean physics, biology, bioluminescence, and optics in oligotrophic portions of the Atlantic Ocean. (3) Fall Experiment (FLEX) (Department of Energy). The FLEX studies were designed to determine the fate of low salinity water in the coastal boundary zone that is advected south towards the Florida coast during autumn. (4) Greenland Sea and Icelandic Marine Biological Experiments (NASA). The investigations were designed to evaluate the distribution of surface layer chlorophyll in the Greeland Sea and in the coastal waters in the vicinity of Iceland. (5) Submerged Oceanic Scattering Layer Experiment (Naval Ocean Systems Center). This flight experiment demonstrated for the first time the feasibility of detecting and metrically measuring the depth to submerged layers of particulate matter in the shelf break region and in the inner coastal zone. (6) Microbial Exchanges and Coupling in Coastal Atlantic Systems (National Science Foundation). This investigation was designed to study the transportation and fate of particulates in coastal waters and in particular the Chesapeake Bay/coastal Atlantic Ocean. Shortly after the conduct of the flight experiments, airborne laser-induced chlorophyll a and phycoerythrin fluorescence data, as well as sea surface temperature and airborne expendable bathythermograph water column temperature profiles are supplied to cooperating institutions.

  8. The motivations and experiences of students enrolled in online science courses at the community college

    NASA Astrophysics Data System (ADS)

    Ghosh, Urbi

    An important question in online learning involves how to effectively motivate and retain students in science online courses. There is a dearth of research and knowledge about the experiences of students enrolled in online science courses in community colleges which has impeded the proper development and implementation of online courses and retention of students in the online environment. This study sought to provide an understanding of the relationships among each of the following variables: self-efficacy, task value, negative-achievement emotions, self-regulation learning strategies (metacognition), learning strategy (elaboration), and course satisfaction to student's performance (course final grade). Bandura's social-cognitive theory was used as a framework to describe the relationships among students' motivational beliefs (perceived task value, self-efficacy, and self-regulation) and emotions (frustration and boredom) with the dependent variables (elaboration and overall course satisfaction). A mixed-method design was used with a survey instrumentation and student interviews. A variety of science online courses in biology, genetics, astronomy, nutrition, and chemistry were surveyed in two community colleges. Community colleges students (N = 107) completed a questionnaire during enrollment in a variety of online science online courses. Upon course completion, 12 respondents were randomly selected for follow-up in-depth interviews. Multiple regression results from the study indicate perceived task value and self-regulatory learning strategies (metacognition) were as important predictors for students' use of elaboration, while self-efficacy and the number of prior online courses was not significant predictors for students' elaboration when all four predictors were included. Frustration was a significant negative predictor of overall course satisfaction, and boredom unexpectedly emerged as a positive predictor when frustration was also in the model. In addition, the

  9. The Year of the Solar System: An E/PO Community's Approach to Sharing Planetary Science

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Boonstra, D.; Shupla, C.; Dalton, H.; Scalice, D.; Planetary Science E/Po Community

    2010-12-01

    YSS offers the opportunity to raise awareness, build excitement, and make connections with educators, students and the public about planetary science activities. The planetary science education and public outreach (E/PO) community is engaging and educating their audiences through ongoing mission and program activities. Based on discussion with partners, the community is presenting its products in the context of monthly thematic topics that are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved; and how did life begin and evolve on Earth, has it evolved elsewhere in our solar system, and what are characteristics that lead to the origins of life? Each month explores different compelling aspects of the solar system - its formation, volcanism, ice, life. Resources, activities, and events are interwoven in thematic context, and presented with ideas through which formal and informal educators can engage their audiences. The month-to-month themes place the big questions in a logical sequence of deepening learning experiences - and highlight mission milestones and viewing events. YSS encourages active participation and communication with its audiences. It includes nation-wide activities, such as a Walk Through the Solar System, held between October 2010 to March 2011, in which museums, libraries, science centers, schools, planetariums, amateur astronomers, and others are kicking off YSS by creating their own scale models of the solar system and sharing their events through online posting of pictures, video, and stories. YSS offers the E/PO community the opportunity to collaborate with each other and partners. The thematic approach leverages existing products, providing a home and allowing a “shelf life” that can outlast individual projects and missions. The broad themes highlight missions and programs multiple times. YSS also leverages existing online resources and social media. Hosted on

  10. Using Local Climate Science to Educate "Key Influentials" and their Communities in the San Diego Region

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.

    2012-12-01

    The San Diego Regional Climate Education Partnership has formed an innovative and collaborative team whose mission is to implement a research-based climate science education and communications program to increase knowledge about climate science among highly-influential leaders and their communities and foster informed decision making based on climate science and impacts. The team includes climate scientists, behavioral psychologists, formal and informal educators and communication specialists. The Partnership's strategic plan has three major goals: (1) raise public understanding of the causes and consequences of climate change; (2) identify the most effective educational methods to educate non-traditional audiences (Key Influentials) about the causes and consequences of climate change; and (3) develop and implement a replicable model for regional climate change education. To implement this strategic plan, we have anchored our project on three major pillars: (1) Local climate science (causes, impacts and long-term consequences); (2) theoretical, research-based evaluation framework (TIMSI); and (3) Key! Influentials (KI) as primary audience for messages (working w! ith and through them). During CCEP-I, the Partnership formed and convened an advisory board of Key Influentials, completed interviews with a sample of Key Influentials, conducted a public opinion survey, developed a website (www.sandiego.edu/climate) , compiled inventories on literature of climate science education resources and climate change community groups and local activities, hosted stakeholder forums, and completed the first phase of on an experiment to test the effects of different messengers delivering the same local climate change message via video. Results of 38 KI Interviews provided evidence of local climate knowledge, strong concern about climate change, and deeply held values related to climate change education and regional leadership. The most intriguing result was that while 90% of Key

  11. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration.

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.

    2007-12-01

    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  12. NASA's Planetary Science E/PO Forum: Reflections on Five Years of Effort to Support an E/PO Community

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Shebby, S.; Buxner, S.; Boonstra, D.; Cobabe-Ammann, E. A.; Cobb, W. H.; Dalton, H.; Grier, J.; Klug Boonstra, S. L.; LaConte, K.; Ristvey, J.; Shupla, C. B.; Weeks, S.; Wessen, A. S.; Zimmerman-Brachman, R.

    2014-12-01

    Over the past decade, NASA's Science Mission Directorate (SMD) has funded four education and public outreach (E/PO) forums, aligned with each of its science divisions, including Astrophysics, Earth Science, Heliophysics, and Planetary Science. Together, these forums help organize individual division E/PO programs into a coordinated, effective, efficient, nationwide effort that shares the scientific discoveries of NASA across a broad array of audiences. In the past four-and-a-half years, the Planetary Science Division's Forum - in collaboration with the other three Forums - has worked to support its community of education professionals and scientists involved in E/PO to communicate, collaborate, and strengthen their efforts. The Forum's work encompasses identification of best practices based on educational research, increasing understanding of needs through audience-based working groups, the development of strategic collaborations and partnerships to increase programmatic reach, and the creation of strategic resources to support community members in their E/PO work (e.g., an online workspace for the community to communicate, collaborate, and share practices; recommendations to scientists for increasing impact in educational settings; a one-stop shop for NASA SMD classroom and informal education products, http://nasawavelength.org). Drawing on evaluation data, the presentation will explore what resources and support mechanisms are valued by the community, ways the community uses the available resources, and the outcomes of the effort to date.

  13. Residential learning communities as a tool for increasing interest in the Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Burmeister, K. C.; Colafrancesco, K.; Brodie, C.; Jacobson, S.

    2009-12-01

    The Residence for Earth and Environmental Living and Learning (REELL), a residential learning community (RLCs) established at the University of the Pacific in 2008-2009, has proven to be an effective tool for increasing interest in the Earth and environmental sciences. RLCs bring together students that share a theme-based interest and are given an opportunity to live together in a common space within a campus residence hall. The 2008-2009 REELL group comprised representatives from a wide range of degree programs, and included 16 freshmen, a junior peer advisor, and a senior residential advisor. Student participants in the REELL community work closely with their peers, faculty, and staff on academic, social, and outreach programs designed to increase interest and awareness in the Earth & environment. REELL activities include regular meetings, sponsored movies, guest speakers, field trips, campus exchange events, and outreach activities. These activities are arranged around a yearlong research project that is designed and implemented by the student participants. Preliminary results suggest that activity- and project-related interactions during the 2008-2009 REELL program year are an effective way to establish connections between among students, faculty, and administration and have increased interest and participation in Earth and Environmental Science courses and programs. Studies of RLCs implemented in a wide variety of colleges and university settings demonstrate that these programs successfully foster the development of leadership, social, and academic skills in student participants. The REELL community at the University of the Pacific is based upon the successful the Honors RLC. The well-established Honors RLC is a perfect example of how such programs can increase social and academic development. Like the REELL program, the Honors RLC brings together first and second year honors students in a single residence hall. Their participation in the Honors RLC provides

  14. The GLOBE ONE campaign: a learning community approach for integrated science investigations

    NASA Astrophysics Data System (ADS)

    White, M. A.

    2003-12-01

    The GLOBE program has long faced three interrelated challenges. First, incomplete records, uncertainties in quality assurance and quality control, and failures to enter measurements occur too frequently in the GLOBE data system. Second, while many GLOBE protocols exist with which to characterize elements of the Earth system, most schools implement only one or a few protocols. Third, due to the previous two challenges, the number of peer-reviewed publications resulting from GLOBE measurements does not appear to be commensurate with agency funding support. To address these issues, GLOBE is currently developing a new approach based on the learning community concept. This campaign, termed GLOBE ONE, will focus on: (1) addressing a specific scientific question in a small area; (2) intensive involvement by GLOBE principal investigators; and (3) integration of the local community in measurement and support of the campaign. The campaign, to begin in Spring 2004 and conclude September 2005, will take place in Black Hawk County, Iowa. Science questions will focus on land cover and land use influences on Earth system processes within agricultural, urban, remnant prairie, and restored prairie ecosystems. A wide community consisting of local academic institutions, extension agencies, educators, industry, and naturalists will work together to ensure collection and quality assurance of the multiple required datasets. Organizational, logistical, scientific, and educational challenges and solutions are discussed.

  15. NCALM: NSF Supported Center for Airborne Laser Mapping

    NASA Astrophysics Data System (ADS)

    Shrestha, R. L.; Carter, W. E.; Dietrich, W. E.

    2003-12-01

    The National Science Foundation (NSF) recently awarded a grant to create a research center to support the use of airborne laser mapping technology in the scientific community. The NSF supported Center for Airborne Laser Mapping (NCALM) will be operated jointly by the Department of Civil & Coastal Engineering, College of Engineering, University of Florida (UF) and the Department of Earth and Planetary Science, University of California-Berkeley (UCB). NCALM will use the Airborne Laser Swath Mapping (ALSM) system jointly owned by UF and Florida International University (FIU), based at the UF Geosensing Engineering and Mapping (GEM) Research Center. The state-of-the-art laser surveying instrumentation, GPS systems, which are installed in a Cessna 337 Skymaster aircraft, will collect research grade data in areas selected through the competitive NSF grant review process. The ALSM observations will be analyzed both at UF and UCB, and made available to the PI through an archiving and distribution center at UCB-building upon the Berkeley Seismological Laboratory (BSL) Northern California Earthquake Data Center system. The purpose of NCALM is to provide research grade data from ALSM technology to NSF supported research studies in geosciences. The Center will also contribute to software development that will increase the processing speed and data accuracy. This presentation will discuss NCALM operation and the process of submitting proposals to NSF. In addition, it will outline the process to request available NCALM seed project funds to help jump-start small scientific research studies. Funds are also available for travel by academic researchers and students for hands-on knowledge and experience in ALSM technology at UF and UCB.

  16. Developing and assessing a holistic living-learning community for engineering and science freshmen

    NASA Astrophysics Data System (ADS)

    Light, Jennifer

    Learning communities and their strategies for enrolling cohort groups of students in a common set of classes organized around a theme or linked with residence life have come to light over the past twenty years. However, living-learning communities (LLC) and their role in retention, engagement, and intellectual development for engineering and science students have yet to be fully explored. What aspects of a LLC are most beneficial to science and engineering students? What are the learning needs of engineering and science students that are best met with LLCs? These questions were the basis for assessment of a new LLC program developed at Washington State University specifically to increase retention, academic achievement, and engagement of engineering and science students. A first-year semester-long pilot LLC program was developed at Washington State University specifically for entering engineering majors. The program was expanded the following year to include biotech science majors. The first LLC had 55 self-selected engineering participants. Students were housed in the same residence hall, registered for three common classes, and participated in a non-credit bearing weekly peer-facilitated study group. The second year 81 students self-selected into the program; 59 engineering and 22 biotech majors. Students were housed in a common residence hall and registered for three common classes. Students participated in a two-credit freshman seminar class instead of the once-weekly study group used the previous year. Results indicate students were engaged with peers and in college activities, had mixed academic improvement, and engineering students were retained at higher rates in their major when compared to non-participating peers and biotech participants. Second year LLC students had higher grade averages than comparison peers despite lower incoming preparedness. Higher engagement levels were confirmed by triangulation with national survey comparisons, observations, focus

  17. COMPASS, the COMmunity Petascale Project for Accelerator Science and Simulation, a broad computational accelerator physics initiative

    SciTech Connect

    J.R. Cary; P. Spentzouris; J. Amundson; L. McInnes; M. Borland; B. Mustapha; B. Norris; P. Ostroumov; Y. Wang; W. Fischer; A. Fedotov; I. Ben-Zvi; R. Ryne; E. Esarey; C. Geddes; J. Qiang; E. Ng; S. Li; C. Ng; R. Lee; L. Merminga; H. Wang; D.L. Bruhwiler; D. Dechow; P. Mullowney; P. Messmer; C. Nieter; S. Ovtchinnikov; K. Paul; P. Stoltz; D. Wade-Stein; W.B. Mori; V. Decyk; C.K. Huang; W. Lu; M. Tzoufras; F. Tsung; M. Zhou; G.R. Werner; T. Antonsen; T. Katsouleas

    2007-06-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  18. COMPASS, the COMmunity Petascale Project for Accelerator Science And Simulation, a Broad Computational Accelerator Physics Initiative

    SciTech Connect

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Norris, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; /Jefferson Lab /Tech-X, Boulder /UCLA /Colorado U. /Maryland U. /Southern California U.

    2007-11-09

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  19. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    SciTech Connect

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

    2007-07-16

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  20. COMPASS, the COMmunity petascale project for accelerator science and simulation, a broad computational accelerator physics initiative

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Norris, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D. L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W. B.; Decyk, V.; Huang, C. K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G. R.; Antonsen, T.; Katsouleas, T.

    2007-07-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  1. "Anyone Know What Species This Is?" - Twitter Conversations as Embryonic Citizen Science Communities.

    PubMed

    Daume, Stefan; Galaz, Victor

    2016-01-01

    Social media like blogs, micro-blogs or social networks are increasingly being investigated and employed to detect and predict trends for not only social and physical phenomena, but also to capture environmental information. Here we argue that opportunistic biodiversity observations published through Twitter represent one promising and until now unexplored example of such data mining. As we elaborate, it can contribute to real-time information to traditional ecological monitoring programmes including those sourced via citizen science activities. Using Twitter data collected for a generic assessment of social media data in ecological monitoring we investigated a sample of what we denote biodiversity observations with species determination requests (N = 191). These entail images posted as messages on the micro-blog service Twitter. As we show, these frequently trigger conversations leading to taxonomic determinations of those observations. All analysed Tweets were posted with species determination requests, which generated replies for 64% of Tweets, 86% of those contained at least one suggested determination, of which 76% were assessed as correct. All posted observations included or linked to images with the overall image quality categorised as satisfactory or better for 81% of the sample and leading to taxonomic determinations at the species level in 71% of provided determinations. We claim that the original message authors and conversation participants can be viewed as implicit or embryonic citizen science communities which have to offer valuable contributions both as an opportunistic data source in ecological monitoring as well as potential active contributors to citizen science programmes. PMID:26967526

  2. Scientix: the new internet-based community for science education in europe

    NASA Astrophysics Data System (ADS)

    Cunha, C.; Gras-Velázquez, À.; Gerard, E.

    2012-04-01

    The objectives of the Lisbon declaration (2000) and the affirmation of the European Commission that there is a need to promote more widely inquiry based science education methodologies in primary and secondary schools and to support teachers' networks (2007), were the basis for launch by European Schoolnet (EUN) of Scientix, a new web-based information platform for science education in Europe. It's aim is to ensure the regular dissemination and sharing of progress, know-how, and best practices in the field of science education and providing a feedback mechanism. Scientix is a three-year project run by EUN since December 2009 on behalf of the European Commission Directorate General Research and is funded under the 7th Framework Programme. The portal (http://www.scientix.eu), available in six European languages, offers a resource repository containing hundreds of teaching materials from European projects, but also research reports and policy-making documents; a translation on demand service for the teaching materials towards any of the 23 languages of the European Union; a community including a forum and chat rooms; an online news service featuring international science education topics and a calendar of forthcoming events and training opportunities; and also a newsletter sent once a month to registered users. The Scientix main targets are teachers, providing teaching materials, scientific support and documentation that are able to give them some quality tools for the development and implementation of inquiry based science education teaching methodologies. Besides the website, several events and workshops will be organized during the three years of the project. Workshops and newsletters to inform science teachers, give them tools to use the Scientix platform in class effectively and meet other science teachers in Europe will be organized from 2010 to 2012 and will take place in several European countries. An example of this was the Scientix European Conference that

  3. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  4. It takes a village: supporting inquiry- and equity-oriented computer science pedagogy through a professional learning community

    NASA Astrophysics Data System (ADS)

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-10-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.

  5. EDP Sciences and A&A: partnering to providing services to support the scientific community

    NASA Astrophysics Data System (ADS)

    Henri, Agnes

    2015-08-01

    Scholarly publishing is no longer about simply producing and packaging articles and sending out to subscribers. To be successful, as well as being global and digital, Publishers and their journals need to be fully engaged with their stakeholders (authors, readers, funders, libraries etc), and constantly developing new products and services to support their needs in the ever-changing environment that we work in.Astronomy & Astrophysics (A&A) is a high quality, major international Journal that belongs to the astronomical communities of a consortium of European and South American countries supported by ESO who sponsor the journal. EDP Sciences is a non-profit publisher belonging to several learned societies and is appointed by ESO to publish the journal.Over the last decade, as well as publishing the results of worldwide astronomical and astrophysical research, A&A and EDP Sciences have worked in partnership to develop a wide range of services for the authors and readers of A&A:- A specialist language editing service: to provide a clear and excellent level of English ensuring full understanding of the high-quality science.- A flexible and progressive Open Access Policy including Gold and Green options and strong links with arXiv.- Enriched articles: authors are able to enhance their articles using a wide range of rich media such as 3D models, videos and animations.Multiple publishing formats: allowing readers to browse articles on multiple devices including eReaders and Kindles.- “Scientific Writing for Young Astronomers”: In 2008 EDP Sciences and A&A set up the Scientific Writing for Young Astronomers (SWYA) School with the objective to teach early PhD Students how write correct and efficient scientific papers for different mediums (journals, proceedings, thesis manuscripts, etc.).

  6. Designing Program Roadmaps to Catalyze Community Formation: A Case Study of the Long-Term Stewardship Science and Technology Roadmapword

    SciTech Connect

    Dixon, Brent; Hanson, Duane; Matthern, Gretchen

    2003-02-27

    A number of broad perspective technology roadmaps have been developed in the last few years as tools for coordinating nation-wide research in targeted areas. These roadmaps share a common characteristic of coalescing the associated stakeholder groups into a special-interest community that is willing to work cooperatively in achieving the roadmap goals. These communities are key to roadmap implementation as they provide the collaborative energy necessary to obtain the political support and funding required for identified science and technology development efforts. This paper discusses the relationship between roadmaps and special-interest communities, using the recently drafted Department of Energy's Long-Term Stewardship Science and Technology Roadmap as a case study. Specific aspects this roadmap's design facilitated the development of a long-term stewardship community while specific realities during roadmap development impacted the realization of the design.

  7. Teacher perceptions of the impact of professional learning communities on teaching and learning in middle school science

    NASA Astrophysics Data System (ADS)

    Bitterman, Teresa

    The purpose of this study was to examine teacher perceptions of professional learning communities in three middle schools. This research examined the perceived impact of professional learning communities on teaching and on student learning. One question guided this research. "What are the teachers' perceptions of seventh grade learning communities' impact on teaching and on student learning in science?" This study used a multiple methods design to examine evidence about relationships among professional learning communities and teaching and student learning. A survey modified from an earlier research study was used (Bolam, McMahon, Stoll, & Thomas 2005). This survey was administered to the teachers who are part of seventh grade science learning communities from each of three participating middle schools. The results from this survey were used to describe teacher perceptions about the use of learning communities within each school. A purposeful sample of candidates was then selected for interviews. Through the use of the two data sources, surveys (see Appendix A) and interviews (see Appendix B), the researcher found four common themes that support the idea of a professional learning community and the effects teachers perceived as contributing to successful teaching and learning. The four themes that emerged included the importance of learning trends, organizational support for a learning community, enquiry orientation, and the need for provision of planning and development.

  8. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  9. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  10. An Integrated Data Acquisition / User Request/ Processing / Delivery System for Airborne Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chapman, B.; Chu, A.; Tung, W.

    2003-12-01

    Airborne science data has historically played an important role in the development of the scientific underpinnings for spaceborne missions. When the science community determines the need for new types of spaceborne measurements, airborne campaigns are often crucial in risk mitigation for these future missions. However, full exploitation of the acquired data may be difficult due to its experimental and transitory nature. Externally to the project, most problematic (in particular, for those not involved in requesting the data acquisitions) may be the difficulty in searching for, requesting, and receiving the data, or even knowing the data exist. This can result in a rather small, insular community of users for these data sets. Internally, the difficulty for the project is in maintaining a robust processing and archival system during periods of changing mission priorities and evolving technologies. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) has acquired data for a large and varied community of scientists and engineers for 15 years. AIRSAR is presently supporting current NASA Earth Science Enterprise experiments, such as the Soil Moisture EXperiment (SMEX) and the Cold Land Processes experiment (CLPX), as well as experiments conducted as many as 10 years ago. During that time, it's processing, data ordering, and data delivery system has undergone evolutionary change as the cost and capability of resources has improved. AIRSAR now has a fully integrated data acquisition/user request/processing/delivery system through which most components of the data fulfillment process communicate via shared information within a database. The integration of these functions has reduced errors and increased throughput of processed data to customers.

  11. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    NASA Astrophysics Data System (ADS)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  12. NASA's New Science Education and Public Outreach Forums: Bringing Communities and Resources Together to Increase Effectiveness and Sustainability

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.

    2010-01-01

    Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E

  13. K-12 science education reform will take a decade, and community partnerships hold best hope for success

    SciTech Connect

    Keever, J.R.

    1994-12-31

    Fundamental change in K-12 science education in the United States, essential for full citizenship in an increasingly technological world, will take a decade or more to accomplish, and only the sustained, cooperative efforts of people in their own communities -- scientists, teachers, and concerned citizens -- will likely ensure success. These were among the themes at Sigma Xi`s national K-12 science education forum.

  14. Toolsets for Airborne Data Beta Release

    Atmospheric Science Data Center

    2014-09-17

    ... for Airborne Data (TAD), developed at the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center (LaRC) to promote ... and Houston, and DC3 will be added shortly. Early next year we plan to add DISCOVER-AQ Colorado and SEAC4RS to the TAD database. We ...

  15. Enhancing Self-Efficacy in Elementary Science Teaching With Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-11-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in personal self-efficacy and outcome expectancy among teachers engaged in PLCs that featured Demonstration Laboratories, Lesson Study, and annual Summer Institutes. Significant changes favoring the experimental group were found on all quantitative measures of self-efficacy. Structured clinical interviews revealed that observed changes were largely attributable to a wide range of direct (mastery) and vicarious experiences, as well as emotional reinforcement and social persuasion.

  16. Review and evaluation of the Office of Science and Technology`s Community Leaders Network

    SciTech Connect

    Carnes, S.A.; Schweitzer, M.; Peelle, E.R.

    1997-08-01

    This report constitutes a review and evaluation of the Community Leaders Network (CLN), an informally structured national stakeholder group sponsored by the Department of Energy (DOE) Environmental Management (EM) Program`s Office of Science and Technology (OST) to obtain citizen input into the technology research and development programs of the OST. Since the CLN`s inception in 1993, its participants, currently numbering about 35 members mostly from jurisdictions hosting DOE waste management and environmental remediation sites, and its clients (i.e., OST) have invested substantial resources to develop the capability to enhance technology development and deployment activities through proactive stakeholder involvement. The specific objectives of the CLN are to: provide feedback and input to OST on technology development activities; provide information on OST ideas and approaches to key stakeholder groups, and provide input to OST on stakeholder concerns and involvement.

  17. A Model for Teaching a Climate Change Elective Science Course at the Community College Level

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.

    2012-12-01

    The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.

  18. The ReproGenomics Viewer: an integrative cross-species toolbox for the reproductive science community

    PubMed Central

    Darde, Thomas A.; Sallou, Olivier; Becker, Emmanuelle; Evrard, Bertrand; Monjeaud, Cyril; Le Bras, Yvan; Jégou, Bernard; Collin, Olivier; Rolland, Antoine D.; Chalmel, Frédéric

    2015-01-01

    We report the development of the ReproGenomics Viewer (RGV), a multi- and cross-species working environment for the visualization, mining and comparison of published omics data sets for the reproductive science community. The system currently embeds 15 published data sets related to gametogenesis from nine model organisms. Data sets have been curated and conveniently organized into broad categories including biological topics, technologies, species and publications. RGV's modular design for both organisms and genomic tools enables users to upload and compare their data with that from the data sets embedded in the system in a cross-species manner. The RGV is freely available at http://rgv.genouest.org. PMID:25883147

  19. NASA SMD E/PO Community Addresses the needs of the Higher Ed Community: Introducing Slide sets for the Introductory Earth and Space Science Instructor

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Meinke, B. K.; Brain, D.; Schneider, N. M.; Schultz, G. R.; Smith, D. A.; Grier, J.; Shipp, S. S.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms. The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach Forum is coordinating the development of a pilot series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The "Astro 101 slide sets" are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (discoveries not yet in their textbooks) into the broader context of the course. In a similar effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed the Discovery slide sets, which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the

  20. A logic model for community engagement within the Clinical and Translational Science Awards consortium: can we measure what we model?

    PubMed

    Eder, Milton Mickey; Carter-Edwards, Lori; Hurd, Thelma C; Rumala, Bernice B; Wallerstein, Nina

    2013-10-01

    The Clinical and Translational Science Award (CTSA) initiative calls on academic health centers to engage communities around a clinical research relationship measured ultimately in terms of public health. Among a few initiatives involving university accountability for advancing public interests, a small CTSA workgroup devised a community engagement (CE) logic model that organizes common activities within a university-community infrastructure to facilitate CE in research. Whereas the model focuses on the range of institutional CE inputs, it purposefully does not include an approach for assessing how CE influences research implementation and outcomes. Rather, with communities and individuals beginning to transition into new research roles, this article emphasizes studying CE through specific relationship types and assessing how expanded research teams contribute to the full spectrum of translational science.The authors propose a typology consisting of three relationship types-engagement, collaboration, and shared leadership-to provide a foundation for investigating community-academic contributions to the new CTSA research paradigm. The typology shifts attention from specific community-academic activities and, instead, encourages analyses focused on measuring the strength of relationships through variables like synergy and trust. The collaborative study of CE relationships will inform an understanding of CTSA infrastructure development in support of translational research and its goal, which is expressed in the logic model: better science, better answers, better population health. PMID:23752038

  1. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    NASA Astrophysics Data System (ADS)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency

  2. The National Science Foundation's Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Student Community

    NASA Astrophysics Data System (ADS)

    Sox, L.; Duly, T.; Emery, B.

    2014-12-01

    The National Science Foundation sponsors Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshops, which have been held every summer, for the past 29 years. CEDAR Workshops are on the order of a week long and at various locations with the goal of being close to university campuses where CEDAR type scientific research is done. Although there is no formal student group within the CEDAR community, the workshops are very student-focused. Roughly half the Workshop participants are students. There are two Student Representatives on the CEDAR Science Steering Committee (CSSC), the group of scientists who organize the CEDAR Workshops. Each Student Representative is nominated by his or her peers, chosen by the CSSC and then serves a two year term. Each year, one of the Student Representatives is responsible for organizing and moderating a day-long session targeted for students, made up of tutorial talks, which aim to prepare both undergraduate and graduate students for the topics that will be discussed in the main CEDAR Workshop. The theme of this session changes every year. Past themes have included: upper atmospheric instrumentation, numerical modeling, atmospheric waves and tides, magnetosphere-ionosphere coupling, equatorial aeronomy and many others. Frequently, the Student Workshop has ended with a panel of post-docs, researchers and professors who discuss pressing questions from the students about the next steps they will take in their careers. As the present and past CSSC Student Representatives, we will recount a brief history of the CEDAR Workshops, our experiences serving on the CSSC and organizing the Student Workshop, a summary of the feedback we collected about the Student Workshops and what it's like to be student in the CEDAR community.

  3. A Researcher-Student-Teacher Model for Democratic Science Pedagogy: Connections to Community, Shared Authority, and Critical Science Agency

    ERIC Educational Resources Information Center

    Basu, S. Jhumki

    2010-01-01

    This article presents a model for democratic pedagogy in science classrooms that is based on an examination of existing literature on democratic educational practices and on teacher and student ideas about how this pedagogy can take shape and be operationalized in science classrooms. A goal of democratic science pedagogy is to explore ways of…

  4. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  5. The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt

    2014-05-01

    Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to

  6. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  7. Using SDO Data in the Classroom to Do Real Science -- A Community College Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Dave, T. A.; Hildreth, S.; Lee, S.; Scherrer, D. K.

    2013-12-01

    The incredible accessibility of extremely high spatial and temporal resolution data from the Solar Dynamics Observatory creates an opportunity for students to do almost real-time investigation in an Astronomy Lab. We are developing a short series of laboratory exercises using SDO data, targeted for Community College students in an introductory lab class, extendable to high school and university students. The labs initially lead students to explore what SDO can do, online, through existing SDO video clips taken on specific dates. Students then investigate solar events using the Heliophysics Events Knowledgebase (HEK), and make their own online movies of events, to discuss and share with classmates. Finally, students can investigate specific events and areas, selecting specific dates, locations, wavelength regions, and time cadences to create and gather their own SDO datasets for more detailed investigation. In exploring the Sun using actual data, students actually do real science. We are in the process of beta testing the sequence of labs, and are seeking interested community college, university, and high school astronomy lab teachers who might consider trying the labs themselves.

  8. Examining the mediation of power in a collaborative community: engaging in informal science as authentic practice

    NASA Astrophysics Data System (ADS)

    Puvirajah, Anton; Verma, Geeta; Webb, Horace

    2012-06-01

    Focusing on the interplay of context and language, this study examined a group of high school students and their mentors' use of language during a robotics competition. This informal setting allowed us to gain insights into the mediation and manifestation of power within the group. Using critical discourse analysis of competition transcripts and interviews we found that both students and mentors felt a sense of ownership and community leading to symmetry in power amongst them. The shift in power led to greater student ownership and agency and created a space for authentic and meaningful science learning. The context of the robotics competition mediated discourse practices that were different from students' classroom experiences in that they were descriptive, relational, explanatory, and had an authentic evaluative dimension. This engaged the participants to co-construct and critique each other's knowledge claims thereby engaging in scientific practices that approximated the practices of scientists. Our study presents an argument that language and context reflexively influenced one another and reduced the imbalance of power amongst the participants thereby adding a new dimension to what has already been established about the conditions under which authentic science learning is likely to occur.

  9. Lens Inquiry: An Astronomy Lab for Non-Science Majors at Hartnell Community College

    NASA Astrophysics Data System (ADS)

    Putnam, N. M.; Cheng, J. Y.; McGrath, E. J.; Lai, D. K.; Moth, P.

    2010-12-01

    We describe a three hour inquiry activity involving converging lenses and telescopes as part of a semester-long astronomy lab course for non-science majors at Hartnell Community College in Salinas, CA. Students were shown several short demonstrations and given the chance to experiment with the materials, after which there was a class discussion about the phenomena they observed. Students worked in groups of 2-4 to design their own experiments to address a particular question of interest to them and then presented their findings to the class. An instructor-led presentation highlighted the students' discoveries and the lab's content goals, followed by a short worksheet-based activity that guided them in applying their new knowledge to build a simple telescope using two converging lenses. The activity was successful in emphasizing communication skills and giving students opportunities to engage in the process of science in different ways. One of the biggest challenges in designing this activity was covering all of the content given the short amount of time available. Future implementations may have more success by splitting the lab into two sessions, one focusing on converging lenses and the other focusing on telescopes.

  10. Demonstrating the viability and value of community-based monitoring schemes in catchment science

    NASA Astrophysics Data System (ADS)

    Starkey, Eleanor; Parkin, Geoff; Quinn, Paul; Large, Andy

    2016-04-01

    for the purpose of assessing the quality of citizen science observations. It has been found that citizen science observations are essential for capturing localised convective storms. Citizen scientists want their observations to be used to gain meaningful information and tackle local issues. Data has therefore been utilised to build, calibrate and validate hydrological models and support a range of catchment management applications. This has further demonstrated the value of citizen science, along with the social benefits it has to offer. Other communities are also beginning to source funding and implement their own monitoring schemes, indicating that they are both capable and self-motivated. Citizen science makes use of evolving and more readily available technology, providing catchment stakeholders with vital information. Although these types of observations present various challenges, it is argued that a citizen science approach is not intending to replace traditional techniques, rather they can be used to complement them, fill the gaps and/or provide an indication of catchment behaviour across space and through time.

  11. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  12. DC-8 Airborne Laboratory in flight over Mint Canyon near the San Gabriel Mountains

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA DC-8 airborne laboratory flying over Mint Canyon near the snow-covered San Gabriel Mountains of California. The mostly white aircraft is silhouetted against the darker mountains in the background. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  13. DC-8 Airborne Laboratory in flight over snow-capped Sierra Nevada mountain range

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's DC-8 Airborne Laboratory during a flight over the snow-covered Sierra Nevada Mountains. Over the past several years the DC-8 has conducted research missions in such diverse places as the Pacific in spring and Sweden in winter. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  14. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  15. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Crouzet, Nicolas; Cubillos, Patricio E.; Curry, S. M.; Dalba, Paul A.; de Wit, Julien; Deming, Drake; Désert, Jean-Michel; Doyon, René; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J.; García Muñoz, Antonio; Gibson, Neale P.; Gizis, John E.; Greene, Thomas P.; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M.-R.; Knutson, Heather; Kreidberg, Laura; Lafrenière, David; Lagage, Pierre-Olivier; Line, Michael R.; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V.; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L.; Shporer, Avi; Sing, David K.; Todorov, Kamen O.; Tucker, Gregory S.; Wakeford, Hannah R.

    2016-09-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  16. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles A.; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Greene, Thomas P.; Line, Michael R.; Wakeford, Hanna R.

    2016-01-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed community targets'') that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  17. SF-ROCKS: Reaching Out to Communities and Kids With Science in San Francisco

    NASA Astrophysics Data System (ADS)

    White, L. D.; Grove, K.; La Force, M. J.; Pestrong, R.; Dempsey, D. P.; Garcia, O.; Garfield, N.

    2002-12-01

    The SF-ROCKS program at San Francisco State University (SFSU), funded by a grant from the NSF-OEDG program, aims to increase the number of traditionally underrepresented students who enter college as geoscience majors through a multi-faceted collaborative watershed research project that provides teacher training, student education, and several tiers of mentoring relationships. In partnership with the San Francisco Unified School District and the City College of San Francisco (CCSF), SFSU Geosciences Department faculty guide urban high school students and their teachers in field-based research projects in the Islais, Yosemite, and Mission creek watersheds in southeastern San Francisco. SFSU and CCSF students assist teachers in the classroom and help to mentor their students. The collaborative program has a research base at SFSU and during the next several years will involve five high schools in communities that have highly diverse populations and ongoing environmental problems. Our goal with each high school is to focus earth and environmental science teachers on the geologic setting around their school, and to provide teachers and their students with relevant resources via teacher workshops, frequent interactions with college faculty and students, and an interactive web site and GIS database. During the summer of 2002, project scientists worked with 9th grade Integrated/Environmental Science teachers at Phillip and Sala Burton High School on a multi-layered, hands-on mapping and sampling partnership designed to identify and monitor environmental hazards and watershed characteristics in the Yosemite Creek watershed. The watershed - within which Burton High School is located - provides an interdisciplinary focus for collecting and analyzing rocks, soils, water chemistry and rainfall characteristics. SFSU faculty incorporated concepts and data from the project into ten watershed-theme lesson plans that are now part of the year-long Integrated Science curriculum at the

  18. Faculty Participation in and Needs around Community Engagement within a Large Multiinstitutional Clinical and Translational Science Awardee.

    PubMed

    Chung, Bowen; Norris, Keith; Mangione, Carol; Del Pino, Homero E; Jones, Loretta; Castro, Daniel; Wang, Christina; Bell, Douglas; Vangala, Sitaram; Kahn, Katherine; Brown, Arleen F

    2015-10-01

    Community engagement is recommended to ensure the public health impact of NIH-funded science. To understand the prevalence of community-engaged research and faculty interest in and needs around this, from 2012 to 2013, an online survey (n = 3,022) was sent to UCLA Clinical and Translational Science Institute faculty. Among respondents, 45% reported community-engaged project participation in the last year and 64% an interest in learning about community-engaged research. Over 50% indicated career development and pilot grants would increase participation in community-engaged research. A greater percentage of pretenure than tenured faculty (pretenure 54.9%, tenured 42.2%, p = 0008) noted faculty promotion criteria incentivizing community-engaged research would increase participation. In adjusted analyses, African American (OR 4.06, CI 1.68-9.82, p = 0.002) and Latino (OR 1.91, CI 1.10-3.33, p = 0.022) faculty had higher odds of prior participation in community-engaged projects than Whites. Female faculty had greater odds of interest (OR 1.40, CI 1.02-1.93, p = 0.038) in learning about community-engaged research than males. African American (OR 4.31, CI 1.42-13.08, p = 0.010) and Asian/Pacific Islander (OR 2.24, CI 1.52-3.28, p < 0.001) faculty had greater interest in learning about community-engaged research than Whites. To build community-engaged faculty research capacity, CTSAs' may need to focus resources on female and minority faculty development. PMID:26332679

  19. Critical analysis of science-related texts in a breastfeeding information, support, and advocacy community of practice

    NASA Astrophysics Data System (ADS)

    Lottero-Perdue, Pamela S.

    This study examines the way in which women in a breastfeeding information, support, and advocacy (BISA) community of practice critically engage with written/oral science-related texts. The range of texts that these participants encounter is explored and two critical reading approaches are investigated: (1) critical science reading, or reading to assess text validity; and (2) critical science-related text analysis (CSTA), or reading to determine the way in which a text positions subjects or reality, is indicative of particular interests, or leaves out particular voices. The former has been addressed by science education research; the latter is based upon feminist poststructuralism and critical literacy literature. Participants in BISA encounter a wide range of science-related texts, and, to varying degrees, assess the validity of these texts based upon what they know about science, their own and others' experiences, and practical knowledge. Participants also engage in CSTA to greater and lesser extents. Also, experts in BISA are entrusted by participants in the organization to identify valid and trustworthy texts. Differences in critical science reading across participants and texts are discussed, as are the purposes for critical science reading and conditions in BISA that support these critical practices. This study informs both science education and critical literacy research, argues that critical science reading and CSTA are worthwhile practices of both everyday folks and students, and suggests that educators encourage engagement in these practices by presenting students with conflicting science-related texts, encouraging doubt in and epistemic distancing from science-related texts, and modeling critical engagement with science-related texts for students.

  20. Student and Community Engagement in Astronomy Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa I.

    2015-08-01

    Fulfilling the broader impact of a research project in astronomy is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields. Here we present the experience developed in this endeavor as part of our research and educational projects that introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science.

  1. Introducing Undergraduates to the Role of Science in Public Policy and in the Service of the Community

    ERIC Educational Resources Information Center

    Hosten, Charles M.; Talanova, Galina; Lipkowitz, Kenny B.

    2011-01-01

    We describe the modifications to an instrumental analysis course which incorporated the link between science and public policy. This course combines classroom lectures, project based labs, and a writing assignment. The project based labs have a focus on health and environmental issues directly involving the local community, while the writing…

  2. It Takes a Village: Supporting Inquiry- and Equity-Oriented Computer Science Pedagogy through a Professional Learning Community

    ERIC Educational Resources Information Center

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-01-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…

  3. Effects of Self-Regulatory Interventions on the Self-Efficacy of Community College Non-Science Majors.

    ERIC Educational Resources Information Center

    Maurer, Matthew J.

    This study examines how self-regulatory interventions affected the biology self-efficacy of a sample of non-science majors enrolled in a Midwestern community college. Portfolio assignments and a survey instrument were used to measure the self-efficacy of college non-majors for performing biology-related tasks. Results show that the vast majority…

  4. Community College Men and Women: A Test of Three Widely Held Beliefs about Who Pursues Computer Science

    ERIC Educational Resources Information Center

    Denner, Jill; Werner, Linda; O'Connor, Lisa; Glassman, Jill

    2014-01-01

    Efforts to increase the number of women who pursue and complete advanced degrees in computer and information sciences (CIS) have been limited, in part, by a lack of research on pathways into and out of community college CIS classes. This longitudinal study tests three widely held beliefs about how to increase the number of CIS majors at 4-year…

  5. Delgado Community College/Sears-Roebuck Keeping America Working. Math, Science and Technology Summer Youth Enrichment Program. Final Report.

    ERIC Educational Resources Information Center

    Delgado Community Coll., New Orleans, LA.

    Recognizing the need for better preparation of high school students in mathematics, science, and technology, Delgado Community College and the Orleans Parish School System entered into an agreement for the provision of a summer enrichment program for minority students in grades 7 through 9 who had exhibited average or above average abilities in…

  6. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    ERIC Educational Resources Information Center

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-01-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning…

  7. Biological Education and Community Development (Institute for Science Education (IPN), Kiel, FR Germany, 2-6 November 1979).

    ERIC Educational Resources Information Center

    Yoong, C. S.

    1980-01-01

    Presents information about the topics and discussion sessions of the Kiel Conference organized by the Commission for Biological Education (CBE) of the International Union of Biological Sciences (IUBS). Outlines the status of biological education for community development in different parts of the world and summarizes project proposals accepted by…

  8. No Child Left Behind and Outreach to Families and Communities: The Perspectives of Exemplary African-American Science Teachers

    ERIC Educational Resources Information Center

    Coats, Linda T.; Xu, Jianzhong

    2013-01-01

    This qualitative study examines the perspectives of eight exemplary African-American science teachers toward No Child Left Behind (NCLB) Act and their outreach to families and communities in the context of the USA. Data revealed that whereas these exemplary teachers applauded the general intent of NCLB, they were concerned with its overemphasis on…

  9. Final Report to the National Commission on Libraries and Information Science from the Community Information and Referral Services Task Force.

    ERIC Educational Resources Information Center

    National Commission on Libraries and Information Science, Washington, DC.

    This report describes the work of the Community Information and Referral (CI&R) Services Task Force, which was appointed by the National Commission on Libraries and Information Science (NCLIS) to investigate the status of CI&R in libraries and social service agencies and to make recommendations regarding the appropriate role for libraries in the…

  10. Factors Influencing Students' Satisfaction and Dissatisfaction with the Online Learning Community for Korean High School Science Classes

    ERIC Educational Resources Information Center

    Lee, Jung-Sun; Yoo, Jung-Moon; Oh, Phil Seok; Kong, Myung Hee

    2006-01-01

    The purpose of this study was to investigate factors influencing students' satisfaction and dissatisfaction with an Online Learning Community (OLC). The OLC was a Web-based system that was used to supplement school science curriculum. Data was collected from 62 Korean high school students using an open-ended questionnaire. The factors related to…

  11. Two-Year Community: The Use of Journaling to Assess Student Learning and Acceptance of Evolutionary Science

    ERIC Educational Resources Information Center

    Scharmann, Lawrence C.; Butler, Wilbert, Jr.

    2015-01-01

    Journal writing was introduced as a means to assess student learning and acceptance of evolutionary science in a nonmajors' biology course taught at a community college. Fourteen weeks of instruction were performed, each initiated by student-centered, in-class activities and culminated by a discussion, to elucidate tentative conclusions based on…

  12. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.

    2014-12-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http

  13. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa; Ahmed, Yasmin

    2015-04-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course

  14. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    NASA Astrophysics Data System (ADS)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  15. Self-regulated Learning in a Hybrid Science Course at a Community College

    NASA Astrophysics Data System (ADS)

    Manuelito, Shannon Joy

    Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for their learning because they assume additional responsibility for learning more of the course material on their own. Thus, self-regulated learning (SRL) behaviors have the potential to be useful for students to successfully navigate hybrid courses because the online components require exercise of more personal control over the autonomous learning situations inherent in hybrid courses. Self-regulated learning theory includes three components: metacognition, motivation, and behavioral actions. In the current study, this theoretical framework is used to examine how inducing self-regulated learning activities among students taking a hybrid course influence performance in a community college science course. The intervention for this action research study consisted of a suite of activities that engage students in self-regulated learning behaviors to foster student performance. The specific SRL activities included predicting grades, reflections on coursework and study efforts in course preparation logs, explanation of SRL procedures in response to a vignette, photo ethnography work on their personal use of SRL approaches, and a personalized study plan. A mixed method approach was employed to gather evidence for the study. Results indicate that community college students use a variety of self-regulated learning strategies to support their learning of course material. Further, engaging community college students in learning reflection activities appears to afford some students with opportunities to refine their SRL skills and influence their learning. The discussion focuses on integrating the quantitative and qualitative

  16. Building Community Consensus for Earth Science Literacy Using an Online Workshop (Invited)

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Tuddenham, P.; Taber, J.; Ladue, N.

    2009-12-01

    The Earth Science Literacy Principles, published in the spring of 2009, represented a community consensus about what all Americans should understand about Earth sciences. Central to its creation was a 2-week online workshop that involved participation by 350 Earth scientists and educators. The online workshop, hosted by The College of Exploration, was an excellent medium for incorporating the ideas and concerns of 350 people in near-real time. NSF tasked the Earth Science Literacy Initiative (ESLI) (www.earthscienceliteracy.org) with constructing a set of “Big Ideas” and “Supporting Concepts” that distilled the essential understandings of the GEO-EAR division of NSF. Because of the wide diversity of sub-fields involved (ranging from paleobiology to tectonics), finding a mechanism for incorporating many different views while retaining an organized structure was a challenge. The online workshop turned out to be ideal for this task. Though the 2-week asynchronous workshop was designed to replicate a 2-day in-person workshop, at the drawn-out pace of one hour of requested participation per day, in reality it was much more productive. Many aspects of an in-person workshop were replicated in the the online space. Plenary talks were presented in the main conference room via videos recorded just before or during the 2-week period. The workshop was structured with 150 invited participants and 200 observers. The participants had access to all of the rooms while the observers could see all rooms but could only chat in their own area, the Observation Café. Each breakout room had a moderator who attempted to guide discussion, including suggesting off-topic conversations be moved to the Earth Café. An organizing committee of about a dozen people teleconferenced daily, determining the goals or tasks for the participants for that day. This allowed for a high level of flexibility, with the workshop structure flowing in response to the results up to that point. The first

  17. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  18. Essential Concepts of Nanoscale Science and Technology for High School Students Based on a Delphi Study by the Expert Community

    NASA Astrophysics Data System (ADS)

    Sakhnini, Sohair; Blonder, Ron

    2015-07-01

    Nanoscale science and technology (NST) is an important new field in modern science. In the current study, we seek to answer the question: 'What are the essential concepts of NST that should be taught in high school'? A 3-round Delphi study methodology was applied based on 2 communities of experts in nanotechnology research and science education. Eight essential concepts in NST were identified. Each concept is accompanied by its explanation, definition, importance and includes subcategories that compose it. Three concepts emerged in the Delphi study, which were not identified before: functionality, classification of nanomaterials, and the making of nanotechnology. Differences between the concepts suggested by the 2 communities of experts were found. The results of this study serve as a tool to examine different nanotechnology programs that were reported thus far and to make recommendations for designing a NST program for high school students that includes the essential concepts.

  19. Promoting Breast Cancer Screening in Rural, African American Communities: The "Science and Art" of Community Health Promotion.

    ERIC Educational Resources Information Center

    Altpeter, Mary; Earp, Jo Anne L.; Shopler, Janice H.

    1998-01-01

    Social ecological theory, social-work community organization models, and health-promotion models are brought together to address ways to generate change at the individual and policy levels, and to provide guidance for community health-promotion programs. An eight-year cancer-prevention project is presented as a case study. (EMK)

  20. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    NASA Astrophysics Data System (ADS)

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.