Science.gov

Sample records for airborne sensor facility

  1. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  2. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  3. Sensor fusion for airborne landmine detection

    NASA Astrophysics Data System (ADS)

    Schatten, Miranda A.; Gader, Paul D.; Bolton, Jeremy; Zare, Alina; Mendez-Vasquez, Andres

    2006-05-01

    Sensor fusion has become a vital research area for mine detection because of the countermine community's conclusion that no single sensor is capable of detecting mines at the necessary detection and false alarm rates over a wide variety of operating conditions. The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) evaluates sensors and algorithms for use in a multi-sensor multi-platform airborne detection modality. A large dataset of hyperspectral and radar imagery exists from the four major data collections performed at U. S. Army temperate and arid testing facilities in Autumn 2002, Spring 2003, Summer 2004, and Summer 2005. There are a number of algorithm developers working on single-sensor algorithms in order to optimize feature and classifier selection for that sensor type. However, a given sensor/algorithm system has an absolute limitation based on the physical phenomena that system is capable of sensing. Therefore, we perform decision-level fusion of the outputs from single-channel algorithms and we choose to combine systems whose information is complementary across operating conditions. That way, the final fused system will be robust to a variety of conditions, which is a critical property of a countermine detection system. In this paper, we present the analysis of fusion algorithms on data from a sensor suite consisting of high frequency radar imagery combined with hyperspectral long-wave infrared sensor imagery. The main type of fusion being considered is Choquet integral fusion. We evaluate performance achieved using the Choquet integral method for sensor fusion versus Boolean and soft "and," "or," mean, or majority voting.

  4. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  5. Airborne Sensor Thermal Management Solution

    SciTech Connect

    Ng, K. K.

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  6. Airborne sensor integration for quick reaction programs

    NASA Astrophysics Data System (ADS)

    Gosian, Gregory; Mason, Kenneth; Servoss, Thomas; Brower, Bernard; Pellechia, Matthew

    2010-04-01

    In this paper we present an approach to integrate sensors to meet the demanding requirements of Quick Reaction Capability (QRC) airborne programs. Traditional airborne sensors are generally highly integrated and incorporate custom sensor technologies and interfaces. Custom solutions and new technologies often require significant engineering to achieve a high technology readiness level (TRL) and to meet the overall mission objective. Our approach differs from traditional approaches in that we strive to achieve an integrated solution through regular review, assessment, and identification of relevant industry "best athlete" technologies. Attention is focused on solution providers that adhere to standard interfaces and formats, incorporate non-proprietary techniques, are deemed highly-reliable/repeatable, and enable assembly production. Processes and engineering tools/methods have traditionally been applied to dozens of longer-acquisition space-based ISR programs over 50 years. We have recently leveraged these techniques to solve airborne Intelligence, Surveillance and Reconnaissance (ISR) mission challenges. This presentation describes and illustrates key aspects and examples of these techniques, solving real-world airborne mission needs.

  7. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  8. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  9. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  10. Innovativ Airborne Sensors for Disaster Management

    NASA Astrophysics Data System (ADS)

    Altan, M. O.; Kemper, G.

    2016-06-01

    Disaster management by analyzing changes in the DSM before and after the "event". Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000) can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  11. Meteorological Sensor Calibration Facility

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1988-01-01

    The meteorological sensor calibration facility is designed to test and assess radiosonde measurement quality through actual flights in the atmosphere. United States radiosonde temperature measurements are deficient in that they require correction for errors introduced by long- and short-wave radiation. The effect of not applying corrections results in a large bias between day time and night time measurements. This day/night bias has serious implications for users of radiosonde data, of which NASA is one. The derivation of corrections for the U.S. radiosonde is quite important. Determination of corrections depends on solving the heat transfer equation of the thermistor using laboratory measurements of the emissivity and absorptivity of the thermistor coating. The U.S. radiosonde observations from the World Meteorological Organization International Radiosonde Intercomparison were used as the data base to test whether the day/night height bias can be removed. Twenty-five noon time and 26 night time observations were used. Corrected temperatures were used to calculate new geopotentials. Day/night bias in the geopotentials decreased significantly when corrections were introduced. Some testing of thermal lag attendant with the standard carbon hygristor took place. Two radiosondes with small bead thermistors imbedded in the hygristor were flown. Detailed analysis was not accomplished; however, cursory examination of the data showed that the hygristor is at a higher temperature than the external thermistor indicates.

  12. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  13. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  14. Miniature Sensors for Airborne Particulate Matter

    EPA Science Inventory

    Our group is working to design a small,lightweight, low-cost real-time particulate matter(PM) sensor to enable better monitoring of PMconcentrations in air, with the goal of informingpolicymakers and regulators to provide betterpublic health. The sensor reads the massconcentratio...

  15. The Multi-sensor Airborne Radiation Survey (MARS) Instrument

    SciTech Connect

    Fast, James E.; Aalseth, Craig E.; Asner, David M.; Bonebrake, Christopher A.; Day, Anthony R.; Dorow, Kevin E.; Fuller, Erin S.; Glasgow, Brian D.; Hossbach, Todd W.; Hyronimus, Brian J.; Jensen, Jeffrey L.; Johnson, Kenneth I.; Jordan, David V.; Morgen, Gerald P.; Morris, Scott J.; Mullen, O Dennis; Myers, Allan W.; Pitts, W. Karl; Rohrer, John S.; Runkle, Robert C.; Seifert, Allen; Shergur, Jason M.; Stave, Sean C.; Tatishvili, Gocha; Thompson, Robert C.; Todd, Lindsay C.; Warren, Glen A.; Willett, Jesse A.; Wood, Lynn S.

    2013-01-11

    The Multi-sensor Airborne Radiation Survey (MARS) project has developed a new single cryostat detector array design for high purity germanium (HPGe) gama ray spectrometers that achieves the high detection efficiency required for stand-off detection and actionable characterization of radiological threats. This approach, we found, is necessary since a high efficiency HPGe detector can only be built as an array due to limitations in growing large germanium crystals. Moreover, the system is ruggedized and shock mounted for use in a variety of field applications, including airborne and maritime operations.

  16. Study of radiation characteristic of airborne sensor based on tarps

    NASA Astrophysics Data System (ADS)

    Yu, Xiujuan; Qi, Weijun; Fang, Aiping

    2014-07-01

    The radiation characteristic of aerial sensor directly affects the quantitative application level of sensor data. In order to study the radiation characteristic, we carried out the radiation characteristic test based on ground tarps laid onto the calibration field of image quality in Anyang, Henan. The airborne sensor was calibrated adopting reflectance-based method. 8 gray-scale tarps and 4 tarps of high reflectance were laid onto the calibration field and they were all with better Lambert radiation characteristic and spectral performance uniformity. Preliminary results show that the bias is larger and the effective dynamic range is smaller and the SNR is lower but the linearity and repeatability are better which can be used to test the response performance of the sensor. Overall, the radiation characteristic tarps laid on the calibration field are suitable for the study of in-flight radiation characteristic of the aerial digital sensor.

  17. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  18. ARIES: NASA Langley's Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Wusk, Michael S.

    2002-01-01

    In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

  19. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2002-01-01

    In response to recommendations from the National Aviation Weather Program Council, the National Aeronautics and Space Administration (NASA) is working with industry to develop an electronic pilot reporting capability for small aircraft. This paper describes the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development effort. NASA is working with industry to develop a sensor capable of measuring temperature, relative humidity, magnetic heading, pressure, icing, and average turbulence energy dissipation. Users of the data include National Centers for Environmental Prediction (NCEP) forecast modelers, air traffic controllers, flight service stations, airline operation centers, and pilots. Preliminary results from flight tests are presented.

  20. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  1. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing

  2. Airborne sensors for detecting large marine debris at sea.

    PubMed

    Veenstra, Timothy S; Churnside, James H

    2012-01-01

    The human eye is an excellent, general-purpose airborne sensor for detecting marine debris larger than 10 cm on or near the surface of the water. Coupled with the human brain, it can adjust for light conditions and sea-surface roughness, track persistence, differentiate color and texture, detect change in movement, and combine all of the available information to detect and identify marine debris. Matching this performance with computers and sensors is difficult at best. However, there are distinct advantages over the human eye and brain that sensors and computers can offer such as the ability to use finer spectral resolution, to work outside the spectral range of human vision, to control the illumination, to process the information in ways unavailable to the human vision system, to provide a more objective and reproducible result, to operate from unmanned aircraft, and to provide a permanent record that can be used for later analysis. PMID:21300380

  3. Collation of earth resources data collected by ERIM airborne sensors

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1975-01-01

    Earth resources imagery from nine years of data collection with developmental airborne sensors is cataloged for reference. The imaging sensors include single and multiband line scanners and side-looking radars. The operating wavelengths of the sensors include ultraviolet, visible and infrared band scanners, and X- and L-band radar. Imagery from all bands (radar and scanner) were collected at some sites and many sites had repeated coverage. The multiband scanner data was radiometrically calibrated. Illustrations show how the data can be used in earth resource investigations. References are made to published reports which have made use of the data in completed investigations. Data collection sponsors are identified and a procedure described for gaining access to the data.

  4. Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    NASA Astrophysics Data System (ADS)

    Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; McCaul, E. W., Jr.

    1993-01-01

    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall

  5. Sensor integration and testing in an airborne environment

    NASA Astrophysics Data System (ADS)

    Ricks, Timothy P.; Streling, Julie T.; Williams, Kirk W.

    2005-11-01

    The U.S. Army Redstone Technical Test Center (RTTC) has been supporting captive flight testing of missile sensors and seekers since the 1980's. Successful integration and test of sensors in an airborne environment requires attention to a broad range of disciplines. Data collection requirements drive instrumentation and flight profile configurations, which along with cost and airframe performance factors influence the choice of test aircraft. Installation methods used for instrumentation must take into consideration environmental and airworthiness factors. In addition, integration of test equipment into the aircraft will require an airworthiness release; procedures vary between the government for military aircraft, and the Federal Aviation Administration (FAA) for the use of private, commercial, or experimental aircraft. Sensor mounting methods will depend on the type of sensor being used, both for sensor performance and crew safety concerns. Pilots will require navigation input to permit the execution of accurate and repeatable flight profiles. Some tests may require profiles that are not supported by standard navigation displays, requiring the use of custom hardware/software. Test locations must also be considered in their effect on successful data collection. Restricted airspace may also be required, depending on sensor emissions and flight profiles.

  6. The Multi-Center Airborne Coherent Atmospheric Wind Sensor, MACAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1997-01-01

    In 1992 the atmospheric lidar remote sensing groups of the NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS, which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in the troposphere and lower stratosphere. A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise which were developed for previous atmospheric research by the respective institutions. The motivation for the MACAWS program Is three-fold: to obtain fundamental measurements of sub-synoptic scale processes and features which may be used as a basis to improve sub-grid scale parameterizations in large-scale models; to obtain similar datasets in order to improve the understanding and predictive capabilities on the mesoscale; and to validate (simulate) the performance of existing (planned) satellite-borne sensors. Examples of the latter include participation in the validation of the NASA Scatterometer and the assessment of prospective satellite Doppler lidar for global tropospheric wind measurement. Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  7. Airborne Observations of Ammonia Emissions from North Carolina Swine Facilities

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J. A.; Liao, J.; Welti, A.; Middlebrook, A. M.; McKeen, S. A.; Trainer, M.; Parrish, D. D.

    2013-12-01

    Ammonia (NH3) is the dominant gas-phase base in the troposphere. As a consequence, NH3 abundance influences particle formation and composition. Anthropogenic emissions of NH3 can react with sulfuric acid (H2SO4) and nitric acid (HNO3), photochemical oxidation products of sulfur dioxide (SO2) and nitrogen oxides (NOx (NO + NO2)), to form ammoniated particles that typically account for half or more of measured PM2.5 mass in the Eastern US. NH3 emissions are predominantly from agricultural sources, primarily livestock animal waste and crop fertilization. Accurate NH3 emissions estimates from these sources are necessary for developing effective particle control strategies. Swine facilities in North Carolina are one of the largest source of NH3 emissions in the Southeastern US. Airborne measurements of NH3 and particulate ammonium (NH4+) made aboard the NOAA WP-3D aircraft as part of the recent 2013 SENEX field campaign are used to quantify NH3 emissions from North Carolina swine facilities. The observed NH3 emissions are compared to swine facility emissions estimates from current emissions inventories. In addition, the NH3 emissions from swine facilities are placed in the broader context of NH3 sources through comparison to recent emissions observations from dairy facilities in California. The July 10 SENEX WP-3D flight track colored and sized by observed NH3 mixing ratios.

  8. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  9. Extracting dynamic spatial data from airborne imaging sensors to support traffic flow estimation

    NASA Astrophysics Data System (ADS)

    Toth, C. K.; Grejner-Brzezinska, D.

    The recent transition from analog to totally digital data acquisition and processing techniques in airborne surveying represents a major milestone in the evolution of spatial information science and practice. On one hand, the improved quality of the primary sensor data can provide the foundation for better automation of the information extraction processes. This phenomenon is also strongly supported by continuously expanding computer technology, which offers almost unlimited processing power. On the other hand, the variety of the data, including rich information content and better temporal characteristics, acquired by the new digital sensors and coupled with rapidly advancing processing techniques, is broadening the applications of airborne surveying. One of these new application areas is traffic flow extraction aimed at supporting better traffic monitoring and management. Transportation mapping has always represented a significant segment of civilian mapping and is mainly concerned with road corridor mapping for design and engineering purposes, infrastructure mapping and facility management, and more recently, environmental mapping. In all these cases, the objective of the mapping is to extract the static features of the object space, such as man-made and natural objects, typically along the road network. In contrast, the traffic moving in the transportation network represents a very dynamic environment, which complicates the spatial data extraction processes as the signals of moving vehicles should be identified and removed. Rather than removing and discarding the signals, however, they can be turned into traffic flow information. This paper reviews initial research efforts to extract traffic flow information from laserscanner and digital camera sensors installed in airborne platforms.

  10. The Multi-center Airborne Coherent Atmospheric Wind Sensor.

    NASA Astrophysics Data System (ADS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James N.; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1998-04-01

    In 1992 the atmospheric lidar remote sensing groups of the National Aeronautics and Space Administration Marshall Space Flight Center, the National Oceanic and Atmospheric Administration/Environmental Technology Laboratory (NOAA/ETL), and the Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in three-dimensional volumes in the troposphere and lower stratosphere.A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise that were developed for previous atmospheric research by the respective institutions. For example, the laser transmitter is that of the mobile ground-based Doppler lidar system developed and used in atmospheric research for more than a decade at NOAA/ETL.The motivation for MACAWS is threefold: 1) to obtain fundamental measurements of subsynoptic-scale processes and features to improve subgrid-scale parameterizations in large-scale models, 2) to obtain datasets in order to improve the understanding of and predictive capabilities for meteorological systems on subsynoptic scales, and 3) to validate (simulate) the performance of existing (planned) satellite-borne sensors.Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following system improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  11. Nevada Test Site Sensor Test Facility

    SciTech Connect

    Gomez, B.J.; Boyer, W.B.

    1996-12-01

    A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

  12. Boeing infrared sensor (BIRS) calibration facility

    NASA Technical Reports Server (NTRS)

    Hazen, John D.; Scorsone, L. V.

    1990-01-01

    The Boeing Infrared Sensor (BIRS) Calibration Facility represents a major capital investment in optical and infrared technology. The facility was designed and built for the calibration and testing of the new generation large aperture long wave infrared (LWIR) sensors, seekers, and related technologies. Capability exists to perform both radiometric and goniometric calibrations of large infrared sensors under simulated environmental operating conditions. The system is presently configured for endoatmospheric calibrations with a uniform background field which can be set to simulate the expected mission background levels. During calibration, the sensor under test is also exposed to expected mission temperatures and pressures within the test chamber. Capability exists to convert the facility for exoatmospheric testing. The configuration of the system is described along with hardware elements and changes made to date are addressed.

  13. Airborne infection control in India: Baseline assessment of health facilities

    PubMed Central

    Parmar, Malik M.; Sachdeva, K.S.; Rade, Kiran; Ghedia, Mayank; Bansal, Avi; Nagaraja, Sharath Burugina; Willis, Matthew D.; Misquitta, Dyson P.; Nair, Sreenivas A.; Moonan, Patrick K.; Dewan, Puneet K.

    2016-01-01

    Background Tuberculosis transmission in health care settings represents a major public health problem. In 2010, national airborne infection control (AIC) guidelines were adopted in India. These guidelines included specific policies for TB prevention and control in health care settings. However, the feasibility and effectiveness of these guidelines have not been assessed in routine practice. This study aimed to conduct baseline assessments of AIC policies and practices within a convenience sample of 35 health care settings across 3 states in India and to assess the level of implementation at each facility after one year. Method A multi-agency, multidisciplinary panel of experts performed site visits using a standardized risk assessment tool to document current practices and review resource capacity. At the conclusion of each assessment, facility-specific recommendations were provided to improve AIC performance to align with national guidelines. Result Upon initial assessment, AIC systems were found to be poorly developed and implemented. Administrative controls were not commonly practiced and many departments needed renovation to achieve minimum environmental standards. One year after the baseline assessments, there were substantial improvements in both policy and practice. Conclusion A package of capacity building and systems development that followed national guidelines substantially improved implementation of AIC policies and practice. PMID:26970461

  14. Self-refreshing characteristics of an airborne particle sensor using a bridged paddle oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Eunsuk; Lee, Seung-Beck; Park, Bonghyun; Sul, Onejae

    2016-05-01

    We report on the self-refreshing characteristics of a micromachined airborne particle sensor. The sensor consists of a bridge-type beam having an oscillating paddle-type particle collector at its center. When a positive potential is applied to the paddle, the sensor is able to attract and collect negatively charged airborne particles while oscillating close to its resonant frequency and thereby measure their density from the change in the oscillating phase at ˜10 pg resolution. When the applied potential is removed, the collected particles are detached from the sensor due to momentum transfer from the oscillating paddle, thus demonstrating a self-refreshing capability.

  15. Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Rothermel, Jeffrey; Tratt, David M.; Cutten, Dean; Darby, Lisa S.; Hardesty, R. Michael

    1999-10-01

    The Multicenter Airborne Coherent Atmospheric Wind Sensor instrument is an airborne coherent Doppler laser radar (Lidar) capable of measuring atmospheric wind fields and aerosol structure. Since the first demonstration flights onboard the NASA DC-8 research aircraft in September 1995, two additional science flights have been completed. Several system upgrades have also bee implemented. In this paper we discuss the system upgrades and present several case studies which demonstrate the various capabilities of the system.

  16. Ultrawideband synthetic vision sensor for airborne wire detection

    NASA Astrophysics Data System (ADS)

    Fontana, Robert J.; Larrick, J. F.; Cade, Jeffrey E.; Rivers, Eugene P., Jr.

    1998-07-01

    A low cost, miniature ultra wideband (UWB) radar has demonstrated the ability to detect suspended wires and other small obstacles at distances exceeding several hundred feet using an average output power of less than 10 microwatts. Originally developed as a high precision UWB radar altimeter for the Navy's Program Executive Office for Unmanned Aerial Vehicles and Cruise Missiles, an improved sensitivity version was recently developed for the Naval Surface Warfare Center (NSWC Dahlgren Division) as part of the Marine Corps Warfighting Laboratory's Hummingbird program for rotary wing platforms. Utilizing a short pulse waveform of approximately 2.5 nanoseconds in duration, the receiver processor exploits the leading edge of the radar return pulse to achieve range resolutions of less than one foot. The resultant 400 MHz bandwidth spectrum produces both a broad frequency excitation for enhanced detection, as well as a low probability of intercept and detection (LPI/D) signature for covert applications. This paper describes the design and development of the ultra wideband sensor, as well as performance results achieved during field testing at NSWC's Dahlgren, VA facility. These results are compared with those achieved with a high resolution EHF radar and a laser-based detection system.

  17. ANALYZING WATER QUALITY WITH IMAGES ACQUIRED FROM AIRBORNE SENSORS

    EPA Science Inventory

    Monitoring different parameters of water quality can be a time consuming and expensive activity. However, the use of airborne light-sensitive (optical) instruments may enhance the abilities of resource managers to monitor water quality in rivers in a timely and cost-effective ma...

  18. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  19. Multi Sensor and Platforms Setups for Various Airborne Applications

    NASA Astrophysics Data System (ADS)

    Kemper, G.; Vasel, R.

    2016-06-01

    To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  20. Diffused Matrix Format: A New Storage and Processing Format for Airborne Hyperspectral Sensor Images

    PubMed Central

    Martínez, Pablo; Cristo, Alejandro; Koch, Magaly; Pérez, Rosa Mª.; Schmid, Thomas; Hernández, Luz M.

    2010-01-01

    At present, hyperspectral images are mainly obtained with airborne sensors that are subject to turbulences while the spectrometer is acquiring the data. Therefore, geometric corrections are required to produce spatially correct images for visual interpretation and change detection analysis. This paper analyzes the data acquisition process of airborne sensors. The main objective is to propose a new data format called Diffused Matrix Format (DMF) adapted to the sensor's characteristics including its spectral and spatial information. The second objective is to compare the accuracy of the quantitative maps derived by using the DMF data structure with those obtained from raster images based on traditional data structures. Results show that DMF processing is more accurate and straightforward than conventional image processing of remotely sensed data with the advantage that the DMF file structure requires less storage space than other data formats. In addition the data processing time does not increase when DMF is used. PMID:22399919

  1. Optical cloud detection from a disposable airborne sensor

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles; Brus, David

    2016-04-01

    In-situ measurement of cloud droplet microphysical properties is most commonly made from manned aircraft platforms due to the size and weight of the instrumentation, which is both costly and typically limited to sampling only a few clouds. This work describes the development of a small, lightweight (<200g), disposable, optical cloud sensor which is designed for use on routine radiosonde balloon flights and also small unmanned aerial vehicle (UAV) platforms. The sensor employs the backscatter principle, using an ultra-bright LED as the illumination source, with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. During recent field tests in Pallas, Finland, the retrieved optical sensor signal has been compared with the DMT Cloud and Aerosol Spectrometer (CAS) which measures cloud droplets in the size range from 0.5 to 50 microns. Both sensors were installed at the hill top observatory of Sammaltunturi during a field campaign in October and November 2015, which experienced long periods of immersion inside cloud. Preliminary analysis shows very good agreement between the CAPS and the disposable cloud sensor for cloud droplets >5micron effective diameter. Such data and calibration of the sensor will be discussed here, as will simultaneous balloon launches of the optical cloud sensor through the same cloud layers.

  2. Calibration, Sensor Model Improvements and Uncertainty Budget of the Airborne Imaging Spectrometer APEX

    NASA Astrophysics Data System (ADS)

    Hueni, A.

    2015-12-01

    ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science

  3. Airborne sensor systems under development at the NASA/NSTL/Earth Resources Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, James E.; Meeks, Gerald R.

    1988-01-01

    The operational characteristics of the Airborne Bathymetric System (ABS) MSS and the Airborne Multispectral Pushbroom Scanner (AMPS), which are currently being developed at NASA's Earth Resources Laboratory (ERL), are described. The ABS MSS system scans through a swath width of + or - 40 deg from nadir and the sensor incorporates onboard calibration references for the visible and short-wavelength IR channels. The AMPS uses five separate f/1.8 refractive telecentric lens systems, each incorporating nine optical elements, and a replaceable fixed bandwidth filter.

  4. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  5. Geometric rectification of airborne sensor data using GPS-based attitude and position information

    SciTech Connect

    Wilson, A.K.; Mockridge, W.

    1996-11-01

    The geometric rectification of remotely sensed data, acquired using airborne platforms, is an essential prerequisite for quantitative processing and analysis, due to the complex distortions inherent in such imagery. The Natural Environment Research Council (NERC) has implemented an Integrated Data System (IDS) on-board its survey aircraft to derive both attitude and position for use in a parametric solution to the geometric correction of data from two airborne sensors. This paper describes the elements of the NERC IDS and the complementary ground data processing system that carries out navigation pre-processing and geometric resampling of the airborne data. Test flights have been flown and processed to demonstrate the potential of this completely GPS-based solution to providing high quality, spatially referenced, data for use in environmental monitoring applications. 6 refs., 5 figs., 1 tab.

  6. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  7. Remote Sensing of Chlorophyll Fluorescence by the Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Cook, W. B.; Morgan, F., II; Demajistre, R.; Cook, B. D.; Corp, L. A.

    2014-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the amount of fill-in of strong O2 absorption lines or Fraunhofer lines in the reflected solar spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is designed and constructed specifically for airborne and groundbased ChlF measurements using the line fill-in ChlF measurement technique. In this paper, we will present the design of this triple etalon Fabry-Perot imaging instrument and the results of its vegetation fluorescence measurements obtained from the ground in the laboratory and from a NASA Langley King Air during our 2014 airborne campaign over vegetated targets in North Carolina and Virginia.

  8. An integrated decision model for the application of airborne sensors for improved response to accidental and terrorist chemical vapor releases

    NASA Astrophysics Data System (ADS)

    Kapitan, Loginn

    This research created a new model which provides an integrated approach to planning the effective selection and employment of airborne sensor systems in response to accidental or intentional chemical vapor releases. The approach taken was to use systems engineering and decision analysis methods to construct a model architecture which produced a modular structure for integrating both new and existing components into a logical procedure to assess the application of airborne sensor systems to address chemical vapor hazards. The resulting integrated process model includes an internal aggregation model which allowed differentiation among alternative airborne sensor systems. Both models were developed and validated by experts and demonstrated using appropriate hazardous chemical release scenarios. The resultant prototype integrated process model or system fills a current gap in capability allowing improved planning, training and exercise for HAZMAT teams and first responders when considering the selection and employment of airborne sensor systems. Through the research process, insights into the current response structure and how current airborne capability may be most effectively used were generated. Furthermore, the resultant prototype system is tailorable for local, state, and federal application, and can potentially be modified to help evaluate investments in new airborne sensor technology and systems. Better planning, training and preparedness exercising holds the prospect for the effective application of airborne assets for improved response to large scale chemical release incidents. Improved response will result in fewer casualties and lives lost, reduced economic impact, and increased protection of critical infrastructure when faced with accidental and intentional terrorist release of hazardous industrial chemicals. With the prospect of more airborne sensor systems becoming available, this prototype system integrates existing and new tools into an effective

  9. Indoor air quality & airborne disease control in healthcare facilities

    SciTech Connect

    Turner, S.

    1997-06-01

    This article is concerned with indoor air quality (IAQ) in the context of healthcare facilities. It defines what is meant by IAQ, lists health outcomes of poor IAQ, addresses specific healthcare IAQ issues, discusses solutions by means of HVAC systems, and covers relevant regulations and standards.

  10. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  11. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  12. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  13. Real-time sensor mapping display for airborne imaging sensor test with the adaptive infrared imaging spectroradiometer (AIRIS)

    NASA Astrophysics Data System (ADS)

    Burton, Megan M.; Cruger, William E.; Gittins, Christopher; Kindle, Harry; Ricks, Timothy P.

    2005-11-01

    Captive flight testing (CFT) of sensors and seekers requires accurate data collection and display for sensor performance evaluation. The U.S. Army Redstone Technical Test Center (RTTC), in support of the U.S. Army Edgewood Chemical Biological Center (ECBC), has developed a data collection suite to facilitate airborne test of hyperspectral chemical/biological sensors. The data collection suite combines global positioning system (GPS) tracking, inertial measurement unit (IMU) data, accurate timing streams, and other test scenario information. This data collection suite also contains an advanced real-time display of aircraft and sensor field-of-view information. The latest evolution of this system has been used in support of the Adaptive InfraRed Imaging Spectroradiometer (AIRIS), currently under development by Physical Sciences Incorporated for ECBC. For this test, images from the AIRIS sensor were overlaid on a digitized background of the test area, with latencies of 1 second or less. Detects of surrogate chemicals were displayed and geo-referenced. Video overlay was accurate and reliable. This software suite offers great versatility in the display of imaging sensor data; support of future tests with the AIRIS sensor are planned as the system evolves.

  14. NASA DC-8 Airborne Scanning Lidar Sensor Development

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E.; Kaiser, Robert D.; Tucker, Michael A.; Baloun, James E.; Gorordo, Javier G.

    1996-01-01

    The NASA DC-8 aircraft is used to support a variety of in-situ and remote sensors for conducting environmental measurements over global regions. As part of the atmospheric effects of aviation program (AEAP) the DC-8 is scheduled to conduct atmospheric aerosol and gas chemistry and radiation measurements of subsonic aircraft contrails and cirrus clouds. A scanning lidar system is being developed for installation on the DC-8 to support and extend the domain of the AEAP measurements. Design and objectives of the DC-8 scanning lidar are presented.

  15. NASA DC-8 airborne scanning LIDAR sensor development

    SciTech Connect

    Nielsen, N.B.; Uthe, E.E.; Kaiser, R.D.

    1996-11-01

    The NASA DC-8 aircraft is used to support a variety of in-situ and remote sensors for conducting environmental measurements over global regions. As part of the atmospheric effects of aviation program (AEAP) the DC-8 is scheduled to conduct atmospheric aerosol and gas chemistry and radiation measurements of subsonic aircraft contrails and cirrus clouds. A scanning lidar system is being developed for installation on the DC-8 to support and extend the domain of the AEAP measurements. Design and objectives of the DC-8 scanning lidar are presented. 4 figs.

  16. Concentration and Emission of Airborne Contaminants in a Laboratory Animal Facility Housing Rabbits

    PubMed Central

    Ooms, Tara G; Artwohl, James E; Conroy, Lorraine M; Schoonover, Todd M; Fortman, Jeffrey D

    2008-01-01

    Characterization of animal housing conditions can determine the frequency of bedding and cage changes, which are not standardized from facility to facility. Rabbits produce noticeable odors, and their excreta can scald and stain cages. Our facility wanted to document measurable airborne contaminants in a laboratory rabbit room in which excreta pans were changed weekly and cages changed biweekly. Contaminants included particulate, endotoxin, ammonia, carbon dioxide, and a rabbit salivary protein as a marker for rabbit allergen. Concentrations were measured daily over a 2-wk period in a laboratory animal facility to determine whether they increased over time and on days considered to be the dirtiest. Except for ammonia, concentrations of all airborne contaminants did not differ between clean and dirty days. Concentrations were lower than occupational health exposure guidelines for all contaminants studied, including ammonia. After measurement of concentration, a model was applied to calculate mean emission factors in this rabbit room. Examples of emission factor utilization to determine airborne contaminant concentration in rabbit rooms under various environmental conditions and housing densities are provided. PMID:18351721

  17. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility.

    PubMed

    Brandl, Helmut; Fricker-Feer, Claudia; Ziegler, Dominik; Mandal, Jyotshna; Stephan, Roger; Lehner, Angelika

    2014-01-01

    Airborne communities (mainly bacteria) were sampled and characterized (concentration levels and diversity) at 1 outdoor and 6 indoor sites within a Swiss dairy production facility. Air samples were collected on 2 sampling dates in different seasons, one in February and one in July 2012 using impaction bioaerosol samplers. After cultivation, isolates were identified by mass spectrometry (matrix-assisted laser desorption/ionization-time-of-flight) and molecular (sequencing of 16S rRNA and rpoB genes) methods. In general, total airborne particle loads and total bacterial counts were higher in winter than in summer, but remained constant within each indoor sampling site at both sampling times (February and July). Bacterial numbers were generally very low (<100 cfu/m(3) of air) during the different steps of milk powder production. Elevated bacterial concentrations (with mean values of 391 ± 142 and 179 ± 33 cfu/m(3) of air during winter and summer sampling, respectively; n=15) occurred mainly in the "logistics area," where products in closed tins are packed in secondary packaging material and prepared for shipping. However, total bacterial counts at the outdoor site varied, with a 5- to 6-fold higher concentration observed in winter compared with summer. Twenty-five gram-positive and gram-negative genera were identified as part of the airborne microflora, with Bacillus and Staphylococcus being the most frequent genera identified. Overall, the culturable microflora community showed a composition typical and representative for the specific location. Bacterial counts were highly correlated with total airborne particles in the size range 1 to 5 µm, indicating that a simple surveillance system based upon counting of airborne particles could be implemented. The data generated in this study could be used to evaluate the effectiveness of the dairy plant's sanitation program and to identify potential sources of airborne contamination, resulting in increased food safety. PMID

  20. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Tsoucalas, George; Anderson, Mark; Mulally, Daniel; Moninger, William; Mamrosh, Richard

    2004-01-01

    One of the recommendations of the National Aviation Weather Program Council was to expand and institutionalize the generation, dissemination, and use of automated pilot reports (PIREPS) to the full spectrum of the aviation community, including general aviation. In response to this and other similar recommendations, NASA initiated cooperative research into the development of an electronic pilot reporting capability (Daniels 2002). The ultimate goal is to develop a small low-cost sensor, collect useful meteorological observations below 25,000 ft., downlink the data in near real time, and use the data to improve weather forecasts. Primary users of the data include pilots, who are one targeted audience for the improved weather information that will result from the TAMDAR data. The weather data will be disseminated and used to improve aviation safety by providing pilots with enhanced weather situational awareness. In addition, the data will be used to improve the accuracy and timeliness of weather forecasts. Other users include air traffic controllers, flight service stations, and airline weather centers. Additionally, the meteorological data collected by TAMDAR is expected to have a significant positive impact on forecast accuracy for ground based applications.

  1. An Airborne Sensor and Retrieval Project for Geostationary Trace Gas and Aerosol Sensor Optimization for the GEO-CAPE Mission

    NASA Astrophysics Data System (ADS)

    Leitch, J. W.; Delker, T.; Chance, K.; Liu, X.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Wang, J.

    2012-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (Geo-TASO) Instrument Incubator project involves spectrometer development, airborne data campaigns, and algorithm testing - all in support of mission risk reduction for the UV-Vis trace air quality measurements for the GEO-CAPE mission. A compact, two-channel spectrometer for spectral radiance measurements is being built and readied for use on NASA's DC-8. The goals of the project are to demonstrate the compact spectrometer concept, provide "satellite analog" measurements in support of air quality measurements and data campaigns, and to advance the retrieval algorithm readiness for the GEO-CAPE mission.

  2. Functionalized carbon nanotubes: Facile development of gas sensor platform

    NASA Astrophysics Data System (ADS)

    Rushi, Arti D.; Gaikwad, S.; Deshmukh, M.; Patil, H.; Bodkhe, G.; Shirsat, Mahendra D.

    2016-05-01

    In the present investigation, research efforts were directed towards the facile fabrication of sensor devices for the detection of gaseous analytes. Single Wall Carbon nanotubes, the highest prominent representative of functional nanomaterials, were employed for the sensor development. High surface to volume ratio of CNTs facilitate to improve overall sensor performance. To achieve enhanced sensing characteristics, CNTs were functionalized with tetraphenyl porphyrin. Fabricated sensor devices were subjected to the structural, electrical as well as sensing characteristics. Observed results infer that the fabricated sensor shows excellent sensing characteristics towards propanone below their PEL level.

  3. Airborne microorganisms associated with packaging glass sorting facilities.

    PubMed

    Pinto, Marta Jorge de Vasconcelos; Veiga, José Miguel; Fernandes, Paulo; Ramos, Carla; Gonçalves, Sérgio; Velho, Maria Manuela Lemos Vaz; Guerreiro, Joana Santos

    2015-01-01

    importance of proper design and risk evaluation when planning a new waste facility, such that working conditions minimize proliferation of biological agents in the workplace. PMID:26039746

  4. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  5. On-Orbit Calibration of a Multi-Spectral Satellite Satellite Sensor Using a High Altitude Airborne Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Shimada, M.

    1996-01-01

    Earth-looking satellites must be calibrated in order to quantitatively measure and monitor components of land, water and atmosphere of the Earth system. The inevitable change in performance due to the stress of satellite launch requires that the calibration of a satellite sensor be established and validated on-orbit. A new approach to on-orbit satellite sensor calibration has been developed using the flight of a high altitude calibrated airborne imaging spectrometer below a multi-spectral satellite sensor.

  6. Remotely Measured Terrestrial Chlorophyll Fluorescence Using Airborne G-LiHT and APFS Sensors

    NASA Astrophysics Data System (ADS)

    Cook, W. B.; Yee, J. H.; Corp, L. A.; Cook, B. D.; Huemmrich, K. F.

    2014-12-01

    In September 2014 the Goddard Lidar, Hyperspectral and Thermal (G-LiHT) and the APL/JHU Airborne Plant Fluorescence Sensor (APFS) were flown together on a NASA Langley King Air over vegetated targets in North Carolina and Virginia. The instruments provided high spatial and spectral resolution data in the visible and near infrared, down-welling irradiance, elevation maps, and thermal imagery. Ground validation data was also collected concurrently. Here we report the results of these measurements and show the feasibility of using these types of instruments for collection the fluorescence and other information essential for ecological and carbon cycle studies.

  7. Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: conversion of a ground-based lidar for airborne applications

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Hardesty, R. Michael; Rothermel, Jeffrey; Menzies, Robert T.

    1996-11-01

    The first Multi center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO2 Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure 3D winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, we describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from the September experiments.

  8. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  9. Parameterization of gaseous constituencies concentration profiles in the planetary boundary layer as required in support of airborne and satellite borne sensors

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Condon, E.; Casas, J.

    1976-01-01

    The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.

  10. Preventing Airborne Disease Transmission: Review of Methods for Ventilation Design in Health Care Facilities

    PubMed Central

    Aliabadi, Amir A.; Rogak, Steven N.; Bartlett, Karen H.; Green, Sheldon I.

    2011-01-01

    Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813

  11. Preventing airborne disease transmission: review of methods for ventilation design in health care facilities.

    PubMed

    Aliabadi, Amir A; Rogak, Steven N; Bartlett, Karen H; Green, Sheldon I

    2011-01-01

    Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813

  12. Efficient method for the determination of image correspondence in airborne applications using inertial sensors.

    PubMed

    Woods, Matthew; Katsaggelos, Aggelos

    2013-01-01

    This paper presents a computationally efficient method for the measurement of a dense image correspondence vector field using supplementary data from an inertial navigation sensor (INS). The application is suited to airborne imaging systems, such as an unmanned air vehicle, where size, weight, and power restrictions limit the amount of onboard processing available. The limited processing will typically exclude the use of traditional, but computationally expensive, optical flow and block matching algorithms, such as Lucas-Kanade, Horn-Schunck, or the adaptive rood pattern search. Alternatively, the measurements obtained from an INS, on board the platform, lead to a closed-form solution to the correspondence field. Airborne platforms are well suited to this application because they already possess INSs and global positioning systems as part of their existing avionics package. We derive the closed-form solution for the image correspondence vector field based on the INS data. We then show, through both simulations and real flight data, that the closed-form inertial sensor solution outperforms traditional optical flow and block matching methods. PMID:23456006

  13. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  14. Model-based sensor rendering for a DIS multisensor airborne surveillance platform

    NASA Astrophysics Data System (ADS)

    Roberts, John D.; Santapietro, John J.

    1997-07-01

    This paper reports on the continuing development of a DIS- compliant model for an airborne platform carrying a multisensor payload. This payload consists of a moving target indicator (MTI) radar, a cooperative battlefield combat identification system (BCIS), and imaging sensors. The imaging sensors are a synthetic aperture radar (SAR) and a forward looking infrared (FLIR) imager. The entire platform model is an extension to the ModSAF environment. The sensor model code is fully portable and integrated as ModSAF libraries. Relevant emission protocol data units (PDU) are generated and transmitted. The overall simulation architecture and the MTI and BCIS models have been described in detail elsewhere. The current work concentrates on the development of real-time model-based imaging functions. The software tools which provide this capability are available both in the government- owned inventory and as commercial products. The purpose of the current activity is to investigate the feasibility of integrating software of this kind with the ModSAF environment in order to produce realistic target/scene rendering similar to those obtained by high-resolution imaging sensors. To this end, we investigated real-time scene generation using two approaches. The first, through integration of the IRMA software package developed and distributed by the USAF Wright Laboratories, Eglin AFB, and the second is by use of the commercial software package SensorVisionTM, which is marketed and distributed by Paradigm Solutions, Inc. Both of these produce scene renderings in user specified wavebands by combining entity state PDU information with terrain data. The scene model information is passed to rendering software to produce an IR or SAR rendering of the scene.

  15. Sensor test facilities and capabilities at the Nevada Test Site

    SciTech Connect

    Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

    1996-12-31

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  16. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  17. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  18. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  19. MM wave SAR sensor design: Concept for an airborne low level reconnaissance system

    NASA Astrophysics Data System (ADS)

    Boesswetter, C.

    1986-07-01

    The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.

  20. Multispectral Terrain Background Simulation Techniques For Use In Airborne Sensor Evaluation

    NASA Astrophysics Data System (ADS)

    Weinberg, Michael; Wohlers, Ronald; Conant, John; Powers, Edward

    1988-08-01

    A background simulation code developed at Aerodyne Research, Inc., called AERIE is designed to reflect the major sources of clutter that are of concern to staring and scanning sensors of the type being considered for various airborne threat warning (both aircraft and missiles) sensors. The code is a first principles model that could be used to produce a consistent image of the terrain for various spectral bands, i.e., provide the proper scene correlation both spectrally and spatially. The code utilizes both topographic and cultural features to model terrain, typically from DMA data, with a statistical overlay of the critical underlying surface properties (reflectance, emittance, and thermal factors) to simulate the resulting texture in the scene. Strong solar scattering from water surfaces is included with allowance for wind driven surface roughness. Clouds can be superimposed on the scene using physical cloud models and an analytical representation of the reflectivity obtained from scattering off spherical particles. The scene generator is augmented by collateral codes that allow for the generation of images at finer resolution. These codes provide interpolation of the basic DMA databases using fractal procedures that preserve the high frequency power spectral density behavior of the original scene. Scenes are presented illustrating variations in altitude, radiance, resolution, material, thermal factors, and emissivities. The basic models utilized for simulation of the various scene components and various "engineering level" approximations are incorporated to reduce the computational complexity of the simulation.

  1. Airborne imaging sensors for environmental monitoring & surveillance in support of oil spills & recovery efforts

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Jones, James; Frystacky, Heather; Coppin, Gaelle; Leavaux, Florian; Neyt, Xavier

    2011-11-01

    Collection of pushbroom sensor imagery from a mobile platform requires corrections using inertial measurement units (IMU's) and DGPS in order to create useable imagery for environmental monitoring and surveillance of shorelines in freshwater systems, coastal littoral zones and harbor areas. This paper describes a suite of imaging systems used during collection of hyperspectral imagery in northern Florida panhandle and Gulf of Mexico airborne missions to detect weathered oil in coastal littoral zones. Underlying concepts of pushbroom imagery, the needed corrections for directional changes using DGPS and corrections for platform yaw, pitch, and roll using IMU data is described as well as the development and application of optimal band and spectral regions associated with weathered oil. Pushbroom sensor and frame camera data collected in response to the recent Gulf of Mexico oil spill disaster is presented as the scenario documenting environmental monitoring and surveillance techniques using mobile sensing platforms. Data was acquired during the months of February, March, April and May of 2011. The low altitude airborne systems include a temperature stabilized hyperspectral imaging system capable of up to 1024 spectral channels and 1376 spatial across track pixels flown from 3,000 to 4,500 feet altitudes. The hyperspectral imaging system is collocated with a full resolution high definition video recorder for simultaneous HD video imagery, a 12.3 megapixel digital, a mapping camera using 9 inch film types that yields scanned aerial imagery with approximately 22,200 by 22,200 pixel multispectral imagery (~255 megapixel RGB multispectral images in order to conduct for spectral-spatial sharpening of fused multispectral, hyperspectral imagery. Two high spectral (252 channels) and radiometric sensitivity solid state spectrographs are used for collecting upwelling radiance (sub-meter pixels) with downwelling irradiance fiber optic attachment. These sensors are utilized for

  2. Linking morphology to ecosystem structure using air-borne sensors for monitoring the Earth System

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Giardino, C.; Valentini, E.; Bresciani, M.; Gasperini, L.

    2010-12-01

    Coastal Landscape, and how they change over time, provide the template on which the emerging role of Earth system science (ESS) closely linked with the development of space-borne sensors can stand in the center of a newly emerging science of the Earth's surface, where strong couplings links human dynamics, biology, biochemistry, geochemistry, geomorphology, and fluid dynamics including climate change. Modern views on the behavior of complex systems like the coastal one, allow the interpretation of phenomenological coastal landscape as a stationary landscape-state that correspond to a dynamic equilibrium, and to a self-organized exogenic order of the edge of the chaos. Therefore is essential for a thoroughly understanding of spatiotemporal variations in coastal dynamics and habitat distribution for the source of nonlinearity and complexity in geomorphic system make gathering data appropriate for use in developing and testing models of biological and physical process interacting across a wide range of scale. In this paper a physics based approach was applied to MIVIS (Multi-spectral IR and Visible Imaging Spectrometer) and LiDAR (Light Detection and Ranging) airborne data, simultaneously acquired on 12 May 2009 in order to integrate geomorphological and ecological observations into a detailed macrophytes map of Lake Trasimeno (Italy). Shallow water vegetation, in fact, plays an essential role in determining how coastal morphology and ecosystems dynamics respond to feedbacks between biological and physical processes. An accurate field campaign was carried out during the airborne survey and a collection of different biophysical parameter has been achieved. The purposes of the field observations were twofold. First, field observations allowed identification of biophysical habitats and properties associated both to radiometric and limnological features. Secondly, field reconnaissance allowed identifying significant parameters involved in optical interpretation of the

  3. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    PubMed

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  4. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  5. Evaluation of different airflow sensors at the WIPP facility

    SciTech Connect

    McDaniel, K.; Duckworth, I.J.; Prosser, B.S.

    1999-07-01

    The Waste Isolation Pilot Plant (WIPP) is an US Department of Energy underground disposal facility designed to permanently and safely isolate US defense-generated transuranic radioactive waste. The underground ventilation system is engineered to minimize the release of radioactive contamination to the environment in the event of an accident. During 1994 an extensive ventilation remote monitoring and control system was installed. It consists of fifteen air velocity sensors, eight differential pressure stations, automated control features on key underground air regulators, and eight psychrometric stations. The airflow monitoring component of the system has been a problem since the original installation. Due to the WIPP's variable airflow capabilities, the air velocity sensors required extensive and time-consuming re-calibration to make the sensors read out volumetric flow, rather than the point or line values, which they were factory calibrated for. Problems with the hardware made the process difficult. Furthermore, once re-calibrated the durability and reliability of the units were inconsistent, and often unacceptable. Two new types of airflow sensors were tested; one or both of which will ultimately replace the old units. The tested sensors were an ultrasonic-type device (FloSonic), and a warm body, mass flow unit (Airboss*200W) (a re-engineered version of the previous units). Recommendations were made regarding which type of sensor to install at specific locations. These decisions were based on the conditions at each sensor location and the relative strengths of the two sensor types. Installation, field calibration methodology, test procedures, main results and recommendations are discussed.

  6. Vineyard zonal management for grape quality assessment by combining airborne remote sensed imagery and soil sensors

    NASA Astrophysics Data System (ADS)

    Bonilla, I.; Martínez De Toda, F.; Martínez-Casasnovas, J. A.

    2014-10-01

    Vineyard variability within the fields is well known by grape growers, producing different plant responses and fruit characteristics. Many technologies have been developed in last recent decades in order to assess this spatial variability, including remote sensing and soil sensors. In this paper we study the possibility of creating a stable classification system that better provides useful information for the grower, especially in terms of grape batch quality sorting. The work was carried out during 4 years in a rain-fed Tempranillo vineyard located in Rioja (Spain). NDVI was extracted from airborne imagery, and soil conductivity (EC) data was acquired by an EM38 sensor. Fifty-four vines were sampled at véraison for vegetative parameters and before harvest for yield and grape analysis. An Isocluster unsupervised classification in two classes was performed in 5 different ways, combining NDVI maps individually, collectively and combined with EC. The target vines were assigned in different zones depending on the clustering combination. Analysis of variance was performed in order to verify the ability of the combinations to provide the most accurate information. All combinations showed a similar behaviour concerning vegetative parameters. Yield parameters classify better by the EC-based clustering, whilst maturity grape parameters seemed to give more accuracy by combining all NDVIs and EC. Quality grape parameters (anthocyanins and phenolics), presented similar results for all combinations except for the NDVI map of the individual year, where the results were poorer. This results reveal that stable parameters (EC or/and NDVI all-together) clustering outcomes in better information for a vineyard zonal management strategy.

  7. A Framework for Intelligent Rocket Test Facilities with Smart Sensors

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Solano, Wanda; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2003-01-01

    A long-term center goal at the John C. Stennis Space Center (SSC) is the formulation and implementation of a framework for an Intelligent Rocket Test Facility (IRTF), which incorporates distributed smart sensor elements. The IRTF is to provide reliable, high-confident measurements. Specific objectives include: 1. Definition of a framework and architecture that supports implementation of highly autonomous methodologies founded on basic physical principles and embedded knowledge. 2. Modeling of autonomous sensors and processes as self-sufficient, evolutionary elements. 3. Development of appropriate communications protocols to enable the complex interactions that must take place to allow timely and high-quality flow of of information among all the autonomous elements of the system. 4. Development of lab-scale prototypes of key system elements. Though our application is next-generation rocket test facilities, applications for the approach are much wider and include monitoring of shuttle launch operations, air and spacecraft operations and health monitoring, and other large-scale industrial system operations such as found in processing and manufacturing plans. Elements of prototype IRTF have been implemented in preparation for advanced development and validation using rocket test stand facilities as SSC. This work has identified issues that are important to further development of complex network and should be of interest to other working with sensor networks.

  8. Uranium oxide and other airborne particles deposited on cypress leaves close to a nuclear facility.

    PubMed

    Gieré, Reto; Kaltenmeier, Ramona; Pourcelot, Laurent

    2012-04-01

    Enhanced activity of actinides and some decay products has been reported for the leaves of cypress trees (Chamaecyparis nootkatensis) at the edge of the Malvési uranium-processing facility, southwestern France. The enhanced activity is due to the release of actinides via the smokestacks and from artificial ponds inside the facility. This study was conducted to characterize airborne particulate matter deposited on the leaf surfaces and to investigate whether or not radioactive particles may be identified. Air-dried leaf samples were examined by scanning electron microscopy, in combination with energy-dispersive X-ray spectrometry. The samples were scanned systematically in both secondary and backscattered electron modes. Particles ranging in size from <200 nm to ~40 μm were found on most portions of the adaxial leaf surface, but they are especially abundant at the boundary between facial and lateral leaves. The majority of the analyzed particles could be attributed to five principal classes: carbonates, silicates, sulfates, oxides/hydroxides, and halides. In addition, other types of particles were found, including Fe alloys; scheelite-group phases; phosphates; sulfides; and fly ash spheres. Similar particles were also observed on the surface of a wheat sample used for comparison. Of special interest are U-rich particles, which were observed on the cypress leaves only and which were identified as U oxides, except for one particle, which was a U-oxide-fluoride. These U-rich particles were released into the atmosphere by the nuclear facility prior to their deposition on the leaf surfaces. As most of the U-rich particles are <2.5 μm across, they are respirable. Once inhaled, particles containing alpha-emitting isotopes represent a potentially long-term source of ionizing radiation inside the lungs and thus, pose a threat to the health of people living nearby. PMID:22422019

  9. Development of a multi-sensor airborne investigation platform based on an ultra-light aircraft

    NASA Astrophysics Data System (ADS)

    Herd, Rainer; Holst, Jonathan; Lay, Michael

    2013-04-01

    In the year 2012 the chair Raw Material and Natural Resource Management of Brandenburg University of Technology Cottbus, Germany started to develop, construct and assemble a multi-sensor airborne investigation system based on an ultra-light aircraft. The conceptual ideas were born several years before and triggered by the increasing demand of spatial underground information, increasing restrictions to access private property and the lack of affordable commercially operated systems for projects with small budgets. The concept of the presented system comprehends a full composite ultra-light aircraft, the Pipistrel VIRUS which combines a low minimum (65 km/h, a high crusing speed (250 km/h, a long range (1700 km) and a low noise potential. The investigation equipment which can be modified according to the investigation target comprises actually a CsI-y-spectrometer in the fuselage, 2 K-magnetometer at the wing tips and a VLF-EM-receiver underneath the tail. This configuration enables the system to operate for mineral exploration, geological mapping, detection of freshwater resources and brines and different environmental monitoring missions. The development and actual stage of the project will be presented. The first operating flight is scheduled for spring 2013.

  10. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 1999

    SciTech Connect

    DL Edwards; KD Shields; MJ Sula; MY Ballinger

    1999-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP--US Code of Federal Regulations, Title 40 Part 61, Subpart H). In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the US Department of Energy and operated by Pacific Northwest National Laboratory (Pacific Northwest) on the Hanford Site. Two of the facilities evaluated, 325 Building Radiochemical Processing Laboratory, and 331 Building Life Sciences Laboratory met state and federal criteria for continuous sampling of airborne radionuclide emissions. One other building, the 3720 Environmental Sciences Laboratory, was recognized as being in transition with the potential for meeting the continuous sampling criteria.

  11. Goodard Space Flight Center/Wallops Flight Facility airborne geoscience support capability

    NASA Technical Reports Server (NTRS)

    Navarro, Roger L.

    1991-01-01

    Goddard Space Flight Center's Wallops Facility (GSFC/WFF), operates six aircraft which are used as airborne geoscience platforms. The aircraft complement consists of two UH-1B helicopters, one twin engine Skyvan, one twin jet T-39, and two four engine turboprop aircraft (P-3 and Electra) offering the research community a wide range of payload, altitude, speed, and range capabilities. WFF's support to a principal investigator include mission planning of all supporting elements, installation of equipment on the aircraft, fabrication of brackets, and adapters as required to adapt payloads to the aircraft, and planning of mission profiles to meet science objectives. The flight regime includes local, regional, and global missions. The WFF aircraft serve scientists at GSFC, other NASA centers, other government agencies, and universities. The WFF mode of operation features the walk on method of conducting research projects. The principal investigator requests aircraft support by letter to WFF and after approval is granted, works with the assigned mission manager to plan all phases of project support. The instrumentation is installed in WFF electronics racks, mounted on the aircraft, the missions are flown, and the equipment is removed when the scientific objectives are met. The principal investigator reimburses WFF for each flight hours, any overtime and travel expenses generated by the project, and for other mission-related expenses such as aircraft support services required at deployment bases.

  12. Optimization of the concentration optics of the Martian airborne dust sensor for MetNet space mission

    NASA Astrophysics Data System (ADS)

    Cortés, F.; González, A.; de Castro, A. J.; López, F.

    2012-06-01

    Martian atmosphere contains a significant and rapidly changing load of suspended dust that never drops to zero. The main component of Martian aerosol is micron-sized dust thought to be a product of soil weathering. Although airborne dust plays a key role in Martian climate, the basic physical properties of these aerosols are still poorly known. The scope of Mars MetNet Mission is to deploy several tens of mini atmospheric stations on the Martian surface. MEIGA-MetNet payload is the Spanish contribution in MetNet. Infrared Laboratory of University Carlos III (LIR-UC3M) is in charge of the design and development of a micro-sensor for the characterization of airborne dust. This design must accomplish with a strict budget of mass and power, 45 g and 1 W respectively. The sensor design criteria have been obtained from a physical model specifically developed for optimizing IR local scattering. The model calculates the spectral power density scattered and detected between 1 and 5 μm by a certain particle distribution and sensor configuration. From model calculations a modification based on the insertion of a compound ellipsoidal concentrator (CEC) has appeared as necessary. Its implementation has multiplied up to 100 the scattered optical power detected, significantly enhancing the detection limits of the sensor.

  13. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

    NASA Astrophysics Data System (ADS)

    Newcombe, David A.; La Duc, Myron T.; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2008-10-01

    In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

  14. Comparative Calibration of Heat Flux Sensors in Two Blackbody Facilities

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Saunders, R. D.

    1999-01-01

    This paper presents the results of heat flux sensor calibrations in two blackbody facilities: the 25 mm variable temperature blackbody (VTBB) primary facility and a recently developed 51 mm aperture spherical blackbody (SPBB) facility. Three Schmidt-Boelter gages and a Gardon gage were calibrated with reference to an electrical substitution radiometer in the VTBB. One of the Schmidt-Boelter gages thus calibrated was used as a reference standard to calibrate other gages in the SPBB. Comparison of the Schmidt-Boelter gages calibrations in the SPBB and the VTBB agreed within the measurement uncertainties. For the Gardon gage, the measured responsivity in the SPBB showed a gradual decrease with increasing distance from the aperture. When the gage was located close to the aperture, a distance less than the aperture radius, the responsivity in the SPBB agreed with VTBB measurements. At a distance of about three times the aperture radius, the responsivity showed a decrease of about 4 %. This is probably due to higher convection loss from the Gardon gage surface compared to the Schmidt-Boelter sensor.

  15. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Icing Sensor Performance During the 2003 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Schaffner, Philip R.; Minnis, Patrick; Nguyen, Louis; Delnore, Victor E.; Daniels, Taumi S.; Grainger, C. A.; Delene, D.; Wolff, C. A.

    2004-01-01

    The Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor was deployed onboard the University of North Dakota Citation II aircraft in the Alliance Icing Research Study (AIRS II) from Nov 19 through December 14, 2003. TAMDAR is designed to measure and report winds, temperature, humidity, turbulence and icing from regional commercial aircraft (Daniels et. al., 2004). TAMDAR icing sensor performance is compared to a) in situ validation data from the Citation II sensor suite, b) Current Icing Potential products developed by the National Center for Atmospheric Research (NCAR) and available operationally on the NOAA Aviation Weather Center s Aviation Digital Data Server (ADDS) and c) NASA Advanced Satellite Aviation-weather Products (ASAP) cloud microphysical products.

  16. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.

    PubMed

    Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A

    1996-12-20

    The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s. PMID:21151317

  17. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  18. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  19. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  20. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    NASA Technical Reports Server (NTRS)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  1. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003

    SciTech Connect

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

    2003-12-05

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

  2. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001

    SciTech Connect

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

    2001-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

  3. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    SciTech Connect

    Troy Unruh; Joy Rempe; David Nigg; George Imel; Jason Harris; Eric Bonebrake

    2010-11-01

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University /Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRC’s current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational

  4. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Howell, Burgess F.; Hardesty, Robert M.; Tratt, David M.; Darby, Lisa S.

    1999-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, Jet Propulsion Laboratory and NASA Marshall Space Flight Center jointly developed an airborne scanning coherent Doppler Lidar. We describe the system, present recent measurement (including the first wind fields measured within a hurricane using Doppler lidar), and describe prospective instrument improvements and research applications.

  5. Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  6. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  7. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  8. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels.

    PubMed

    Masson, Olivier; Pourcelot, Laurent; Boulet, Béatrice; Cagnat, Xavier; Videau, Gérard

    2015-03-01

    Airborne activity levels of uranium and thorium series were measured in the vicinity (1.1 km) of a uranium (UF4) processing plant, located in Malvési, south of France. Regarding its impact on the environment, this facility is characterized by its routine atmospheric releases of uranium and by the emission of radionuclide-labelled particles from a storage pond filled with waste water or that contain dried sludge characterized by traces of plutonium and thorium ((230)Th). This study was performed during a whole year (November 2009-November 2010) and based on weekly aerosol sampling. Thanks to ICP-MS results, it was possible to perform investigations of uranium and thorium decay product concentration in the air. The number of aerosol filters sampled (50) was sufficient to establish a relationship between airborne radionuclide variations and the wind conditions. As expected, the more the time spent in the plume, the higher the ambient levels. The respective contributions of atmospheric releases and resuspension from local soil and waste ponds on ambient dust load and uranium-bearing aerosols were estimated. Two shutdown periods dedicated to facility servicing made it possible to estimate the resuspension contribution and to specify its origin (local or regional) according to the wind direction and remote background concentration. Airborne uranium mainly comes from the emission stack and, to a minor extent (∼20%), from wind resuspension of soil particles from the surrounding fields and areas devoted to waste storage. Moreover, weighed activity levels were clearly higher during operational periods than for shutdown periods. PMID:25613358

  9. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  10. Airborne remote sensors applied to engineering geology and civil works design investigations

    NASA Technical Reports Server (NTRS)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  11. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  12. TRACE-P OH and HO2 Measurements with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) on the DC-8

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Martinez-Harder, Monica; Harder, Hartwig

    2004-01-01

    The Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) measures OH and HO2 from the NASA DC-8. This instrument detects OH by laser induced fluorescence (LIF) in detection chambers at low pressure and detects HO2 by chemical conversion with NO followed by LIF detection. The demonstrated detection limit (S/N=2, 5 min.) for OH is about 0.005 pptv (1x10(exp 6)/cu cm at 2 km altitude) and for HO2 is 0.05 pptv (1x10(exp 6)/cu cm at 2 km altitude). We will use ATHOS to measure OH, HO2, and HO2/OH during TRACE- P, analyze these results by comparing them against fundamental relationships and computer models, and publish the analyses. TRACE-P HO(x), measurements will help develop a clearer picture of the atmospheric oxidation and 0 3 production that occur as Asian pollution spreads across the Pacific Ocean.

  13. {open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere

    SciTech Connect

    Hacker, J.M.

    1996-11-01

    {open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally and externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.

  14. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  15. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem. PMID:24555390

  16. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    NASA Astrophysics Data System (ADS)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  17. Towards Automatic Single-Sensor Mapping by Multispectral Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Ahokas, E.; Hyyppä, J.; Yu, X.; Liang, X.; Matikainen, L.; Karila, K.; Litkey, P.; Kukko, A.; Jaakkola, A.; Kaartinen, H.; Holopainen, M.; Vastaranta, M.

    2016-06-01

    This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and intensity features combined, total accuracy of 93.5% was achieved for classification of three main boreal tree species (pine, spruce and birch).When using intensity features - without point height metrics - a classification accuracy of 91% was achieved for these three tree species. It was also shown that deciduous trees can be further classified into more species. We propose that intensity-related features and waveform-type features are combined with point height metrics for forest attribute derivation in area-based prediction, which is an operatively applied forest inventory process in Scandinavia. It is expected that multispectral airborne laser scanning can provide highly valuable data for city and forest mapping and is a highly relevant data asset for national and local mapping agencies in the near future.

  18. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  19. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  20. Facility Monitoring: A Qualitative Theory for Sensor Fusion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2001-01-01

    Data fusion and sensor management approaches have largely been implemented with centralized and hierarchical architectures. Numerical and statistical methods are the most common data fusion methods found in these systems. Given the proliferation and low cost of processing power, there is now an emphasis on designing distributed and decentralized systems. These systems use analytical/quantitative techniques or qualitative reasoning methods for date fusion.Based on other work by the author, a sensor may be treated as a highly autonomous (decentralized) unit. Each highly autonomous sensor (HAS) is capable of extracting qualitative behaviours from its data. For example, it detects spikes, disturbances, noise levels, off-limit excursions, step changes, drift, and other typical measured trends. In this context, this paper describes a distributed sensor fusion paradigm and theory where each sensor in the system is a HAS. Hence, given the reach qualitative information from each HAS, a paradigm and formal definitions are given so that sensors and processes can reason and make decisions at the qualitative level. This approach to sensor fusion makes it possible the implementation of intuitive (effective) methods to monitor, diagnose, and compensate processes/systems and their sensors. This paradigm facilitates a balanced distribution of intelligence (code and/or hardware) to the sensor level, the process/system level, and a higher controller level. The primary application of interest is in intelligent health management of rocket engine test stands.

  1. Evaluation of Nimbus 7 SMMR sensor with airborne radiometers and surface observations in the Norwegian Sea

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Cavalieri, D.; Crawford, J.; Campbell, W. J.; Farrelly, B.; Johannessen, J.; Johannessen, O. M.; Svendsen, E.; Kloster, K.

    1981-01-01

    Measurements made by the Nimbus 7 SMMR are compared with near simultaneous observations using the airborne SMMR simulator and with surface observations. The area of the test is in the Norwegian Sea between Bear Island and Northern Norway. It is noted that during the observation period two low-pressure systems were located in the test area, giving a spatial wind variation from 3-20 m/s. It is shown that the use of the currently available brightness temperatures and algorithms for SMMR does not give universally satisfactory results for SST and wind speed under extreme weather conditions. In addition, the SMMR simulator results are seen as indicating the need for more work on calibration.

  2. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Sensor improvements for 1994 and 1995

    NASA Technical Reports Server (NTRS)

    Sarture, C. M.; Chrien, T. G.; Green, R. O.; Eastwood, M. L.; Raney, J. J.; Hernandez, M. A.

    1995-01-01

    AVIRIS is a NASA-sponsored Earth-remote-sensing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). While AVIRIS has been operational since 1989, major improvements have been completed in most of the sensor subsystems during the winter maintenance cycles. As a consequence of these efforts, the capabilities of AVIRIS to reliably acquire and deliver consistently high quality, calibrated imaging spectrometer data continue to improve annually, significantly over those in 1989. Improvements to AVIRIS prior to 1994 have been described previously. This paper details recent and planned improvements to AVIRIS in the sensor task.

  3. Airborne cable detection with a W-band FMCW imaging sensor

    NASA Astrophysics Data System (ADS)

    Goshi, D. S.; Liu, Y.; Mai, K.; Bui, L.; Shih, Y.

    2010-04-01

    Numerous accidents occur each year due to wire strikes for both military and commercial helicopters leading to a significant number of fatalities. The millimeter-wave sensor presents itself as an ideal candidate for a solution because it can see the very small attributes of the typical power line/cable wire as well as operate when visual conditions worsen due to environmental issues such as fog, smoke or dust. This paper presents recent results on the development of a W-band FMCW imaging sensor with potential application to cable detection and imaging. The sensor front end is integrated with a radar signal generator, processor, and data acquisition unit for the purpose of closing the loop between prototype demonstration and system development. Real-time imaging is achieved at a 10 Hz frame rate with a field of view of 30°. A complete flight demonstration of this system was performed on a Honeywell-operated AStar helicopter to validate the flight-worthiness of the sensor under close to actual operational conditions. The development of such technology that can detect and avoid obstacles such as cables and wires especially for rotorcraft platforms will save lives, assets, and enable the execution of more complex and dangerous tactical missions.

  4. The Glacier and Land Ice Surface Topography Interferometer: An Airborne Proof-of-concept Mapping Sensor

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Chuang, C.; Fisher, C.; Muellerschoen, R.; Milligan, L.; Sadowy, G.; Rignot, E. J.

    2009-12-01

    In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year activities. This was achieved by integrating a Ka-band single-pass interferometric synthetic radar on the NASA Dryden Gulfstream III for a coordinated deployment. Although the technique of using radar interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. This proof-of-concept demonstration was motivated by the Glacier and Land Ice Surface Topography Interferometer (GLISTIN) Instrument Incubator Program and furthermore, highly leveraged existing ESTO hardware and software assets (the Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) and processor and the PR2 (precipitation radar 2) RF assembly and power amplifier). Initial Ka-band test flights occurred in March and April of 2009 followed by the Greenland deployment. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. However, for this application the electromagnetic wave will penetrate an unknown amount into the snow cover thus producing an effective bias that must be calibrated. This penetration will be characterized as part of this program and is expected to vary as a function of snow wetness and radar incidence angle. To evaluate this, we flew a coordinated collection with the NASA Wallops Airborne Topographic Mapper on a transect from Greenland’s Summit its West coast. This flight included two field calibration sites at Colorado Institute for Research in Environmental Science’s Swiss Camp and the National Science Foundation’s Summit station. Additional collections entailed flying a grid over Jakobshavn glacier which were repeated after 6 days to reveal surface dynamics. In this time frame we were able to observe horizontal motion of over 1km on the glacier. While developed for

  5. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  6. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  7. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  8. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Recent improvements to the sensor

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.; Sarture, Charles M.; Chovit, Christopher; Eastwood, Michael L.; Eng, Bjorn T.

    1993-01-01

    AVIRIS is a NASA-sponsored Earth-looking imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory. Spectral, radiometric and geometric characteristics of the data acquired by AVIRIS are given in Table 1. AVIRIS has been operational since 1989, however in each year since 1989 major improvements have been completed in most of the subsystems of the sensor. As a consequence of these efforts, the capabilities of AVIRIS to acquire and deliver calibrated imaging spectrometer data of high quality have improved significantly over those in 1989. Improvements to AVIRIS prior to 1992 have been described previously (Porter et al., 1990, Chrien et al., 1991, & Chrien et al., 1992). In the following sections of this paper we describe recent and planned improvements to AVIRIS in the sensor task.

  9. New Airborne Sensors and Platforms for Solving Specific Tasks in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kemper, G.

    2012-07-01

    A huge number of small and medium sized sensors entered the market. Today's mid format sensors reach 80 MPix and allow to run projects of medium size, comparable with the first big format digital cameras about 6 years ago. New high quality lenses and new developments in the integration prepared the market for photogrammetric work. Companies as Phase One or Hasselblad and producers or integrators as Trimble, Optec, and others utilized these cameras for professional image production. In combination with small camera stabilizers they can be used also in small aircraft and make the equipment small and easy transportable e.g. for rapid assessment purposes. The combination of different camera sensors enables multi or hyper-spectral installations e.g. useful for agricultural or environmental projects. Arrays of oblique viewing cameras are in the market as well, in many cases these are small and medium format sensors combined as rotating or shifting devices or just as a fixed setup. Beside the proper camera installation and integration, also the software that controls the hardware and guides the pilot has to solve much more tasks than a normal FMS did in the past. Small and relatively cheap Laser Scanners (e.g. Riegl) are in the market and a proper combination with MS Cameras and an integrated planning and navigation is a challenge that has been solved by different softwares. Turnkey solutions are available e.g. for monitoring power line corridors where taking images is just a part of the job. Integration of thermal camera systems with laser scanner and video capturing must be combined with specific information of the objects stored in a database and linked when approaching the navigation point.

  10. Advanced spectral fiber optic sensor systems and their application in energy facility monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Bosselmann, Thomas; Willsch, Michael; Lindner, Eric; Bartelt, Hartmut

    2011-06-01

    Various spectral-encoded fiber optic sensor concepts and advanced system solutions for application in energy facility monitoring have been investigated. The technological maturity, high performance and reliability of multiplexed fiber Bragg grating (FBG) sensor arrays and networks for the measurement of temperature, dynamic strain, air flow, and magnetic field distributions in electric power generators increasing their efficiency will be demonstrated by selected examples of field testing under harsh environmental conditions. For high-temperature combustion monitoring in gas turbines, beside silica FBGs with enhanced temperature stability also sapphire FBGs and Fabry-Perot sensors have been tested and evaluated as well as fiber-based black-body thermal radiation sensors. Finally, the potential of FBG sensors for application in cryo-energetic facilities such as super-conductive high-power motors and experimental nuclear fusion reactors will be discussed.

  11. Spatial variations in airborne microorganism and endotoxin concentrations at green waste composting facilities.

    PubMed

    Pankhurst, L J; Deacon, L J; Liu, J; Drew, G H; Hayes, E T; Jackson, S; Longhurst, P J; Longhurst, J W S; Pollard, S J T; Tyrrel, S F

    2011-09-01

    The emission and dispersal of bioaerosols from open-air commercial composting facilities continues to be contentious. A meta-dataset enumerating cultivable microorganism emission and downwind concentrations is not yet available. A dataset derived from repeated and replicated field studies over a period of two years at two commercial composting facilities is presented. The data characterises patterns in Aspergillus fumigatus, actinomycetes, Gram-negative bacteria and endotoxin emission and downwind concentrations. For all bioaerosols, compost agitation activities had a significant impact on concentrations; levels were variable up to 600 m downwind from site. Bioaerosols declined rapidly from source and exhibited a secondary peak 100-150 m from site boundary. All bioaerosols were found downwind from site in elevated concentrations. Compared to those found 100 m upwind, levels were significantly higher at 180 m downwind for A. fumigatus; at 300-400 m for actinomycetes and Gram negative bacteria, and at 100 m for endotoxins. Periodically, elevated concentrations could be found for all bioaerosols at distances further downwind. The evidence provided by this data set provides operators and regulators of facilities with reliable data to inform the location, risk assessment and bioaerosol sampling strategies of commercial composting facilities. PMID:21737345

  12. Physical-chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass-fueled electrical production facility.

    PubMed

    Cohn, Corey A; Lemieux, Christine L; Long, Alexandra S; Kystol, Jørgen; Vogel, Ulla; White, Paul A; Madsen, Anne Mette

    2011-05-01

    Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass-fueled facilities may lead to health problems. In March and August of 2006, airborne PM was collected from a biomass-fueled facility located in Denmark. In addition, source-specific PM was generated from straw and wood pellets using a rotating drum. The PM was analyzed for polycyclic aromatic hydrocarbons (PAHs), metals, microbial components, mutagenic activity, and ability to generate highly reactive oxygen species (hROS) in cell-free aqueous suspensions. PM collected from the boiler room and the biomass storage hall had higher levels of mutagenic activity, PAHs and metals, and a higher hROS generating potential than the source specific PM. The mutagenic activity was generally more potent without S9 activation, and on the metabolically enhanced strain YG1041, relative to TA98. Significant correlations were found between mutagenicity on YG1041 (without S9) and PAH concentration and mutagenicity on YG1041 (with S9) and hROS generating ability. PM collected in March was more toxic than PM collected in August. Overall, airborne PM collected from the facility, especially that from the boiler room, were more toxic than PM generated from straw and wood chips. The results suggest that exposure to combustion PM in a biomass-fueled facility, which likely includes PM from biomass combustion as well as internal combustion vehicles, may contribute to an elevated risk of adverse health effects. PMID:20872826

  13. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  14. Estimation of optical flow in airborne electro-optical sensors by stochastic approximation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1991-01-01

    The essence of motion or range estimation by passive electrooptical means is the ability to determine the correspondence of picture elements in pairs of image frames and to estimate their coordinates and their disparity (relative shifts) in the image plane of an electrooptical imaging sensor. The disparity can be in successive frames due to self-motion or in simultaneous frames of a stereo pair. A key issue is to provide these estimates on-line. This paper describes the theoretical background of such an interframe shift estimator. It is based on a stochastic gradient algorithm, specifically implementing a form of stochastic approximation, which can achieve rapid convergence of the shift estimate. Analytical and numerical simulation examples for random texture and isolated features validate the feasibility and the effectiveness of the estimator.

  15. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  16. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice.

    PubMed

    Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian

    2015-10-01

    Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the

  17. Retrieval of Vegetation Structure and Carbon Balance Parameters Using Ground-Based Lidar and Scaling to Airborne and Spaceborne Lidar Sensors

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Ni-Meister, W.; Woodcock, C. E.; Li, X.; Jupp, D. L.; Culvenor, D.

    2006-12-01

    This research uses a ground-based, upward hemispherical scanning lidar to retrieve forest canopy structural information, including tree height, mean tree diameter, basal area, stem count density, crown diameter, woody biomass, and green biomass. These parameters are then linked to airborne and spaceborne lidars to provide large-area mapping of structural and biomass parameters. The terrestrial lidar instrument, Echidna(TM), developed by CSIRO Australia, allows rapid acquisition of vegetation structure data that can be readily integrated with downward-looking airborne lidar, such as LVIS (Laser Vegetation Imaging Sensor), and spaceborne lidar, such as GLAS (Geoscience Laser Altimeter System) on ICESat. Lidar waveforms and vegetation structure are linked for these three sensors through the hybrid geometric-optical radiative-transfer (GORT) model, which uses basic vegetation structure parameters and principles of geometric optics, coupled with radiative transfer theory, to model scattering and absorption of light by collections of individual plant crowns. Use of a common model for lidar waveforms at ground, airborne, and spaceborne levels facilitates integration and scaling of the data to provide large-area maps and inventories of vegetation structure and carbon stocks. Our research plan includes acquisition of Echidna(TM) under-canopy hemispherical lidar scans at North American test sites where LVIS and GLAS data have been or are being acquired; analysis and modeling of spatially coincident lidar waveforms acquired by the three sensor systems; linking of the three data sources using the GORT model; and mapping of vegetation structure and carbon-balance parameters at LVIS and GLAS resolutions based on Echidna(TM) measurements.

  18. Airborne tunable diode laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Collins, J. E., Jr.; Hill, G. F.; Wade, L. O.; Burney, L. G.; Ritter, J. A.

    1991-01-01

    An airborne tunable diode laser instrument is described that is capable of operating in two measurement modes. One mode provides high precision (0.1 percent CH4; 1 percent CO) measurements of CH4 and CO with a 5 second response time, and a second mode achieves the very fast response time that is necessary to make airborne eddy correlation flux measurements. Examples of data from atmospheric expeditions of the Global Tropospheric Experiment are presented.

  19. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  20. Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite.

    PubMed

    Li, Jinhui; Zhao, Songfang; Zeng, Xiaoliang; Huang, Wangping; Gong, Zhengyu; Zhang, Guoping; Sun, Rong; Wong, Ching-Ping

    2016-07-27

    Wearable strain sensors with excellent stretchability and sensitivity have emerged as a very promising field which could be used for human motion detection and biomechanical systems, etc. Three-dimensional (3D) graphene foam (GF) has been reported before for high-performance strain sensors, however, some problems such as high cost preparation, low sensitivity, and stretchability still remain. In this paper, we report a highly stretchable and sensitive strain sensor based on 3D GF and polydimethylsiloxane (PDMS) composite. The GF is prepared by assembly process from graphene oxide via a facile and scalable method and possesses excellent mechanical property which facilitates the infiltration of PDMS prepolymer into the graphene framework. The as-prepared strain sensor can be stretched as high as 30% of its original length and the gauge factor of this sensor is as high as 98.66 under 5% of applied strain. Moreover, the strain sensor shows long-term stability in 200 cycles of stretching-relaxing. Implementation of the device for monitoring the bending of elbow and finger results in reproducibility and various responses in the form of resistance change. Thus, the developed strain sensors exhibit great application potential in fields of biomechanical systems and human-interactive applications. PMID:27384320

  1. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal

  2. Analysis of remote sensing data collected for detection and mapping of oil spills: Reduction and analysis of multi-sensor airborne data of the NASA Wallops oil spill exercise of November 1978

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Airborne, remotely sensed data of the NASA Wallops controlled oil spill were corrected, reduced and analysed. Sensor performance comparisons were made by registering data sets from different sensors, which were near-coincident in time and location. Multispectral scanner images were, in turn, overlayed with profiles of correlation between airborne and laboratory-acquired fluorosensor spectra of oil; oil-thickness contours derived (by NASA) from a scanning fluorosensor and also from a two-channel scanning microwave radiometer; and synthetic aperture radar X-HH images. Microwave scatterometer data were correlated with dual-channel (UV and TIR) line scanner images of the oil slick.

  3. Fusion of remotely sensed data from airborne and ground-based sensors to enhance detection of cotton plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  4. EAGLE 2006 - multi-purpose, multi-angle and multi-sensor in-situ, airborne and space borne campaigns over grassland and forest

    NASA Astrophysics Data System (ADS)

    Su, Z.; Timmermans, W. J.; van der Tol, C.; Dost, R. J. J.; Bianchi, R.; Gómez, J. A.; House, A.; Hajnsek, I.; Menenti, M.; Magliulo, V.; Esposito, M.; Haarbrink, R.; Bosveld, F. C.; Rothe, R.; Baltink, H. K.; Vekerdy, Z.; Sobrino, J. A.; Timmermans, J.; van Laake, P.; Salama, S.; van der Kwast, H.; Claassen, E.; Stolk, A.; Jia, L.; Moors, E.; Hartogensis, O.; Gillespie, A.

    2009-03-01

    EAGLE2006 - an intensive field campaign for the advances in land surface hydrometeorological processes - was carried out in the Netherlands from 8 to 18 June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments - an optical imaging sensor, an imaging microwave radiometer, and a flux airplane - were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE 2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of

  5. The Laser Vegetation Imaging Sensor (LVIS): A Medium-Altitude, Digitization-Only, Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    1999-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter designed and developed at NASA's Goddard Space Flight Center. LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25 m wide footprints. The entire time history of the outgoing and return pulses is digitized, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with decimeter accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 nsec, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the U.S. and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  6. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  7. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    EPA Science Inventory

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  8. A Facile Electrochemical Sensor for Nonylphenol Determination Based on the Enhancement Effect of Cetyltrimethylammonium Bromide

    PubMed Central

    Lu, Qing; Zhang, Weina; Wang, Zhihui; Yu, Guangxia; Yuan, Yuan; Zhou, Yikai

    2013-01-01

    A facile electrochemical sensor for the determination of nonylphenol (NP) was fabricated in this work. Cetyltrimethylammonium bromide (CTAB), which formed a bilayer on the surface of the carbon paste (CP) electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10−7 mol·L−1 to 2.5 × 10−5 mol·L−1 was obtained for the sensor, with a low limit of detection at 1.0 × 10−8 mol·L−1. Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications. PMID:23296332

  9. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  10. A highly facile and selective Chemo-Paper-Sensor (CPS) for detection of strontium.

    PubMed

    Kang, Sung-Min; Jang, Sung-Chan; Huh, Yun Suk; Lee, Chang-Soo; Roh, Changhyun

    2016-06-01

    Chemosensors have attracted increasing attention for their usefulness on-site detection and monitoring. In this study, we elucidated a novel, facile, and highly selective Chemo-Paper-Sensor (CPS) for detection and monitoring of strontium (Sr(2+)) ions, which means a potent colorimetric sensor based on a Chrysoidine G (CG)-coated paper strip. The CPS for highly selective colorimetric detection of strontium ion was handily analyzed to determine the red-green-blue (RGB) value using portable devices such as desktop digital scanner and mobile phone camera, quantitatively. Interestingly, an orange to dark orange color transition was observed when the aqueous and solid paper colorimetric sensor was introduced to Sr(2+) ion, respectively. It was demonstrated that the value of the signal has a linear relationship with concentrations of the strontium in the 500 ppm to 100 ppb range with a detection limit of 200 ppb. We believe that a newly developed Chemo-Paper-Sensor will be useful in a wide range of sensing applications. PMID:26953730

  11. New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.

    2006-05-01

    Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.

  12. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. PMID:26773821

  13. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

    SciTech Connect

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2011-05-13

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

  14. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007

    SciTech Connect

    Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

    2008-01-01

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP – U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection – Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

  15. EAGLE 2006 - Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest

    NASA Astrophysics Data System (ADS)

    Su, Z.; Timmermans, W. J.; van der Tol, C.; Dost, R.; Bianchi, R.; Gómez, J. A.; House, A.; Hajnsek, I.; Menenti, M.; Magliulo, V.; Esposito, M.; Haarbrink, R.; Bosveld, F.; Rothe, R.; Baltink, H. K.; Vekerdy, Z.; Sobrino, J. A.; Timmermans, J.; van Laake, P.; Salama, S.; van der Kwast, H.; Claassen, E.; Stolk, A.; Jia, L.; Moors, E.; Hartogensis, O.; Gillespie, A.

    2009-06-01

    EAGLE2006 - an intensive field campaign for the advances in land surface hydrometeorological processes - was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments - an optical imaging sensor, an imaging microwave radiometer, and a flux airplane - were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview

  16. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  17. Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations.

    PubMed

    Fischer, Guido; Albrecht, Andreas; Jäckel, Udo; Kämpfer, Peter

    2008-03-01

    Emission and dispersal of microorganisms and odours from composting facilities were studied in a 3-year project at nine different composting facilities in Germany. Measurements were carried out under so-called 'normal-case', i.e. typical local climate conditions and working activities within the facilities, and 'real worst-case' conditions ('drainage flow' conditions) being characterized by the translocation of cold air mostly at night, and containing large amounts of bioaerosols. Highest concentrations of microorganisms were observed during turning of compost with a maximum of 2.4x10(6)cfu m(-3) for thermophilic actinomycetes. Other groups of microorganisms were detected in concentrations of about 10(5)cfu m(-3). During shredding of fresh organic material, the concentrations of all microorganisms reached 10(4)cfu m(-3). Here, odour concentrations turned out to be highest (up to 1,367 odour units (OU)m(-3)). At facilities equipped with a biofilter (odour reduction), a decrease in OU by a factor of 10 was observed. In the surrounding of the facilities, highest concentrations ranged between 10(1)-10(3)cfu m(-3) upwind and from 10(1)-10(4)cfu m(-3) downwind. The specific local meteorological situations must be considered carefully in advance and during sampling. Especially 'drainage flow' situations can lead to high microorganism concentrations (>10(4)-10(5)cfu m(-3) of thermophilic actinomycetes and thermophilic fungi) in the surroundings of composting facilities. PMID:17936684

  18. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  19. Validation of ash optical depth and layer height retrieved from passive satellite sensors using EARLINET and airborne lidar data: the case of the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Balis, Dimitris; Koukouli, Maria-Elissavet; Siomos, Nikolaos; Dimopoulos, Spyridon; Mona, Lucia; Pappalardo, Gelsomina; Marenco, Franco; Clarisse, Lieven; Ventress, Lucy J.; Carboni, Elisa; Grainger, Roy G.; Wang, Ping; Tilstra, Gijsbert; van der A, Ronald; Theys, Nicolas; Zehner, Claus

    2016-05-01

    The vulnerability of the European airspace to volcanic eruptions was brought to the attention of the public and the scientific community by the 2010 eruptions of the Icelandic volcano Eyjafjallajökull. As a consequence of this event, ash concentration thresholds replaced the "zero tolerance to ash" rule, drastically changing the requirements on satellite ash retrievals. In response to that, the ESA funded several projects aiming at creating an optimal end-to-end system for volcanic ash plume monitoring and prediction. Two of them, namely the SACS-2 and SMASH projects, developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. The validation of volcanic ash levels and height extracted from the GOME-2 and IASI instruments on board the MetOp-A satellite is presented in this work. EARLINET lidar measurements are compared to different satellite retrievals for two eruptive episodes in April and May 2010. Comparisons were also made between satellite retrievals and aircraft lidar data obtained with the UK's BAe-146-301 Atmospheric Research Aircraft (managed by the Facility for Airborne Atmospheric Measurements, FAAM) over the United Kingdom and the surrounding regions. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets, but more collocation scenes would be desirable to perform a comprehensive statistical analysis. The satellite estimates and the validation data sets are better correlated for high ash optical depth values, with correlation coefficients greater than 0.8. The IASI retrievals show a better agreement concerning the ash optical depth and ash layer height when compared with the ground-based and airborne lidar data.

  20. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    NASA Astrophysics Data System (ADS)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  1. Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard

    SciTech Connect

    Mishima, J.; Ayer, J.E.

    1981-09-01

    The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

  2. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  3. Performance simulation of the ERIS pyramid wavefront sensor module in the VLT adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Agapito, Guido; Riccardi, Armando; Esposito, Simone; Le Louarn, Miska; Marchetti, Enrico

    2012-07-01

    This paper presents the performance analysis based on numerical simulations of the Pyramid Wavefront sensor Module (PWM) to be included in ERIS, the new Adaptive Optics (AO) instrument for the Adaptive Optics Facility (AOF). We have analyzed the performance of the PWM working either in a low-order or in a high-order wavefront sensing mode of operation. We show that the PWM in the high-order sensing mode can provide SR > 90% in K band using bright guide stars under median seeing conditions (0.85 arcsec seeing and 15 m/s of wind speed). In the low-order sensing mode, the PWM can sense and correct Tip-Tilt (and if requested also Focus mode) with the precision required to assist the LGS observations to get an SR > 60% and > 20% in K band, using up to a ~16.5 and ~19.5 R-magnitude guide star, respectively.

  4. Detection of airborne bacteria in a duck production facility with two different personal air sampling devices for an exposure assessment.

    PubMed

    Martin, Elena; Dziurowitz, Nico; Jäckel, Udo; Schäfer, Jenny

    2015-01-01

    Prevalent airborne microorganisms are not well characterized in industrial animal production buildings with respect to their quantity or quality. To investigate the work-related microbial exposure, personal bioaerosol sampling during the whole working day is recommended. Therefore, bioaerosol sampling in a duck hatchery and a duck house with two personal air sampling devices, a filter-based PGP and a NIOSH particle size separator, was performed. Subsequent, quantitative and qualitative analyses were carried out with" culture independent methods. Total cell concentrations (TCC) determined via fluorescence microscopy showed no difference between the two devices. In average, 8 × 10(6) cells/m(3) were determined in the air of the duck hatchery and 5 × 10(7) cells/m(3) in the air of the duck house. A Generated Restriction Fragment Length Polymorphism (RFLP) pattern revealed deviant bacterial compositions comparing samples collected with both devices. Clone library analyses based on 16S rRNA gene sequence analysis from the hatchery's air showed 65% similarity between the two sampling devices. Detailed 16S rRNA gene sequence analyses showed the occurrence of bacterial species like Acinetobacter baumannii, Enterococcus faecalis, Escherichia sp., and Shigella sp.; and a group of Staphylococcus delphini, S. intermedius, and S. pseudintermedius that provided the evidence of potential exposure to risk group 2 bacteria at the hatchery workplace. Size fractionated sampling with the developed by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) device revealed that pathogenic bacteria would deposit in the inhalable, the thorax, and possibly alveolar dust fraction according to EN481. TCC analysis showed the deposition of bacterial cells in the third stage (< 1μm) at the NIOSH device which implies that bacteria can reach deep into the lungs and contaminate the alveolus after inhalation. Nevertheless, both personal sampling devices

  5. Allergy arising from exposure to airborne contaminants in an insect rearing facility: Health effects and exposure control

    SciTech Connect

    Wolff, D.

    1994-06-01

    In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomly selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.

  6. The effect of sensor sheltering and averaging techniques on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sheltering of wind sensors by nearby foliage on the validity of wind measurements at the Space Shuttle Landing Facility (SLF). Standard measurements are made at one second intervals from 30-feet (9.1-m) towers located 500 feet (152 m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. A companion study, Merceret (1995), quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. This work examines the effect of nearby foliage on the accuracy of the measurements made by any one sensor, and the effects of averaging on interpretation of the measurements. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions as a function of distance from the obstructing foliage. Appropriate statistics were computed. The results suggest that accurate measurements require foliage be cut back to OFCM standards. Analysis of averaging techniques showed that there is no significant difference between vector and scalar averages. Longer averaging periods reduce measurement error but do not otherwise change the measurement in reasonably steady flow regimes. In rapidly changing conditions, shorter averaging periods may be required to capture trends.

  7. Multi-objective genetic algorithm for the automated planning of a wireless sensor network to monitor a critical facility

    NASA Astrophysics Data System (ADS)

    Jourdan, Damien B.; de Weck, Olivier L.

    2004-09-01

    This paper examines the optimal placement of nodes for a Wireless Sensor Network (WSN) designed to monitor a critical facility in a hostile region. The sensors are dropped from an aircraft, and they must be connected (directly or via hops) to a High Energy Communication Node (HECN), which serves as a relay from the ground to a satellite or a high-altitude aircraft. The sensors are assumed to have fixed communication and sensing ranges. The facility is modeled as circular and served by two roads. This simple model is used to benchmark the performance of the optimizer (a Multi-Objective Genetic Algorithm, or MOGA) in creating WSN designs that provide clear assessments of movements in and out of the facility, while minimizing both the likelihood of sensors being discovered and the number of sensors to be dropped. The algorithm is also tested on two other scenarios; in the first one the WSN must detect movements in and out of a circular area, and in the second one it must cover uniformly a square region. The MOGA is shown again to perform well on those scenarios, which shows its flexibility and possible application to more complex mission scenarios with multiple and diverse targets of observation.

  8. Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Song, Hongting; Tan, Lei; Li, Yinan; Li, Hao

    2014-11-01

    Soil moisture is a key component in the hydrologic cycle and climate system. It is an important input parameter for many hydrologic and meteorological models. NASA'S upcoming Soil Moisture Active Passive (SMAP) mission, to be launched in October 2014, will address this need by utilizing passive and active microwave measurements at L-band, which will penetrate moderately dense canopies. In preparation for the SMAP mission, the Soil Moisture Validation Experiment 2012 (SMAPVEX12) was conducted from 6 June to 17 July 2012 in the Carment-Elm Creek area in Manitoba, Canada. Over a period of six weeks diverse land cover types ranging from agriculture over pasture and grassland to forested sites were re-visited several times a week. The Passive/Active L-band Sensor (PALS) provides radiometer products, vertically and horizontally polarized brightness temperatures, and radar products. Over the past two decades, successful estimation of soil moisture has been accomplished using passive and active L-band data. However, remaining uncertainties related to surface roughness and the absorption, scattering, and emission by vegetation must be resolved before soil moisture retrieval algorithms can be applied with known and acceptable accuracy using satellite observations. This work focuses on analyzing the Passive/Active L-band Sensor observations of sites covered during SMAPVEX12, investigating the observed data, parameterizing vegetation covered surface model, modeling inversion algorithm and analyzing observed soil moisture changes over the time period of six weeks. The data and analysis results from this study are aimed at increasing the accuracy and range of validity of SMAP soil moisture retrievals via enhancing the accuracy for soil moisture retrieval.

  9. A computer code to estimate accidental fire and radioactive airborne releases in nuclear fuel cycle facilities: User's manual for FIRIN

    SciTech Connect

    Chan, M.K.; Ballinger, M.Y.; Owczarski, P.C.

    1989-02-01

    This manual describes the technical bases and use of the computer code FIRIN. This code was developed to estimate the source term release of smoke and radioactive particles from potential fires in nuclear fuel cycle facilities. FIRIN is a product of a broader study, Fuel Cycle Accident Analysis, which Pacific Northwest Laboratory conducted for the US Nuclear Regulatory Commission. The technical bases of FIRIN consist of a nonradioactive fire source term model, compartment effects modeling, and radioactive source term models. These three elements interact with each other in the code affecting the course of the fire. This report also serves as a complete FIRIN user's manual. Included are the FIRIN code description with methods/algorithms of calculation and subroutines, code operating instructions with input requirements, and output descriptions. 40 refs., 5 figs., 31 tabs.

  10. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  11. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  12. Recent Data Campaigns and Results from the Laser Vegetation Imaging Sensor (LVIS): An Airborne, Medium-Footprint, Full-Waveform, Swath Mapping Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Hofton, M. A.; Rabine, D. L.; Luthcke, S. B.; Greim, H.

    2005-12-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, medium-sized footprint laser altimeter system. By digitally recording the shape of the returning laser pulse (waveform), LVIS provides a precise and accurate view of the vertical structure within each footprint/pixel including both the sub-canopy and canopy-top topography. Applications of LVIS data include biomass estimation for a wide variety of forest types, ground surface change detection for tectonic studies, mapping sea surface topography to assist in coastal hazard assessment, and hydrology studies utilizing sub-canopy topography in densely forested regions. Since 1998, LVIS data have been collected in various areas of New Hampshire, Maine, Massachusetts, California, Maryland, Panama and Costa Rica. The data calibration and geolocation processing system utilizes a formal Bayesian least-squares-estimation of pointing, ranging and timing parameters based on a batch reduction of altimeter range residuals. Data are released publicly on the LVIS website at http://lvis.gsfc.nasa.gov. Results show data precisions of <50 cm are routinely achieved in all forest types and <5 cm in bare ground conditions. Because of its unique capability to simultaneously map vegetation and sub-canopy ground topography, LVIS data can be used to assess the accuracy of other remote sensing systems. For example, ground and canopy top elevations generated by LVIS were used to assess the accuracy of Shuttle Radar Topography Mission (SRTM) elevations at study sites with different levels of relief and land cover type. Results showed that the mean vertical offset between the SRTM elevations and LVIS ground elevations varied with landcover type and study site location. Comparisons between LVIS and ICESat will also be presented.

  13. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms.

  14. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  15. Molecular and immunological approaches in quantifying the air-borne food allergen tropomyosin in crab processing facilities.

    PubMed

    Kamath, Sandip D; Thomassen, Marte R; Saptarshi, Shruti R; Nguyen, Hong M X; Aasmoe, Lisbeth; Bang, Berit E; Lopata, Andreas L

    2014-09-01

    Tropomyosin is a cross-reactive allergenic protein present in ingested shellfish species. Exposure and sensitization to this protein via inhalation is particularly important in the crustacean processing industry where workers are continuously exposed to the aerosolized form of this allergen. The aim of this study was to develop an antibody-based immunoassay to enable the specific and sensitive quantification of aerosolized tropomyosin present in the environment of two crab processing facilities. Anti-tropomyosin antibody was generated in rabbits against tropomyosins from four different crustacean species. These antibodies were purified using recombinant tropomyosin using an immuno-affinity column. The recombinant tropomyosin was also used as an allergen standard for the sandwich ELISA. In order to quantify aerosolized tropomyosin, air collection was performed in the personal breathing zone of 80 workers during two crab processing activities, edible crab (Cancer pagurus) and king crab (Paralithodes camtschaticus) using polytetrafluoroethylene filters. The purified antibody was able to detect tropomyosin selectively from different crustaceans but not from vertebrate sources. The limit of detection (LOD) for the developed sandwich ELISA was 60 picogram/m(3) and limit of quantitation (LOQ) 100 picogram/m(3). Immunoassay validation was based on linearity (R(2) 0.999), matrix interference test (78.8±6.5%), intra-assay CV (9.8%) and inter-assay CV (11%). The novel immunoassay was able to successfully identify working activities, which generated low, medium or high concentrations of the aerosolized food allergen. We describe an IgG antibody-based immunoassay for quantification of the major food allergen tropomyosin, with high sensitivity and specificity. This modified immunological approach can be adapted for the detection of other aerosolized food allergens, assisting in the identification of high-risk allergen exposure areas in the food industry. PMID:24755444

  16. Wavefront sensor for the Large Binocular Telescope laser guide star facility

    NASA Astrophysics Data System (ADS)

    Busoni, L.; Esposito, S.; Rabien, S.; Haug, M.; Ziegleder, J.; Hölzl, G.

    2008-07-01

    A laser guide star facility is currently being planned for the LBT. The first step of the program aims at the implementation of a ground layer adaptive optics (GLAO) system tailored on the wide-field imager / multi-object spectrograph LUCIFER having a 4x4' FoV. The current design is based on multiple Rayleigh guide stars arranged in a 2-5 arcmin angular radius constellation. A future update path toward small-field diffraction limited performances is foreseen using a hybrid system of sodium and Rayleigh beacons promising lower power requirements for the sodium laser. In this paper we present the estimated performances for both the GLAO and the hybrid implementations and we introduce the wavefront sensors opto-mechanical design . Simulations of the GLAO system show an expected gain in FWHM and encircled energy of 1.5-3 (depending on atmospheric turbulence profiles) with a FWHM variation over LUCIFER FoV below 10% and point out the role of such a GLAO system as PSF stabilizer both over the FoV and with respect to seeing temporal variations. Results of simulations for the hybrid configurations will be presented.

  17. The effect of sensor spacing on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sensor spacing on the validity of wind measurements at the Space Shuttle landing Facility (SLF). Standard measurements are made at one second intervals from 30 foot (9.1m) towers located 500 feet (152m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. This study quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions. Correlations, spectra, moments, and structure functions were computed. A universal normalization for structure functions was devised. The normalized structure functions increase as the 2/3 power of separation distance until an asymptotic value is approached. This occurs at spacings of several hundred feet (about 100m). At larger spacings, the structure functions are bounded by the asymptote. This enables quantitative estimates of the expected differences between the winds at the measurement point and the points of interest to be made from the measured wind statistics. A procedure is provided for making these estimates.

  18. Final report on passive and active low-frequency electromagnetic spectroscopy for airborne detection of underground facilities

    SciTech Connect

    SanFilipo, Bill

    2000-04-01

    The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1

  19. Acquisition, calibration, and performance of airborne high-resolution ADS40 SH52 sensor data for monitoring the Colorado River below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Cagney, L. E.; Kohl, K. A.; Gushue, T. M.; Fritzinger, C.; Bennett, G. E.; Hamill, J. F.; Melis, T. S.

    2010-12-01

    Periodically, the Grand Canyon Monitoring and Research Center of the U.S. Geological Survey collects and interprets high-resolution (20-cm), airborne multispectral imagery and digital surface models (DSMs) to monitor the effects of Glen Canyon Dam operations on natural and cultural resources of the Colorado River in Grand Canyon. We previously employed the first generation of the ADS40 in 2000 and the Zeiss-Imaging Digital Mapping Camera (DMC) in 2005. Data from both sensors displayed band-image misregistration owing to multiple sensor optics and image smearing along abrupt scarps due to errors in image rectification software, both of which increased post-processing time, cost, and errors from image classification. Also, the near-infrared gain on the early, 8-bit ADS40 was not properly set and its signal was saturated for the more chlorophyll-rich vegetation, which limited our vegetation mapping. Both sensors had stereo panchromatic capability for generating a DSM. The ADS40 performed to specifications; the DMC failed. In 2009, we employed the new ADS40 SH52 to acquire 11-bit multispectral data with a single lens (20-cm positional accuracy), as well as stereo panchromatic data that provided a 1-m cell DSM (40-cm root-mean-square vertical error at one sigma). Analyses of the multispectral data showed near-perfect registration of its four band images at our 20-cm resolution, a linear response to ground reflectance, and a large dynamic range and good sensitivity (except for the blue band). Data were acquired over a 10-day period for the 450-km-long river corridor in which acquisition time and atmospheric conditions varied considerably during inclement weather. We received 266 orthorectified flightlines for the corridor, choosing to calibrate and mosaic the data ourselves to ensure a flawless mosaic with consistent, realistic spectral information. A linear least-squares cross-calibration of overlapping flightlines for the corridor showed that the dominate factors in

  20. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  1. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  2. Comparison of Water Vapor Measurements by Airborne Sun photometer and Near-Coincident In Situ and Satellite Sensors during INTEX-ITCT 2004

    SciTech Connect

    Livingston, J.; Schmid, Beat; Redemann, Jens; Russell, P. B.; Ramirez, Samuel; Eilers, J.; Gore, W.; Howard, Samuel; Pommier, J.; Fetzer, E. J.; Seemann, S. W.; Borbas, E.; Wolfe, Daniel; Thompson, Anne M.

    2007-06-06

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes, and with water vapor profiles retrieved from AIRS measurements during 8 Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during 5 Aqua and 5 Terra overpasses. For 35 J31 vertical profiles mean (bias) and rms AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1% and 8.8%, respectively. For 22 aircraft profiles within 1 h and 130 km of radiosonde soundings, AATS-minus-sonde bias and rms LWV differences are -5.4% and 8.8%, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3% and 8.4%, respectively. AIRS LWV retrievals within 80 km of J31 profiles yield lower bias and rms differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8% to 5.8%, and the rms difference decreases from 21.5% to 16.4%. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2% to +6% and rms differences of ~20% below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5-km at nadir) are biased wet by 10.4% compared to AATS over-ocean near surface retrievals. The MODIS Aqua subset (79 grid cells) exhibits a wet bias of 5.1%, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2%.

  3. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Near-Coincident in Situ and Satellite Sensors during INTEX/ITCT 2004

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Redemann, J.; Russell, P. B.; Ramirez, S. A.; Eilers, J.; Gore, W.; Howard, S.; Pommier, J.; Fetzer, E. J.; Seeman, S. W.; Borbas, E.; Wolfe, D. E.; Thompson, A. M.

    2007-01-01

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sun photometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004 in support of the Intercontinental Chemical Transport Experiment (INTEX)/Intercontinental Transport and Chemical Transformation (ITCT) experiments. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes and with water vapor profiles retrieved from AIRS measurements during eight Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during five Aqua and five Terra overpasses. For 35 J31 vertical profiles, mean (bias) and RMS AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1 percent and 8.8 percent, respectively. For 22 aircraft profiles within 1 hour and 130 km of radiosonde soundings, AATS-minus-sonde bias and RMS LWV differences are -5.4 percent and 10.7 percent, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3 percent and 8.4 percent, respectively. AIRS LWV retrievals within 80 lan of J31 profiles yield lower bias and RMS differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8 percent to 5.8 percent, and the RMS difference decreases from 2 1.5 percent to 16.4 percent. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2 percent to +6 percent and RMS differences of -20 percent below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5 km at nadir) are biased wet by 10.4 percent compared to AATS over-ocean near-surface retrievals. The MODIS-Aqua subset (79 grid cells

  4. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  5. Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor

    SciTech Connect

    Cuong, Nguyen Duc; Khieu, Dinh Quang; Hoa, Tran Thai; Quang, Duong Tuan; Viet, Pham Hung; Lam, Tran Dai; Hoa, Nguyen Duc; Hieu, Nguyen Van

    2015-08-15

    Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealed that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.

  6. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    NASA Astrophysics Data System (ADS)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  7. Transmittance Measurement of a Heliostat Facility used in the Preflight Radiometric Calibration of Earth-Observing Sensors

    NASA Technical Reports Server (NTRS)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-01-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  8. Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) calibration of the Upper Atmosphere Research Satellite (UARS) sensors

    NASA Technical Reports Server (NTRS)

    Hashmall, J.; Garrick, J.

    1993-01-01

    Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.

  9. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  10. NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in quantitative assessment of hydrogen sensors. Work was performed by the Safety Codes and Standards Group in the Hydrogen Technologies and Systems Center.

  11. Assessment of air velocity sensors for use in animal produciton facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  12. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System.

    PubMed

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Yu, Ruixia

    2016-01-01

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF) on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor's stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS) of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks. PMID:26978371

  13. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  14. Flexible high-resolution film recorder system. [in NASA image processing facility for remote sensor data

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.

    1980-01-01

    The paper describes a high-resolution film recorder (HRFR) system capable of meeting the requirements of all of the imaging sensors for the recording support of NASA missions. The technical requirements imposed by sensor constraints and end users of the film product are examined, along with the implementation techniques to satisfy these requirements. The recorder can produce annotated imagery with array sizes ranging from 1 to 400 million picture elements and a programmable radiometric transfer function provided by the recorder. The HRFR requirements were grouped into three categories: (1) front end (input) requirements defined by the input medium, (2) operational requirements based on the volume, throughput, and changeover time from one mode to another, and (3) film product requirements determined by the needs of the end product user.

  15. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    PubMed Central

    Tehrani, Farshad; Bavarian, Behzad

    2016-01-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706

  16. A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays.

    PubMed

    Yao, Yong; Zhang, Chunsun

    2016-01-01

    A simple, novel concept for the one-step fabrication of a low-cost, easy-to-use droplet-based electrochemical (EC) sensor is described, in which the EC reagents are contained in a droplet and the droplet assay is operated on a simple planar surface instead of in a complicated closed channel/chamber. In combination with an elegant carbon electrode configuration, screen-printed on a widely available polyethylene terephthalate (PET) substrate, the developed sensor exhibits a stable solution-restriction capacity and acceptable EC response, and thus can be used directly for the detection of different analytes (including ascorbic acid (AA), copper ions (Cu(2+)), 2'-deoxyguanosine 5'-triphosphate (dGTP) and ferulic acid (FA)), without any pretreatment. The obtained, acceptable linear ranges/detection limits for AA, Cu(2+), dGTP and FA are 0.5-10/0.415 mM, (0.0157-0.1574 and 0.1574-1.5736)/0.011 mM, 0.01-0.1/0.008 mM and 0.0257-0.515/0.024 mM, respectively. Finally, the utility of the droplet-based EC sensor was demonstrated for the determination of AA in two commercial beverages, and of Cu(2+) in two water samples, with reliable recovery and good stability. The applicability of the droplet-based sensor demonstrates that the proposed EC strategy is potentially a cost-effective solution for a series of biochemical sensing applications in public health, environmental monitoring, and the developing world. PMID:27527176

  17. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.

    PubMed

    Pandey, Sadanand; Ramontja, James

    2016-08-01

    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. PMID:27118045

  18. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  19. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility.

    PubMed

    Praveen, K; Rajiniganth, M P; Arun, A D; Sahoo, P; Murty, S A V Satya

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ∼4 s, respectively. PMID:26931895

  20. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Airborne longwave infrared LWIR) hyperspectral imagery was utilized to detect and identify gaseous chemical release plumes at sites in sourthern Texzas. The Airborne Hysperspectral Imager (AHI), developed by the University of Hawaii was flown over a petrochemical facility and a ...

  1. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    PubMed Central

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Yu, Ruixia

    2016-01-01

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF) on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor’s stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS) of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks. PMID:26978371

  2. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  3. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Toan; Nguyen, Van Hoa; Deivasigamani, Ranjith Kumar; Kharismadewi, Dian; Iwai, Yoshio; Shim, Jae-Jin

    2016-03-01

    Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g-1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g-1) than that of bare Co3O4 (100 F g-1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM-1cm-2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.

  4. Airborne imaging spectrometer development tasks

    NASA Astrophysics Data System (ADS)

    Bolten, John

    The tasks that must be completed to design and build an airborne imaging spectrometer are listed. The manpower and resources required to do these tasks must be estimated by the people responsible for that work. The tasks are broken down by instrument subsystem or discipline. The instrument performance can be assessed at various stages during the development. The initial assessment should be done with the preliminary computer model. The instrument calibration facilities should be designed, but no calibration facilities are needed. The intermediate assessment can be done when the front end has been assembled. The preliminary instrument calibration facility should be available at this stage. The final assessment can only be done when the instrument is complete and ready for flight. For this, the final instrument calibration facility and the flight qualification facilities must be ready. The final assessment is discussed in each discipline under the section on integration and test.

  5. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control.

    PubMed

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation. PMID:22163497

  6. Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    PubMed Central

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation. PMID:22163497

  7. A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor

    NASA Astrophysics Data System (ADS)

    Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.

    2016-07-01

    Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.

  8. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water.

    PubMed

    Dong, Yongqiang; Li, Geli; Zhou, Nana; Wang, Ruixue; Chi, Yuwu; Chen, Guonan

    2012-10-01

    Free chlorine was found to be able to destroy the passivated surface of the graphene quantum dots (GQDs) obtained by pyrolyzing citric acid, resulting in significant quenching of their fluorescence (FL) signal. After optimizing some experimental conditions (including response time, concentration of GQDs, and pH value of solution), a green and facile sensing system has been developed for the detection of free residual chlorine in water based on FL quenching of GQDs. The sensing system exhibits many advantages, such as short response time, excellent selectivity, wide linear response range, and high sensitivity. The linear response range of free chlorine (R(2) = 0.992) was from 0.05 to 10 μM. The detection limit (S/N = 3) was as low as 0.05 μM, which is much lower than that of the most widely used N-N-diethyl-p-phenylenediamine (DPD) colorimetric method. This sensing system was finally used to detect free residual chlorine in local tap water samples. The result agreed well with that by the DPD colorimetric method, suggesting the potential application of this new, green, sensitive, and facile sensing system in drinking water quality monitoring. PMID:22957474

  9. Final design of the wavefront sensor unit for ARGOS, the LBT's LGS facility

    NASA Astrophysics Data System (ADS)

    Busoni, Lorenzo; Bonaglia, Marco; Esposito, Simone; Carbonaro, Luca; Rabien, Sebastian

    2010-07-01

    In this paper we present the final design of the WFS unit of LBT's ARGOS facility, that will implement a GLAO system using 3 Rayleigh pulsed beacons. The ARGOS WFS is composed of two main subunits: 1) a large dichroic window that deflects the laser beam toward the WFS and transmit the visible and near-infrared wavelength to the MOSimager LUCIFER and 2) the SH-WFS that collects the backscattered light of the 3 beacons and combines the beams on a single lenslet array and detector. The WFS unit includes Pockels cells for the range gating of the laser beams, field and pupil stabilizers to compensate for the fast jitter of the laser beams and for optical flexures and a calibration unit to check the internal alignment; this unit will be also used for closed-loop laboratory tests using a MEMS-DM.

  10. Study of alternate optical and fine guidance sensor designs for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Wissinger, A.; Steir, M.; Mcfarlane, M.; Fuschetto, A.

    1984-01-01

    A unique optical design was developed that compensates for the coma degraded images caused by field chopping in SIRTF. The conic constants of a Cassegrain telescope were altered to compensate for the coma induced by the secondary mirror tilt. The modulation transfer function is essentially independent of secondary mirror tilt, and diffraction limited image quality is maintained over a several arcminute field during chopping. With an untilted secondary mirror, the coma compensated (CC) design has a smaller field than the unchopped Ritchey-Chretien design; but use of relay optics, such as the inverted Cassegrain design developed for the fine guidance sensor (FGS), can increase the CC telescope's field size. A reactionless secondary mirror chopper mechanism that uses superconducting magnets was studied. The heart producing elements are confined to a reaction plate that is not directly viewed by the IR focal plane. A design was also developed for a low moment of inertia, reticulated HIP beryllium secondary mirror consistent with blank fabrication technology and optical finishing requirements.

  11. MITAS: multisensor imaging technology for airborne surveillance

    NASA Astrophysics Data System (ADS)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  12. Comparison of predicted ground-level airborne radionuclide concentrations to measured values resulting from operation of the Los Alamos Meson Physics Facility. Master's thesis

    SciTech Connect

    Hoak, W.V.

    1993-05-01

    A comparison study of measured and predicted downwind radionuclide concentrations from the Los Alamos Meson Physics Facility (LAMPF) was performed. The radionuclide emissions consist primarily of the radioisotopes 11C, 13N, and 150. The gases, vented to the outside environment by a stack located at the facility, potentially increase the radiation exposure at the facility boundary. Emission rate, meteorological, and radiation monitoring station data were collected between September 26, 1992 and October 3, 1992. The meteorological and emission data were input to the Clean Air Act Assessment Package-1988 (CAP88-PC) computer code. The downwind radionuclide air concentrations predicted by the code were compared to the air concentrations measured by the monitoring stations. The code was found to slightly over-predict downwind concentrations during unstable atmospheric conditions. For stable atmospheric conditions, the code was not useful for predicting downwind air concentrations. This is thought to be due to an underestimation of horizontal dispersion.

  13. Decontamination of airborne bacteria in meat processing plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air has been established as a source of bacterial contamination in meat processing facilities. Airborne bacteria may affect product shelf life, and have food safety implications. The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in...

  14. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  15. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  16. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  17. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  18. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  19. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  20. The GeoTASO airborne spectrometer project

    NASA Astrophysics Data System (ADS)

    Leitch, J. W.; Delker, T.; Good, W.; Ruppert, L.; Murcray, F.; Chance, K.; Liu, X.; Nowlan, C.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M.; Wang, J.

    2014-10-01

    The NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project demonstrates a reconfigurable multi-order airborne spectrometer and tests the performance of spectra separation and filtering on the sensor spectral measurements and subsequent trace gas and aerosol retrievals. The activities support mission risk reduction for the UV-Visible air quality measurements from geostationary orbit for the TEMPO and GEMS missions1 . The project helps advance the retrieval algorithm readiness through retrieval performance tests using scene data taken with varying sensor parameters. We report initial results of the project.

  1. Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle Refueling Station, Northeast of AGE Storage Facility at far northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  2. PROGRAM ASPECT - FOR REMOTE SENSING OF AIRBORNE PLUMES

    EPA Science Inventory

    The SAFEGUARD program is a multi-sensor program for the detection and imaging of chemical plumes and vapors. The system is composed of an airborne sensor suite including an infrared line scanner and a high-speed fourier transform infrared spectrometer. Both systems are integrat...

  3. Remote sensing of soil moisture using airborne hyperspectral data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  4. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    SciTech Connect

    Alonzo, G M; Sanford, N M

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  5. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    The National Ecological Observatory Network (NEON) is currently under construction by the National Science Foundation. NEON is designed to collect data on the causes and responses to change in the observed ecosystem. The observatory will combine site data collected by terrestrial, instrumental, and aquatic observation systems with airborne remote sensing data. The Airborne Observation Platform (AOP) is designed to collect high-resolution aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopic data over the NEON sites annually at or near peak-greenness. Three individual airborne sensor packages will be installed in leased Twin Otter aircraft and used to the collect the NEON sites as NEON enters operations. A key driver to the derived remote sensing data products is the calibration of the imaging spectrometers. This is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) grating spectrometer designed by NASA JPL. Spectroscopic data is collected at 5-nm intervals from 380-2500-nm. A single 480 by 640 pixel HgCdTe Focal Plane Array collects dispersed light from a grating tuned for efficiency across the solar-reflective utilized in a push-broom configuration. Primary calibration of the NIS consists of the characterizing the FPA behavior, spectral calibration, and radiometric calibration. To this end, NEON is constructing a Sensor Test Facility to calibrate the NEON sensors. This work discusses the initial NIS laboratory calibration and verification using vicarious calibration techniques during operations. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. A NIST traceable FEL bulb is used to radiometrically calibrate the imaging spectrometer. An On-board Calibration (OBC) system

  6. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  7. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  8. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  9. Acoustic sensor array extracts physiology during movement

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  10. An algorithm for monitoring the traffic on a less-travelled road using multi-modal sensor suite

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Chatters, Gary; Liss, Brian; Vu, Hao; Sabatier, James M.

    2014-06-01

    We conducted an experiment to correlate the information gathered by a suite of hard sensors with the information on social networks such as Twitter, Facebook, etc. The experiment consisting of monitoring traffic on a well- traveled road and on a road inside a facility. The sensors suite selected mainly consists of sensors that require low power for operation and last a longtime. The output of each sensor is analyzed to classify the targets as ground vehicles, humans, and airborne targets. The algorithm is also used to count the number of targets belonging to each type so the sensor can store the information for anomaly detection. In this paper, we describe the classifier algorithms used for acoustic, seismic, and passive infrared (PIR) sensor data.

  11. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  12. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  13. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  14. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  15. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  16. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  17. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... cancel TSO-C129a, Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS... Global Positioning System Equipment Using Aircraft-Based Augmentation; an updated minimum performance... system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  18. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  19. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  20. Full-waveform Airborne and Spaceborne Laser Altimetry for Mapping and Sampling the Earth's Forests, Cryosphere, and Land surfaces

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Dubayah, R.; Hofton, M. A.; Luthcke, S. B.; Rabine, D.; Wake, S.; Coyle, B.; Stysley, P.; Salerno, C.

    2014-12-01

    Laser altimetry is an established technique for providing precise and accurate measurements of topography, vegetation, ice sheets, glaciers and sea ice. The Land, Vegetation, and Ice Sensor (LVIS) is a wide swath, full-waveform laser altimeter that has been operational since the late 1990's and has mapped 100,000's of square kilometers around the globe. NASA is developing a Facility version of the LVIS sensor to make it more cost-effective and more easily available to the broader science community. Based heavily on the existing LVIS sensor, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring, lower cost for integration and ops, and data consistency. Building upon the foundation provided by LVIS, the Global Ecosystem Dynamics Investigation (GEDI) Lidar was recently selected for funding as a part of NASA's Earth Venture Program and will use multiple laser beams to measure high-resolution forest structure and surface topography from the International Space Station (ISS). Dependent on the funding profile and availability of launch options to ISS, GEDI could launch as early as 2018. Within a single year of operations GEDI will provide billions of vegetation height and structure measurements for the precise estimation of biomass within the orbital coverage provided by ISS (+/- 51.6 degrees latitude). GEDI uses the same high-SNR waveform measurement technique as the airborne LVIS sensor. LVIS will provide calibration and validation of GEDI's on-orbit performance.

  1. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  2. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  3. New calibration techniques for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.; Chovit, Chris; Eastwood, Mike; Faust, Jessica; Hajek, Pavel; Johnson, Howell; Novack, H. Ian; Sarture, Charles

    1995-01-01

    Recent laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) include new methods for the characterization of the geometric, spectral, temporal and radiometric properties of the sensor. New techniques are desired in order to: (1) increase measurement accuracy and precision, (2) minimize measurement time and expense, (3) prototype new field and inflight calibration systems, (4) resolve measurement ambiguities, and (5) add new measurement dimensions. One of the common features of these new methods is the use of the full data collection and processing power of the AVIRIS instrument and data facility. This allows the collection of large amounts of calibration data in a short period of time and is well suited to modular data analysis routines.

  4. Detecting Airborne Mercury by Use of Gold Nanowires

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Soler, Jessica; Mung, Nosang; Nix, Megan

    2009-01-01

    Like the palladium chloride (PdCl2) films described in the immediately preceding article, gold nanowire sensors have been found to be useful for detecting airborne elemental mercury at concentrations on the order of parts per billion (ppb). Also like the PdCl2 films, gold nanowire sensors can be regenerated under conditions much milder than those necessary for regeneration of gold films that have been used as airborne-Hg sensors. The interest in nanowire sensors in general is prompted by the expectation that nanowires of a given material covering a given surface may exhibit greater sensitivity than does a film of the same material because nanowires have a greater surface area. In preparation for experiments to demonstrate this sensor concept, sensors were fabricated by depositing gold nanowires, variously, on microhotplate or microarray sensor substrates. In the experiments, the electrical resistances were measured while the sensors were exposed to air at a temperature of 25 C and relative humidity of about 30 percent containing mercury at various concentrations from 2 to 70 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury at ppb concentrations in room-temperature air and can be regenerated by exposure to clean flowing air at temperatures <40 C.

  5. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  6. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  7. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  8. Facile synthesis of Cu/Cu{sub x}O nanoarchitectures with adjustable phase composition for effective NO{sub x} gas sensor at room temperature

    SciTech Connect

    Yang, Lixue; Li, Li; Yang, Ying; Zhang, Guo; Gong, Lihong; Jing, Liqiang; Fu, Honggang; Shi, Keying

    2013-10-15

    Graphical abstract: The Cu/Cu{sub x}O nanoarchitectures with 30–70 nm hollow nanospheres reduced by 3 mmol NaBH{sub 4} exhibits excellent gas-sensing property to low-concentration NO{sub x} gas at room temperature. - Highlights: • The Cu/Cu{sub x}O nanoarchitectures with hollow nanospheres are successfully synthesized. • The method is used for preparing the with Cu/Cu{sub x}O adjustable phase composition. • The C3 sample exhibites excellent gas-sensing propertie to NO{sub x} at room temperation. • The Cu/Cu{sub x}O nanoarchitectures have significant for application of gas sensor. - Abstract: The Cu/Cu{sub x}O nanoarchitectures with 30–70 nm hollow nanospheres are successfully synthesized by a facile wet chemical method. The synthesized products have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo gravimetric-differential scanning calorimetry (TG-DSC) analysis. The Cu/Cu{sub x}O sensors based on the nanoarchitectures are used to detect the NO{sub x} at room temperature. The results demonstrate that the obtained Cu/Cu{sub x}O nanoarchitectures reduced by 3 mmol NaBH{sub 4} exhibits excellent gas-sensing properties: low detection limit of 0.97 ppm, relatively high sensitivity, short response time, broad linear range and high selectivity. The reasons for gas-sensing activity enhancement on Cu/Cu{sub x}O nanoarchitectures are discussed. The Cu/Cu{sub x}O nanocrystalline with the hierarchical pores structure and tunable compositions have significant for application of gas sensor.

  9. Windshear detection and avoidance - Airborne systems survey

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.

    1990-01-01

    Functional requirements for airborne windshear detection and warning systems are discussed in terms of the threat posed to civil aircraft operations. A preliminary set of performance criteria for predictive windshear detection and warning systems is defined. Candidate airborne remote sensor technologies based on microwave Doppler radar, Doppler laser radar (lidar), and infrared radiometric techniques are discussed in the context of overall system requirements, and the performance of each sensor is assessed for representative microburst environments and ground clutter conditions. Preliminary simulation results demonstrate that all three sensors show potential for detecting windshear, and provide adequate warning time to allow flight crews to avoid the affected area or escape from the encounter. Radar simulation and analysis show that by using bin-to-bin automatic gain control, clutter filtering, limited detection range, and suitable antenna tilt management, windshear from wet microbursts can be accurately detected. Although a performance improvement can be obtained at higher radar frequency, the baseline X-band system also detected the presence of windshear hazard for a dry microburst. Simulation results of end-to-end performance for competing coherent lidar systems are presented.

  10. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  11. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  12. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. Autonomy and Sensor Webs: The Evolution of Mission Operations

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob

    2008-01-01

    Demonstration of these sensor web capabilities will enable fast responding science campaigns that combine spaceborne, airborne, and ground assets. Sensor webs will also require new operations paradigms. These sensor webs will be operated directly by scientists using science goals to control their instruments. We will explore these new operations architectures through a study of existing sensor web prototypes.

  14. Spaced sensor measurements of artificial airglow emission at 630 nm of ionosphere caused by ``Sura'' facility radiation in November 2013

    NASA Astrophysics Data System (ADS)

    Nasyrov, Igor; Grach, Savely; Gumerov, Rustam; Shindin, Alexey; Kogogin, Denis; Dementiev, Vladislav

    Some first results on simultaneous observation artificial airglow emission at 630 nm during HF pumping of the ionosphere by “Sura” facility from two spatial situated experimental sites are reported. The measurements of artificial airglow are usually conducted in red and green lines of atomic oxygen (the radiation of levels O((1) D) and O((1) S) under their excitation by electronic impact) with wave lengths of 630 and 557.7 nm and excitation energy of 1.96 and 4.17 eV accordingly. An enhancement of airglow intensity in the red line is related at present to the electron heating by powerful radio waves. The idea of the experiment was to estimate the heated volume three-dimensional structure and drift motion one. The experiment was carried out in November 2013 at the “Sura” radio facility, situated near Nizhny Novgorod, Russia (geographical coordinates 56.13(o) N, 46.10(o) E, geomagnetic field declination and inclination are ˜ 10.0(o) east and ˜ 71.5(o) , respectively). Conditions of ionosphere were checked by means of "Cady" ionosonde during “Sura” runs. According to the ionospheric conditions, on the 7(th) of November the “Sura” facility operated at frequency 4.540 MHz. At this frequency the effective radiated power was about 120MW. The HF beam width at the “Sura” facility is ˜ 12(o) . A square wave pump modulation of 5 min on, 5 min off, was used. Measurements were carried out in the period from 14:40 to 17:30 UTC. Optical imaging was performed on two spatial experimental sites: “Vasilsursk” (situated about 500 m from antenna system of “Sura” facility); “Raifa” (situated about 170 km from “Sura” facility at the Magnetic Observatory of Kazan Federal University, geographical coordinates 55.93(o) N, 48.75(o) E). They both were fitted out Peltier-cooled front-illuminated bare CCD cameras with 16-bit slow-scan read-out (S1C3). On “Vasilsursk” site the images were binned down to 256× 256 pixels in addition to cooling, in order

  15. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    new system are: - Reduce the size of the system to approximately one third of the volume of the original TAGS and reduce the weight by one half. - Use slip ring technology to eliminate cable drag on the sensor and gimbal platform. - Use a double oven system to further isolate the gravity sensor from large external temperature variations commonly experienced in airborne survey operations. - Completely redesign both the platform control system and data acquisition and recording system to eliminate reliance on standard computer and windows software enhancing reliability and data throughput. - Increase data recording rate to 20 hertz to assist in making GPS corrections to platform levelling. - Use an advanced force feedback system to increase system resolution in turbulent conditions, eliminate dependence on the spring tension counter and the need to clamp the beam during turns. - Enable the system to be used for drape flying and remove the requirement for an operator and hence be suitable for unmanned aerial vehicle (UAV) operations. Prototype testing of the mechanical and electronic components has been ongoing through the first half of 2011. Ground testing and airborne testing began in May of 2011 and will continue through until October of 2011. This paper will present the results of the full hardware testing in different environments and confirmation of the capabilities of the system.

  16. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  17. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  18. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  19. Satellite orbit determination from an airborne platform

    NASA Astrophysics Data System (ADS)

    Shepard, M. M.; Foshee, J. J.

    This paper describes the requirements, approach, and problems associated with autonomous satellite orbit determination from an airborne platform. The ability to perform orbit determination from an airborne platform removes the reliance on ground control facilities. Aircraft orbit determination offers a more robust system in that it is less susceptible to direct attack, sabotage, or nuclear disaster. Ranging on a satellite and the processing of range/range-rate data along with INS inputs to produce a set of orbital parameters to be transmitted to user terminals are discussed. Several algorithms that could be utilized by the user terminal to recover the satellite position/velocity data from the transmitted message are presented. The ability to compress the ephemeris message to a small size while remaining autonomous for a long period of time, as would be needed in future military communication satellites, is discussed.

  20. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  1. Chemical sensors

    SciTech Connect

    Janata, J.; Josowicz, M.; DeVaney, D.M. )

    1994-06-15

    This review of chemical sensors contains the following topics of interest: books and reviews; reviews of sensors by their type; fabrication and selectivity; data processing; thermal sensors; mass sensors (fabrication, gas sensors, and liquid sensors); electrochemical sensors (potentiometric sensors, amperometric sensors, and conductometric sensors); and optical sensors (fabrication, liquid sensors, biosensors, and gas sensors). 795 refs., 1 tab.

  2. Target detection algorithm for airborne thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, R.; Kumar, A.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.

  3. Airborne change detection system for the detection of route mines

    NASA Astrophysics Data System (ADS)

    Donzelli, Thomas P.; Jackson, Larry; Yeshnik, Mark; Petty, Thomas E.

    2003-09-01

    The US Army is interested in technologies that will enable it to maintain the free flow of traffic along routes such as Main Supply Routes (MSRs). Mines emplaced in the road by enemy forces under cover of darkness represent a major threat to maintaining a rapid Operational Tempo (OPTEMPO) along such routes. One technique that shows promise for detecting enemy mining activity is Airborne Change Detection, which allows an operator to detect suspicious day-to-day changes in and around the road that may be indicative of enemy mining. This paper presents an Airborne Change Detection that is currently under development at the US Army Night Vision and Electronic Sensors Directorate (NVESD). The system has been tested using a longwave infrared (LWIR) sensor on a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) and a midwave infrared (MWIR) sensor on a fixed wing aircraft. The system is described and results of the various tests conducted to date are presented.

  4. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  5. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications.

    PubMed

    Ma, Shuaishuai; Li, Rong; Lv, Changpeng; Xu, Wei; Gou, Xinglong

    2011-08-30

    A facile one-step hydrothermal route was demonstrated to grow ZnO nanorod arrays and hierarchical nanostructures on arbitrary substrates without any catalysts and seeds coated before the reaction, which are prerequisite in the current two-step protocol. Meanwhile, ZnO nanoflowers composed of nanorods were obtained at the bottom of the autoclaves in the absence of substrates. An in situ spontaneous-seeds-assisted growth mechanism was tentatively proposed on the basis of the experimental data to explain the growth process of ZnO nanostructures. Moreover, the obtained ZnO nanorod arrays exhibited superior photocatalytic activity for decomposing methyl orange, and the nanoflowers showed better gas sensing performance towards some flammable gases and corrosive vapors with high sensitivity, rapid response-recovery characteristics, good selectivity and long-term stability. PMID:21684076

  6. Development of airborne oil thickness measurements.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    A laboratory sensor has now been developed to measure the absolute thickness of oil on water slicks. This prototype oil slick thickness measurement system is known as the laser-ultrasonic remote sensing of oil thickness (LURSOT) sensor. This laser opto-acoustic sensor is the initial step in the ultimate goal of providing an airborne sensor with the ability to remotely measure oil-on-water slick thickness. The LURSOT sensor employs three lasers to produce and measure the time-of-flight of ultrasonic waves in oil and hence provide a direct measurement of oil slick thickness. The successful application of this technology to the measurement of oil slick thickness will benefit the scientific community as a whole by providing information about the dynamics of oil slick spreading and the spill responder by providing a measurement of the effectiveness of spill countermeasures such as dispersant application and in situ burning. This paper will provide a review of early developments and discuss the current state-of-the-art in the field of oil slick thickness measurement. PMID:12899892

  7. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Final technical report

    SciTech Connect

    Sassen, K.

    1993-11-01

    In support of the initial phase of the Instrument Development Program (IDP) of the Atmospheric Radiation Measurement (ARM) program, the authors have researched the means by which multiple remote sensing techniques could be best applied to characterizing the cloudy atmosphere. This research has directly supported the short-term goal of aiding in the selection of the most appropriate instrumentation for ARM Clouds and Radiation Testbed (CART) sites, but also has more long-term consequences for the application of remote sensing for measuring cloud properties of crucial concern to general circulation and climate models. To accomplish the goals they have (1) developed a mobile, state-of-the-art, scanning polarization diversity lidar (PDL) to test a variety of techniques for cloud remote sensing, including simultaneous dual-wavelength and dual-polarization, and high-speed variable field-of-view operations; (2) successfully participated in field projects using the PDL along with other remote sensors and instrumented aircraft to obtain detailed datasets for the testing of instrument techniques; (3) in collaboration with researchers at the NOAA Wave Propagation Laboratory, used numerical cloud modeling and empirical studies to develop and refine remote sensing approaches for cloud property retrieval.

  8. Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor.

    PubMed

    Xu, Rongqing; Lu, Yunqing; Jiang, Chunhui; Chen, Jing; Mao, Peng; Gao, Guanghua; Zhang, Labao; Wu, Shan

    2014-08-27

    A three-dimensional (3D) graphene foam (GF)/poly(dimethylsiloxane) (PDMS) composite was fabricated by infiltrating PDMS into 3D GF, which was synthesized by chemical vapor deposition (CVD) with nickel foam as template. The electrical properties of the GF/PDMS composite under bending stress were investigated, indicating the resistance of the GF/PDMS composite was increased with the bending curvature. To improve the bending sensitivity of the GF/PDMS composite, a thin layer of poly(ethylene terephthalate) (PET) was introduced as substrate to form double-layer GF/PDMS-PET composite, whose measurements showed that the resistance of the GF/PDMS-PET composite was still increased when bended to the side of PET, whereas its resistance would be decreased when bended to the side of GF. For both cases, the absolute value of the relative variation of electrical resistance was increased with the bending curvature. More importantly, the relative variation of electrical resistance for double-layer GF/PDMS-PET composite can be up to six times higher than single-layer GF/PDMS composite for the same bending curvature. These observations were further supported by the principle of mechanics of material. The 3D GF/PDMS-PET composite also has higher flexibility and environment stability and can be utilized as a strain sensor with high sensitivity, which can find important applications in real-time monitoring of buildings, such as a bridge, dam, and high-speed railway. PMID:25070179

  9. Development of an Airborne System for Direct Validation of Regional Carbon Flux Estimates

    NASA Astrophysics Data System (ADS)

    Wolfe, G.; Kawa, S. R.; Hanisco, T. F.; Newman, P. A.

    2015-12-01

    Global distributions of greenhouse gas (GHG) sources and sinks, principally CO2 and CH4, and characterization of the processes that control them, comprise a key uncertainty in projections of future climate. A broad spectrum of tools is currently used to characterize these processes. Top-down inversions of orbital GHG column observations (e.g. ACOS/GOSAT and OCO-2) provide a global perspective, but little information is available to validate these estimates. Indirect (boundary-layer budget) or direct (tower-based eddy covariance) surface flux measurements can provide bottom-up constraints, but the former is typically focused on large point and area emission sources while the latter relies on sparse networks with limited spatial coverage. Aircraft are an ideal platform to bridge the flux representation scale from kilometers (as measured from towers) to the tens or hundreds of kilometers relevant to satellite observations and global models. In light of current measurement gaps and the emerging need for direct validation of GHG surface flux estimates, NASA is developing a sophisticated facility for airborne eddy covariance observations of carbon dioxide, methane, water vapor and other trace gases. Three components comprise the core measurement system: i) the NASA Wallops Sherpa, which is ideal for airborne eddy covariance due to its substantial payload and the ability to fly low and slow, ii) commercial GHG sensors optimized for airborne flux measurements, and iii) a custom gust-probe system for high-fidelity measurements of vertical wind velocity. These systems will be discussed in detail, along with future plans for deployment and application of measurements to improving GHG flux estimates on local, regional and global scales.

  10. A comparison of real and simulated airborne multisensor imagery

    NASA Astrophysics Data System (ADS)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  11. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented.

  12. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  13. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  14. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  15. 76 FR 63714 - Technical Standard Order (TSO)-C129a, Airborne Supplemental Navigation Equipment Using the Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Equipment Using the Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT... Supplemental Navigation Equipment Using the Global Positioning System (GPS) effective October 21, 2011. TSO..., Airborne Supplemental Navigation Sensors for Global Positioning System Equipment Using...

  16. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  17. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  18. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker β-glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect.

    PubMed

    Lu, Shuaimin; Li, Guoliang; Lv, Zhengxian; Qiu, Nannan; Kong, Weiheng; Gong, Peiwei; Chen, Guang; Xia, Lian; Guo, Xiaoxi; You, Jinmao; Wu, Yongning

    2016-11-15

    Early detection and diagnosis have great practical significances for the effective prevention and treatment of cancer. In this study, we developed a novel, facile and ultra-sensitive fluorescence assay for the determination of tumor invasive biomarker β-glucuronidase (GLU) based on the inner-filter effect (IFE). The nitrogen-doped carbon quantum dots (N-CQDs) with green photoluminescence were employed as the fluorophore in IFE, and 4-nitrophenyl-β-D-glucuronide (PNPG) was used to act as GLU substrate, and GLU catalytic product (p-nitrophenol (PNP)) was capable of acting as the robust absorber in IFE to turn off the fluorescence of N-CQDs due to the complementary overlap between the absorption of PNP and the excitation of N-CQDs. Thus, signal of GLU activity could be recorded by the fluorescence intensity of N-CQDs. Unlike other fluorescence sensing mechanism such as fluorescence resonance energy transfer (FRET) or photoinduced electron transfer (PET), IFE has no requirement for electron or energy transfer process or any chemical modification of fluorophore, which makes our assay more flexible and simple. The proposed method exhibited a good linear relationship from 1UL(-1) to 60UL(-1) (R(2)=0.9967) with a low detection limit of 0.3UL(-1). This method was also successfully applied to the analysis of serum samples and the inhibitor screening from natural product. The developed sensor platform was proven to be reliable, facile, sensitive, and selective, making it promising as a candidate for GLU activity detection in clinic tumor diagnose and anti-tumor drug screening. PMID:27196253

  1. Locating spilled oil with airborne laser fluorosensors

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Nelson, Robert D.; Mullin, Joseph V.

    1999-02-01

    Locating oil in marine and terrestrial environments is a daunting task. There are commercially available off the shelf (COTS) sensors with a wide field-of-view (FOV) which can be used to map the overall extent of the spill. These generic sensors, however, lack the specificity required to positively identify oil and related products. The problem is exacerbated along beach and shoreline environments where a variety of organic and inorganic substrates are present. One sensor that can detect and classify oil in these environments is the laser fluorosensor. Laser fluorosensors have been under development by several agencies around the world for the past two decades. Environment Canada has been involved with laser fluorosensor development since the early 1990s. The prototype system was known as the Laser Environmental Airborne Fluorosensor (LEAF). The LEAF has recently been modified to provide real-time oil spill detection and classification. Fluorescence spectra are collected and analyzed at the rate of 100 Hz. Geo-referenced maps showing the locations of oil contamination are produced in real-time onboard the aircraft. While the LEAF has proven to be an excellent prototype sensor and a good operational tool, it has some deficiencies when it comes to oil spill response operations. A consortium including Environment Canada and the Minerals Management Service has recently funded the development of a new fluorosensor, called the Scanning Laser Environmental Airborne Fluorosensor (SLEAF). The SLEAF was designed to detect and map oil in shoreline environments where other non-specific sensors experience difficulty. Oil tends to pile up in narrow bands along the high tide line on beaches. A nadir-looking, small footprint sensor such as the LEAF would have difficulty locating oil in this situation. The SLEAF employs a pair of conical scanning mirrors to direct the laser beam in a circular pattern below the aircraft. With a sampling rate of 400 Hz and real-time spectral analysis

  2. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  3. Multisensor airborne imagery collection and processing onboard small unmanned systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale; Anderson, Scott A.; Bird, Alan; Holt, Niel; Kruer, Melvin; Walls, Thomas J.; Wilson, Michael L.

    2010-04-01

    FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) is an ONR funded effort to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). This program is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL). FEATHAR has developed and integrated EyePod, a combined long-wave infrared (LWIR) and visible to near infrared (VNIR) optical survey & inspection system, with NuSAR, a combined dual band synthetic aperture radar (SAR) system. These sensors are being tested in conjunction with other ground and airborne sensor systems to demonstrate intelligent real-time cross-sensor cueing and in-air data fusion. Results from test flights of the EyePod and NuSAR sensors will be presented.

  4. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  5. Advances in cryo-vacuum test capabilities for dual-band sensors at the kinetic kill vehicle hardware-in-the-loop simulation (KHILS) facility

    NASA Astrophysics Data System (ADS)

    Thompson, Rhoe A.; Herald, W. Larry; Bergin, Thomas P.; Marlow, Steven A.; Glattke, Eric W.

    2004-08-01

    The KHILS Vacuum Cold Chamber (KVACC) has formed the basis for a comprehensive test capability for newly developed dual-band infrared sensors. Since initial delivery in 1995, the KVACC chamber and its support systems have undergone a number of upgrades, maturing into a valuable test asset and technology demonstrator for missile defense systems. Many leading edge test technologies have been consolidated during the past several years, demonstrating the level of fidelity achievable in tomorrow's missile test facilities. These technologies include resistive array scene projectors, sub-pixel non-linear spatial calibration and coupled two-dimensional radiometric calibration techniques, re-configurable FPGA based calibration electronics, dual-band beam-combination and collimation optics, a closed-cycle multi-chamber cryo-vacuum environment, personal computer (PC) based scene generation systems and a surrounding class-1000 clean room environment. The purpose of this paper is to describe this unique combination of technologies and the capability it represents to the hardware-in-the-loop community.

  6. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  7. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  8. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  9. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  10. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  11. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  12. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-05-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  13. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-11-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  14. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Guyot, Éric; Chamberland, Martin

    2014-10-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  15. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  16. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  17. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  18. Detecting inertial effects with airborne matter-wave interferometry.

    PubMed

    Geiger, R; Ménoret, V; Stern, G; Zahzam, N; Cheinet, P; Battelier, B; Villing, A; Moron, F; Lours, M; Bidel, Y; Bresson, A; Landragin, A; Bouyer, P

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658

  19. Detecting inertial effects with airborne matter-wave interferometry

    PubMed Central

    Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P.

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658

  20. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  1. Calibration of airborne SAR interferograms using multisquint-processed image pairs

    NASA Astrophysics Data System (ADS)

    Prats, Pau; Mallorqui, Jordi J.; Reigber, Andreas; Broquetas, Antoni

    2004-01-01

    This paper presents two different approaches to detect and correct phase errors appearing in interferometric airborne SAR sensors due to the lack of precision in the navigation system. The first one is intended for interferometric pairs with high coherence, and the second one for low coherent ones. Both techniques are based on a multisquint processing approach, i.e., by processing the same image pairs with different squint angles we can combine the information of different interferograms to obtain the desired phase correction. Airborne single- and repeat-pass interferometric data from the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Experimental airborne SAR is used to validate the method.

  2. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  3. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  4. Roof heat loss detection using airborne thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  5. Leica ADS40 Sensor for Coastal Multispectral Imaging

    NASA Technical Reports Server (NTRS)

    Craig, John C.

    2007-01-01

    The Leica ADS40 Sensor as it is used for coastal multispectral imaging is presented. The contents include: 1) Project Area Overview; 2) Leica ADS40 Sensor; 3) Focal Plate Arrangements; 4) Trichroid Filter; 5) Gradient Correction; 6) Image Acquisition; 7) Remote Sensing and ADS40; 8) Band comparisons of Satellite and Airborne Sensors; 9) Impervious Surface Extraction; and 10) Impervious Surface Details.

  6. Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    PubMed Central

    Oppelt, Natascha; Mauser, Wolfram

    2007-01-01

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented.

  7. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  8. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  9. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  10. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor

    NASA Astrophysics Data System (ADS)

    Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu

    2015-11-01

    This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g-1, it also exhibited a large surface area of 396.10 m2 g-1. As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade

  11. The effect of extraction, storage, and analysis techniques on the measurement of airborne endotoxin from a large dairy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to fill in additional knowledge gaps with respect to the extraction, storage, and analysis of airborne endotoxin, with a specific focus on samples from a dairy production facility. We utilized polycarbonate filters to collect total airborne endotoxins, sonication as ...

  12. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor.

    PubMed

    Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu

    2015-11-28

    This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g(-1), it also exhibited a large surface area of 396.10 m(2) g(-1). As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse). PMID:26505865

  13. Preliminary evaluation of the airborne imaging spectrometer for vegetation analysis

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1984-01-01

    The primary goal of the project was to provide ground truth and manual interpretation of data from an experimental flight of the Airborne Infrared Spectrometer (AIS) for a naturally vegetated test site. Two field visits were made; one trip to note snow conditions and temporally related vegetation states at the time of the sensor overpass, and a second trip following acquisition of prints of the AIS images for field interpretation. Unfortunately, the ability to interpret the imagery was limited by the quality of the imagery due to the experimental nature of the sensor.

  14. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  15. Sensors and Apps for Community-Based Atmospheric Monitoring

    EPA Science Inventory

    Recent advances in both sensors and wireless communication provide opportunities for improved exposure assessment and increasing community involvement in reducing levels of human exposure to airborne contaminants. These new technologies can enhance data collection to answer scien...

  16. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  17. Potential airborne release from soil-working operations in a contaminated area

    SciTech Connect

    Sutter, S.L.

    1980-08-01

    Experiments were performed to provide an indication of how much material could be made airborne during soil-working operations in a contaminated area. Approximately 50 kg of contaminated soil were collected, dried, and mixed, and particle size distribution and /sup 137/Cs content were characterized. In four experiments performed in a 2 ft x 2 ft wind tunnel at the Radioactive Aerosol Release Test Facility, soil was pumped into an airstream moving at 3.2, 10.4, 15.2, and 20 mph. These experiments were designed to maximize airborne releases by fluidizing the soil as it was pumped into the wind tunnel. Thus the airborne releases should represent upper limit values for soil-working operations. Airborne concentration and particle size samples were collected and all of the material deposited downstream was collected to calculate a mass balance. The fraction airborne was calculated using these measurements.

  18. Multiple model adaptive tracking of airborne targets

    NASA Astrophysics Data System (ADS)

    Norton, John E.

    1988-12-01

    Over the past ten years considerable work has been accomplished at the Air Force Institute of Technology (AFIT) towards improving the ability of tracking airborne targets. Motivated by the performance advantages in using established models of tracking environment variables within a Kalman filter, an advanced tracking algorithm has been developed based on adaptive estimation filter structures. A multiple model bank of filters that have been designed for various target dynamics, which each accounting for atmospheric disturbance of the Forward Looking Infrared (FLIR) sensor data and mechanical vibrations of the sensor platform, outperforms a correlator tracker. The bank of filters provides the estimation capability to guide the pointing mechanisms of a shared aperture laser/sensor system. The data is provided to the tracking algorithm via an (8 x 8)-pixel tracking Field of View (FOV) from the FLIR image plane. Data at each sample period is compared by an enhanced correlator to a target template. These offsets are measurements to a bank of linear Kalman filters which provide estimates of the target's location in azimuth and elevation coordinates based on a Gauss-Markov acceleration model, and a reduced form of the atmospheric jitter model for the disturbance in the IR wavefront carrying future measurements.

  19. On-site airborne pheromone sensing.

    PubMed

    Wehrenfennig, Christoph; Schott, Matthias; Gasch, Tina; Düring, Rolf Alexander; Vilcinskas, Andreas; Kohl, Claus-Dieter

    2013-08-01

    Pheromones and other semiochemicals play an important role in the natural world by influencing the behavior of plants, mammals, and insects. In the latter case, species-dependent pheromone communication has numerous applications, including the detection, trapping, monitoring and guiding of insects, as well as pest management in agriculture. On-site sensors are desirable when volatile organic compounds (VOCs) are used as semiochemicals. Insects have evolved highly selective sensors for such compounds, so biosensors comprising complete insects, isolated organs or individual proteins can be highly effective. However, isolated insect organs have a limited lifetime as biosensor, so biomimetic approaches are needed for prolonged monitoring, novel applications, or measurements in challenging environments. We discuss the development of on-site biosensors and biomimetic approaches for airborne-pheromone sensing, together with biomimetic VOC sensor systems. Furthermore, the infochemical effect describing the anthropogenic contamination of the ecosystem through semiochemicals, will be considered in the context of novel on-site pheromone sensing-systems. PMID:23842897

  20. Surface Elevation Measurements of Greenland and Antarctica Using NASA's Land, Vegetation and Ice Sensor (LVIS)

    NASA Astrophysics Data System (ADS)

    Hofton, M. A.; Blair, J. B.; Rabine, D.; Beckley, M.; Brooks, C.; Cornejo, H.; Wake, S.

    2014-12-01

    Since 2007, NASA's Land Vegetation and Ice Sensor (LVIS) has been used to collect wide-swath, waveform-based laser altimetry (lidar) measurements of large areas of Greenland and Antarctica from medium-high altitude airborne platforms. To date, ~350,000 km2 of data have been collected, processed and released via NSIDC under the auspices of NASA's Operation Icebridge. In November 2013, the LVIS was paired with the LVIS-GH sensor (an updated version of the instrument developed for high-altitude operations in the Global Hawk UAV) and used to overfly Spring 2013 Icebridge or Cryosat-2 tracks in Greenland and the Arctic, providing data for seasonal change assessments and validation of Cryosat-2. The precise and accurate, large-area coverage capabilities provided by the LVIS systems are important to supporting and enhancing future space-based lidar missions such as ICESat-2 and GEDI. To maximize such support as well as provide targeted data sets for end users in the cryosphere and other communities, the LVIS Facility capability is currently under development with goals of providing up to 5 times more data than present with 2 month turnaround at much reduced cost to the end user. A summary of the Facility as well as airborne LVIS data collected to date and comparisons utilizing data will be presented.

  1. Study on automatic airborne image positioning model and its application in FY-3A airborne experiment

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yang, Zhongdong; Guan, Min; Zhang, Liyang; Wang, Tiantian

    2009-08-01

    This paper addresses the issue on airborne image positioning model and its application in FY-3A experiment. First, the FY-3A Medium Resolution Spectral Imager (MERSI)'s viewing vector is derived from MERSI's imaging pattern. Then, the image positioning model is analyzed mathematically in detail which is based on Earth-aircraft geometry. The model parameters are mainly determined by both the sensor - aircraft alignment and the onboard discrete measurements of the positioning and orientation. Flight trials are flown at an altitude of 8300 m over the Qinghai Lake China. It is shown that the image positioning accuracy (about 1~4 pixels) is better than previous methods (more than 7 pixels, [G. J. Jedlovec et al. NASA Technical Memorandum TM - 100352 (1989) and D. P. Roy et al. Int. J. Rem. Sens. 18(9), 1865 - 1887 (1997)]). It is also shown that the model has the potential to hold the image positioning errors within one pixel. The model can operate automatically, and does not need ground control points data. Since our algorithm get the image positioning results through an observation geometric perspective which is in computing the point at which the sensor viewing vector intersects the earth surface, our algorithm assumes the airborne data are from the plain area.

  2. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  3. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  4. Flow analysis of airborne particles in a hospital operating room

    NASA Astrophysics Data System (ADS)

    Faeghi, Shiva; Lennerts, Kunibert

    2016-06-01

    Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.

  5. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  6. AESMIR: A New NASA Airborne Microwave Imager

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Hood, Robbie; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer under development by NASA. The AESMIR design is unique in that it will perform dual-polarized imaging at all AMSR frequency bands (6.9 through 89 GHz) using only one sensor head/scanner package, providing an efficient solution for AMSR-type science applications (snow, soil moisture/land parameters, precip, ocean winds, SST, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s and the Proteus. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, and ground-based deployments. Thus AESMIR can provide low-, mid-, and high altitude microwave imaging.

  7. Impact detection on airborne multilayered structures

    NASA Astrophysics Data System (ADS)

    Noharet, Bertrand; Chazelas, Jean; Bonniau, Philippe; Lecuellet, Jerome; Turpin, Marc J.

    1995-04-01

    This paper reviews the progress of an ongoing research program at Thomson-CSF and Bertin & Cie which addresses an optical fiber system dedicated to the assessment of impact induced damages on airborne multilayered structures. The method is based on the use of embedded high birefringence optical fiber sensors and distributed white light interfero-polarimetry. The first part is devoted to the transduction process efficiency within optical fibers depending on the applied force intensity, direction versus the fiber eigen axes and the interaction length. To understand the behavior of these optical fibers and calibrate the detection system, experiments have been conducted on elliptical core fibers, `bow-tie' fibers and side-hole fibers and showed a wide range of available sensitivities. The second step is related to the inclusion of optical fibers in a sandwich structure representative of an airborne dome, and composed of foam between glass/epoxy composite skins. Different designs of grooves in the foam and tube sheathings have been investigated to support and protect the optical fiber. Impacts have been performed on the structure in the 1 to 10 Joules energy range. Experimental impact location and energy measurements have been achieved for a variety of stress fields.

  8. Auxiliary DCP data acquisition system. [airborne system

    NASA Technical Reports Server (NTRS)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  9. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  10. Oil spill experiment using airborne DLR ESAR off the coast of Diu, India.

    PubMed

    Sasamal, S K; Rao, M V

    2015-05-15

    Oil spill experiment results in the coastal waters of Diu, India, with an airborne DLR ESAR sensor are discussed with reference to the SAR frequency, polarization and viewing angle. The SAR data acquired in the quad polarization of the L band and dual polarization of the C band over two spills are studied. A higher oil and water contrast is observed in the L-VV polarization than in the C-HH mode. Oil spill discrimination is possible over a wider view angle of the airborne SAR sensor data in L band than in C band. This study has also analyzed the spread and drift of oil in coastal waters. PMID:25813716

  11. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  12. Airborne tracking sunphotometer apparatus and system

    NASA Technical Reports Server (NTRS)

    Matsumoto, Yutaka (Inventor); Mina, Cesar (Inventor); Russell, Philip B. (Inventor); Vanark, William B. (Inventor)

    1987-01-01

    An airborne tracking Sun photometer apparatus has a rotatable dome. An azimuth drive motor is connected to rotate the dome. The dome has an equatorial slot. A cylindrical housing is pivotally mounted inside the dome at the equatorial slot. A photometer is mounted in the housing to move in the equatorial slot as the housing pivots. The photometer has an end facing from the slot with an optical flat transparent window. An elevation drive motor is connected to pivot the cylindrical housing. The rotatable dome is mounted in the bulkhead of an aircraft to extend from the interior of the aircraft. A Sun sensor causes the photometer to track the Sun automatically. Alternatively, the photometer may be oriented manually or by computer.

  13. Fourth Airborne Geoscience Workshop: Summary Minutes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The general theme for the workshop revolved around global environmental change. Over 170 individuals participated in the presentations and ensuing discussions about the many agency activities using airborne platforms and sensors in support of the U.S. Global Change Research Program (GCRP). The U.S. GCRP was developed as a central component of the U.S. Government's approach to global change and its contribution to worldwide efforts. An all-encompassing U.S. plan was developed by the Committee on Earth and Environmental Sciences (CEES), which continues as the interagency coordinating group for the program. The U.S. GCRP was established as a Presidential initiative in the FY90 budget, making it a particularly relevant topic for the workshop. The following are presented in the appendices: (1) final agenda and list of registrants; (2) final list of poster presenters; (3) steering group luncheon participants; (4) the draft resolution; and (5) selected handouts.

  14. A Computer Code to Estimate Environmental Concentration and Dose Due to Airborne Release of Radioactive Material.

    1991-03-15

    Version 00 ORION-II was developed to estimate environmental concentration and dose due to airborne release of radioactive material from multiple sources of the nuclear fuel cycle facilities. ORION-II is an updated version of ORION and is applicable to the sensitivity study of dose assessment at nuclear fuel cycle facilities.

  15. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  16. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  17. Comparison of Size and Geography of Airborne Tungsten Particles in Fallon, Nevada, and Sweet Home, Oregon, with Implications for Public Health

    PubMed Central

    Sheppard, Paul R.; Bierman, Brian J.; Rhodes, Kent; Ridenour, Gary; Witten, Mark L.

    2012-01-01

    To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home. PMID:22523506

  18. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  19. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  20. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  1. Airborne ultrasound enters the ear through the eyes

    NASA Astrophysics Data System (ADS)

    Lenhardt, Martin

    2005-09-01

    Musical spectrum above 20000 Hz has been demonstrated to influence human judgments and physiology. Moreover airborne ultrasonic noise has been implicated in hearing loss, tinnitus, and other subjective effects such as headaches and fullness in the ear. Contact ultrasound, i.e., with a transducer affixed to the skin of the head/neck, is audible; assumed by bone conduction. However, lightly touching the soft tissues of the head, avoiding bone, can also produce audibility. When contact ultrasound is applied to the head, energy from 25 to ~60 kHz can be recorded from the closed eyelid, with care to avoid sensor contact with the orbit. If the same frequency band of noise is passed through a transducer in from of the eye, with just air coupling, the same response is again recordable on the head. An acrylic barrier between the eye and the transducer eliminates the response. Once airborne ultrasound exceeds the impedance mismatch of the eye it readily propagates through the soft tissues of the eye and brain via one of the fluid windows (end lymphatic, perilymphatic or vascular) to the cochlea. The eye fenestration explains how people can detect airborne ultrasonic components in music and develop ear effects from airborne ultrasonic noise.

  2. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  3. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  4. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  5. Airborne infrared thermography

    NASA Astrophysics Data System (ADS)

    Miller, Geoffrey M.

    2003-01-01

    To explore the feasibility of utilizing an IR imaging system to support flow visualization studies, an initial series of tests were conducted using an AN/AAS-38, NITE Hawk targeting pod. The targeting pod, installed on the left side of an F/A-18 aircraft provides a stabilized infrared imaging capability in the 8-12 micron spectral band. Initial data acquired with system indicated that IR thermography was a very promising tool for flow visualization. For the next phase of the investigation, an advanced version of the NITE Hawk targeting pod equipped with a staring 3-5 micron sensor was utilized. Experimental results obtained with this sensor indicated improved sensitivity and resolution. This method was limited to position the experiment and chase aircraft sufficiently close to each other and with the sightline angle required to acquire the region of interest. For the current phase of the investigation, the proven 3-5 micron staring sensor was deployed in an externally mounted podlet, located on the experimental aircraft with a fixed line of sight, centered on the region of interest. Based on initial data collection efforts, this approach appears to provide consistent high quality data for a wide range of flight conditions. To minimize the size of the podlet and resultant drag, the sensor was oriented parallel to the air flow. This also placed the line of sight parallel to the experiment. A fold mirror was incorporated in the design to fold the line of sight inboard and down to center on the region of interest. The experimental results obtained during the current test phase have provided consistently high quality images clearly mapping regions of laminar and turbulent flow. Several examples of these images and further details of the experimental approach are presented.

  6. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  7. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  8. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  9. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  10. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  11. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  12. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  13. Airborne reconnaissance XIII; Proceedings of the Meeting, San Diego, CA, Aug. 7-9, 1989

    NASA Technical Reports Server (NTRS)

    Henkel, Paul A. (Editor); Lagesse, Francis R. (Editor); Schurter, Wayne W. (Editor)

    1989-01-01

    The present conference on airborne reconnaissance discusses topics in imagery exploitation, reconsystem modeling and analysis, and reconnaissance optics and electronics configurations. Attention is given to airborne minefield detection, the optimization of an IR linescanner for RPV operations, real-time display of IR linescanner data for RPVs, three-dimensional model-guided site recognition, the AMIDARS high-performance real-time display, and MMW sensor image analysis. Also discussed are reconnaissance concepts for the 3-5 micron spectral window, sensor concept development for hazard detection, a stabilization system for a large aperture camera, three-axis image stabilization with a two-axis mirror, the results of performance tests on the TOW target collimator design, and the replacement of film by electrooptic media in advanced tactical airborne reconnaissance.

  14. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  15. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  16. Remote sensing for non-renewable resources - Satellite and airborne multiband scanners for mineral exploration

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    1986-01-01

    The application of remote sensing techniques to mineral exploration involves the use of both spatial (morphological) as well as spectral information. This paper is directed toward a discussion of the uses of spectral image information and emphasizes the newest airborne and spaceborne sensor developments involving imaging spectrometers.

  17. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  18. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  19. Comparison between laboratory and airborne BRDF measurements for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2006-08-01

    Samples from soil and leaf litter were obtained at a site located in the savanna biome of South Africa (Skukuza; 25.0°S, 31.5°E) and their bidirectional reflectance distribution functions (BRDF) were measured using the out-of-plane scatterometer located in the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC) Diffuser Calibration Facility (DCaF). BRDF was measured using P and S incident polarized light over a range of incident and scatter angles. A monochromator-based broadband light source was used in the ultraviolet (uv) and visible (vis) spectral ranges. The diffuse scattered light was collected using an uv-enhanced silicon photodiode detector with output fed to a computer-controlled lock-in amplifier. Typical measurement uncertainties of the reported laboratory BRDF measurements are found to be less than 1% (k=1). These laboratory results were compared with airborne measurements of BRDF from NASA's Cloud Absorption Radiometer (CAR) instrument over the same general site where the samples were obtained. This study presents preliminary results of the comparison between these laboratory and airborne BRDF measurements and identifies areas for future laboratory and airborne BRDF measurements. This paper presents initial results in a study to try to understand BRDF measurements from laboratory, airborne, and satellite measurements in an attempt to improve the consistency of remote sensing models.

  20. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  1. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  2. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  3. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  4. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  5. Developing a Scalable Remote Sampling Design for the NEON Airborne Observation Platform (AOP)

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Wasser, L. A.; Kampe, T. U.; Leisso, N.; Krause, K.; Petroy, S. B.; Cawse-Nicholson, K.; van Aardt, J. A.; Serbin, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) airborne observation platform (AOP) will collect co-registered high-resolution hyperspectral imagery, discrete and waveform LiDAR, and high-resolution digital photography for more than 60 terrestrial and 23 aquatic sites spread across the continental United States, Puerto Rico, Alaska and Hawaii on an annual basis over the next 30 years. These data, to be made freely available to the public, will facilitate the scaling of field-based biological, physical and chemical measurements to regional and continental scales, enabling a better understanding of the relationships between climate variability and change, land use change and invasive species, and their ecological consequences in areas not directly sampled by the NEON facilities. However, successful up-scaling of in situ measurements requires a flight sampling design that captures environmental heterogeneity and diversity (i.e., ecological and topographic gradients), is sensitive to temporal system variation (e.g., phenology), and can respond to major disturbance events. Alignment of airborne campaigns - composed of two payloads for nominal science acquisitions and one payload for PI-driven rapid-response campaigns -- with other ground, airborne (e.g., AVIRIS) and satellite (e.g., Landsat, MODIS) collections will further facilitate scaling between sensors and data sources of varying spatial and spectral resolution and extent. This presentation will discuss the approach, challenges and future goals associated with the development of NEON AOP's sampling design, using examples from the 2013 nominal flight campaigns in the Central Plains (NEON Domain 10) and the Pacific Southwest (Domain 17), and the rapid response flight campaign of the High Park Fire site outside of Fort Collins, CO. Determination of the specific flight coverage areas for each campaign involved analysis of the landscape scale ecological, geophysical and bioclimatic attributes and trends most closely

  6. A carbon fiber exposure test facility and instrumentation

    NASA Technical Reports Server (NTRS)

    Newcomb, A. L., Jr.

    1980-01-01

    A facility to evaluate the risk associated with the exposure of electrical and electronic equipment to airborne carbon/graphite fibers was constructed. A wide variety of instrumentation is described and illustrated.

  7. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  8. Airborne multisensor system for the autonomous detection of land mines

    NASA Astrophysics Data System (ADS)

    Scheerer, Klaus

    1997-07-01

    A concept of a modular multisensor system for use on an airborne platform is presented. THe sensor system comprises two high resolution IR sensors working in the mid and far IR spectral regions, a RGB video camera with its sensitivity extended to the near IR in connection with a laser illuminator, and a radar with a spatial resolution adapted to the expected mine sizes. The sensor concept emerged from the evaluation of comprehensive static and airborne measurements on numerous buried and unburied mines. The measurements were performed on single mines and on minefields, layed down according to military requirements. The system has an on-board realtime image processing capability and is intended to operate autonomously with a data link to a mobile groundstation. Data from a navigation unit serve to transform the location of identified mines into a geodetic coordinate system. The system will be integrated into a cylindrical structure of about 40 cm diameter. This may be a drone or simply a tube which can be mounted on any carrier whatever. The realization of a simplified demonstrator for captive flight tests is planned by 1998.

  9. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  10. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  11. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect

    Hammack, R. W.

    2006-12-28

    Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the

  12. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  13. Knowledge-based architecture for airborne mine and minefield detection

    NASA Astrophysics Data System (ADS)

    Agarwal, Sanjeev; Menon, Deepak; Swonger, C. W.

    2004-09-01

    One of the primary lessons learned from airborne mid-wave infrared (MWIR) based mine and minefield detection research and development over the last few years has been the fact that no single algorithm or static detection architecture is able to meet mine and minefield detection performance specifications. This is true not only because of the highly varied environmental and operational conditions under which an airborne sensor is expected to perform but also due to the highly data dependent nature of sensors and algorithms employed for detection. Attempts to make the algorithms themselves more robust to varying operating conditions have only been partially successful. In this paper, we present a knowledge-based architecture to tackle this challenging problem. The detailed algorithm architecture is discussed for such a mine/minefield detection system, with a description of each functional block and data interface. This dynamic and knowledge-driven architecture will provide more robust mine and minefield detection for a highly multi-modal operating environment. The acquisition of the knowledge for this system is predominantly data driven, incorporating not only the analysis of historical airborne mine and minefield imagery data collection, but also other "all source data" that may be available such as terrain information and time of day. This "all source data" is extremely important and embodies causal information that drives the detection performance. This information is not being used by current detection architectures. Data analysis for knowledge acquisition will facilitate better understanding of the factors that affect the detection performance and will provide insight into areas for improvement for both sensors and algorithms. Important aspects of this knowledge-based architecture, its motivations and the potential gains from its implementation are discussed, and some preliminary results are presented.

  14. Source localization corrections for airborne acoustic platforms based on a climatological assessment of temperature and wind velocity profiles

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Cheinet, Sylvain; Collier, Sandra L.; Reiff, Christian; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, W. C. Kirkpatrick, II

    2012-06-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors oer a distinct advantage over ground sensors. The performance of both ground and airborne sensors is aected by environmental factors, such as atmospheric turbulence and wind and temperature proles. For airborne sensors, the eects of refraction must be accounted for in order to determine the source coordinates. Such a method for ground-to-air applications has been developed and is further rened here. Ideally, knowledge of the exact atmospheric proles will allow for the most accurate mitigation of refractive eects. However, acoustic sensors deployed in theater are rarely supported by atmospheric sensing systems that retrieve real-time temperature and wind elds. Atmospheric conditions evolve through seasons, time of day, and are strongly location dependent. Therefore, the development of an atmospheric proles database based on a long time series climatological assessment will provide knowledge for use in physics-based bearing estimation algorithms, where otherwise no correction would have been performed. Long term atmospheric data sets from weather modeling systems are used for a climatological assessment of the refraction corrections and localization errors over selected sites.

  15. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  16. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  17. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  18. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  19. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  20. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  1. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  2. Airborne Trailblazer: Two decades with NASA Langley's 737 flying laboratory

    NASA Technical Reports Server (NTRS)

    Wallace, Lane E.

    1994-01-01

    This book is the story of a very unique aircraft and the contributions it has made to the air transportation industry. NASA's Boeing 737-100 Transport Systems Research Vehicle started life as the prototype for Boeing's 737 series of aircraft. The airplane was acquired by LaRC in 1974 to conduct research into advanced transport aircraft technologies. In the twenty years that followed, the airplane participated in more than twenty different research projects, evolving from a research tool for a specific NASA program into a national airborne research facility. It played a critical role in developing and gaining acceptance for numerous significant transport technologies including 'glass cockpits,' airborne windshear detection systems, data links for air traffic control communications, the microwave landing system, and the satellite-based global positioning system (GPS).

  3. Development of the second generation Hyperspectral Airborne Terrestrial Imager (HATI): HATI - 2500

    NASA Astrophysics Data System (ADS)

    Sandor-Leahy, S.; Thordarson, S.; Baldauf, B.; Figueroa, M.; Helmlinger, M.; Miller, H.; Reynolds, T.; Shepanski, J.

    2010-08-01

    Northrop Grumman Aerospace Systems (NGAS) has a long legacy developing and fielding hyperspectral sensors, including airborne and space based systems covering the visible through Long Wave Infrared (LWIR) wavelength ranges. Most recently NGAS has developed the Hyperspectral Airborne Terrestrial Instrument (HATI) family of hyperspectral sensors, which are compact airborne hyperspectral imagers designed to fly on a variety of platforms and be integrated with other sensors in NGAS's instrument suite. The current sensor under development is the HATI-2500, a full range Visible Near Infrared (VNIR) through Short Wave Infrared (SWIR) instrument covering the 0.4 - 2.5 micron wavelength range with high spectral resolution (3nm). The system includes a framing camera integrated with a GPS/INS to provide high-resolution multispectral imagery and precision geolocation. Its compact size and flexible acquisition parameters allow HATI-2500 to be integrated on a large variety of aerial platforms. This paper describes the HATI-2500 sensor and subsystems and its expected performance specifications.

  4. Technology for the detection of airborne intruders approaching the high-security high-value asset

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F., III

    1995-05-01

    Security plans to protect high-value assets usually concentrate on stopping potential ground intruders before they reach the asset. Barriers, such as fences, are the first line of defense against the found intruder, providing a delay mechanism. The sight of 10 to 12 foot high fencing topped with razor wire, guard towers, and roving patrols also serves as a psychological deterrent to the potential ground intrusion sensors between an outer and an inner barrier. This visible 'hardness' of a high-value asset makes airborne penetration more attractive, even though the airborne intruder may require training in the use of an aircraft or other airborne conveyance system. Certain airborne intrusion scenarios allow an adversary to penetrate much deeper and faster through delay and defense systems designed to deter the ground intruder. Since an airborne intruder can quickly reach the high-value asset, early detection critical to asset defense. Early detection of the airborne intruder also ensures appropriate use of the deadly force doctrine because the guard force has time to coordinate the response.

  5. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  6. Synthesis of Sensor Fish Data for Assessment of Fish Passage Conditions at Turbines, Spillways, and Bypass Facilities – Phase 1: The Dalles Dam Spillway Case Study

    SciTech Connect

    Deng, Zhiqun; Serkowski, John A.; Fu, Tao; Carlson, Thomas J.; Richmond, Marshall C.

    2007-12-31

    This report summarizes the characterization of spillway passage conditions at The Dalles Dam in 2006 and the effort to complete a comprehensive database for data sets from The Dalles Dam spillway Sensor Fish and balloon-tagged live fish experiments. Through The Dalles Dam spillway case study, Pacific Northwest National Laboratory (PNNL) researchers evaluated the database as an efficient means for accessing and retrieving system-wide data for the U.S Army Corps of Engineers (USACE).

  7. Landsat radiometric continuity using airborne imaging spectrometry

    NASA Astrophysics Data System (ADS)

    McCorkel, J.; Angal, A.; Thome, K.; Cook, B.

    2015-12-01

    NASA Goddard's Lidar, Hyperspectral and Thermal Imager (G-LiHT) includes a scanning lidar, an imaging spectrometer and a thermal camera. The Visible Near-Infrared (VNIR) Imaging Spectrometer acquires high resolution spectral measurements (1.5 nm resolution) from 0.4 to 1.0 µm. The SIRCUS-based calibration facility at NASA's Goddard Space Flight Center was used to measure the absolute spectral response (ASR) of the G-LiHT's imaging spectrometer. Continuously tunable lasers coupled to an integrating sphere facilitated a radiance-based calibration for the detectors in the reflective solar bands. The transfer of the SIRCUS-based laboratory calibration of G-LiHT's Imaging Spectrometer to the Landsat sensors (Landsat 7 ETM+ and Landsat 8 OLI) is demonstrated using simultaneous overpasses over the Red Lake Playa and McClaw's Playa sites during the commissioning phase of Landsat 8 in March 2013. Solar Lunar Absolute Imaging Spectrometer (SOLARIS) is the calibration demonstration system for the reflected solar instrument of CLARREO. A portable version of SOLARIS, known as Suitcase SOLARIS, also calibrated using a SIRCUS-based setup, was deployed for ground measurements as a part of both the field campaigns. Simultaneous measurements of SOLARIS allow cross-comparison with G-LiHT and Landsat sensors. The transfer of the lab-based calibration of G-LiHT to Landsat sensors show that the sensors agree within 5% with a 1-3% calibration uncertainty of G-LiHT's Imaging Spectrometer.

  8. Airborne spectrograph for the thermal IR: Broadband Array Spectrograph System

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Hackwell, John; Lynch, David; Mazuk, Ann

    1995-01-01

    Spectroscopic studies in the 'fingerprint' region of the thermal IR from 3 to 14 microns of celestial dust components and the overall energy distribution of the sources are best served by moderate spectral resolution (R = lambda/Delta lambda approximately 30 to 200), high sensitivity observations. Spectral purity and the reproducibility of the spectral shape are critical as well, when using the spectral shape to assign temperatures to dust grains or to gas clouds based on the wavelength and shape of molecular bands. These sensor attributes are also important to the use of wavelengths and ratios of solid state features to derive compositions of dust grains in celestial sources. The advent of high quality linear arrays of blocked impurity band (BIB) detectors of Si:As permitted the development of a state-of-the-art, patented, cooled prism spectrograph. Developed at The Aerospace Corporation largely with in-house funds, the Broadband Array Spectrograph System (BASS) has been used for a variety of remote sensing applications, but especially for IR astronomical studies on the Kuiper Airborne Observatory and at the NASA Infrared Telescope Facility (IRTF). The attributes of the spectrograph, specifically having the pupil imaged onto the 2 linear 58 element detector arrays so that the effects of guiding errors are minimized, being able to maximally exploit the limited observing time by acquiring all 116 spectral channels simultaneously, and having all spectral channels imaged through the same aperture so that spectral mapping is readily and reliably accomplished, afford the scientist with a unique opportunity to conduct both surveys of examples of many different types of sources as well as in-depth studies of a given class of object by thoroughly sampling the class members. This duality was demonstrated with the BASS through a combination of KAO flights where spectral maps were obtained as part of in-depth studies of specific source regions (such as Orion and W3) and

  9. Smart Sensors for Smart Hands

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1978-01-01

    Proximity, force-torque, touch and slippage sensors developed or applied by the JPL Teleoperator Project for remote manipulator control are described, including sensor data handling by computers for display and control. Examples are quoted showing the significance of these sensors for manual or computer control of manipulators. An interesting example is a proximity sensor system implemented for a four-claw JSC end effector and tested at the Shuttle Manipulator Training Facility of JSC. New sensing concepts aimed at simplifying the implementation of 'Smart Sensors for Smart Hands' in the space environment are discussed.

  10. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  11. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  12. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  13. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  14. A multiprocessor airborne lidar data system

    NASA Astrophysics Data System (ADS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  15. A multiprocessor airborne lidar data system

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    1988-01-01

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  16. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    SciTech Connect

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  17. Weapon system interoperability testing between target acquisition systems and missile guidance sections utilizing adjacent hardware-in-the loop sensor test facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Burroughs, Eddie, Jr.; Robinson, Richard M.

    1997-07-01

    Laboratory Test and Evaluation of imaging infrared (I2R) systems is being greatly enhanced through the use of the Electro-Optics Sensor Flight Evaluation Laboratory (EOSFEL) and the Electro-Optics Target Acquisition Sensor Evaluation Laboratory (EOTASEL) at the US Army Redstone Technical Test Center. In addition to other standard and future test support, these laboratories will be utilized to support tactical I2R missile system interoperability testing. The EOSFEL is a state-of-the-art, performance grade, Hardware-In-the-Loop test capability for in-band, closed- loop test and evaluation of optically guided missile seekers, guidance sections, and control sections. The EOTASEL is a class 100,000 clean room laboratory, with state-of-the-art test capability for evaluating the performance of electro-optical target acquisition and fire control subsystems in a hardware/human-in-the-loop environment. With I2R missile systems being developed to work with electro-optical target acquisition subsystems, such as the second generation Forward Looking Infrared sights, the need arises for testing the interoperability of these sensor subsystems within the cost effective confines of the laboratory. Interoperability testing today is currently performed at the system level in real-world field environments, which is very expensive and costly to identify problems at this level. This paper describes a realistic technique for performing high fidelity laboratory interoperability testing which utilizes the EOSFEL and EOTASEL including two Dynamic Infrared Scene Projector systems, a five-axis flight motion simulator, a two-axis platform motion simulator, climatic chambers, supporting instrumentation, and computer control.

  18. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference provided four days of displays and scientific presentations on applications, technology, a science of sub-orbital data gathering and analysis. The twelve displayed aircraft equipped with sophisticated instrumentation represented a wide range of environmental and reconnaissance missions,including marine pollution control, fire detection, Open Skies Treaty verification, thermal mapping, hydrographical measurements, military research, ecological and agricultural observations, geophysical research, atmospheric and meterological observations, and aerial photography. The U.S. Air Force and the On-Site Inspection Agency displayed the new Open Skies Treaty verification Boeing OC 135B that promotes international monitoring of military forces and activities. SRl's Jetstream uses foliage and ground penetrating SAR for forest inventories, toxic waste delineation, and concealed target and buried unexploded ordnance detection. Earth Search Sciences's Gulfstream 1 with prototype miniaturized airborne hyperspectral imaging equipment specializes in accurate mineral differentiation, low-cost hydrocarbon exploration, and nonproliferation applications. John E. Chance and the U.S. Army Corps of Engineers displayed the Bell 2 helicopter with SHOALS that performs hydrographic surveying of navigation projects, coastal environment assessment, and nautical charting surveys. Bechtel Nevada and U.S. DOE displayed both the Beech King AIR B-200 platform equipped to provide first response to nuclear accidents and routine environmental surveillance, and the MBB BO-105 helicopter used in spectral analysis for environmental assessment and military appraisal. NASA Ames Research Center's high-altitude Lockheed ER-2 assists in earth resources monitoring research in atmospheric chemistry, oceanography, and electronic sensors; ozone and greenhouse studies and satellite calibration and data validation. Ames also showcased the Learjet 24 Airborne Observatory that completed missions in Venus

  19. Wide-Area Persistent Airborne Video: Architecture and Challenges

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Rao, Raghuveer M.; Seetharaman, Guna

    The need for persistent video covering large geospatial areas using embedded camera networks and stand-off sensors has increased over the past decade. The availability of inexpensive, compact, light-weight, energy-efficient, high resolution optical sensors and associated digital image processing hardware has led to a new class of airborne surveillance platforms. Traditional tradeoffs posed between lens size and resolution, that is the numerical aperture of the system, can now be mitigated using an array of cameras mounted in a specific geometry. This fundamental advancement enables new imaging systems to cover very large fields of view at high resolution, albeit with spatially varying point spread functions. Airborne imaging systems capable of acquiring 88 megapixels per frame, over a wide field-of-view of 160 degrees or more at low frame rates of several hertz along with color sampling have been built using an optical array with up to eight cameras. These platforms fitted with accurate orientation sensors circle above an area of interest at constant altitude, adjusting steadily the orientation of the camera array fixed around a narrow area of interest, ideally locked to a point on the ground. The resulting image sequence maintains a persistent observation of an extended geographical area depending on the altitude of the platform and the configuration of the camera array. Suitably geo-registering and stabilizing these very large format videos provide a virtual nadir view of the region being monitored enabling a new class of urban scale activity analysis applications. The sensor geometry, processing challenges and scene interpretation complexities are highlighted.

  20. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  1. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  2. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  3. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  4. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  5. Enhanced intelligence through optimized TCPED concepts for airborne ISR

    NASA Astrophysics Data System (ADS)

    Spitzer, M.; Kappes, E.; Böker, D.

    2012-06-01

    Current multinational operations show an increased demand for high quality actionable intelligence for different operational levels and users. In order to achieve sufficient availability, quality and reliability of information, various ISR assets are orchestrated within operational theatres. Especially airborne Intelligence, Surveillance and Reconnaissance (ISR) assets provide - due to their endurance, non-intrusiveness, robustness, wide spectrum of sensors and flexibility to mission changes - significant intelligence coverage of areas of interest. An efficient and balanced utilization of airborne ISR assets calls for advanced concepts for the entire ISR process framework including the Tasking, Collection, Processing, Exploitation and Dissemination (TCPED). Beyond this, the employment of current visualization concepts, shared information bases and information customer profiles, as well as an adequate combination of ISR sensors with different information age and dynamic (online) retasking process elements provides the optimization of interlinked TCPED processes towards higher process robustness, shorter process duration, more flexibility between ISR missions and, finally, adequate "entry points" for information requirements by operational users and commands. In addition, relevant Trade-offs of distributed and dynamic TCPED processes are examined and future trends are depicted.

  6. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  7. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  8. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  9. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  10. Near infrared testbed sensor

    NASA Astrophysics Data System (ADS)

    Sanderson, R. B.; McCalmont, J. F.; Montgomery, J. B.; Johnson, R. S.; McDermott, D. J.

    2007-04-01

    A new tactical airborne multicolor missile warning testbed was developed and fielded as part of an Air Force Research Laboratory (AFRL) initiative focusing on clutter and missile signature measurements for algorithm development. Multicolor discrimination is one of the most effective ways of improving the performance of infrared missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in multiple fielded sensors. Traditionally, multicolor discrimination has been performed in the mid-infrared, 3-5 μm band, where the molecular emission of CO and CO2 characteristic of a combustion process is readily distinguished from the continuum of a black body radiator. Current infrared warning sensor development is focused on near infrared (NIR) staring mosaic detector arrays that provide similar spectral discrimination in different bands to provide a cost effective and mechanically simpler system. This, in turn, has required that multicolor clutter data be collected for both analysis and algorithm development. The developed sensor test bed is a multi-camera system 1004x1004 FPA coupled with optimized filters integrated with the optics. The collection portion includes a ruggedized field-programmable gate array processor coupled with with an integrated controller/tracker and fast disk array capable of real-time processing and collection of up to 60 full frames per second. This configuration allowed the collection and real-time processing of temporally correlated, radiometrically calibrated data in multiple spectral bands that was then compared to background and target imagery taken previously

  11. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  12. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can

  13. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  14. Analyzing Responses of Chemical Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  15. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  16. Source localization results for airborne acoustic platforms in the 2010 Yuma Proving Ground test

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Collier, Sandra L.; Reiff, Christian G.; Cheinet, Sylvain; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, William C.

    2013-05-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors offer a distinct advantage over ground sensors. Among other factors, the performance of airborne sensors is affected by refraction of sound signals due to vertical gradients in temperature and wind velocity. A comprehensive experiment in source localization with an aerostat-mounted acoustic system was conducted in summer of 2010 at Yuma Proving Ground (YPG). Acoustic sources on the ground consisted of one-pound TNT denotations and small arms firings. The height of the aerostat was approximately 1 km above the ground. In this paper, horizontal, azimuthal, and elevation errors in source localization and their statistics are studied in detail. Initially, straight-line propagation is assumed; then refraction corrections are introduced to improve source localization and decrease the errors. The corrections are based on a recently developed theory [Ostashev, et. al, JASA 2008] which accounts for sound refraction due to vertical profiles of temperature and wind velocity. During the 2010 YPG field test, the vertical profiles were measured only up to a height of approximately 100 m. Therefore, the European Center for Medium-range Weather Forecasts (ECMWF) is used to generate the profiles for July of 2010.

  17. Enhanced oil spill detection sensors in low-light environments

    NASA Astrophysics Data System (ADS)

    Allik, Toomas H.; Ramboyong, Len; Roberts, Mark; Walters, Mark; Soyka, Thomas J.; Dixon, Roberta; Cho, Jay

    2016-05-01

    Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.

  18. Development of Airborne Eddy-Correlation Flux Measurement Capabilities for Reactive Oxides of Nitrogen

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.

  19. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements. PMID:15074425

  20. Impacts of dichroic prism coatings on radiometry of the airborne imaging spectrometer APEX.

    PubMed

    Hueni, A; Schlaepfer, D; Jehle, M; Schaepman, M

    2014-08-20

    The generation of well-calibrated radiometric measurements from imaging spectrometer data requires careful consideration of all influencing factors, as well as an instrument calibration based on a detailed sensor model. Deviations of ambient parameters (i.e., pressure, humidity, temperature) from standard laboratory conditions during airborne operations can lead to biases that should be accounted for and properly compensated by using dedicated instrument models. This study introduces a model for the airborne imaging spectrometer airborne prism experiment (APEX), describing the impact of spectral shifts as well as polarization effects on the radiometric system response due to changing ambient parameters. Key issues are related to changing properties of the dichroic coating applied to the dispersing elements within the optical path. We present a model based on discrete numerical simulations. With the improved modeling approach, we predict radiometric biases with an root mean square error (RMSE) below 1%, leading to a substantial improvement of radiometric stability and predictability of system behavior. PMID:25321104

  1. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  2. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  3. An interactive lake survey program. [airborne multispectral sensor image processing

    NASA Technical Reports Server (NTRS)

    Smith, A. Y.

    1977-01-01

    Consideration is given to the development and operation of the interactive lake survey program developed by the Jet Propulsion Laboratory and the Environmental Protection Agency. The program makes it possible to locate, isolate, and store any number of water bodies on the basis of a given digital image. The stored information may be used to generate statistical analyses of each body of water including the lake surface area and the shoreline perimeter. The hardware includes a 360/65 host computer, a Ramtek G100B display controller, and a trackball cursor. The system is illustrated by the LAKELOC operation as it would be applied to a Landsat scene, noting the FARINA and STATUS programs. The water detection algorithm, which increases the accuracy with which water and land data may be separated, is discussed.

  4. Data fusion techniques for object space classification using airborne laser data and airborne digital photographs

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong

    The objective of this research is to investigate possible strategies for the fusion of airborne laser data with passive optical data for object space classification. A significant contribution of our work is the development and implementation of a data-level fusion technique, direct digital image georeferencing (DDIG). In DDIG, we use navigation data from an integrated system (composed of global positioning system (GPS) and inertial measurement unit (IMU)) to project three-dimensional data points measured with the University of Florida's airborne laser swath mapping (ALSM) system onto digital aerial photographs. As an underlying math model, we use the familiar collinearity condition equations. After matching the ALSM object space points to their corresponding image space pixels, we resample the digital photographs using cubic convolution techniques. We call the resulting images pseudo-ortho-rectified images (PORI) because they are orthographic at the ground surface but still exhibit some relief displacement for elevated objects; and because they have been resampled using a interpolation technique. Our accuracy tests on these PORI images show that they are planimetrically correct to about 0.4 meters. This accuracy is sufficient to remove most of the effects of the central perspective projection and enable a meaningful fusion of the RGB data with the height and intensity data produced by the laser. PORI images may also be sufficiently accurate for many other mapping applications, and may in some applications be an attractive alternative to traditional photogrammetric techniques. A second contribution of our research is the development of several strategies for the fusion of data from airborne laser and camera systems. We have conducted our work within the sensor fusion paradigm formalized in the optical engineering community. Our work explores the fusion of these two types of data for precision mapping applications. Specifically, we combine three different types of

  5. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  6. EUFAR the unique portal for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    , the website offers easy navigation, and user friendly functionalities. New features also include a section on news and airborne research stories to keep users up-to-date on EUFAR's activities, a career section, photo galleries, and much more. By elaborating new solutions for the web portal, EUFAR continues to serve as an interactive and dynamic platform bringing together experts, early-stage researchers, operators, data users, industry and other stakeholders in the airborne research community. A main focus of the current project is the establishment of a sustainable legal structure for EUFAR. This is critical to ensuring the continuity of EUFAR and securing, at the least, partial financial independence from the European Commission who has been funding the project since its start. After carefully examining different legal forms relevant for EUFAR, the arguments are strongly in favour of establishing an International non-profit Association under the Belgian law (AISBL). Together with the implementation of an Open Access scheme by means of resource-sharing to support the mobility of personnel across countries envisaged in 2016, such a sustainable structure would contribute substantially toward broadening the user base of existing airborne research facilities in Europe and mobilising additional resources for this end. In essence, this would cement EUFAR's position as the key portal for airborne research in Europe.

  7. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  8. The NCAR Airborne Infrared Lidar System (NAILS)

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Lightsey, P. A.

    1986-01-01

    A planned airborne lidar system is presented which is intended to provide a remote sensing facility for a variety of applications. The eventual goal of the system development is a Doppler wind measurement capability for boundary layer dynamics and cloud physics applications. The first stage of development is focused initially on a direct detection lidar to measure aerosol profiles and depolarization from cloud backscatter. Because of the Doppler goal, interest in larger particles to define the top of the mixed layer, and eye safety, the first stage of the system is based on a pulsed CO2 laser. A compact, relatively simple and inexpensive system that achieves flexibility to meet the data requirements of a variety of investigators by being easily modified rather than having many different capabilities built in is the goal. Although the direct detection sensitivity is less than that for heterodyne detection, the simpler system allows the achievement of useful scientific results and operating experience towards more complex lidars while staying within budget and time constraints.

  9. Long-Term Stability of the SGA-WZ Strapdown Airborne Gravimeter

    PubMed Central

    Cai, Shaokun; Zhang, Kaidong; Wu, Meiping; Huang, Yangming

    2012-01-01

    Accelerometers are one of the most important sensors in a strapdown airborne gravimeter. The accelerometer's drift determines the long-term accuracy of the strapdown inertial navigation system (SINS), which is the primary and most critical component of the strapdown airborne gravimeter. A long-term stability test lasting 104 days was conducted to determine the characteristics of the strapdown airborne gravimeter's long-term drift. This stability test was based on the first set of strapdown airborne gravimeters built in China, the SGA-WZ. The test results reveal a quadratic drift in the strapdown airborne gravimeter data. A drift model was developed using the static data in the two end sections, and then this model was used to correct the test data. After compensating for the drift, the drift effect improved from 70 mGal to 3.46 mGal with a standard deviation of 0.63 mGal. The quadratic curve better reflects the drift's real characteristics. In comparison with other methodologies, modelling the drift as a quadratic curve was shown to be more appropriate. Furthermore, this method allows the drift to be adjusted throughout the course of the entire campaign. PMID:23112647

  10. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  11. Increased efficiency for beyond line-of-sight in airborne ISR operations

    NASA Astrophysics Data System (ADS)

    Frayter, Slava; Willems, Koen

    2013-05-01

    Airborne platforms are increasingly being used as vehicles to capture intelligence data for defense, state and civil applications. The aerial vehicles are equipped with technology for both video and sensor data collection; the data is then sent to a ground mission control center for further processing. When the airborne platform is outside the reach of direct data relay due to distance or environment, satellite communications is used for Beyond Line of Sight (BLoS) communication. It is a key requirement for the satellite link in ISR (Intelligence, Surveillance and Reconnaissance) operations to get as much data and video as possible through the available bandwidth. The satellite link also needs to be available at all times during operations to insure mission critical communications and not endanger ground operations. Only by using robust satellite technology can the demand for more data and highest efficiency be satisfied while keeping OPEX costs under control. This paper will highlight both technical and practical challenges of operators in the airborne ISR missions, going from technical requirements to efficiency-driven solutions. It will also look at what the final results in the field are when transmitting ISR data and video from the airborne platform over satellite in highly adaptive environments. The existing qualified and deployed BLoS airborne solution already achieves over 20Mbps from the aircraft to the ground in active operations, but requirements and capabilities continue to increase as more comprehensive ISR data is being transmitted.

  12. Application of multimode airborne digital camera system in Wenchuan earthquake disaster monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Li, Qingting; Fang, Junyong; Tong, Qingxi; Zheng, Lanfen

    2009-06-01

    Remote sensing, especially airborne remote sensing, can be an invaluable technique for quick response to natural disasters. Timely acquired images by airborne remote sensing can provide very important information for the headquarters and decision makers to be aware of the disaster situation, and make effective relief arrangements. The image acquisition and processing of Multi-mode Airborne Digital Camera System (MADC) and its application in Wenchuan earthquake disaster monitoring are presented in this paper. MADC system is a novel airborne digital camera developed by Institute of Remote Sensing Applications, Chinese Academy of Sciences. This camera system can acquire high quality images in three modes, namely wide field, multi-spectral (hyper-spectral) and stereo conformation. The basic components and technical parameters of MADC are also presented in this paper. MADC system played a very important role in the disaster monitoring of Wenchuan earthquake. In particular, the map of dammed lakes in Jianjiang river area was produced and provided to the front line headquarters. Analytical methods and information extraction techniques of MADC are introduced. Some typical analytical and imaging results are given too. Suggestions for the design and configuration of the airborne sensors are discussed at the end of this paper.

  13. Facile construction of vertically aligned ZnO nanorod/PEDOT:PSS hybrid heterojunction-based ultraviolet light sensors: efficient performance and mechanism

    NASA Astrophysics Data System (ADS)

    Ranjith, K. S.; Rajendra Kumar, R. T.

    2016-03-01

    We demonstrate a simple, planar manufacturing process-compatible fabrication of highly efficient UV sensors based on a hybrid heterojunction of an array of vertically aligned ZnO nanorods (NRs) and PEDOT:PSS. The ZnO NR array was grown by the solution growth process and the aspect ratio (length 1 to 4 μm, diameter ˜80 nm) of the rods was controlled by varying the growth time. UV sensors based on (i) naked ZnO NRs and (ii) ZnO NR/PEDOT:PSS heterojunctions were fabricated and tested. The UV sensitivity of bare ZnO NRs was found to increase with increasing aspect ratio of the NRs due to the increase in the photogenerated charge carriers as the fraction of material interacting with the light increases. Under 5 V bias, naked ZnO NR arrays showed a photocurrent of 8.84 × 10-5 A, a responsivity of 0.538 A W-1 and a sensitivity of 4.80 under UV (λ = 256 nm, 130 μW) illumination. ZnO NR/PEDOT:PSS hybrid heterojunctions showed diode-like behavior with a leakage current less than 2.54 × 10-8 A at -5 V and forward turn-on voltage of 1.1 V. ZnO NR/polymer-based hybrid heterojunctions show a photocurrent of 6.74 × 10-4 A, responsivity of 5.046 A W-1 and excellent sensitivity of 37.65 under UV (λ = 256 nm, 130 μW) illumination. Compared with bare ZnO NR arrays, the ZnO NR/polymer heterojunction device shows responsivity enhanced by a factor of 10, sensitivity enhanced by a factor of 8 and faster rise and decay time. The enhanced performance may be due to effective charge separation guided by the built-in potential formed at the interface between ZnO NRs and PEDOT:PSS.

  14. Distributed-aperture infrared sensor systems

    NASA Astrophysics Data System (ADS)

    Brusgard, Thomas C.

    1999-07-01

    The on-going maturation of electro-optic technology in which the advent of third generation focal plane array is being combined with the capabilities of increasingly powerful signal processing algorithm now points to a new direction in design of electro-optic sensor system for both military and non-military applications. Taking advantage of those advances. Distributed Aperture IR Sensor systems (DAIRS) are currently in development within the Defense Department for installation in a variety of platforms for utilization in a wide variety of tactical scenarios. DAIRS employs multiple fixed identical sensor to obtain the functionality that was previously obtained using specialized sensors for each function. In its role in tactical scenarios. DAIRS employs multiple fixed identical sensor to obtain the functionality that was previously obtained using specialized sensor for each function. In its role in tactical aircraft, DAIRS uses an array of six strategically located sensors which provide 4(pi) steradian sensor coverage, i.e., full sphere situational awareness (SA), to the aircrew. That awareness provides: missile threat warning, IR Search and Track, battle damage assessment, targeting assistance, and pilotage. DAIRS has applicability in providing expanded SA for surface ships, armored land vehicles and unmanned air combat vehicles. A typical sensor design has less than twenty-five percent of the weight, volume, and electrical power demand of current federated airborne IR sensor system and can become operational with a significant reduction in lifetime system cost. DAIRS, when combined with autocueing, may have a significant role in technological advancement of aircraft proximity warning system for in-flight collision avoidance. DAIRS is currently founded in part by the Office of Naval Research which will result in the IR Distributed Aperture System (MIDAS), which is funded as a Navy Advanced Technology Demonstration, the DAIRS will undergo airborne testing using four

  15. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  16. High sensitive airborne radioiodine monitor.

    PubMed

    Ogata, Yoshimune; Yamasaki, Tadashi; Hanafusa, Ryuji

    2013-11-01

    Airborne radioiodine monitoring includes a problem in that commercial radioactive gas monitors have inadequate sensitivity. To solve this problem, we designed a highly sensitive monitoring system. The higher counting efficiency and lower background made it possible to perform the low-level monitoring. The characteristics of the system were investigated using gaseous (125)I. The minimum detectable activity concentration was 1 × 10(-4)Bq cm(-3) for 1 min counting, which is one tenth of the legal limit for the radiation controlled areas in Japan. PMID:23602709

  17. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  18. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  19. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  20. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  1. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  2. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  3. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  4. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  5. Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area

    NASA Astrophysics Data System (ADS)

    Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco

    2016-04-01

    The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric

  6. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  7. The Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Manning, W.; Wang, J. R.; Racette, P.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Results of the first science flight of the airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA ER-2 is discussed. Imagery collected from the flight demonstrates CoSMIR's unique conical/cross-track imaging mode and provides comparison of CoSMIR measurements to those of the Special Sensor Microwave/Temperature-2 (SSM/T-2) satellite radiometer.

  8. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  9. Studying insect motion with piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Mika, Bartosz; Lee, Hyungoo; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2007-04-01

    Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion, pressure and airborne sensors. Because of the material's biocompatibility and flexibility, we have been able to apply small piezoelectric sensors, made of PVDF, to cockroaches. We built a laboratory test system to study the piezoelectric properties of a bending sensor. The tested motion was compared with that of the sensor attached to a cockroach. Surface characterization and finite element analysis revealed the effects of microstructure on piezoelectric response. The sensor attachment enables us to monitor the insects' locomotion and study their behaviors. The applications of engineering materials to insects opens the door to innovating approaches to integrating biological, mechanical and electrical systems.

  10. High resolution Michelson interferometer for airborne infrared astronomical observations. 2: System design.

    PubMed

    Langlet, A; Delage, C; Stefanovitch, D; Talureau, B; Tualy, J; Verveer, J; Fischer, W P; Gilles, J M; Scheper, R; Leblanc, J; Dambier, G

    1977-07-01

    A Michelson interferometer for high resolution (lambda/Deltalambda approximately 10(4)) spectroscopic observations of astronomical ir ionic line emission has been built and flown on the NASA 91-cm airborne ir telescope facility (G. P. Kuiper Airborne Observatory). In Part 1 of this paper the requirements for such a system were outlined, and the scientific basis for the choice of instrumental parameters and the rapid scan mode of operation were discussed. In this paper design details of the instrument are presented. These include the optics, control He-Ne laser interferometer, helium-cooled bolometer detector, and cooled passband filters. In addition, the on-line computer software which enables the operator to interact rapidly with the system to produce inflight spectra and control accordingly the observational parameters is described, as are elements of the electronics hardware developed specially for airborne observations. PMID:20168820

  11. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  12. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  13. Facile, green and clean one-step synthesis of carbon dots from wool: Application as a sensor for glyphosate detection based on the inner filter effect.

    PubMed

    Wang, Long; Bi, Yidan; Hou, Juan; Li, Huiyu; Xu, Yuan; Wang, Bo; Ding, Hong; Ding, Lan

    2016-11-01

    In this work, we reported a green route for the fabrication of fluorescent carbon dots (CDs). Wool, a kind of nontoxic and natural raw material, was chosen as the precursor to prepare CDs via a one-step microwave-assisted pyrolysis process. Compared with previously reported methods for preparation of CDs based on biomass materials, this method was simple, facile and free of any additives, such as acids, bases, or salts, which avoid the complicated post-treatment process to purify the CDs. The CDs have a high quantum yield (16.3%) and their fluorescence could be quenched by silver nanoparticles (AgNPs) based on inner filter effect (IFE). The presence of glyphosate could induce the aggregation of AgNPs and thus result in the fluorescence recovery of the quenched CDs. Based on this phenomenon, we constructed a fluorescence system (CDs/AgNPs) for determination of glyphosate. Under the optimized conditions, the fluorescence intensity of the CDs/AgNPs system was proportional to the concentration of glyphosate in the range of 0.025-2.5μgmL(-1), with a detection limit of 12ngmL(-1). Furthermore, the established method has been successfully used for glyphosate detection in the cereal samples with satisfactory results. PMID:27591613

  14. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  15. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  16. Semi-automated based ground-truthing GUI for airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Lydic, Rich; Moore, Tim; Trang, Anh; Agarwal, Sanjeev; Tiwari, Spandan

    2005-06-01

    Over the past several years, an enormous amount of airborne imagery consisting of various formats has been collected and will continue into the future to support airborne mine/minefield detection processes, improve algorithm development, and aid in imaging sensor development. The ground-truthing of imagery is a very essential part of the algorithm development process to help validate the detection performance of the sensor and improving algorithm techniques. The GUI (Graphical User Interface) called SemiTruth was developed using Matlab software incorporating signal processing, image processing, and statistics toolboxes to aid in ground-truthing imagery. The semi-automated ground-truthing GUI is made possible with the current data collection method, that is including UTM/GPS (Universal Transverse Mercator/Global Positioning System) coordinate measurements for the mine target and fiducial locations on the given minefield layout to support in identification of the targets on the raw imagery. This semi-automated ground-truthing effort has developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division, Airborne Application Branch with some support by the University of Missouri-Rolla.

  17. Progress in the development of airborne remote sensing instrumentation for the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; McCorkel, Joel; Hamlin, Louise; Green, Robert O.; Krause, Keith S.; Johnson, Brian R.

    2011-09-01

    The National Ecological Observatory Network (NEON) is a planned facility of the National Science Foundation with the mission to enable understanding and forecasting of the impacts of climate change, land use change and invasive species on continental-scale ecology. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON Airborne Observation Platform is designed to bridge scales from organism and stand scales, as captured by plot and tower observations, to the scale of satellite based remote sensing. Fused airborne spectroscopy and waveform LiDAR is used to quantify vegetation composition and structure. Panchromatic photography at better than 30 cm resolution will retrieve fine-scale information on land use, roads, impervious surfaces, and built structures. NEON will build three airborne systems to allow for regular coverage of NEON sites and the capacity to respond to investigator requests for specific projects. The system design achieves a balance between performance and development cost and risk, taking full advantage of existing commercial airborne LiDAR and camera components. To reduce risk during NEON construction, an imaging spectrometer design verification unit is being developed at the Jet Propulsion Laboratory to demonstrate that operational and performance requirements can be met. As part of this effort, NEON is also focusing on science algorithm development, computing hardware prototyping and early airborne test flights with similar technologies. This paper presents an overview of the development status of the NEON airborne instrumentation in the context of the NEON mission.

  18. Exposure to airborne microorganisms and endotoxin in herb processing plants.

    PubMed

    Dutkiewicz, J; Krysińska-Traczyk, E; Skórska, C; Sitkowska, J; Prazmo, Z; Golec, M

    2001-01-01

    Microbiological air sampling was performed in two herb processing plants located in eastern Poland. Air samples for determination of the levels of bacteria, fungi, dust and endotoxin were collected at 14 sites during cleaning, cutting, grinding, sieving, sorting and packing of 11 kinds of herbs (nettle, caraway, birch, celandine, marjoram, mint, peppermint, sage, St. John's wort, calamus, yarrow), used for production of medications, cosmetics and spices. It was found that processing of herbs was associated with a very high pollution of the air with bacteria, fungi, dust and endotoxin. The numbers of microorganisms (bacteria and fungi) in the air of herb processing plants ranged within 40.6-627.4 x 10(3) cfu/m3 (mean +/- S.D = 231.4 +/- 181.0 x 10(3) cfu/m3). The greatest concentrations were noted at the initial stages of production cycle, during cleaning, cutting and grinding of herbs. The numbers of airborne microorganisms were also significantly (p<0.0001) related to the kind of processed herb, being the greatest at processing marjoram, nettle, yarrow and mint. The values of the respirable fraction of airborne microflora in the examined facilities varied within a fairly wide range and were between 14.7-67.7%. The dominant microorganisms in the air of herb processing plants were mesophilic bacteria, among which endospore-forming bacilli (Bacillus spp.) and actinomycetes of the species Streptomyces albus were most numerous. Among Gram-negative bacteria, the most common was endotoxin-producing species Alcaligenes faecalis. Altogether, 37 species or genera of bacteria and 23 species or genera of fungi were identified in the air of herb processing plants, of these, 11 and 10 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of dust and bacterial endotoxin in the air of herb processing plants were large with extremely high levels at some sampling sites. The concentrations of airborne dust ranged within 3

  19. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    PubMed

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-01

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed. PMID:27590695

  20. Airborne Detection and Tracking of Geologic Leakage Sites

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor

    2014-11-01

    Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.

  1. Rapid topographic and bathymetric reconnaissance using airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Axelsson, Andreas

    2010-10-01

    Today airborne LiDAR (Light Detection And Ranging) systems has gained acceptance as a powerful tool to rapidly collect invaluable information to assess the impact from either natural disasters, such as hurricanes, earthquakes and flooding, or human inflicted disasters such as terrorist/enemy activities. Where satellite based imagery provides an excellent tool to remotely detect changes in the environment, the LiDAR systems, being active remote sensors, provide an unsurpassed method to quantify these changes. The strength of the active laser based systems is especially evident in areas covered by occluding vegetation or in the shallow coastal zone as the laser can penetrate the vegetation or water body to unveil what is below. The purpose of this paper is to address the task to survey complex areas with help of the state-of-the-art airborne LiDAR systems and also discuss scenarios where the method is used today and where it may be used tomorrow. Regardless if it is a post-hurricane survey or a preparation stage for a landing operation in unchartered waters, it is today possible to collect, process and present a dense 3D model of the area of interest within just a few hours from deployment. By utilizing the advancement in processing power and wireless network capabilities real-time presentation would be feasible.

  2. Multispectral Airborne Laser Scanning for Automated Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  3. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  4. Investigation of airborne lidar for avoidance of windshear hazards

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1990-01-01

    A generalized windshear hazard index is defined, which is derived from considerations of wind conditions at the present position of an aircraft and from remotely sensed information along the extended flight path. Candidate airborne sensor technologies based on microwave Doppler radar, Doppler lidar, and infrared radiometric techniques are discussed in the context of overall system functional requirements. Initial results of a performance and technology assessment study for competing lidars are presented. Based on a systems approach to the windshear threat, lidar appears to be a viable technology for windshear detection and avoidance, even in conditions of moderately heavy precipitation. The proposed airborne CO2 and Ho:YAG lidar windshear-detection systems analyzed here can give the pilot information about the line-of-sight component of windshear threat from his present position to a region extending 1 to 3 km in front of the aircraft. This constitutes a warning time of 15 to 45 seconds. The technology necessary to design, build, and test such a brassboard 10.6 micron CO2 lidar is now available. However, for 2-micron systems, additional analytical and laboratory investigations are needed to arrive at optimum 2-micron rare-earth-based laser crystals.

  5. Comparative performance between compressed and uncompressed airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Rupp, Ronald; Agarwal, Sanjeev; Trang, Anh; Nair, Sumesh

    2008-04-01

    The US Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division is evaluating the compressibility of airborne multi-spectral imagery for mine and minefield detection application. Of particular interest is to assess the highest image data compression rate that can be afforded without the loss of image quality for war fighters in the loop and performance of near real time mine detection algorithm. The JPEG-2000 compression standard is used to perform data compression. Both lossless and lossy compressions are considered. A multi-spectral anomaly detector such as RX (Reed & Xiaoli), which is widely used as a core algorithm baseline in airborne mine and minefield detection on different mine types, minefields, and terrains to identify potential individual targets, is used to compare the mine detection performance. This paper presents the compression scheme and compares detection performance results between compressed and uncompressed imagery for various level of compressions. The compression efficiency is evaluated and its dependence upon different backgrounds and other factors are documented and presented using multi-spectral data.

  6. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  7. Research on MLS airborne antenna

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1976-01-01

    Numerical solutions for the radiation patterns of antennas mounted on aircraft are developed. The airborne antenna problems associated with the Microwave Landing System (MLS) are emphasized. Based on the requirements of the MLS, volumetric pattern solutions are essential. Previous attempts at solving for the volumetric patterns were found to be far too complex and very inefficient. However as a result of previous efforts, it is possible to combine the elevation and roll plane pattern solutions to give the complete volumetric pattern. This combination is described as well as the aircraft simulation models used in the analysis. A numerical technique is presented to aid in the simulation of the aircraft studied. Finally, a description of the input data used in the computer code is given.

  8. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. PMID:23962732

  9. A Field Evaluation of Airborne Techniques for Detection of Unexploded Ordnance

    SciTech Connect

    Bell, D.; Doll, W.E.; Hamlett, P.; Holladay, J.S.; Nyquist, J.E.; Smyre, J.; Gamey, T.J.

    1999-03-14

    US Defense Department estimates indicate that as many as 11 million acres of government land in the U. S. may contain unexploded ordnance (UXO), with the cost of identifying and disposing of this material estimated at nearly $500 billion. The size and character of the ordnance, types of interference, vegetation, geology, and topography vary from site to site. Because of size or composition, some ordnance is difficult to detect with any geophysical method, even under favorable soil and cultural interference conditions. For some sites, airborne methods may provide the most time and cost effective means for detection of UXO. Airborne methods offer lower risk to field crews from proximity to unstable ordnance, and less disturbance of sites that maybe environmentally sensitive. Data were acquired over a test site at Edwards AFB, CA using airborne magnetic, electromagnetic, multispectral and thermal sensors. Survey areas included sites where trenches might occur, and a test site in which we placed deactivated ordnance, ranging in size from small ''bomblets'' to large bombs. Magnetic data were then acquired with the Aerodat HM-3 system, which consists of three cesium magnetometers within booms extending to the front and sides of the helicopter, and mounted such that the helicopter can be flown within 3m of the surface. Electromagnetic data were acquired with an Aerodat 5 frequency coplanar induction system deployed as a sling load from a helicopter, with a sensor altitude of 15m. Surface data, acquired at selected sites, provide a comparison with airborne data. Multispectral and thermal data were acquired with a Daedelus AADS 1268 system. Preliminary analysis of the test data demonstrate the value of airborne systems for UXO detection and provide insight into improvements that might make the systems even more effective.

  10. A Synergistic Approach to Atmospheric Compensation of Neon's Airborne Hyperspectral Imagery Utilizing an Airborne Solar Spectral Irradiance Radiometer

    NASA Astrophysics Data System (ADS)

    Wright, L.; Karpowicz, B. M.; Kindel, B. C.; Schmidt, S.; Leisso, N.; Kampe, T. U.; Pilewskie, P.

    2014-12-01

    A wide variety of critical information regarding bioclimate, biodiversity, and biogeochemistry is embedded in airborne hyperspectral imagery. Most, if not all of the primary signal relies upon first deriving the surface reflectance of land cover and vegetation from measured hyperspectral radiance. This places stringent requirements on terrain, and atmospheric compensation algorithms to accurately derive surface reflectance properties. An observatory designed to measure bioclimate, biodiversity, and biogeochemistry variables from surface reflectance must take great care in developing an approach which chooses algorithms with the highest accuracy, along with providing those algorithms with data necessary to describe the physical mechanisms that affect the measured at sensor radiance. The Airborne Observation Platform (AOP) part of the National Ecological Observatory Network (NEON) is developing such an approach. NEON is a continental-scale ecological observation platform designed to collect and disseminate data to enable the understanding and forecasting of the impacts of climate change, land use change, and invasive species on ecology. The instrumentation package used by the AOP includes a visible and shortwave infrared hyperspectral imager, waveform LiDAR, and high resolution (RGB) digital camera. In addition to airborne measurements, ground-based CIMEL sun photometers will be used to help characterize atmospheric aerosol loading, and ground validation measurements with field spectrometers will be made at select NEON sites. While the core instrumentation package provides critical information to derive surface reflectance of land surfaces and vegetation, the addition of a Solar Spectral Irradiance Radiometer (SSIR) is being investigated as an additional source of data to help identify and characterize atmospheric aerosol, and cloud contributions contributions to the radiance measured by the hyperspectral imager. The addition of the SSIR provides the opportunity to

  11. Assessment of Superflux relative to remote sensing. [airborne remote sensing of the Chesapeake Bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1981-01-01

    The state-of-the-art advancements in remote sensor technology due to the Superflux program are examined. Three major individual sensor technologies benefitted from the program: laser fluorosensors, optical-range scanners, and passive microwave sensors. Under Superflux, convincing evidence was obtained that the airborne oceanographic lidar fluorosensor can map chlorophyll, i.e., is linear, over a wide range from less than 0.5 to 5.0 mg/cu m. The lidar oceanographic probe dual-excitation concept for addressing phytoplankton color group composition was also demonstrated convincingly. Algorithm development, real time capabilities, and multisensor integration are also addressed.

  12. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  13. CASMSAR: the first Chinese airborne SAR mapping system

    NASA Astrophysics Data System (ADS)

    Zhang, Jixian; Wang, Zhang; Huang, Guoman; Zhao, Zheng; Lu, Lijun

    2010-09-01

    In this paper, we present an overall description of the newest Chinese airborne SAR mapping system CASMSAR, which is developed by a group led by Chinese Academy of Surveying and Mapping (CASM). Since CASMSAR is equipped with two independent high-resolution SAR sensors (X-band and P-band), it allows the integration of interferometric and fully polarimetric functions. Another novel feature of CASMSAR is the software control of system monitoring and flight navigation display, which makes the whole system very intelligent and operational. The data processing software systems of CASMSAR consists of five subsystems. CASMSAR works in several modes. The most important two of them are used for mapping in scale of 1:10,000 and 1:50,000. Initial data were acquired during several testing flight campaigns in last year, and experimental results have proved that the system works well and the performance is better than expectation.

  14. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  15. Crop classification using airborne radar and LANDSAT data. [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Li, R. Y.; Shanmugam, K. S.

    1981-01-01

    Airborne radar data acquired with a 13.3 GHz scatterometer over a test-site near Colby, Kansas were used to investigate the statistical properties of the scattering coefficient of three types of vegetation cover and of bare soil. A statistical model for radar data was developed that incorporates signal-fading and natural within-field variabilities. Estimates of the within-field and between-field coefficients of variation were obtained for each cover-type and compared with similar quantities derived from LANDSAT images of the same fields. The classification accuracy provided by LANDSAT alone, radar alone, and both sensors combined was investigated. The results indicate that the addition of radar to LANDSAT improves the classification accuracy by about 10; percentage-points when the classification is performed on a pixel basis and by about 15 points when performed on a field-average basis.

  16. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  17. Airborne microwave measurements at 89 and 157 GHz

    NASA Astrophysics Data System (ADS)

    Jones, David C.; English, Stephen J.; Saunders, Roger W.; Prigent, Catherine; Guillou, C.; Chedin, Alain; Claud, C.

    1993-08-01

    In support of the AMSU-B program, the UK Meteorological Office (UKMO) in collaboration with Laboratoire de Meteorologie Dynamique (LMD) have developed the Microwave Airborne Scanning Radiometer System (MARSS) which operates at 89 and 157 GHz, near the 'window' channels of AMSU-B. This total power radiometer is flown on board the C-130 aircraft of the UKMO which is well- equipped with sensors measuring thermodynamical and cloud microphysical parameters up to a height of 9 km. The instrument has a scanning cycle time of approximately 3 seconds, during which time the radiometer takes 9 upward and 9 downward views as well as two views of internal calibration targets. It has been found that the Liebe MPM model gives more consistent agreement with the observed brightness temperatures than other published transmission models.

  18. Applications of airborne ultrasound in human-computer interaction.

    PubMed

    Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre

    2014-09-01

    Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. PMID:24974162

  19. Airborne DOAS in South Africa: escaping flatland

    NASA Astrophysics Data System (ADS)

    Broccardo, S. P.; Heue, K.; Piketh, S.; Platt, U.

    2010-12-01

    The satellite instruments SCIAMACHY, OMI and GOME-2 show high average tropospheric NO2 vertical column densities over the South African Highveld, a region with a high density of coal-fired power stations and other heavy industries. A pushbroom-imaging DOAS spectrometer was flown over the Highveld and surrounding areas in order to further investigate this feature of the satellite record. The wavelength range of the instrument includes differential absorption structures of gases relevant to air quality such as NO2 and SO2. The high spatial resolution of the instrument allows individual sources to be distinguished, while the mobility of the airborne platform allows larger-scale measurements to be made. Emissions fluxes for individual facilities are calculated. An NO flux for the city of Johannesburg is derived from the nadir DOAS column measurements. Similarly, a flux for the entire Highveld region is derived and compared to a satellite-derived flux. The Highveld provides an excellent outdoor laboratory for development of trace-gas remote sensing instrumentation. The greater Johannesburg conurbation and nearby industrial point sources are surrounded by rural areas for several hundred kilometers on all sides. Flat topography and a stable atmosphere in winter lead to plumes with high trace-gas concentrations that are easy to measure and distinguish from the background. A lightweight scanning multi-axis spectrometer is being built to measure industrial plumes from an ultra-light aircraft. Using a tomographic inversion, this instrument will give a vertical cross-section of the plume, allowing validation of dispersion models and direct comparison with in-situ measurements. Using a suitable flight path, a three dimensional representation of the plume can be built up.

  20. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  1. a New Control Points Based Geometric Correction Algorithm for Airborne Push Broom Scanner Images Without On-Board Data

    NASA Astrophysics Data System (ADS)

    Strakhov, P.; Badasen, E.; Shurygin, B.; Kondranin, T.

    2016-06-01

    Push broom scanners, such as video spectrometers (also called hyperspectral sensors), are widely used in the present. Usage of scanned images requires accurate geometric correction, which becomes complicated when imaging platform is airborne. This work contains detailed description of a new algorithm developed for processing of such images. The algorithm requires only user provided control points and is able to correct distortions caused by yaw, flight speed and height changes. It was tested on two series of airborne images and yielded RMS error values on the order of 7 meters (3-6 source image pixels) as compared to 13 meters for polynomial-based correction.

  2. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  3. Detection of single graves by airborne hyperspectral imaging.

    PubMed

    Leblanc, G; Kalacska, M; Soffer, R

    2014-12-01

    Airborne hyperspectral imaging (HSI) was assessed as a potential tool to locate single grave sites. While airborne HSI has shown to be useful to locate mass graves, it is expected the location of single graves would be an order of magnitude more difficult due to the smaller size and reduced mass of the targets. Two clearings were evaluated (through a blind test) as potential sites for containing at least one set of buried remains. At no time prior to submitting the locations of the potential burial sites from the HSI were the actual locations of the sites released or shared with anyone from the analysis team. The two HSI sensors onboard the aircraft span the range of 408-2524nm. A range of indicators that exploit the narrow spectral and spatial resolutions of the two complimentary HSI sensors onboard the aircraft were calculated. Based on the co-occurrence of anomalous pixels within the expected range of the indicators three potential areas conforming to our underlying assumptions of the expected spectral responses (and spatial area) were determined. After submission of the predicted burial locations it was revealed that two of the targets were located within GPS error (10m) of the true burial locations. Furthermore, due to the history of the TPOF site for burial work, investigation of the third target is being considered in the near future. The results clearly demonstrate promise for hyperspectral imaging to aid in the detection of buried remains, however further work is required before these results can justifiably be used in routine scenarios. PMID:25447169

  4. Clean enough for industry? An airborne geophysical case study

    SciTech Connect

    Nyquist, J.E.; Beard, L.P.

    1996-11-01

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be leased to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 in, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01- 0.02 nT/m, is equivalent to only about 50-100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a {open_quotes}sensitive hydrologic setting.{close_quotes} We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  5. Clean enough for industry? An airborne geophysical case study

    SciTech Connect

    Nyquist, J.E.; Beard, L.P.

    1996-02-01

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ``sensitive hydrologic setting.`` We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  6. Multi-mode multistatics for passive/active airborne surveillance

    NASA Astrophysics Data System (ADS)

    Ogrodnik, Robert F.

    1986-07-01

    The increasing performance demands for air surveillance assets, as well as the necessity for continued surveillance operations in the presence of enemy jamming anti-radiation missile (ARM) attacks, have increased interest in passive surveillance, in particular multi-mode passive/active multistatic sensing. The use of noncooperative radiation as illuminators of opportunity combined with passive surveillance electromagnetic support measurement (ESM) sensors opens new horizons to multistatic surveillance from a passive airborne platform. Research and field tests have been conducted on ESM augmented bistatics as well as noncooperative multistatics which support the development of airborne multi-mode passive surveillance technology. This work has been conducted under such programs as the Bistatic Enhanced Altimeter Detection (BEAD) and the noncooperative multistatic Passive Coherent Location (PCL). Both BEAD and PCL technology directly support the receiver, signal processing and target location/tracking operations necessary for passive surveillance. The demonstrated technologies for EM interference rejection and multistatic multi-target tracking and location under PCL provide a promising performance bench mark for passive surveillance in the presence of a complex electromagnetic environment. Passive receiver intercept performance under BEAD has provided a receiver design baseline for both look-down and look-up surveillance applications. The technologies under development in BEAD and PCL are presented along with the field test results and the sensor concepts. In particular, spin-off data such as bistatic look-down clutter, noise-floor limitation of noncooperative multistatics and sensitivity limitations set by passive surveillance using signal intercept techniques and illuminators of opportunity are provided.

  7. Photoelastic sensors

    SciTech Connect

    Kulakov, G.I.

    1985-07-01

    This paper presents the result of a study of photoelastic sensors which makes it possible to explain many mechanical and physical features of the operation of annular photoelastic borehole sensors and to plan ways of utilizing these features for interpreting the sensor readings.

  8. Facility effluent monitoring plan for the 324 Facility

    SciTech Connect

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  9. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  10. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  11. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  12. Generation of airborne Listeria innocua from model floor drains.

    PubMed

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product. PMID:22980019

  13. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  14. Miniature Intelligent Sensor Module

    NASA Technical Reports Server (NTRS)

    Beech, Russell S.

    2007-01-01

    An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.

  15. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  16. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  17. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  18. CUAHSI's Hydrologic Measurement Facility: Putting Advanced Tools in Scientists' Hands

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Robinson, D.; Selker, J.; Duncan, J.

    2006-05-01

    Like related environmental sciences, the hydrologic sciences community has been defining environmental observatories and the support components necessary for their successful implementation, such as informatics (cyberinfrastructure) and instrumentation. Unlike programs, such as NEON and OOI, that have been pursuing large-scale capital funding through the Major Research Equipment program of the National Science Foundation, CUAHSI has been pursuing incremental development of observatories that has allowed us to pilot different parts of these support functions, namely Hydrologic Information Systems and a Hydrologic Measurement Facility (HMF), the subject of this paper. The approach has allowed us to gain greater specificity of the requirements for these facilities and their operational challenges. The HMF is developing the foundation to support innovative research across the breadth of the Hydrologic Community, including classic PI-driven projects as well as over 20 grass-roots observatories that have been developing over the past 2 years. HMF is organized around three basic areas: water cycle instrumentation, biogeochemistry and geophysics. Committees have been meeting to determined the most effective manner to deliver instrumentation, whether by special instrumentation packages proposed by host institutions; collaborative agreements with federal agencies; and contributions from industrial partners. These efforts are guided by the results of a community wide survey conducted in Nov-Dec 2005, and a series of ongoing workshops. The survey helped identify the types of equipment that will advance hydrological sciences and are often beyond the capabilities of individual PI's. Respondents to the survey indicated they were keen for HMF to focus on providing supported equipment such as atmospheric profilers like LIDAR, geophysical instrumentation ranging from airborne sensors to ground-penetrating radar, and field-deployed mass spectrophotometers. A recently signed agreement

  19. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    comprised three airborne campaigns in Greenland from April to June 2012 separated by roughly one month and preliminary results showed the instrument capability to detect ice motion. CryoVEx 2012 was a large collaborative effort to help ensure the accuracy of ESA's ice mission CryoSat. The aim of this large-scale Arctic campaign was to record sea-ice thickness and conditions of the ice exactly below the CryoSat-2 path. A range of sensors installed on different aircraft included simple cameras to get a visual record of the sea ice, laser scanners to clearly map the height of the ice, an ice-thickness sensor (EM-Bird), ESA's radar altimeter (ASIRAS) and NASA's snow and Ku-band radars, which mimic CryoSat's measurements but at a higher resolution. Preliminary results reveal the ability to detect centimetre differences between sea-ice and thin ice/water which in turn allow for the estimation of actual sea ice thickness. In support of two currently operating EE Missions: SMOS (Soil Moisture and Ocean Salinity) and GOCE (Gravity field and steady-state Ocean Circulation Explorer), DOMECair airborne campaign will take place in Antarctica, in the Dome C region during the middle of January 2013. The two main objectives are to quantify and document the spatial variability in the DOME C area, important to establish long-term cross-calibrated multi-mission L-band measurement time-series (SMOS) and fill in the gap in the high-quality gravity anomaly maps in Antarctica since airborne gravity measurements are sparse (GOCE). Key airborne instruments in the campaign are EMIRAD-2 L-band radiometer, designed and operated by DTU and a gravimeter from AWI. ESA campaigns have been fundamental and an essential part in the preparation of new Earth Observation missions, as well as in the independent validation of their measurements and quantification of error sources. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the

  20. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766