Science.gov

Sample records for airborne sounder testbed

  1. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  2. NASA's Coastal and Ocean Airborne Science Testbed

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Hooker, S.; Myers, J.; Kudela, R. M.; Dunagan, S.; Soulage, M.; Ellis, T.; Clinton, N. E.; Lobitz, B.; Martin, K.; Zell, P.; Berthold, R. W.; Smith, C.; Andrew, D.; Gore, W.; Torres, J.

    2011-12-01

    The Coastal and Ocean Airborne Science Testbed (COAST) Project is a NASA Earth-science flight mission that will advance coastal ecosystems research by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. Teaming NASA Ames scientists and engineers with Biospherical Instruments, Inc. (San Diego) and UC Santa Cruz, the airborne COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data will be accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Based on optical detectors called microradiometers, the NASA Ocean Biology and Biogeochemistry Calibration and Validation (cal/val) Office team has deployed advanced commercial off-the-shelf instrumentation that provides in situ measurements of the apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems (e.g., lakes, estuaries, coral reefs). A complimentary microradiometer instrument package (Biospherical Instruments, Inc.), optimized for use above water, will be flown for the first time with the airborne instrument suite. Details of the October 2011 COAST airborne mission over Monterey Bay demonstrating this new airborne instrument suite capability will be presented, with associated preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  3. NASA'S Coastal and Ocean Airborne Science Testbed (COAST): Early Results

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Kudela, R. M.; Myers, J. S.; Livingston, J.; Lobitz, B.; Torres-Perez, J.

    2012-12-01

    The NASA Coastal and Ocean Airborne Science Testbed (COAST) project advances coastal ecosystems research and ocean color calibration and validation capability by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. The COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data is accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Coastal Airborne In situ Radiometers (C-AIR, Biospherical Instruments, Inc.), developed for COAST for airborne campaigns from field-deployed microradiometer instrumentation, will provide measurements of apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems. Ship-based measurements allowed validation of airborne measurements. Radiative transfer modeling on in-water measurements from the HyperPro and Compact-Optical Profiling System (C-OPS, the in-water companion to C-AIR) profiling systems allows for comparison of airborne and in-situ water leaving radiance measurements. Results of the October 2011 Monterey Bay COAST mission include preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  4. A Simulation Testbed for Airborne Merging and Spacing

    NASA Technical Reports Server (NTRS)

    Santos, Michel; Manikonda, Vikram; Feinberg, Art; Lohr, Gary

    2008-01-01

    The key innovation in this effort is the development of a simulation testbed for airborne merging and spacing (AM&S). We focus on concepts related to airports with Super Dense Operations where new airport runway configurations (e.g. parallel runways), sequencing, merging, and spacing are some of the concepts considered. We focus on modeling and simulating a complementary airborne and ground system for AM&S to increase efficiency and capacity of these high density terminal areas. From a ground systems perspective, a scheduling decision support tool generates arrival sequences and spacing requirements that are fed to the AM&S system operating on the flight deck. We enhanced NASA's Airspace Concept Evaluation Systems (ACES) software to model and simulate AM&S concepts and algorithms.

  5. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  6. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  7. Laser Communications Airborne Testbed: Potential For An Air-To-Satellite Laser Communications Link

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert J.

    1988-05-01

    The Laser Communications Airborne Testbed (LCAT) offers an excellent opportunity for testing of an air-to-satellite laser communications link with the NASA Advanced Communications Technology Satellite (ACTS). The direct detection laser portion of the ACTS is suitable for examining the feasibility of an airborne terminal. Development of an airborne laser communications terminal is not currently part of the ACTS program; however, an air-to-satellite link is of interest. The Air Force performs airborne laser communications experiments to examine the potential usefulness of this technology to future aircraft. Lasers could be used, for example, by future airborne command posts and reconnaissance aircraft to communicate via satellite over long distances and transmit large quantities of data in the fastest way possible from one aircraft to another or to ground sites. Lasers are potentially secure, jam resistant and hard to detect and in this regard increase the survivability of the users. Under a contract awarded by Aeronautical Systems Division's Avionics Laboratory, a C-135E testbed aircraft belonging to ASD's 4950th Test Wing will be modified to create a Laser Communications Airborne Testbed. The contract is for development and fabrication of laser testbed equipment and support of the aircraft modification effort by the Test Wing. The plane to be modified is already in use as a testbed for other satellite communications projects and the LCAT effort will expand those capabilities. This analysis examines the characteristics of an LCAT to ACTS direct detection communications link. The link analysis provides a measure of the feasibility of developing an airborne laser terminal which will interface directly to the LCAT. Through the existence of the LCAT, the potential for development of an air-to-satellite laser communications terminal for the experimentation with the ACTS system is greatly enhanced.

  8. Preliminary results of the LLNL airborne experimental test-bed SAR system

    SciTech Connect

    Miller, M.G.; Mullenhoff, C.J.; Kiefer, R.D.; Brase, J.M.; Wieting, M.G.; Berry, G.L.; Jones, H.E.

    1996-01-16

    The Imaging and Detection Program (IDP) within Laser Programs at Lawrence Livermore National Laboratory (LLNL) in cooperation with the Hughes Aircraft Company has developed a versatile, high performance, airborne experimental test-bed (AETB) capability. The test-bed has been developed for a wide range of research and development experimental applications including radar and radiometry plus, with additional aircraft modifications, optical systems. The airborne test-bed capability has been developed within a Douglas EA-3B Skywarrior jet aircraft provided and flown by Hughes Aircraft Company. The current test-bed payload consists of an X-band radar system, a high-speed data acquisition, and a real-time processing capability. The medium power radar system is configured to operate in a high resolution, synthetic aperture radar (SAR) mode and is highly configurable in terms of waveforrns, PRF, bandwidth, etc. Antennas are mounted on a 2-axis gimbal in the belly radome of the aircraft which provides pointing and stabilization. Aircraft position and antenna attitude are derived from a dedicated navigational system and provided to the real-time SAR image processor for instant image reconstruction and analysis. This paper presents a further description of the test-bed and payload subsystems plus preliminary results of SAR imagery.

  9. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The

  10. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  11. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  12. Lidar measurements of the column CO2 mixing ratio made by NASA Goddard's CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.

    2015-12-01

    Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.

  13. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  14. Soil moisture estimation by airborne active and passive microwave remote sensing: A test-bed for SMAP fusion algorithms

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Bogena, Heye; Jagdhuber, Thomas; Hajnsek, Irena; Horn, Ralf; Reigber, Andreas; Hasan, Sayeh; Rüdiger, Christoph; Jaeger, Marc; Vereecken, Harry

    2014-05-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and its freeze/thaw state. The SMAP launch is currently planned for 2014-2015. The SMAP measurement approach is to integrate L-band radar and L-band radiometer as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. The radar and radiometer measurements can be effectively combined to derive soil moisture maps that approach the accuracy of radiometer-only retrievals, but with a higher resolution (being able to approach the radar resolution under some conditions). Aircraft and tower-based instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment in Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system DLR F-SAR were flown on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites. These data are used as a test-bed for the analysis of existing and development of new active-passive fusion techniques. A synergistic use of the two signals can help to decouple soil moisture effects from the effects of vegetation (or roughness) in a better way than in the case of a single instrument. In this study, we present and evaluate three approaches for the fusion of active and passive microwave records for an enhanced representation of the soil moisture status: i) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data, ii) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, and iii) fusion of two single-source soil moisture products from radar and radiometer.

  15. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  16. Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the PBL and Other Regions of Significant Beta and U Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave

    1998-01-01

    This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings.

  17. An update on the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Smith, William L.; Zhou, Daniel K.; Liu, Xu; Noe, Anna; Oliver, Don; Flood, Michael; Rochette, Luc; Tian, Jialin

    2011-11-01

    The NPOESS / NASA Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 18 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) to fly on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to recent program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, select scientific results, and recent refurbishment activities.

  18. Advanced algorithms and high-performance testbed for large-scale site characterization and subsurface target detection using airborne ground-penetrating SAR

    NASA Astrophysics Data System (ADS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1999-08-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, JPL, Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field, in Colorado, by using SRI airborne, ground penetrating, SAR. The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance testbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and maximum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accuracy UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data. In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma Proving Ground, AZ, acquired by SRI SAR.

  19. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  20. Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1997-01-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.

  1. Suomi NPP/JPSS Cross-track Infrared Sounder (CrIS): Calibration Validation With The Aircraft Based Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Tobin, D.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Garcia, R. K.; Gero, P.

    2013-12-01

    infrared Fourier transform spectrometer with 1305 spectral channels, and produces high-resolution, three-dimensional temperature, pressure, and moisture profiles. These profiles will be used to enhance weather forecasting models and they will facilitate improvements to both short and long-term weather forecasting. The first Suomi NPP dedicated airborne calibration validation campaign was conducted May 2013 with a primary objective of providing detailed validation of CrIS radiance observations and meteorological products. During this calibration validation campaign, the NASA ER-2 aircraft instrument payload included the UW-SSEC Scanning-High resolution Interferometer Sounder (S-HIS), the NPOESS Atmospheric Sounder Testbed-Interferometer (NAST-I), the NPOESS Atmospheric Sounder Testbed-Microwave Spectrometer (NAST-M), the NASA MODIS/ASTER airborne simulator (MASTER), and the NASA JPL Airborne Visible / Infrared Imaging Spectrometer (AVIRIS). Eleven ER-2 under-flights of the Suomi NPP satellite were conducted during the campaign. Detailed results for the validation of the CrIS radiance observations with the S-HIS sensor are presented here.

  2. Ground testing and campaign intercomparisons with the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.; Rochette, Luc; Noe, Anna; Oliver, Don; Tian, Jialin

    2014-10-01

    The NASA / JPSS Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 19 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (SNPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, with a primary focus on postmission ground testing and characterization performed subsequent to the recently conducted Suomi NPP (SNPP) airborne field campaign.

  3. Apollo lunar sounder experiment

    USGS Publications Warehouse

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  4. An Airborne Onboard Parallel Processing Testbed

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel J.

    2014-01-01

    This presentation provides information on the progress the Intelligent Payload Module (IPM) development effort. In addition, a vision is presented on integration of the IPM architecture with the GeoSocial Application Program Interface (API) architecture to enable efficient distribution of satellite data products.

  5. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  6. The Fizeau Interferometer Testbed

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  7. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  8. MIT's interferometer CST testbed

    NASA Technical Reports Server (NTRS)

    Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-01-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  9. MIT's interferometer CST testbed

    NASA Astrophysics Data System (ADS)

    Hyde, Tupper; Kim, Ed; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-12-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  10. Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)

    1988-01-01

    The Telescience Testbed Pilot Program is developing initial recommendations for requirements and design approaches for the information systems of the Space Station era. During this quarter, drafting of the final reports of the various participants was initiated. Several drafts are included in this report as the University technical reports.

  11. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  12. Robot graphic simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.

    1991-01-01

    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

  13. Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)

    1988-01-01

    The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.

  14. Marshall Avionics Testbed System (MAST)

    NASA Technical Reports Server (NTRS)

    Smith, Wayne D.

    1989-01-01

    Work accomplished in the summer of 1989 in association with the NASA/ASEE Summer Faculty Research Fellowship Program at Marshall Space Flight Center is summarized. The project was aimed at developing detailed specifications for the Marshall Avionics System Testbed (MAST). This activity was to include the definition of the testbed requirements and the development of specifications for a set of standard network nodes for connecting the testbed to a variety of networks. The project was also to include developing a timetable for the design, implementation, programming and testing of the testbed. Specifications of both hardware and software components for the system were to be included.

  15. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  16. Experimental evaluation of an airborne depth sounding lidar

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Koppari, Kurt; Karlsson, Ulf

    1992-12-01

    An experimental evaluation of an airborne depth sounding lidar called FLASH (FOA Laser Airborne Sounder for Hydrography) is presented. The lidar is based on a scanning frequency doubled Nd-YAG laser and is borne by a helicopter. An example of measured waveforms is compared with those obtained by analytical and Monte Carlo modeling.

  17. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  18. Optical interferometer testbed

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.

    1991-01-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  19. LISA Optical Bench Testbed

    NASA Astrophysics Data System (ADS)

    Lieser, M.; d'Arcio, L.; Barke, S.; Bogenstahl, J.; Diekmann, C.; Diepholz, I.; Fitzsimons, E. D.; Gerberding, O.; Henning, J.-S.; Hewitson, M.; Hey, F. G.; Hogenhuis, H.; Killow, C. J.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Taylor, A.; Tröbs, M.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2013-01-01

    The optical bench (OB) is a part of the LISA spacecraft, situated between the telescope and the testmass. For measuring the inter-spacecraft distances there are several interferometers on the OB. The elegant breadboard of the OB for LISA is developed for the European Space Agency (ESA) by EADS Astrium, TNO Science & Industry, University of Glasgow and the Albert Einstein Intitute (AEI), the performance tests then will be done at the AEI. Here we present the testbed that will be used for the performance tests with the focus on the thermal environment and the laser infrastructure.

  20. Aviation Communications Emulation Testbed

    NASA Technical Reports Server (NTRS)

    Sheehe, Charles; Mulkerin, Tom

    2004-01-01

    Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA s Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing an aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in realtime in a sequence similar to what would occur in the NAS. The ATC applications that can be studied are the Aeronautical Telecommunications Network s (ATN) Context Management (CM) and Controller Pilot Data Link Communications (CPDLC). The Surveillance applications are Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B).

  1. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  2. Optical Network Testbeds Workshop

    SciTech Connect

    Joe Mambretti

    2007-06-01

    This is the summary report of the third annual Optical Networking Testbed Workshop (ONT3), which brought together leading members of the international advanced research community to address major challenges in creating next generation communication services and technologies. Networking research and development (R&D) communities throughout the world continue to discover new methods and technologies that are enabling breakthroughs in advanced communications. These discoveries are keystones for building the foundation of the future economy, which requires the sophisticated management of extremely large qualities of digital information through high performance communications. This innovation is made possible by basic research and experiments within laboratories and on specialized testbeds. Initial network research and development initiatives are driven by diverse motives, including attempts to solve existing complex problems, the desire to create powerful new technologies that do not exist using traditional methods, and the need to create tools to address specific challenges, including those mandated by large scale science or government agency mission agendas. Many new discoveries related to communications technologies transition to wide-spread deployment through standards organizations and commercialization. These transition paths allow for new communications capabilities that drive many sectors of the digital economy. In the last few years, networking R&D has increasingly focused on advancing multiple new capabilities enabled by next generation optical networking. Both US Federal networking R&D and other national R&D initiatives, such as those organized by the National Institute of Information and Communications Technology (NICT) of Japan are creating optical networking technologies that allow for new, powerful communication services. Among the most promising services are those based on new types of multi-service or hybrid networks, which use new optical networking

  3. Holodeck Testbed Project

    NASA Technical Reports Server (NTRS)

    Arias, Adriel (Inventor)

    2016-01-01

    The main objective of the Holodeck Testbed is to create a cost effective, realistic, and highly immersive environment that can be used to train astronauts, carry out engineering analysis, develop procedures, and support various operations tasks. Currently, the Holodeck testbed allows to step into a simulated ISS (International Space Station) and interact with objects; as well as, perform Extra Vehicular Activities (EVA) on the surface of the Moon or Mars. The Holodeck Testbed is using the products being developed in the Hybrid Reality Lab (HRL). The HRL is combining technologies related to merging physical models with photo-realistic visuals to create a realistic and highly immersive environment. The lab also investigates technologies and concepts that are needed to allow it to be integrated with other testbeds; such as, the gravity offload capability provided by the Active Response Gravity Offload System (ARGOS). My main two duties were to develop and animate models for use in the HRL environments and work on a new way to interface with computers using Brain Computer Interface (BCI) technology. On my first task, I was able to create precise computer virtual tool models (accurate down to the thousandths or hundredths of an inch). To make these tools even more realistic, I produced animations for these tools so they would have the same mechanical features as the tools in real life. The computer models were also used to create 3D printed replicas that will be outfitted with tracking sensors. The sensor will allow the 3D printed models to align precisely with the computer models in the physical world and provide people with haptic/tactile feedback while wearing a VR (Virtual Reality) headset and interacting with the tools. Getting close to the end of my internship the lab bought a professional grade 3D Scanner. With this, I was able to replicate more intricate tools at a much more time-effective rate. The second task was to investigate the use of BCI to control

  4. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Knox, James C.; Long, David A.; Miller, Lee; Cmaric, Gregory; Thomas, John

    2016-01-01

    The Long Duration Sorbent Testbed (LDST) is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to Earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  5. Updated Electronic Testbed System

    NASA Technical Reports Server (NTRS)

    Brewer, Kevin L.

    2001-01-01

    As we continue to advance in exploring space frontiers, technology must also advance. The need for faster data recovery and data processing is crucial. In this, the less equipment used, and lighter that equipment is, the better. Because integrated circuits become more sensitive in high altitude, experimental verification and quantification is required. The Center for Applied Radiation Research (CARR) at Prairie View A&M University was awarded a grant by NASA to participate in the NASA ER-2 Flight Program, the APEX balloon flight program, and the Student Launch Program. These programs are to test anomalous errors in integrated circuits due to single event effects (SEE). CARR had already begun experiments characterizing the SEE behavior of high speed and high density SRAM's. The research center built a error testing system using a PC-104 computer unit, an Iomega Zip drive for storage, a test board with the components under test, and a latchup detection and reset unit. A test program was written to continuously monitor a stored data pattern in the SRAM chip and record errors. The devices under test were eight 4Mbit memory chips totaling 4Mbytes of memory. CARR was successful at obtaining data using the Electronic TestBed System (EBS) in various NASA ER-2 test flights. These series of high altitude flights of up to 70,000 feet, were effective at yielding the conditions which single event effects usually occur. However, the data received from the series of flights indicated one error per twenty-four hours. Because flight test time is very expensive, the initial design proved not to be cost effective. The need for orders of magnitude with more memory became essential. Therefore, a project which could test more memory within a given time was created. The goal of this project was not only to test more memory within a given time, but also to have a system with a faster processing speed, and which used less peripherals. This paper will describe procedures used to build an

  6. An automation simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.; Mutammara, Atheel

    1988-01-01

    The work being done in porting ROBOSIM (a graphical simulation system developed jointly by NASA-MSFC and Vanderbilt University) to the HP350SRX graphics workstation is described. New additional ROBOSIM features, like collision detection and new kinematics simulation methods are also discussed. Based on the experiences of the work on ROBOSIM, a new graphics structural modeling environment is suggested which is intended to be a part of a new knowledge-based multiple aspect modeling testbed. The knowledge-based modeling methodologies and tools already available are described. Three case studies in the area of Space Station automation are also reported. First a geometrical structural model of the station is presented. This model was developed using the ROBOSIM package. Next the possible application areas of an integrated modeling environment in the testing of different Space Station operations are discussed. One of these possible application areas is the modeling of the Environmental Control and Life Support System (ECLSS), which is one of the most complex subsystems of the station. Using the multiple aspect modeling methodology, a fault propagation model of this system is being built and is described.

  7. Adaptive Signal Processing Testbed

    NASA Astrophysics Data System (ADS)

    Parliament, Hugh A.

    1991-09-01

    The design and implementation of a system for the acquisition, processing, and analysis of signal data is described. The initial application for the system is the development and analysis of algorithms for excision of interfering tones from direct sequence spread spectrum communication systems. The system is called the Adaptive Signal Processing Testbed (ASPT) and is an integrated hardware and software system built around the TMS320C30 chip. The hardware consists of a radio frequency data source, digital receiver, and an adaptive signal processor implemented on a Sun workstation. The software components of the ASPT consists of a number of packages including the Sun driver package; UNIX programs that support software development on the TMS320C30 boards; UNIX programs that provide the control, user interaction, and display capabilities for the data acquisition, processing, and analysis components of the ASPT; and programs that perform the ASPT functions including data acquisition, despreading, and adaptive filtering. The performance of the ASPT system is evaluated by comparing actual data rates against their desired values. A number of system limitations are identified and recommendations are made for improvements.

  8. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  9. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations. In neurosurgery, the needle used in the standard stereotactic CT (Computational Tomography) or MRI (Magnetic Resonance Imaging) guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled 'Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification' is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  10. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  11. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into

  12. High-contrast imaging testbed

    SciTech Connect

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  13. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  14. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  15. The NASA/OAST telerobot testbed architecture

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.

    1989-01-01

    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.

  16. The computational structural mechanics testbed procedures manual

    NASA Technical Reports Server (NTRS)

    Stewart, Caroline B. (Compiler)

    1991-01-01

    The purpose of this manual is to document the standard high level command language procedures of the Computational Structural Mechanics (CSM) Testbed software system. A description of each procedure including its function, commands, data interface, and use is presented. This manual is designed to assist users in defining and using command procedures to perform structural analysis in the CSM Testbed User's Manual and the CSM Testbed Data Library Description.

  17. Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.

    2008-01-01

    Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and

  18. NASA's telemedicine testbeds: Commercial benefit

    NASA Astrophysics Data System (ADS)

    Doarn, Charles R.; Whitten, Raymond

    1998-01-01

    The National Aeronautics and Space Administration (NASA) has been developing and applying telemedicine to support space flight since the Agency's beginning. Telemetry of physiological parameters from spacecraft to ground controllers is critical to assess the health status of humans in extreme and remote environments. Requisite systems to support medical care and maintain readiness will evolve as mission duration and complexity increase. Developing appropriate protocols and procedures to support multinational, multicultural missions is a key objective of this activity. NASA has created an Agency-wide strategic plan that focuses on the development and integration of technology into the health care delivery systems for space flight to meet these challenges. In order to evaluate technology and systems that can enhance inflight medical care and medical education, NASA has established and conducted several testbeds. Additionally, in June of 1997, NASA established a Commercial Space Center (CSC) for Medical Informatics and Technology Applications at Yale University School of Medicine. These testbeds and the CSC foster the leveraging of technology and resources between government, academia and industry to enhance health care. This commercial endeavor will influence both the delivery of health care in space and on the ground. To date, NASA's activities in telemedicine have provided new ideas in the application of telecommunications and information systems to health care. NASA's Spacebridge to Russia, an Internet-based telemedicine testbed, is one example of how telemedicine and medical education can be conducted using the Internet and its associated tools. Other NASA activities, including the development of a portable telemedicine workstation, which has been demonstrated on the Crow Indian Reservation and in the Texas Prison System, show promise in serving as significant adjuncts to the delivery of health care. As NASA continues to meet the challenges of space flight, the

  19. Rocket/Nimbus Sounder Comparison (RNSC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The experimental results for radiance and temperature differences in the Wallops Island comparisons indicate that the differences between satellite and rocket systems are of the same order of magnitude as the differences among the various satellite and rocket sounders. The Arcasondes produced usable data to about 50 km, while the Datasondes require design modification. The SIRS and IRIS soundings provided usable data to 30 mb; extension of these soundings was also investigated.

  20. VAS demonstration: (VISSR Atmospheric Sounder) description

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Uccellini, L. W.

    1985-01-01

    The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.

  1. Space View Issues for Hyperspectral Sounders

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-01-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The space view signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between space views and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the space view assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  2. Control design for the SERC experimental testbeds

    NASA Technical Reports Server (NTRS)

    Jacques, Robert; Blackwood, Gary; Macmartin, Douglas G.; How, Jonathan; Anderson, Eric

    1992-01-01

    Viewgraphs on control design for the Space Engineering Research Center experimental testbeds are presented. Topics covered include: SISO control design and results; sensor and actuator location; model identification; control design; experimental results; preliminary LAC experimental results; active vibration isolation problem statement; base flexibility coupling into isolation feedback loop; cantilever beam testbed; and closed loop results.

  3. Fast Physics Testbed for the FASTER Project

    SciTech Connect

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  4. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  5. Formation Algorithms and Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward

    2004-01-01

    Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.

  6. INFN Tier-1 Testbed Facility

    NASA Astrophysics Data System (ADS)

    Gregori, Daniele; Cavalli, Alessandro; dell'Agnello, Luca; Dal Pra, Stefano; Prosperini, Andrea; Ricci, Pierpaolo; Ronchieri, Elisabetta; Sapunenko, Vladimir

    2012-12-01

    INFN-CNAF, located in Bologna, is the Information Technology Center of National Institute of Nuclear Physics (INFN). In the framework of the Worldwide LHC Computing Grid, INFN-CNAF is one of the eleven worldwide Tier-1 centers to store and reprocessing Large Hadron Collider (LHC) data. The Italian Tier-1 provides the resources of storage (i.e., disk space for short term needs and tapes for long term needs) and computing power that are needed for data processing and analysis to the LHC scientific community. Furthermore, INFN Tier-1 houses computing resources for other particle physics experiments, like CDF at Fermilab, SuperB at Frascati, as well as for astro particle and spatial physics experiments. The computing center is a very complex infrastructure, the hardaware layer include the network, storage and farming area, while the software layer includes open source and proprietary software. Software updating and new hardware adding can unexpectedly deteriorate the production activity of the center: therefore a testbed facility has been set up in order to reproduce and certify the various layers of the Tier-1. In this article we describe the testbed and the checks performed.

  7. A Space Testbed for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1998-01-01

    The Ohio Aerospace Institute and the NASA Lewis Research Center are designing and building a solar-cell calibration facility, the Photovoltaic Engineering Testbed (PET) to fly on the International Space Station to test advanced solar cell types in the space environment. A wide variety of advanced solar cell types have become available in the last decade. Some of these solar cells offer more than twice the power per unit area of the silicon cells used for the space station power system. They also offer the possibilities of lower cost, lighter weight, and longer lifetime. The purpose of the PET facility is to reduce the cost of validating new technologies and bringing them to spaceflight readiness. The facility will be used for three primary functions: calibration, measurement, and qualification. It is scheduled to be launched in June of 2002.

  8. High speed quantum communication testbed

    NASA Astrophysics Data System (ADS)

    Williams, Carl J.; Tang, Xiao; Heikkero, Mikko; Rouzaud, Julie; Lu, Richang; Goedecke, Andreas; Migdall, Alan L.; Mink, Alan; Nakassis, Anastase; Pibida, Leticia S.; Wen, Jesse; Hagley, Edward; Clark, Charles W.

    2002-12-01

    We describe the status of the NIST Quantum Communication Testbed (QCT) facility. QCT is a facility for exploring quantum communication in an environment similar to that projected for early commercial implementations: quantum cryptographic key exchange on a gigabit/second free-space optical (FSO) channel. Its purpose is to provide an open platform for testing and validating performance in the application, network, and physical layers of quantum communications systems. The channel uses modified commercial FSO equipment to link two buildings on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST), separated by approximately 600 meters. At the time of writing, QCT is under construction; it will eventually be made available to the research community as a user facility. This paper presents the basic design considerations underlying QCT, and reports the status of the project.

  9. Testbed for an autonomous system

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In previous works we have defined a general architectural model for autonomous systems, which can easily be mapped to describe the functions of any automated system (SDAG-86-01), and we illustrated that model by applying it to the thermal management system of a space station (SDAG-87-01). In this note, we will further develop that application and design the detail of the implementation of such a model. First we present the environment of our application by describing the thermal management problem and an abstraction, which was called TESTBED, that includes a specific function for each module in the architecture, and the nature of the interfaces between each pair of blocks.

  10. Experiments Program for NASA's Space Communications Testbed

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Reinhart, Richard

    2012-01-01

    NASA developed a testbed for communications and navigation that was launched to the International Space Station in 2012. The testbed promotes new software defined radio (SDR) technologies and addresses associated operational concepts for space-based SDRs, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. The experiments program consists of a mix of in-house and external experiments from partners in industry, academia, and government. The experiments will investigate key challenges in communications, networking, and global positioning system navigation both on the ground and on orbit. This presentation will discuss some of the key opportunities and challenges for the testbed experiments program.

  11. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement

  12. View to the south with the Two Sounder Antennas on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the south with the Two Sounder Antennas on the left - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  13. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  14. Testbed for Satellite and Terrestrial Interoperability (TSTI)

    NASA Technical Reports Server (NTRS)

    Gary, J. Patrick

    1998-01-01

    Various issues associated with the "Testbed for Satellite and Terrestrial Interoperability (TSTI)" are presented in viewgraph form. Specific topics include: 1) General and specific scientific technical objectives; 2) ACTS experiment No. 118: 622 Mbps network tests between ATDNet and MAGIC via ACTS; 3) ATDNet SONET/ATM gigabit network; 4) Testbed infrastructure, collaborations and end sites in TSTI based evaluations; 5) the Trans-Pacific digital library experiment; and 6) ESDCD on-going network projects.

  15. Eye/Brain/Task Testbed And Software

    NASA Technical Reports Server (NTRS)

    Janiszewski, Thomas; Mainland, Nora; Roden, Joseph C.; Rothenheber, Edward H.; Ryan, Arthur M.; Stokes, James M.

    1994-01-01

    Eye/brain/task (EBT) testbed records electroencephalograms, movements of eyes, and structures of tasks to provide comprehensive data on neurophysiological experiments. Intended to serve continuing effort to develop means for interactions between human brain waves and computers. Software library associated with testbed provides capabilities to recall collected data, to process data on movements of eyes, to correlate eye-movement data with electroencephalographic data, and to present data graphically. Cognitive processes investigated in ways not previously possible.

  16. The CMS integration grid testbed

    SciTech Connect

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  17. Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal; Rizzo, Maxime; Thompson, Patrick

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept study and a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC would provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 5-year mission lifetime. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables starlight suppression in broadband light from 480-960 nm. To demonstrate the VNC approach and advance it's technology readiness we have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  18. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  19. Experimental evaluation of an airborne depth-sounding lidar

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Koppari, Kurt R.; Karlsson, Ulf C.

    1993-06-01

    An experimental evaluation of an airborne depth-sounding lidar is described. The system, called FLASH (FOA laser airborne sounder for hydrography), is based on a scanning frequency-doubled Nd:YAG laser carried by a helicopter. An in-situ profiling instrument for measuring water parameters is also described. This system, called HOSS (hydro-optical sensor system), is also carried by a helicopter and has been used to collect data in parallel with the lidar measurements. A discussion of the lidar performance coupled to the measured water and instrumental parameters is included. Examples of measured wave forms are compared with those obtained by analytical and Monte Carlo modeling.

  20. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  1. Millimeter-Wave Atmospheric Sounder (MAS)

    NASA Technical Reports Server (NTRS)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  2. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  3. Climate Change and Sounder Radiometric Stability

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan

    2009-01-01

    Satellite instrument radiometric stability is critical for climate studies. The Atmospheric Infrared Sounder (AIRS) radiances are of sufficient stability and accuracy to serve as a climate data record as evidenced by comparisons with the global network of buoys. In this paper we examine the sensitivity of derived geophysical products to potential instrument radiometric stability issues due to diurnal, orbital and seasonal variations. Our method is to perturb the AIRS radiances and examine the impact to retrieved parameters. Results show that instability in retrieved temperature products will be on the same order of the brightness temperature error in the radiances and follow the same time dependences. AIRS excellent stability makes it ideal for examining impacts of instabilities of future systems on geophysical parameter performance.

  4. Assimilation of the Microwave Limb Sounder Radiances

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Read, W.; Livesey, N.; Wagner, P.; Nguyen. H.; Pawson, S.

    2012-01-01

    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation.

  5. Characteristics of the GOES I-M Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Ernst, Thomas J.; Koenig, Edward W.

    1990-01-01

    The design and the parameters of the improved thermal-imaging and sounding instruments (the Imager and the Sounder) that will be part of the instrument complements of the next-generation Geostationary Operational Environmental Satellite (GOES I-M) are discussed. The new design incorporates many features that enhance instrumental reliability over the previous GOES radiometric instruments, such as independently functioning Sounder and Imager, redundancy, and more reliable position sensors and lubrication methods. Tables are presented which list the instrument parameters of the GOES I-M Imager and Sounder and the performance characteristics of the two instruments.

  6. Characteristics of the GOES I-M imager and sounder

    NASA Technical Reports Server (NTRS)

    Koenig, Edward W.

    1989-01-01

    The key features and operational characteristics of the thermal imaging and sounding instruments included into the next-generation GOES spacecraft (GOES I-M) are described. The GOES Imager's censor module has five spectral channels, including an eigth-element visible channel, three IR channels, and a water-vapor channel. The GOES Sounder's detector and filter arrangement makes use of four spectral bands: long-wave, mid-wave, short-wave, and visible. Tables of the Imager and the Sounder sensing performance characteristics are presented together with diagrams of the Imager optic parts and the Imager and the Sounder field and scan patterns.

  7. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  8. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  9. Continuation: The EOSDIS testbed data system

    NASA Technical Reports Server (NTRS)

    Emery, Bill; Kelley, Timothy D.

    1995-01-01

    The continuation of the EOSDIS testbed ('Testbed') has materialized from a multi-task system to a fully functional stand-alone data archive distribution center that once was only X-Windows driven to a system that is accessible by all types of users and computers via the World Wide Web. Throughout the past months, the Testbed has evolved into a completely new system. The current system is now accessible through Netscape, Mosaic, and all other servers that can contact the World Wide Web. On October 1, 1995 we will open to the public and we expect that the statistics of the type of user, where they are located, and what they are looking for will drastically change. What is the most important change in the Testbed has been the Web interface. This interface will allow more users access to the system and walk them through the data types with more ease than before. All of the callbacks are written in such a way that icons can be used to easily move around in the programs interface. The homepage offers the user the opportunity to go and get more information about each satellite data type and also information on free programs. These programs are grouped into categories for types of computers that the programs are compiled for, along with information on how to FTP the programs back to the end users computer. The heart of the Testbed is still the acquisition of satellite data. From the Testbed homepage, the user selects the 'access to data system' icon, which will take them to the world map and allow them to select an area that they would like coverage on by simply clicking that area of the map. This creates a new map where other similar choices can be made to get the latitude and longitude of the region the satellite data will cover. Once a selection has been made the search parameters page will appear to be filled out. Afterwards, the browse image will be called for once the search is completed and the images for viewing can be selected. There are several other option pages

  10. Design of testbed and emulation tools

    NASA Technical Reports Server (NTRS)

    Lundstrom, S. F.; Flynn, M. J.

    1986-01-01

    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems.

  11. Work of PZT ceramics sounder for sound source artificial larynx

    NASA Astrophysics Data System (ADS)

    Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi

    2007-04-01

    We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.

  12. The design and implementation of the LLNL gigabit testbed

    SciTech Connect

    Garcia, D.

    1994-12-01

    This paper will look at the design and implementation of the LLNL Gigabit testbed (LGTB), where various high speed networking products, can be tested in one environment. The paper will discuss the philosophy behind the design of and the need for the testbed, the tests that are performed in the testbed, and the tools used to implement those tests.

  13. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  14. The geostationary remote infrared pollution sounder (GRIPS)

    NASA Astrophysics Data System (ADS)

    Bloom, H.; Dickerson, Russell; Schoeberl, M.; Gordley, L. L.; Marshall, B. T.; McHugh, M.; Spackman, R.; Fish, C.; Kim, J.

    2012-11-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC, 2007] making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nitrous oxide (N2O) with unprecedented precision to reduce substantially this uncertainty. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation from geostationary orbit. GRIPS is designed to haves sensitivity down to the Earth's surface at ~8 km nadir resolution. GRIPS can also resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and long-range transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. Finally, the GFCR technique is, to first order, insensitive to aerosols interference. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, and other existing and planned missions.

  15. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Schoeberl, M. R.; Gordley, L. L.; McHugh, M. J.; Thompson, A. M.; Burrows, J. P.; Zeng, N.; Marshall, B. T.; Fish, C. S.; Spackman, J. R.; Kim, J.; Park, R.; Warner, J. X.; Bhartia, P. K.; Kollonige, D. E.

    2012-12-01

    Climate change and air quality are the most pressing environmental issues of the 21st century - for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  16. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  17. Status of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Miller, Christopher R.

    1996-12-01

    The Atmospheric Infrared Sounder (AIRS) is being developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian platform in the year 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land, and oceans for application to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on very sensitive passive infrared remote sensing using a precisely calibrated, high resolution grating spectrometer operating in the 3.7 micrometers to 15.4 micrometers region. The instrument concept uses passively cooled multi-aperture eschelle array spectrometer approach in combination with advanced state-of-the-art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. AIRS is a key component of NASA's global change research program, and is expected to play an important role in the converged National Polar Orbiting Environmental Satellite System, now under study. This paper provides a brief description of the AIRS instrument design and focuses on the current development status of hardware currently being fabricated for the engineering model. In particular, the paper will address the status and expected performance of the AIRS focal plane assembly, the cryocooler, and components of the optical spectrometer.

  18. Planetary protection for Europa radar sounder antenna

    NASA Astrophysics Data System (ADS)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  19. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  20. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses students'…

  1. Flight Projects Office Information Systems Testbed (FIST)

    NASA Technical Reports Server (NTRS)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  2. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    NASA Astrophysics Data System (ADS)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  3. Hyperspectral Microwave Atmospheric Sounder (HyMAS) Architecture and Design Accommodations

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2013-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term "hyperspectral microwave" is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth s atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4-9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the scan head computer

  4. Experiences with the Bay Area Gigabit Network Testbed

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1995-01-01

    The Bay Area Gigabit Network Testbed (BAGNet) is a high-performance ATM (155 Mbps) testbed located within the San Francisco Bay Area in northern California. BAGNet is a metropolitan-area network, spanning an area of approximately 50 square miles. There are fifteen sites participating in the testbed, with up to four hosts per site. Although BAGNet is an applications-oriented testbed, much of our effort has been directed towards getting the testbed running and understanding the factors that impact performance of an ATM network. We present some of our experiences in this paper.

  5. Embedded Data Processor and Portable Computer Technology testbeds

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.

    1993-01-01

    Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.

  6. Sparse matrix methods research using the CSM testbed software system

    NASA Technical Reports Server (NTRS)

    Chu, Eleanor; George, J. Alan

    1989-01-01

    Research is described on sparse matrix techniques for the Computational Structural Mechanics (CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A suite of subroutines to extract from the data base the relevant structural and numerical information about the matrix equations was written, and all the demonstration problems distributed with the testbed were successfully solved. These codes were documented, and performance studies comparing the SPARSPAK technology to the methods currently in the testbed were completed. In addition, some preliminary studies were done comparing some recently developed out-of-core techniques with the performance of the testbed processor INV.

  7. Cross-track infrared sounder FPA performance

    NASA Astrophysics Data System (ADS)

    D'Souza, Arvind I.; Dawson, Larry C.; Marsh, Stacy; Willis, Richard W.; Wijewarnasuriya, Priyalal S.; DeWames, Roger E.; Arias, Jose M.; Bajaj, Jagmohan; Hildebrandt, Gernot; Moore, Fergus E.

    2001-10-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Cross-track Infrared Sounder (CrIS) is an interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR ((λc approximately 5 μm at 98K), MWIR (λc approximately 9 μm at 98K) LWIR (λc approximately 16 μm at 81K) Focal Plane Array (FPA) modules. A critical CrIS design selection was the use of photovoltaic (PV) detectors in all three spectral bands. PV detectors have the important benefits of high sensitivity and linearity. Each FPA modules consists of nine large (1000 μm diameter) photovoltaic detectors with accompanying cold preamplifiers. This paper describes the performance for all the modules forming the CrIS Detector Preamplifier Module (DPM). Molecular Beam Epitaxy (MBE) is used to grow the appropriate bandgap n-type Hg1-xCdxTe on lattice matched CdZnTe. SWIR, MWIR and LWIR 1000 μm diameter detectors have been manufactured using the Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers have been designed to interface with the large SWIR, MWIR and LWIR detectors. The operating temperature is above 78K, permitting the use of passive radiators in spacecraft to cool the detectors. Recently fabricated 1000 micrometers diameter photovoltaic detectors have the measured performance parameters listed in the Table below. Expected D* performance from the detector/pre-amplifier models are also listed in the table. The D* values are calculated at the CrIS program peak wavelength specified for each spectral band.

  8. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  9. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  10. DEVELOPMENT OF A FACILITY MONITORING TESTBED

    SciTech Connect

    A. M. MIELKE; C. M. BOYLE; ET AL

    2001-06-01

    The Advanced Surveillance Technology (AST) project at Los Alamos National Laboratory (LANL), funded by the Nonproliferation Research and Engineering Group (NN-20) of the National Nuclear Security Administration (NNSA), is fielding a facility monitoring application testbed at the National High Magnetic Field Laboratory-Pulsed Field Laboratory (NHMFL-PFL). This application is designed to utilize continuous remote monitoring technology to provide an additional layer of personnel safety assurance and equipment fault prediction capability in the laboratory. Various off-the-shelf surveillance sensor technologies are evaluated. In this testbed environment, several of the deployed monitoring sensors have detected transient precursor equipment-fault events. Additionally the prototype remote monitoring system employs specialized video state recognition software to determine whether the operations occurring within the facility are acceptable, given the observed equipment status. By integrating the Guardian reasoning system developed at LANL, anomalous facility events trigger alarms signaling personnel to the likelihood of an equipment failure or unsafe operation.

  11. Mini-mast CSI testbed user's guide

    NASA Technical Reports Server (NTRS)

    Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.

    1992-01-01

    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.

  12. VCE testbed program planning and definition study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Godston, J.

    1978-01-01

    The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.

  13. Variable Dynamic Testbed Vehicle: Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.; Le, N. T.; Marriott, A. T.

    1997-01-01

    The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.

  14. Commissioning Results on the JWST Testbed Telescope

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Acton, D. Scott

    2006-01-01

    The one-meter 18 segment JWST Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate commissioning operations for the JWST Observatory. Eight different commissioning activities were tested on the TBT: telescope focus sweep, segment ID and Search, image array, global alignment, image stacking, coarse phasing, fine phasing, and multi-field phasing. This paper describes recent commissioning results from experiments performed on the TBT.

  15. SSERVI Analog Regolith Simulant Testbed Facility

    NASA Astrophysics Data System (ADS)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  16. View to the northeast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  17. View to the eastnortheast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the east-northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  18. Advanced data management system architectures testbed

    NASA Technical Reports Server (NTRS)

    Grant, Terry

    1990-01-01

    The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.

  19. The Micro-Arcsecond Metrology Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Hines, Braden; Bell, Charles; Shen, Tsae-Pyng; Bloemhof, Eric; Zhao, Feng; Regehr, Martin; Holmes, Howard; Irigoyen, Robert; Neat, Gregory

    2003-01-01

    The Micro-Arcsecond Metrology (MAM) testbed is a ground-based system of optical and electronic equipment for testing components, systems, and engineering concepts for the Space Interferometer Mission (SIM) and similar future missions, in which optical interferometers will be operated in outer space. In addition, the MAM testbed is of interest in its own right as a highly precise metrological system. The designs of the SIM interferometer and the MAM testbed reflect a requirement to measure both the position of the starlight central fringe and the change in the internal optical path of the interferometer with sufficient spatial resolution to generate astrometric data with angular resolution at the microarcsecond level. The internal path is to be measured by use of a small metrological laser beam of 1,319-nm wavelength, whereas the position of the starlight fringe is to be estimated by use of a charge-coupled-device (CCD) image detector sampling a large concentric annular beam. For the SIM to succeed, the optical path length determined from the interferometer fringes must be tracked by the metrological subsystem to within tens of picometers, through all operational motions of an interferometer delay line and siderostats. The purpose of the experiments performed on the MAM testbed is to demonstrate this agreement in a large-scale simulation that includes a substantial portion of the system in the planned configuration for operation in outer space. A major challenge in this endeavor is to align the metrological beam with the starlight beam in order to maintain consistency between the metrological and starlight subsystems at the system level. The MAM testbed includes an optical interferometer with a white light source, all major optical components of a stellar interferometer, and heterodyne metrological sensors. The aforementioned subsystems are installed in a large vacuum chamber in order to suppress atmospheric and thermal disturbances. The MAM is divided into two

  20. Overview on In-Space Internet Node Testbed (ISINT)

    NASA Technical Reports Server (NTRS)

    Richard, Alan M.; Kachmar, Brian A.; Fabian, Theodore; Kerczewski, Robert J.

    2000-01-01

    The Satellite Networks and Architecture Branch has developed the In-Space Internet Node Technology testbed (ISINT) for investigating the use of commercial Internet products for NASA missions. The testbed connects two closed subnets over a tabletop Ka-band transponder by using commercial routers and modems. Since many NASA assets are in low Earth orbits (LEO's), the testbed simulates the varying signal strength, changing propagation delay, and varying connection times that are normally experienced when communicating to the Earth via a geosynchronous orbiting (GEO) communications satellite. Research results from using this testbed will be used to determine which Internet technologies are appropriate for NASA's future communication needs.

  1. ISS Update: ISTAR -- International Space Station Testbed for Analog Research

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Sandra Fletcher, EVA Systems Flight Controller. They discuss the International Space Station Testbed for Analog Research (ISTAR) activity that...

  2. Results of the international ionospheric Doppler sounder network

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  3. Film handling procedures for Apollo 17 lunar sounder

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    Film handling procedures for the Apollo 17 Lunar Sounder are itemized, including purchase of flight film, establishment of processing standards, transportation of flight films, flight film certification, application of pre- and post-sensitometry, film loading and downloading, film processing, titling, and duplication.

  4. Design and testing of hardware improvements of an acoustic sounder

    NASA Astrophysics Data System (ADS)

    Richards, W. L.

    1985-06-01

    The application of lasers in military communications and weapons systems accentuate the need for instruments capable of measuring the fine dynamic structure of the atmosphere. One of the most useful tools available for the probing of the atmosphere is the acoustic sounder. Commercial grade acoustic sounders, such as the Aeroviroment model number 300 cannot collect atmospheric data with the quality needed for laser propagation research. The usable range of the Aerovironment model 300 acoustic sounder is less than 500 meters. Many laser systems need atmospheric information at altitudes of 1 to 2 kilometers and higher. The objective of this thesis was to upgrade an existing acoustic sounder to increase the range and improve the quality of the receiver-processor. A serious deficiency of the Aerovironment model number 300 is the poor coupling of the acoustic transducer to the feedhorn. This thesis involved a complete redesign and experimental test of the transducer feedhorn using two different horn styles as well as making the horn removable and easily changeable.

  5. Laser Sounder Technique for Remotely Measuring Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Collatz, G. J.; Sun, X.; Riris, H.; Andrews, A. E.; Krainak, M.

    2001-12-01

    We describe progress in developing a lidar technique for the remote measurement of the tropospheric CO2 concentrations. Our goal is to demonstrate a technique and technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate remote sensing measurements of CO2 mixing ratio from aircraft and space appear difficult. Potential error sources include possible interferences from other trace gas species, the effects of clouds and aerosols in the path, and variability in dry air density caused by pressure or topographic changes. Some potential instrumental errors include frequency drifts in the transmitter and sensitivity drifts in the receiver. High signal-to-noise ratios are needed for estimates at the few ppm level. We are developing a laser sounder approach as a candidate for these measurements. It uses 3 laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter at 1064 nm in the same atmospheric path. It directs the co-aligned laser beams from the lidar toward nadir, and measures the energy of the laser backscatter from land and water surfaces. During each measurement period, the two narrow linewidth lasers are rapidly tuned on and off the selected CO2 and O2 absorption lines. The receiver records and averages the energies of the laser echoes. The column extinction and column densities of both CO2 and O2 are estimated via the differential absorption lidar technique. For the on-line wavelength, the side of the gas absorption line is used, which weights its measurements to 0-4 km in the troposphere. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line near 770 nm. Atmospheric baskscatter profiles are measured with the 1064 nm channel, which permits identifying and excluding measurements containing clouds or aerosols backscatter

  6. Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Eldering, Annmarie; Braverman, Amy J.; Fetzer, Eric J.; Jiang, Jonathan H.; Fishbein, Evan; Wu, Dong L.

    2007-03-01

    We estimate the accuracy of cloud top altitude (Z) retrievals from the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) observing suite (ZA) on board the Earth Observing System Aqua platform. We compare ZA with coincident measurements of Z derived from the micropulse lidar and millimeter wave cloud radar at the Atmospheric Radiation Measurement (ARM) program sites of Nauru and Manus islands (ZARM) and the inferred Z from vertically resolved Microwave Limb Sounder (MLS) ice water content (IWC) retrievals. The mean difference in ZA minus ZARM plus or minus one standard deviation ranges from -2.2 to 1.6 km ± 1.0 to 4.2 km for all cases of AIRS effective cloud fraction (fA) > 0.15 at Manus Island using the cloud radar only. The range of mean values results from using different approaches to determine ZARM, day/night differences, and the magnitude of fA; the variation about the mean decreases for increasing values of fA. Analysis of ZARM from the micropulse lidar at Nauru Island for cases restricted to 0.05 ≤ fA ≤ 0.15 indicates a statistically significant improvement in ZA - ZARM over the cloud radar-derived values at Manus Island. In these cases the ZA - ZARM difference is -1.1 to 2.1 km ± 3.0 to 4.5 km. These results imply that the operational ZA is quantitatively useful for constraining cirrus altitude despite the nominal 45 km horizontal resolution. Mean differences of cloud top pressure (PCLD) inferred from coincident AIRS and MLS ice water content (IWC) retrievals depend upon the method of defining AIRS PCLD (as with the ARM comparisons) over the MLS spatial scale, the peak altitude and maximum value of MLS IWC, and fA. AIRS and MLS yield similar vertical frequency distributions when comparisons are limited to fA > 0.1 and IWC > 1.0 mg m-3. Therefore the agreement depends upon the opacity of the cloud, with decreased agreement for optically tenuous clouds. Further, the mean difference and standard deviation of AIRS and MLS

  7. A numerical testbed for the characterization and optimization of aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, X.; Ding, S.; Zeng, J.; Spurr, R. J.; Liu, X.; Chance, K.; Holben, B. N.; Dubovik, O.; Mishchenko, M. I.

    2013-12-01

    Remote sensing of aerosols from satellite and ground-based platforms provides key datasets to help understand the effect of air-borne particulates on air quality, visibility, surface temperature, clouds, and precipitation. However, global measurements of aerosol parameters have only been generated in the last decade or so, with the advent of dedicated low-earth-orbit sun-synchronous satellite sensors such as those of NASA's Earth Observation System (EOS). Many EOS sensors are now past their design lifetimes. Meanwhile, a number of aerosol-related satellite missions are planned for the future, and several of these will have measurements of polarization. A common question often arises: How can a sensor be optimally configured (in terms of spectral wavelength ranges, viewing angles, and measurement quantities such as radiance and polarization) to best fulfill the scientific requirements within the mission's budget constraints? To address these kind of questions in a cost-effective manner, a numerical testbed for remote sensing aerosols is an important requirement. This testbed is a tool that can generate an objective assessment of aerosol information content anticipated from any (planned or real) instrument configuration. Here, we present a numerical testbed that combines the inverse optimal estimation theory with a forward model containing linearized particle scattering and radiative transfer code. Specifically, the testbed comprises the following components: (1) a linearized vector radiative transfer model that computes the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering parameters at each layer and over the column; (2) linearized Mie and T-matrix electromagnetic scattering codes to compute the macroscopic aerosol single scattering optical properties and their sensitivities with respect to refractive index, size, and shape; (3) a linearized land surface model that uses the Lambertian, Ross-Thick, and Li

  8. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  9. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  10. Application developer's tutorial for the CSM testbed architecture

    NASA Technical Reports Server (NTRS)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  11. A Turbine-powered UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.

    2007-01-01

    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  12. Telescience testbed in human space physiology

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoru; Seo, Hisao; Iwase, Satoshi; Tanaka, Masafumi; Kaneko, Sayumi; Mano, Tadaaki; Matsui, Nobuo; Foldager, Niels; Bondepetersen, Flemming; Yamashita, Masamichi; Shoji, Takatoshi; Sudoh, Hideo

    The present telescience testbed study was conducted to evaluate the feasibility of physiological experimentation under restricted conditions such as during simulated weightlessness induced by using a water immersion facility, a reduced capacity of laboratory facilities, a delay and desynchronization of communication between investigator and operator, restrictions of different kinds of experiments practiced by only one operator following a limited time line and so on. The three day's experiments were carried out following the same protocols. The operators were changed every day, but was the same the first and the third day. The operators were both medical doctors but not all round experts in the physiological experimentation. The experimental objectives were: 1) ECG changes by changing water immersion levels, 2) blood pressure changes, 3) ultrasonic Echo-cardiographic changes, 4) laser Doppler skin blood flowmetry in a finger, 5) blood sampling to examine blood electrolytic and humoral changes. The effectiveness of the testbed experiment was assessed by evaluating the quality of the obtained data and estimating the friendliness of the operation of the telescience to investigators and operators.

  13. Sparse aperture mask wavefront sensor testbed results

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Riggs, A. J. E.

    2016-07-01

    Coronagraphic exoplanet detection at very high contrast requires the estimation and control of low-order wave- front aberrations. At Princeton High Contrast Imaging Lab (PHCIL), we are working on a new technique that integrates a sparse-aperture mask (SAM) with a shaped pupil coronagraph (SPC) to make precise estimates of these low-order aberrations. We collect the starlight rejected from the coronagraphic image plane and interfere it using a sparse aperture mask (SAM) at the relay pupil to estimate the low-order aberrations. In our previous work we numerically demonstrated the efficacy of the technique, and proposed a method to sense and control these differential aberrations in broadband light. We also presented early testbed results in which the SAM was used to sense pointing errors. In this paper, we will briefly overview the SAM wavefront sensor technique, explain the design of the completed testbed, and report the experimental estimation results of the dominant low-order aberrations such as tip/tit, astigmatism and focus.

  14. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  15. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    SciTech Connect

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  16. Testbed for the development of intelligent robot control

    SciTech Connect

    Harrigan, R.W.

    1986-01-01

    The Sensor Driven Robot Systems Testbed has been constructed to provide a working environment to aid in the development of intelligent robot control software. The Testbed employs vision and force as the robot's means of interrogating its environment. The Testbed, which has been operational for approximately 24 months, consists of a PUMA-560 robot manipulator coupled to a 2-dimensional vision system and force and torque sensing wrist. Recent work within the Testbed environment has led to a highly modularized control software concept with emphasis on detection and resolution of error situations. The objective of the Testbed is to develop intelligent robot control concepts incorporating planning and error recovery which are transportable to a wide variety of robot applications. This project is an ongoing, longterm development project and, as such, this paper represents a status report of the development work.

  17. Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Bowden, William

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.

  18. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  19. Expediting Experiments across Testbeds with AnyBed: A Testbed-Independent Topology Configuration System and Its Tool Set

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Hazeyama, Hiroaki; Miyamoto, Daisuke; Miwa, Shinsuke; Kadobayashi, Youki

    Building an experimental network within a testbed has been a tiresome process for experimenters, due to the complexity of the physical resource assignment and the configuration overhead. Also, the process could not be expedited across testbeds, because the syntax of a configuration file varies depending on specific hardware and software. Re-configuration of an experimental topology for each testbed wastes time, an experimenter could not carry out his/her experiments during the limited lease time of a testbed at worst. In this paper, we propose the AnyBed: the experimental network-building system. The conceptual idea of AnyBed is “If experimental network topologies can be portable across any kinds of testbed, then, it would expedite building an experimental network on a testbed while manipulating experiments by each testbed support tool”. To achieve this concept, AnyBed divide an experimental network configuration into the logical and physical network topologies. Mapping these two topologies, AnyBed can build intended logical network topology on any PC clusters. We have evaluated the AnyBed implementation using two distinct clusters. The evaluation result shows a BGP topology with 150 nodes can be constructed on a large scale testbed in less than 113 seconds.

  20. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  1. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  2. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  3. Submillimeter Wave Sounder for the Japanese Mars Mission (MELOS)

    NASA Astrophysics Data System (ADS)

    Kuroda, T.; Kasai, Y.; Sagawa, H.; Hartogh, P.; Murtagh, D. P.; Manabe, T.; Mendrok, J.; Nishibori, T.; Ochiai, S.; Aoyama, Y.

    2009-12-01

    The Submillimeter wave (SMM) sounder is proposed as an instrument onboard the meteorological orbiter of the next Japanese Mars exploration mission (MELOS). Characteristics of the SMM sounder are the observations of wind, temperature, CO, water vapor and its isotopes, minor radical species such as H2O2 and HO2. Many potential contributions to the Martian science are expected from the measurements: for example, the understanding of the Martian atmospheric circulation regime, the water cycle and variable hygropause, isotopic fractionation including HDO/H2O, photochemistry in the middle atmosphere, and thermophysical properties of the surface layer. By employing both limb and nadir observations from the elliptic orbit, the SMM sounder will achieve high vertical resolution in the wind, temperature and water vapor observations by pointing to several tangential heights in the limb observing geometry, as well as the horizontal mapping with temporal variation of minor molecules. Since the dust and ice cloud are almost transparent at submillimeter wavelengths, the SMM sounder can provide observational data without being affected by the dust distribution. The draft design of the instrument is dual frequency receivers of 500 and 600 or 800 GHz in order to observe at least two water vapor lines, including the ground state 110 - 101 transition at 556.9 GHz, with different line strengths. Combination of the observations of weak and strong opacity lines enables us to measure the H2O abundance in a wide range of the altitudes: from the surface to more than 100 km. This study will optimize the instrumental design by examining its scientific performance with the observation simulations. We also discuss the scientific significances of the planned observations in collaboration with the studies using general circulation models (GCMs) for the Martian atmosphere.

  4. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  5. The Apollo 17 Lunar Sounder. [lunar orbit coherent radar experiment

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, W. E., Jr.; Jordan, R.; Adams, G. F.; Jackson, P.; Peeples, W. J.; Porcello, L. J.; Ryu, J.; Eggleton, R. E.; Schaber, G.

    1973-01-01

    The Apollo Lunar Sounder Experiment, a coherent radar operated from lunar orbit during the Apollo 17 mission, has scientific objectives of mapping lunar subsurface structure, surface profiling, surface imaging, and galactic noise measurement. Representative results from each of the four disciplines are presented. Subsurface reflections have been interpreted in both optically and digitally processed data. Images and profiles yield detailed selenomorphological information. The preliminary galactic noise results are consistent with earlier measurements by other workers.

  6. An antenna system for the microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J.

    1976-01-01

    The results of an initial design study to determine a suitable antenna system for the Microwave Limb Sounder experiment are presented. The resulting antenna system consisting of a parabolic cylinder fed by a number of Gregorian subreflectors is described and estimates of achievable antenna beamwidths and beam efficiencies are made. A short analysis is presented which yields expressions for the subreflector coordinates which can be implemented into existing programs for future antenna design and evaluation.

  7. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  8. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  9. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  10. Geophysical Information from Advanced Sounder Infrared Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2012-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Satisfying this type of improvement for inferred geophysical information from these observations requires optimal usage of data from current systems as well as enhancements to future sensors. This presentation addresses the information content present in infrared spectral radiance from advanced atmospheric sounders with an emphasis on knowledge of thermodynamic state and trace species. Results of trade-off studies conducted to evaluate the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content will be discussed. A focus is placed on information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument aboard the NPP and JPSS series of satellites which began 28 October 2011.

  11. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  12. The JPL Phase B interferometer testbed

    NASA Technical Reports Server (NTRS)

    Eldred, Daniel B.; Oneal, Mike

    1993-01-01

    Future NASA missions with large optical systems will require alignment stability at the nanometer level. However, design studies indicate that vibration resulting from on-board disturbances can cause jitter at levels three to four orders of magnitude greater than this. Feasibility studies have shown that a combination of three distinct control layers will be required for these missions, including disturbance isolation, active and passive structural vibration suppression, and active optical pathlength compensation. The CSI technology challenge is to develop these design and control approaches that can reduce vibrations in the optical train by a factor of 1000 to 10,000. The focus of the paper is on describing the Phase B Testbed structure and facility, as the experimental results are included in other papers presented at this same conference.

  13. Introduction to the computational structural mechanics testbed

    NASA Technical Reports Server (NTRS)

    Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.

    1987-01-01

    The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.

  14. A land-surface Testbed for EOSDIS

    NASA Technical Reports Server (NTRS)

    Emery, William; Kelley, Tim

    1994-01-01

    The main objective of the Testbed project was to deliver satellite images via the Internet to scientific and educational users free of charge. The main method of operations was to store satellite images on a low cost tape library system, visually browse the raw satellite data, access the raw data filed, navigate the imagery through 'C' programming and X-Windows interface software, and deliver the finished image to the end user over the Internet by means of file transfer protocol methods. The conclusion is that the distribution of satellite imagery by means of the Internet is feasible, and the archiving of large data sets can be accomplished with low cost storage systems allowing multiple users.

  15. The JPL Phase B interferometer testbed

    NASA Astrophysics Data System (ADS)

    Eldred, Daniel B.; Oneal, Mike

    1993-02-01

    Future NASA missions with large optical systems will require alignment stability at the nanometer level. However, design studies indicate that vibration resulting from on-board disturbances can cause jitter at levels three to four orders of magnitude greater than this. Feasibility studies have shown that a combination of three distinct control layers will be required for these missions, including disturbance isolation, active and passive structural vibration suppression, and active optical pathlength compensation. The CSI technology challenge is to develop these design and control approaches that can reduce vibrations in the optical train by a factor of 1000 to 10,000. The focus of the paper is on describing the Phase B Testbed structure and facility, as the experimental results are included in other papers presented at this same conference.

  16. The Goddard Space Flight Center (GSFC) robotics technology testbed

    NASA Technical Reports Server (NTRS)

    Schnurr, Rick; Obrien, Maureen; Cofer, Sue

    1989-01-01

    Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.

  17. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  18. Development of a Scalable Testbed for Mobile Olfaction Verification

    PubMed Central

    Syed Zakaria, Syed Muhammad Mamduh; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Ali Yeon, Ahmad Shakaff; Md. Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah

    2015-01-01

    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment. PMID:26690175

  19. Development of a Scalable Testbed for Mobile Olfaction Verification.

    PubMed

    Zakaria, Syed Muhammad Mamduh Syed; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Yeon, Ahmad Shakaff Ali; Md Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah

    2015-01-01

    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment. PMID:26690175

  20. Development of a Scalable Testbed for Mobile Olfaction Verification.

    PubMed

    Zakaria, Syed Muhammad Mamduh Syed; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Yeon, Ahmad Shakaff Ali; Md Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah

    2015-12-09

    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.

  1. Development of Hardware-in-the-loop Microgrid Testbed

    SciTech Connect

    Xiao, Bailu; Prabakar, Kumaraguru; Starke, Michael R; Liu, Guodong; Dowling, Kevin; Ollis, T Ben; Irminger, Philip; Xu, Yan; Dimitrovski, Aleksandar D

    2015-01-01

    A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.

  2. Atmospheric infrared sounder on AIRS with emphasis on level 2 products

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Fetzer, Eric; Granger, Stephanie; Hearty, Thomas; Lambrigtsen, Bjorn; Manning, Evan M.; Olsen, Edward; Pagano, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard EOS Aqua in May of 2002. AIRS is a grating spectrometer with almost 2400 channels covering the 3.74 to 15.40 micron spectral region with a nominal spectral resolution ((nu)/(delta)(nu)) of 1200, with some gaps. In addition, AIRS has 4 channels in the NIR/VIS region. The AIRS operates in conjunction with the microwave sounders Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder of Brazil (HSB). The microwave sounders are mainly used for cloud clearing of IR radiances, or to remove the effect of cloud on the IR radiances.

  3. Lake Tahoe Bottom Characteristics Extracted from SHOALS Lidar Waveform Data and Compared to Backscatter Data From a Multibeam Echo Sounder

    NASA Astrophysics Data System (ADS)

    Elston, G. R.; Gardner, J. V.

    2002-12-01

    The waveforms recorded by airborne lidar bathymetry (ALB) systems are currently processed only for depth information. In addition to bathymetry, multibeam echo sounder (MBES) systems provide backscatter data in which regions of different acoustic properties are distinguishable. These regions can often be correlated to different bottom types. Initial attempts to extract equivalent data from the ALB waveforms have confirmed the expectation that such information is encoded in those waveforms. Water clarity, bathymetry, and bottom type control the detailed shapes of ALB waveforms in different ways. Specific features of a bottom-reflected signal can be identified, for example its rise-time and amplitude, and used for clustering and classifying the individual data points. Two data sets from Lake Tahoe are available for comparison: ALB data from the SHOALS (scanning hydrographic operational airborne lidar survey) system of the US Army Corps of Engineers, and Simrad EM1000 MBES data from the USGS. Feature extraction, clustering, and classification of the SHOALS data reveals changes in the optical bottom reflectance characteristics that are echoed in the acoustic bottom backscatter properties.

  4. Performance of the optical communication adaptive optics testbed

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Roberts, Jennifer; Guiwits, Steve; Azevedo, Steve; Bikkannavar, Siddarayappa; Brack, Gary; Garkanian, Vachik; Palmer, Dean; Platt, Benjamin; Truong, Tuan; Wilson, Keith; Wallace, Kent

    2005-01-01

    We describe the current performance of an adaptive optics testbed for optical communication. This adaptive optics system allows for simulation of night and day-time observing on a 1 meter telescope with a 97 actuator deformable mirror.

  5. Situational descriptions of behavioral procedures: the in situ testbed.

    PubMed Central

    Kemp, S M; Eckerman, D A

    2001-01-01

    We demonstrate the In Situ testbed, a system that aids in evaluating computational models of learning, including artificial neural networks. The testbed models contingencies of reinforcement rising an extension of Mechner's (1959) notational system for the description of behavioral procedures. These contingencies are input to the model under test. The model's output is displayed as cumulative records. The cumulative record can then be compared to one produced by a pigeon exposed to the same contingencies. The testbed is tried with three published models of learning. Each model is exposed to up to three reinforcement schedules (testing ends when the model does not produce acceptable cumulative records): continuous reinforcement and extinction, fixed ratio, and fixed interval. The In Sitt testbed appears to be a reliable and valid testing procedure for comparing models of learning. PMID:11394484

  6. CT-directed robotic biopsy testbed: motivation and concept

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Stoianovici, Dan S.; Glossop, Neil D.; Gary, Kevin A.; Onda, Sumiyo; Cody, Richard; Lindisch, David; Stanimir, Alexandru; Mazilu, Dumitru; Patriciu, Alexandru; Watson, Vance; Levy, Elliot

    2001-05-01

    As a demonstration platform, we are developing a robotic biopsy testbed incorporating a mobile CT scanner, a small needle driver robot, and an optical localizer. This testbed will be used to compare robotically assisted biopsy to the current manual technique, and allow us to investigate software architectures for integrating multiple medical devices. This is a collaboration between engineers and physicians from three universities and a commercial vendor. In this paper we describe the CT-directed biopsy technique, review some other biopsy systems including passive and semi- autonomous devices, describe our testbed components, and present our software architecture. This testbed is a first step in developing the image-guided, robotically assisted, physician directed, biopsy systems of the future.

  7. The computational structural mechanics testbed data library description

    NASA Technical Reports Server (NTRS)

    Stewart, Caroline B. (Compiler)

    1988-01-01

    The datasets created and used by the Computational Structural Mechanics Testbed software system is documented by this manual. A description of each dataset including its form, contents, and organization is presented.

  8. The computational structural mechanics testbed data library description

    NASA Technical Reports Server (NTRS)

    Stewart, Caroline B. (Compiler)

    1988-01-01

    The datasets created and used by the Computational Structural Mechanics Testbed software system are documented by this manual. A description of each dataset including its form, contents, and organization is presented.

  9. Phoenix Missile Hypersonic Testbed (PMHT): System Concept Overview

    NASA Technical Reports Server (NTRS)

    Jones, Thomas P.

    2007-01-01

    A viewgraph presentation of the Phoenix Missile Hypersonic Testbed (PMHT) is shown. The contents include: 1) Need and Goals; 2) Phoenix Missile Hypersonic Testbed; 3) PMHT Concept; 4) Development Objectives; 5) Possible Research Payloads; 6) Possible Research Program Participants; 7) PMHT Configuration; 8) AIM-54 Internal Hardware Schematic; 9) PMHT Configuration; 10) New Guidance and Armament Section Profiles; 11) Nomenclature; 12) PMHT Stack; 13) Systems Concept; 14) PMHT Preflight Activities; 15) Notional Ground Path; and 16) Sample Theoretical Trajectories.

  10. Impact of Measurement System Characteristics on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.

    2011-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such an improvement in geophysical information inferred from these observations requires optimal usage of data from current systems as well as instrument system enhancements for future sensors. This presentation addresses results of tradeoff studies evaluating the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species information obtainable from advanced atmospheric sounders. Particular attention will be devoted toward information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument to fly aboard the NPP and JPSS series of satellites expected to begin in late 2011. While all of these systems cover nearly the same infrared spectral extent, they have very different number of channels, instrument line shapes, coverage continuity, and instrument noise. AIRS is a grating spectrometer having 2378 discrete spectral channels ranging from about 0.4 to 2.2/cm resolution; IASI is a Michelson interferometer with 8461 uniformly-spaced spectral channels of 0.5/cm (apodized) resolution; and CrIS is a Michelson interferometer having 1305 spectral channels of 0.625, 1.250, and 2.50/cm (unapodized) spectral resolution, respectively, over its three continuous but non-overlapping bands. Results of tradeoff studies showing information content sensitivity to assumed measurement system characteristics will be presented.

  11. Observation of severe weather activities by Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Hung, R. J.

    1975-01-01

    A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.

  12. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  13. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    PubMed

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS. PMID:25322240

  14. Observations of Gravity Waves with the UARS Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Waters, J. W.

    1996-01-01

    From Introduction: Observations (of gravity waves-GW) from radar, lidar, balloon and rocket yield good temporal and vertical resolutions usually at one geographical location while aircraft observations provide good horizontal resolution but for a short period of time. It is difficult in general for space-borne sensors to obtain the same resolutions, but observations of GWs at somewhat larger scales are feasible, for example using saturated radiances from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS)[Wu and Waters, 1996].

  15. A knowledge based software engineering environment testbed

    NASA Technical Reports Server (NTRS)

    Gill, C.; Reedy, A.; Baker, L.

    1985-01-01

    The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing

  16. Optical testbed for the LISA phasemeter

    NASA Astrophysics Data System (ADS)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  17. Micro-Pixel Image Position Sensing Testbed

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; Shao, Michael; Zhai, Chengxing; Erlig, Hernan; Wang, Xu; Goullioud, Renaud

    2011-01-01

    The search for Earth-mass planets in the habitable zones of nearby Sun-like stars is an important goal of astrophysics. This search is not feasible with the current slate of astronomical instruments. We propose a new concept for microarcsecond astrometry which uses a simplified instrument and hence promises to be low cost. The concept employs a telescope with only a primary, laser metrology applied to the focal plane array, and new algorithms for measuring image position and displacement on the focal plane. The required level of accuracy in both the metrology and image position sensing is at a few micro-pixels. We have begun a detailed investigation of the feasibility of our approach using simulations and a micro-pixel image position sensing testbed called MCT. So far we have been able to demonstrate that the pixel-to-pixel distances in a focal plane can be measured with a precision of 20 micro-pixels and image-to-image distances with a precision of 30 micro-pixels. We have also shown using simulations that our image position algorithm can achieve accuracy of 4 micro-pixels in the presence of lambda/20 wavefront errors.

  18. Ames life science telescience testbed evaluation

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  19. Further progress in watermark evaluation testbed (WET)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung C.; Lin, Eugene T.; Guitart, Oriol; Delp, Edward J., III

    2005-03-01

    While Digital Watermarking has received much attention in recent years, it is still a relatively young technology. There are few accepted tools/metrics that can be used to evaluate the suitability of a watermarking technique for a specific application. This lack of a universally adopted set of metrics/methods has motivated us to develop a web-based digital watermark evaluation system called the Watermark Evaluation Testbed or WET. There have been more improvements over the first version of WET. We implemented batch mode with a queue that allows for user submitted jobs. In addition to StirMark 3.1 as an attack module, we added attack modules based on StirMark 4.0. For a new image fidelity measure, we evaluate conditional entropy as an image fidelity measure for different watermarking algorithms and different attacks. Also, we show the results of curve fitting the Receiver Operating Characteristic (ROC) analysis data using the Parzen window density estimation. The curve fits the data closely while having only two parameters to estimate.

  20. The Behm Acoustic Sounder for Airplanes with Reference to Its Accuracy

    NASA Technical Reports Server (NTRS)

    Schreiber, Ernest

    1930-01-01

    Relative altimetry is of great importance for increasing the safety in aerial transportation, because it makes possible safe flying at night, by poor visibility, and when landing. Among the instruments of this type is the Behm sounder, which operates on an acoustic principle. Acoustic altimetry in general and the Behn sounder, in particular, are covered in this report.

  1. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  2. Airborne and spaceborne lasers for terrestrial geophysical sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Technical Reports Server (NTRS)

    Allario, Frank (Editor)

    1988-01-01

    The present conference on airborne and spaceborne remote sensing laser applications discusses topics in atmospheric and geophysical sciences-related sensors, lidar and DIAL component and subsystem technologies, and coherent laser experiments and semiconductor laser technologies. Attention is given to airborne lidar measurement of aerosols, a ground-based injection-locked pulsed TEA laser for wind measurements, chemical/biological agent standoff detection methods, lidars for wind shear erosion, laser tuning to selected gas absorption lines in the atmosphere, the NASA lidar-in-space technology experiment, and the Laser Atmospheric Wind Sounder.

  3. Channel alignment and radiometry in hyperspectral atmospheric infrared sounders

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Aumanna, H. H.; Pagano, Thomas S.; Overoye, Kenneth R.; Schindler, Rudolf A.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyper-spectral infrared sounder which covers the 3.7 to 15,4 micron region with 2378 spectral channels. The AIRS instrument specification called for spatial co-registration of all channels to better than 2% of the field of view. Pre-launch testing confirmed that this requirement was met, since the standard deviations in the centroids was about 1% of the 13.5 km IFOV in scan and 3% in track. Detailed analysis of global AIRS data show that the typical scene gradient in 10 micron window channels is about I .3K/km rms. The way these gradients, which are predominantly caused by clouds, manifest themselves in the data depends on the details of the instrument design and the way the spectral channels are used in the data analysis, AIRS temperature and moisture retrievals use 328 of the 2378 channels from 17 independent arrays. As a result, the effect of the boresight misalignment averages to zero mean. Any increase in the effective noise is less than 0.2K. Also, there is no discernable performance degradation of products at the 45 km spatial resolution in the presence of partially cloudy scenes with up to 80% cloudiness. Single pixel radiometric differences between channels with boresight alignment differences can be appreciable and can affect scientific investigations on a single 15km footprint scale, particularly near coastlines, thunderstorms and surface emissivity inhomogeneities.

  4. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  5. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  6. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  7. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  8. Optimization Testbed Cometboards Extended into Stochastic Domain

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.

    2010-01-01

    COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.

  9. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  10. Systems Engineering Management Plan NASA Traffic Aware Planner Integration Into P-180 Airborne Test-Bed

    NASA Technical Reports Server (NTRS)

    Maris, John

    2015-01-01

    NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).

  11. A Testbed for Evaluating Lunar Habitat Autonomy Architectures

    NASA Technical Reports Server (NTRS)

    Lawler, Dennis G.

    2008-01-01

    A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.

  12. Development of the CSI phase-3 evolutionary model testbed

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Tan, M. K.

    1994-01-01

    This report documents the development effort for the reconfiguration of the Controls-Structures Integration (CSI) Evolutionary Model (CEM) Phase-2 testbed into the CEM Phase-3 configuration. This step responds to the need to develop and test CSI technologies associated with typical planned earth science and remote sensing platforms. The primary objective of the CEM Phase-3 ground testbed is to simulate the overall on-orbit dynamic behavior of the EOS AM-1 spacecraft. Key elements of the objective include approximating the low-frequency appendage dynamic interaction of EOS AM-1, allowing for the changeout of components, and simulating the free-free on-orbit environment using an advanced suspension system. The fundamentals of appendage dynamic interaction are reviewed. A new version of the multiple scaling method is used to design the testbed to have the full-scale geometry and dynamics of the EOS AM-1 spacecraft, but at one-tenth the weight. The testbed design is discussed, along with the testing of the solar array, high gain antenna, and strut components. Analytical performance comparisons show that the CEM Phase-3 testbed simulates the EOS AM-1 spacecraft with good fidelity for the important parameters of interest.

  13. Kite: Status of the External Metrology Testbed for SIM

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Alvarez-Salazar, Oscar; Azizi, Alireza; Moser, Steven; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel

    2004-01-01

    Kite is a system level testbed for the External Metrology system of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducial that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to tens of picometers in order to correct for thermal measurements, the Kite testbed was build to test both the metrology gauges and out ability to optically model the system at these levels. The Kite testbed is an over-constraint system where 6 lengths are measured, but only 5 are needed to determine the system. The agreement in the over-constrained length needs to be on the order of 140 pm for the SIM Wide-Angle observing scenario and 8 pm for the Narrow-Angle observing scenario. We demonstrate that we have met the Wide-Angle goal with our current setup. For the Narrow-Angle case, we have only reached the goal for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more SIM like.

  14. Geo-STAR: A Geostationary Microwave Sounder for the Future

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  15. GeoSTAR: a geostationary microwave sounder for the future

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a "Decadal Survey" of NASA Earth Science activities. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  16. Establishment of an NWP testbed using ARM data

    SciTech Connect

    O'Connor, E.; Liu, Y.; Hogan, R.

    2010-03-15

    The aim of the FAst-physics System TEstbed and Research (FASTER) project is to evaluate and improve the parameterizations of fast physics (involving clouds, precipitation, aerosol) in numerical models using ARM measurements. One objective within FASTER is to evaluate model representations of fast physics with long-term continuous cloud observations by use of an 'NWP testbed'. This approach was successful in the European Cloudnet project. NWP model data (NCEP, ECMWF, etc.) is routinely output at ARM sites, and model evaluation can potentially be achieved in quasi-real time. In this poster, we will outline our progress in the development of the NWP testbed and discuss the successful integration of ARM algorithms, such as ARSCL, with algorithms and lessons learned from Cloudnet. Preliminary results will be presented of the evaluation of the ECMWF, NCEP, and UK Met Office models over the SGP site using this approach.

  17. A Testbed for Deploying Distributed State Estimation in Power Grid

    SciTech Connect

    Jin, Shuangshuang; Chen, Yousu; Rice, Mark J.; Liu, Yan; Gorton, Ian

    2012-07-22

    Abstract—With the increasing demand, scale and data information of power systems, fast distributed applications are becoming more important in power system operation and control. This paper proposes a testbed for evaluating power system distributed applications, considering data exchange among distributed areas. A high-performance computing (HPC) version of distributed state estimation is implemented and used as a distributed application example. The IEEE 118-bus system is used to deploy the parallel distributed state estimation, and the MeDICi middleware is used for data communication. The performance of the testbed demonstrates its capability to evaluate parallel distributed state estimation by leveraging the HPC paradigm. This testbed can also be applied to evaluate other distributed applications.

  18. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  19. Telescience testbed pilot program, volume 2: Program results

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.

  20. Laser Metrology in the Micro-Arcsecond Metrology Testbed

    NASA Technical Reports Server (NTRS)

    An, Xin; Marx, D.; Goullioud, Renaud; Zhao, Feng

    2004-01-01

    The Space Interferometer Mission (SIM), scheduled for launch in 2009, is a space-born visible light stellar interferometer capable of micro-arcsecond-level astrometry. The Micro-Arcsecond Metrology testbed (MAM) is the ground-based testbed that incorporates all the functionalities of SIM minus the telescope, for mission-enabling technology development and verification. MAM employs a laser heterodyne metrology system using the Sub-Aperture Vertex-to-Vertex (SAVV) concept. In this paper, we describe the development and modification of the SAVV metrology launchers and the metrology instrument electronics, precision alignments and pointing control, locating cyclic error sources in the MAM testbed and methods to mitigate the cyclic errors, as well as the performance under the MAM performance metrics.

  1. An Experimental Testbed for Evaluation of Trust and Reputation Systems

    NASA Astrophysics Data System (ADS)

    Kerr, Reid; Cohen, Robin

    To date, trust and reputation systems have often been evaluated using methods of their designers’ own devising. Recently, we demonstrated that a number of noteworthy trust and reputation systems could be readily defeated, revealing limitations in their original evaluations. Efforts in the trust and reputation community to develop a testbed have yielded a successful competition platform, ART. This testbed, however, is less suited to general experimentation and evaluation of individual trust and reputation technologies. In this paper, we propose an experimentation and evaluation testbed based directly on that used in our investigations into security vulnerabilities in trust and reputation systems for marketplaces. We demonstrate the advantages of this design, towards the development of more thorough, objective evaluations of trust and reputation systems.

  2. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  3. Stratospheric CH3CN from the UARS Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Livesey, Nathaniel J.; Waters, Joe W.; Khosravi, Rashid; Brasseur, Guy P.; Tyndall, Geoffrey S.; Read, William G.

    CH3CN in the stratosphere has been measured by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), providing the first global CH3CN dataset. The MLS observations are in broad agreement with past high and midlatitude observations of CH3CN, although concentrations are a little larger than previously observed. In the tropics, where CH3CN has not up to now been measured, a persistent ‘peak’ in the profiles is seen around 22 hPa, which may be evidence of a tropical stratospheric CH3CN source. Comparisons are made with the NCAR SOCRATES model, including runs having an artificial tropical stratospheric CH3CN source.

  4. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  5. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  6. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  7. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Goldberg, Mitchell D.; Schmit, Timothy J.; Lim, Agnes H. N.; Li, Zhenglong; Han, Hyojin; Li, Jinlong; Ackerman, Steve A.

    2015-06-01

    Generally, only clear-infrared spectral radiances (not affected by clouds) are assimilated in weather analysis systems. This is due to difficulties in modeling cloudy radiances as well as in observing their vertical structure from space. To take full advantage of the thermodynamic information in advanced infrared (IR) sounder observations requires assimilating radiances from cloud-contaminated regions. An optimal imager/sounder cloud-clearing technique has been developed by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison. This technique can be used to retrieve clear column radiances through combining collocated multiband imager IR clear radiances and the sounder cloudy radiances; no background information is needed in this method. The imager/sounder cloud-clearing technique is similar to that of the microwave/IR cloud clearing in the derivation of the clear-sky equivalent radiances. However, it retains the original IR sounder resolution, which is critical for regional numerical weather prediction applications. In this study, we have investigated the assimilation of cloud-cleared IR sounder radiances using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer for three hurricanes, Sandy (2012), Irene (2011), and Ike (2008). Results show that assimilating additional cloud-cleared AIRS radiances reduces the 48 and 72 h temperature forecast root-mean-square error by 0.1-0.3 K between 300 and 850 hPa. Substantial improvement in reducing track forecasts errors in the range of 10 km to 50 km was achieved.

  8. How Strong is the Case for Geostationary Hyperspectral Sounders?

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.

    2014-12-01

    The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.

  9. Alternative cloud clearing methodologies for the atmospheric infrared sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Barnet, C. D.; Goldberg, M.; King, Thomas; Nalli, Nicholas; Wolf, Walter; Zhou, Lihang; Wei, Jennifer

    2005-08-01

    Traditional cloud clearing methods utilize a clear estimate of the atmosphere inferred from a microwave sounder to extrapolate cloud cleared radiances (CCR's) from a spatial interpolation of multiple cloudy infrared footprints. Unfortunately, sounders have low information content in the lower atmosphere due to broad weighting functions, interference from surface radiance and the microwave radiances can also suffer from uncorrected side-lobe contamination. Therefore, scenes with low altitude clouds can produce errant CCR's that, in-turn, produce errant sounding products. Radiances computed from the corrupted products can agree with the measurements within the error budget making detection and removal of the errant scenes impractical; typically, a large volume of high quality retrievals are rejected in order to remove a few errant scenes. In this paper we compare and contrast the yield and accuracy of the traditional approach with alternative methods of obtaining CCR's. The goal of this research is three-fold: (1) to have a viable approach if the microwave instruments fail on the EOS-AQUA platform; (2) to improve the accuracy and reliability of infrared products derived from CCR's; and (3) to investigate infrared approaches for geosynchronous platforms where microwave sounding is difficult. The methods discussed are (a) use of assimilation products, (b) use of a statistical regression trained on cloudy radiances, (c) an infrared multi-spectral approach exploiting the non-linearity of the Planck function, and (d) use of clear MODIS measurements in the AIRS sub-pixel space. These approaches can be used independently of the microwave measurements; however, they also enhance the traditional approach in the context of quality control, increased spatial resolution, and increased information content.

  10. Experiences with the JPL telerobot testbed: Issues and insights

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Balaram, Bob; Beahan, John

    1989-01-01

    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.

  11. The Wide-Field Imaging Interferometry Testbed: Recent Progress

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.

  12. Telescience testbed pilot program, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.

  13. The Living With a Star Space Environment Testbed Program

    NASA Technical Reports Server (NTRS)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  14. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  15. Space-time integrity of improved stratospheric and mesospheric sounder and microwave limb sounder temperature fields at Kelvin wave scales

    NASA Astrophysics Data System (ADS)

    Stone, E. M.; Stanford, J. L.; Ziemke, J. R.; Allen, D. R.; Taylor, F. W.; Rodgers, C. D.; Lawrence, B. N.; Fishbein, E. F.; Elson, L. S.; Waters, J. W.

    1995-07-01

    Space-time analyses, which are sensitive to details of retrieval and gridding processes not seen in zonal and time means, are used to investigate the integrity of version 8 gridded retrieved temperatures from the improved stratospheric and mesospheric sounder (ISAMS) on the upper atmosphere research satellite (UARS). This note presents results of such analyses applied to ISAMS tropical data. Comparisons are made with microwave limb sounder (MLS), also on UARS, temperatures. Prominent zonal wave number 1 features are observed with characteristics similar to those expected for Kelvin waves. Time versus longitude plots reveal quasi-regular eastward phase progression from November 1991 to mid-January 1992. The perturbations extend throughout the upper stratosphere and lower mesosphere (altitudes of 32-64 km), exhibiting peak-to-peak amplitudes of up to 2°-3° K and periods from ˜ 2 weeks in midstratosphere to ˜ 1 week at higher altitudes. Faster Kelvin waves with periods of 3-5 days are also found in the lower mesosphere. Height versus time plots reveal downward phase and upward group velocities, consistent with forcing from below. Vertical wavelengths are ˜ 20 km for the slower mode and about twice this scale for the faster 3 to 5-day mode. The features are trapped within ±10°-15° of the equator. Kelvin wave signatures in ISAMS and MLS temperatures are compared at 10 and 1 hPa. Good agreement is found, illustrating the internal consistency and ability of both ISAMS and MLS temperature grids to capture relatively small amplitude features with space-time scales of fast, zonally asymmetric equatorial modes.

  16. Capability Description for NASA's F/A-18 TN 853 as a Testbed for the Integrated Resilient Aircraft Control Project

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2009-01-01

    The NASA F/A-18 tail number (TN) 853 full-scale Integrated Resilient Aircraft Control (IRAC) testbed has been designed with a full array of capabilities in support of the Aviation Safety Program. Highlights of the system's capabilities include: 1) a quad-redundant research flight control system for safely interfacing controls experiments to the aircraft's control surfaces; 2) a dual-redundant airborne research test system for hosting multi-disciplinary state-of-the-art adaptive control experiments; 3) a robust reversionary configuration for recovery from unusual attitudes and configurations; 4) significant research instrumentation, particularly in the area of static loads; 5) extensive facilities for experiment simulation, data logging, real-time monitoring and post-flight analysis capabilities; and 6) significant growth capability in terms of interfaces and processing power.

  17. Delft testbed interferometer: layout design and research goals

    NASA Astrophysics Data System (ADS)

    van Brug, Hedser H.; van den Dool, Teun; Gielesen, Wim; Giesen, Peter; Oostdijck, Bastiaan; d'Arcio, Luigi

    2003-02-01

    The Delft Testbed Interferometer (DTI) will be presented. The main purpose for the DTI is to demonstrate the feasibility of homothetic mapping, both fixed and under scanning conditions. The driving design issues behind the DTI will be presented together with a list of experiments to be conducted with the DTI system in the field of wide field imaging.

  18. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  19. Operation Duties on the F-15B Research Testbed

    NASA Technical Reports Server (NTRS)

    Truong, Samson S.

    2010-01-01

    This presentation entails what I have done this past summer for my Co-op tour in the Operations Engineering Branch. Activities included supporting the F-15B Research Testbed, supporting the incoming F-15D models, design work, and other operations engineering duties.

  20. Smart Antenna UKM Testbed for Digital Beamforming System

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  1. Extending the Information Commons: From Instructional Testbed to Internet2

    ERIC Educational Resources Information Center

    Beagle, Donald

    2002-01-01

    The author's conceptualization of an Information Commons (IC) is revisited and elaborated in reaction to Bailey and Tierney's article. The IC's role as testbed for instructional support and knowledge discovery is explored, and progress on pertinent research is reviewed. Prospects for media-rich learning environments relate the IC to the…

  2. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  3. Remote Sensing of Atmospheric Climate Parameters from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; Tian, Baijun; Lee, Sung-Yung; Olsen, Ed; Lambrigtsen, Bjorn; Fetzer, Eric; Irion, F. W.; McMillan, Wallace; Strow, Larrabee; Fu, Xiouhua; Barnet, Chris; Goldberg, Mitch; Susskind, Joel; Blaisdell, John

    2006-01-01

    This paper presents the standard and research products from Atmospheric Infrared Sounder (AIRS) and their current accuracies as demonstrated through validation efforts. It also summarizes ongoing research using AIRS data for weather prediction and improving climate models.

  4. An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.

  5. Recent microwave sounder observations from aircraft during the HS3 field campaign

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. E.

    2014-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) is a microwave sounder similar to but more capable and accurate than current satellite microwave sounders. Since 2010 it has operated on NASA's Global Hawk UAVs and has been participating in the multiyear Hurricane and Severe Storm Sentinel (HS3) hurricane campaign. We present recent results from HS3, including analysis of the thermodynamic and precipitation structure in and around tropical storm systems sampled during HS3. Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

  6. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  7. Validation of the Radiometric Stability of the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-01-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in

  8. Limits of Precipitation Detection from Microwave Radiometers and Sounders

    NASA Astrophysics Data System (ADS)

    Munchak, S. J.; Skofronick-Jackson, G.; Johnson, B. T.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission will unify and draw from numerous microwave conical scanning imaging radiometers and cross-track sounders, many of which already in operation, to provide near real-time precipitation estimates worldwide at 3-hour intervals. Some of these instruments were designed for primary purposes unrelated to precipitation remote sensing. Therefore it is worthwhile to evaluate the strengths and weaknesses of each set of channels with respect to precipitation detection to fully understand their role in the GPM constellation. The GPM radiometer algorithm will use an observationally-based Bayesian retrieval with common databases of precipitation profiles for all sensors. Since these databases are still under development and will not be truly complete until the GPM core satellite has completed at least one year of dual-frequency radar observations, a screening method based upon retrieval of non-precipitation parameters related to the surface and atmospheric state is used in this study. A cost function representing the departure of modeled radiances from their observed values plus the departure of surface and atmospheric parameters from the TELSEM emissivity atlas and MERRA reanalysis is used as an indicator of precipitation. Using this method, two datasets are used to evaluate precipitation detection: One year of matched AMSR-E and AMSU-B/MHS overpasses with CloudSat used as validation globally; and SSMIS overpasses over the United States using the National Mosaic and QPE (NMQ) as validation. The Heidke Skill Score (HSS) is used as a metric to evaluate detection skill over different surfaces, seasons, and across different sensors. Non-frozen oceans give the highest HSS for all sensors, followed by bare land and coasts, then snow-covered land and sea ice. Negligible skill is present over ice sheets. Sounders tend to have higher skill than imagers over complex surfaces (coast, snow, and sea ice), whereas imagers have higher skill

  9. GeoSTAR: a microwave sounder for geostationary applications

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.; Piepmeier, J. R.; Ruf, C. S.; Gross, S. M.; Musko, S.; Rogacki, S.

    2006-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR, is a new concept for a microwave atmospheric sounder intended for geostationary satellites such as the GOES weather satellites operated by NOAA. A small but fully functional prototype has recently been developed at the Jet Propulsion Laboratory to demonstrate the feasibility of using aperture synthesis in lieu of the large solid parabolic dish antenna that is required with the conventional approach. Spatial resolution requirements dictate such a large aperture in GEO that the conventional approach has not been feasible, and it is only now, with the GeoSTAR approach, that a GEO microwave sounder can be contemplated. Others have proposed GEO microwave radiometers that would operate at sub-millimeter wavelengths to circumvent the large-aperture problem, but GeoSTAR is the only viable approach that can provide full sounding capabilities equal to or exceeding those of the AMSU systems now operating on LEO weather satellites and which have had tremendous impact on numerical weather forecasting. GeoSTAR will satisfy a number of important measurement objectives, many of them identified by NOAA as unmet needs in their GOES-R pre-planned product improvements (P3I) lists and others by NASA in their research roadmaps and as discussed in a white paper submitted to the NRC Decadal Survey. The performance of the prototype has been outstanding, and this proof of concept represents a major breakthrough in remote sensing capabilities. The GeoSTAR concept is now at a stage of development where an infusion into space systems can be initiated, either on a NASA sponsored research mission or on a NOAA sponsored operational mission. GeoSTAR is an ideal candidate for a joint "research to operations" mission, and that may be the most likely scenario. Additional GeoSTAR related technology development and other risk reduction activities are under way, and a GeoSTAR mission is feasible in the GOES-R/S time frame, 2012-2014.

  10. Validation of the radiometric stability of the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-09-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2 , N2O and Ozone. The trend in (obscalc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 um CO2 sounding, 4 um CO2 P-branch sounding, 4um CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 μm. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in particular for

  11. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  12. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  13. Pioneer Venus Sounder Probe Neutral Gas Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Wright, W. W.; Blevins, V. A.; Duerksen, K. D.; Brooks, L. D.

    1980-01-01

    A neutral gas mass spectrometer was flown to Venus as part of the Pioneer Venus Multiprobe to measure the composition of its lower atmosphere. The instrument, mounted in the Sounder Probe, was activated after the probe entered the top of the atmosphere, and it obtained data during the descent from 62 km to the surface. Atmospheric gases were sampled through a pair of microleaks, the effluent from which was pumped by a combination of ion and getter pumping. A pneumatically operated valve, controlled by the ambient atmospheric pressure, maintained the ion source pressure at a nearly constant value during descent while the atmospheric pressure varied by three orders of magnitude. A single focusing magnetic sector field mass spectrometer with mass resolution sufficient to reasonably separate argon from C3H4 at 40 amu provided the mass analysis and relative abundance measurements. A microprocessor controlled the operation of the mass spectrometer through a highly efficient peak-tip stepping routine and data compression algorithm that effected a scan of the mass spectrum from 1 to 208 amu in 64 sec while requiring an information rate of only 40 bits/sec to return the data to earth. A subscale height altitude resolution was thus obtained. Weight, size, and power requirements were minimized to be consistent with interplanetary flight contraints.

  14. The Atmospheric Infrared Sounder version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  15. The Atmospheric Infrared Sounder Version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2013-06-01

    The Version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field of view (FOV) resolution. Significant improvements in cloud height assignment over Version 5 are shown with pixel-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for January 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the Tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal cycle of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over the diurnal and annual cycles, and captures variability within the mesoscale and synoptic scales at all latitudes.

  16. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    NASA Technical Reports Server (NTRS)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  17. Fluvial Morphodynamics: advancing understanding using Multibeam Echo Sounders (MBES)

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Best, J. L.

    2012-12-01

    Accurately and reliably determining riverbed morphology is key to understanding linkages between flow fields, sediment transport and bed roughness in a range of aquatic environments, including large fluvial channels. Modern shallow-water multibeam echo sounder (MBES) systems are now allowing us to acquire bathymetric data at unprecedented resolutions that are millimetric in precision and centimetric in accuracy. Such systems, and the morphological resolution they can supply, are capable of revealing the complex three-dimensional patterns in riverbed morphology that are facilitating a holistic examination of system morphodynamics, at the field scale, that was unimaginable just a few years ago. This paper presents a range of MBES acquired examples to demonstrate how the methodological developments in this technology are leading to advances in our substantive understanding of large river systems. This includes examples that show linkages across scales, and in particular the morphodynamics of superimposed bedforms and bars revealed by such high-resolution data, which have broad implications for a range of applications, including flood prediction, engineering design and reconstructing ancient sedimentary environments.

  18. Validation of UARS Microwave Limb Sounder ClO measurements

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; Dezafra, R. L.; Shindell, D. T.

    1996-04-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, the first version publicly released, and known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  19. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  20. Coherent launch-site atmospheric wind sounder: theory and experiment.

    PubMed

    Hawley, J G; Targ, R; Henderson, S W; Hale, C P; Kavaya, M J; Moerder, D

    1993-08-20

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 µm with 1-J energy per pulse is able to make real-time measurements of the three-dimensional wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  1. Development and test of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1 is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to NASA climate studies and NOAA and DOD weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled multi- aperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. The AIRS instrument, which has been under development since 1991, has been fully integrated and has completed successfully a comprehensive performance verification program. Performance verification included thermal vacuum testing, environmental qualification and a full range of spatial, spectral and radiometric calibrations, which have demonstrated outstanding spectrometric performance. This paper provides a brief overview of the AIRS mission and instrument design along with key results from the test program.

  2. The Mars Climate Sounder In-Flight Positioning Anomaly

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Kass, David

    2008-01-01

    The paper discusses the Mars Climate Sounder (MCS) instrument s in-flight positioning errors and presents background material about it. A short overview of the instrument s science objectives and data acquisition techniques is provided. The brief mechanical description familiarizes the reader with the MCS instrument. Several key items of the flight qualification program, which had a rigorous joint drive test program but some limitations in overall system testing, are discussed. Implications this might have had for the flight anomaly, which began after several months of flawless space operation, are mentioned. The detection, interpretation, and instrument response to the errors is discussed. The anomaly prompted engineering reviews, renewed ground, and some in-flight testing. A summary of these events, including a timeline, is included. Several items of concern were uncovered during the anomaly investigation, the root cause, however, was never found. The instrument is now used with two operational constraints that work around the anomaly. It continues science gathering at an only slightly diminished pace that will yield approximately 90% of the originally intended science.

  3. Microwave Limb Sounder/El Nino Watch - December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows differences in atmospheric water vapor relative to a normal (average) year in the Earth's upper troposphere about 10 kilometers (6 miles) above the surface. The measurements were taken by the Microwave Limb Sounder (MLS) instrument aboard NASA's Upper Atmosphere Research Satellite (UARS). These data, collected in late December 1997, show higher than normal levels of water vapor (red) over the central and eastern Pacific which indicates the presence of an El Nino condition. At the same time, the western Pacific (blue) is much drier than normal. The unusually moist air above the central and eastern Pacific is a consequence of the much warmer-than-normal ocean waters which occur during El Nino. Warmer water evaporates at a higher rate and the resulting warm moist air rises and forms tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. These data show significant increases in the amount of atmospheric moisture off the coast of Peru and Ecuador since measurements were made in November 1997. The maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal and these high ocean temperatures are likely responsible for an increase in evaporation and the subsequent rise in humidity.

  4. Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals.

    PubMed

    Serio, Carmine; Standfuss, Carsten; Masiello, Guido; Liuzzi, Giuliano; Dufour, Emmanuel; Tournier, Bernard; Stuhlmann, Rolf; Tjemkes, Stephen; Antonelli, Paolo

    2015-07-01

    The problem of characterizing and estimating the radiometric noise of satellite high spectral resolution infrared spectrometers from Earth views is addressed in this paper. A methodology has been devised which is based on the common concept of spectral residuals (Observations-Calculations) obtained after spectral radiance inversion for atmospheric and surface parameters. An in-depth analytical assessment of the statistical covariance matrix of the spectral residuals has been performed which is based on the optimal estimation theory. It has been mathematically demonstrated that the use of spectral residuals to assess instrument noise leads to an effective estimator, which is largely independent of possible departures of the observational covariance matrix from the true covariances. Application to the Infrared Atmospheric Sounder Interferometer has been considered. It is shown that Earth-view-derived observation errors agree with blackbody in-flight calibration. The spectral residuals approach also proved to be effective in characterizing noise features due to mechanical microvibrations of the beam splitter of the IASI instrument.

  5. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  6. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  7. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  8. Exploiting hyperspectral sounders for volcanic ash remote sensing

    NASA Astrophysics Data System (ADS)

    Western, Luke; Watson, Matthew; Francis, Peter

    2016-04-01

    Assumptions are made when retrieving properties of volcanic ash clouds using passive infrared satellite remote sensing. Assumptions in the retrieval method lead to larger uncertainties in the retrieved volcanic ash cloud properties. It is a general desire to reduce these uncertainties by removing some of the assumptions that must be made. Hyperspectral sounders provide the spectral capabilities to explore many of the physical parameters that describe volcanic ash clouds - the question is, which parameters is it possible to retrieve? We show that using the Infrared Atmospheric Sounding Interferometer (IASI) it is possible to retrieve the mass column loading and cloud top pressure of a volcanic ash cloud, together with the effective radius and spread of the ash particle size distribution, as well as the cloud top pressure of any underlying water cloud using an optimal estimation technique. We discuss the capabilities and shortcomings of the method. The consideration of an underlying water cloud is of importance for improving retrievals, and we place a particular focus on how well the particle size distribution can be described. More specifically, we investigate the viability of using either a lognormal or a gamma distribution to describe the distribution of ash particles, and we show that it is possible to retrieve information about the spread of a lognormal distribution of particles, whereas it is not for a gamma distribution. Some preliminary conclusions on the size distribution of volcanic ash are presented.

  9. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  10. Validation of UARS Microwave Limb Sounder ClO Measurements

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; deZafra, R. L.; Shindell, D. T.

    1996-01-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, in the first version public release of the known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  11. Characteristics of an airborne demonstrator for MERLIN

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Büdenbender, C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Dieter, H.; Löhring, J.; Klein, V.

    2012-12-01

    After three years development time, first test measurements on DLR's (Deutsches Zentrum für Luft- und Raumfahrt) CO2 and CH4 airborne Lidar have started. It is an integrated path differential absorption (IPDA) lidar for the simultaneous measurement of CO2 and CH4 columns, designed for operation onboard the new German research aircraft HALO. In the framework of the project "CHARM-F", funded by the German ministry of education and research, the lidar was developed in collaboration with Fraunhofer Institut für Lasertechnik and Kayser-Threde. Due to the special features of the aircraft, such as the maximum flight altitude of 15 km and its long range, as well as the special design of the lidar, the system is particularly suitable to be an airborne demonstrator for the French-German MERLIN project, a spaceborne IPDA lidar sounder for methane. The layout of the receiver optics allows a large field of view, i.e. a large laser footprint on ground is possible, comparable to the size obtained by a spaceborne system. So, important features that come along with ground reflectivity issues, such as albedo variations on different spatial scales, can be taken into account in the same way and can be investigated in detail. Furthermore, two detector types are used, PIN photodiodes and APDs, each with specially adapted telescopes, to compare their respective properties. The basic design of the transmitter is identical to the one envisaged for MERLIN. Also important subsystems of the presented lidar, like wavelengths stabilization and output power monitoring, can serve as demonstrators for the satellite system. The main features of the airborne system are: Two almost identical laser systems for CH4 and CO2. Nd:YAG lasers serve as the pump sources for optical parametric oscillators (OPO), injection seeded by laser diodes, to generate the desired online and offline wavelengths in single mode operation. The online wavelength is tuned to an absorption line of the measured trace gas, the

  12. The International SubMillimetre Airborne Radiometer (ISMAR) - First results from the STICCS and COSMIC campaigns

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Fox, Stuart; Brath, Manfred; Buehler, Stefan

    2016-04-01

    Multispectral millimeter- and submillimeter-wave observations bear the potential to measure properties of non-thin ice clouds like mass content and mean particle size. The next generation of European meteorological satellites, the MetOp-SG series, will carry the first satellite-borne submillimeter sounder, the Ice Cloud Imager (ICI). An airborne demonstrator, the International SubMillimetre Airborne Radiometer (ISMAR), is operated together with other remote sensing instruments and in-situ probes on the FAAM aircraft. Scientific measurements from two campaings in the North Atlantic region, STICCS and COSMIC, are available so far. Here we will introduce the ISMAR instrument, present the acquired measurements from the STICCS and COSMIC campaigns and show some first results. This will include estimation of instrument performance, first analysis of clear-sky and cloudy cases and discussion of selected features observed in the measurements (e.g. polarisation signatures).

  13. Development of structural health monitoring systems for railroad bridge testbeds

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Jun; Min, Jiyoung; Yun, Chung-Bang; Shin, Min-Ho; Kim, Yong-Su; Park, Su-Yeol

    2011-04-01

    Recently a challenging project has been carried out for construction of a national network for safety management and monitoring of civil infrastructures in Korea. As a part of the project, structural health monitoring (SHM) systems have been established on railroad bridges employing various types of sensors such as accelerometers, optical fiber sensors, and piezoelectric sensors. This paper presents the current status of railroad bridge health monitoring testbeds. Emerging sensors and monitoring technologies are under investigation. They are local damage detection using PZT-based electro-mechanical impedances; vibration-based global monitoring using accelerations, FBG-based dynamic strains; and wireless sensor data acquisition systems. The monitoring systems provide real-time measurements under train-transit and environmental loadings, and can be remotely accessible and controllable via the web. Long-term behaviors of the railroad bridge testbeds are investigated, and guidelines for safety management are to be established by combining numerical analysis and signal processing of the measured data.

  14. Telescience testbed pilot program, volume 3: Experiment summaries

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.

  15. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  16. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  17. FDIR Validation Test-Bed Development and Results

    NASA Astrophysics Data System (ADS)

    Karlsson, Alexander; Sakthivel, Anandhavel; Aberg, Martin; Andersson, Jan; Habinc, Sandi; Dellandrea, Brice; Nodet, Jean-Christian; Guettache, Farid; Furano, Gianluca

    2015-09-01

    This paper describes work being performed by Cobham Gaisler and Thales Alenia Space France for the European Space Agency to develop an extension of the existing avionics system testbed facility in ESTEC's Avionics Lab. The work is funded by the European Space Agency under contract 4000109928/13/NL/AK. The resulting FDIR (Fault Detection, Isolation and Recovery) testbed will allow to test concepts, strategy mechanisms and tools related to FDIR. The resulting facility will have the capabilities to support nominal and off-nominal test cases and to support tools for post testing and post simulation analysis. Ultimately the purpose of the output of this activity is to provide a tool for assessment and validation at laboratory level. This paper describes an on-going development; at the time of writing the activity is in the validation phase.

  18. Development of a FDIR Validation Test-Bed

    NASA Astrophysics Data System (ADS)

    Andersson, Jan; Cederman, Daniel; Habinc, Sandi; Dellandrea, Brice; Nodet, Jean-Christian; Guettache, Farid; Furano, Gianluca

    2014-08-01

    This paper describes work being performed by Aeroflex Gaisler and Thales Alenia Space France for the European Space Agency to develop an extension of the existing avionics system testbed facility in ESTEC's Avionics Lab. The work is funded by the European Space Agency under contract 4000109928/13/NL/AK. The resulting FDIR (Fault Detection, Isolation and Recovery) testbed will allow to test concepts, strategy mechanisms and tools related to FDIR. The resulting facility will have the capabilities to support nominal and off-nominal test cases and to support tools for post testing and post simulation analysis. Ultimately the purpose of the output of this activity is to provide a tool for assessment and validation at laboratory level. This paper describes an on-going development; at the time of writing the activity is in the preliminary design phase.

  19. Optical modeling of the wide-field imaging interferometry testbed

    NASA Astrophysics Data System (ADS)

    Thompson, Anita K.; Martino, Anthony J.; Rinehart, Stephen A.; Leisawitz, David T.; Leviton, Douglas B.; Frey, Bradley J.

    2006-06-01

    The technique of wide field imaging for optical/IR interferometers for missions like Space Infrared Interferometric (SPIRIT), Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder (TPF-I)/DARWIN has been demonstrated through the Wide-field Imaging Interferometry Testbed (WIIT). In this paper, we present an optical model of the WIIT testbed using the commercially available optical modeling and analysis software FRED. Interferometric results for some simple source targets are presented for a model with ideal surfaces and compared with theoretical closed form solutions. Measured surface deformation data of all mirror surfaces in the form of Zernike coefficients are then added to the optical model compared with results of some simple source targets to laboratory test data. We discuss the sources of error and approximations in the current FRED optical model. Future plans to refine the optical model are also be discussed.

  20. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  1. Remotely Accessible Testbed for Software Defined Radio Development

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.

    2012-01-01

    Previous development testbeds have assumed that the developer was physically present in front of the hardware being used. No provision for remote operation of basic functions (power on/off or reset) was made, because the developer/operator was sitting in front of the hardware, and could just push the button manually. In this innovation, a completely remotely accessible testbed has been created, with all diagnostic equipment and tools set up for remote access, and using standardized interfaces so that failed equipment can be quickly replaced. In this testbed, over 95% of the operating hours were used for testing without the developer being physically present. The testbed includes a pair of personal computers, one running Linux and one running Windows. A variety of peripherals is connected via Ethernet and USB (universal serial bus) interfaces. A private internal Ethernet is used to connect to test instruments and other devices, so that the sole connection to the outside world is via the two PCs. An important design consideration was that all of the instruments and interfaces used stable, long-lived industry standards, such as Ethernet, USB, and GPIB (general purpose interface bus). There are no plug-in cards for the two PCs, so there are no problems with finding replacement computers with matching interfaces, device drivers, and installation. The only thing unique to the two PCs is the locally developed software, which is not specific to computer or operating system version. If a device (including one of the computers) were to fail or become unavailable (e.g., a test instrument needed to be recalibrated), replacing it is a straightforward process with a standard, off-the-shelf device.

  2. Delft testbed interferometer: a homothetic mapping test setup

    NASA Astrophysics Data System (ADS)

    van Brug, Hedser; Oostdijck, Bastiaan; van den Dool, Teun; Giesen, Peter; Gielesen, Wim

    2004-02-01

    The Delft Testbed Interferometer (DTI) will be presented. The basics of homothetic mapping will be explained together with the method of fulfilling the requirements as chosen in the DTI setup. The optical layout incorporates a novel tracking concept enabling the use of homothetic mapping in real telescope systems for observations on the sky. The requirements for homothetic mapping and the choices made in the DTI setup will be discussed. Finally the planned experiments will be discussed.

  3. System integration of a Telerobotic Demonstration System (TDS) testbed

    NASA Technical Reports Server (NTRS)

    Myers, John K.

    1987-01-01

    The concept for and status of a telerobotic demonstration system testbed that integrates teleoperation and robotics is described. The components of the telerobotic system are described and the ongoing projects are discussed. The system can be divided into two sections: the autonomous subsystems, and the additional interface and support subsystems including teleoperations. The workings of each subsystem by itself and how the subsystems integrate into a complete system is discussed.

  4. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  5. Planning and reasoning in the JPL telerobot testbed

    NASA Technical Reports Server (NTRS)

    Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark

    1990-01-01

    The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.

  6. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  7. Validation of Aura Microwave Limb Sounder HCl Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Jiang, Y. B.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Fuller, R. A.; Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Jucks, K. W.; Stachnik, R. A.; Toon, G. C.; Christensen, L. E.; Webster, C. R.; Bernath, P. F.; Boone, C. D.; Walker, K. A.; Pumphrey, H. C.; Harwood, R. S.; Manney, G. L.; Schwartz, M. J.; Daffer, W. H.; Drouin, B. J.

    2008-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.

  8. Improving of Aura Microwave Limb Sounder Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.; Wagner, P.; Read, W.; Livesey, N. J.; Martinez, E.

    2011-12-01

    The Microwave Limb Sounder (MLS) on NASA's Aura satellite began collecting atmospheric data in August of 2004, and the MLS Science Investigator-led Processing System (SIPS) processes the raw data to calibrated radiances and the 20 different geophysical parameters. Currently, SIPS provides two versions (V2 and V3) of these data products, and Goddard Earth Science Data and Information Service Centers (GES-DISC) archives and provides them to the user community. This paper will describe the current plans by the MLS Science Team (MST) to improve the V2 and V3 algorithms, and at the top of the list are how to ameliorate the issue with oscillations in the upper troposphere/lower stratosphere (UT/LS) ozone and improve behavior of UT/LS species in thick cloud. Other improvements include: removing adverse cloud interactions in some products (e.g. CO) that now occur in V3, ideally better still with the new cloud forward model; work to further reduce biases in 640 GHz species; extend species to lower altitude (including potentially those at 190 GHz); consider joint retrievals spanning multiple radiometers (e.g., joint 190/640 GHZ ClO to get methanol independently); better HCN lower down using a separate phase (q.v. 190 GHz goal above); and gain better understanding of hydrostatic / pressure inconsistency in Band 1. This paper will also discuss usability improvement such as TAI93 at 0Z of granule, day boundary discontinuities, and extending the data format to be compatible with NetCDF (network Common Data Form) that supports a machine-independent format for representing scientific data and is widely used in the community.

  9. Validation of UARS Microwave Limb Sounder temperature and pressure measurements

    NASA Astrophysics Data System (ADS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-04-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent-point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44°N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  10. Validation of UARS Microwave Limb Sounder ozone measurements

    NASA Astrophysics Data System (ADS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-04-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (˜50 to 100 hPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  11. Global dust infrared aerosol properties retrieved using hyperspectral sounders

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, alain; Pondrom, Marc; Pierangelo, Clémence; Armante, Raymond; Crevoisier, Cyril; Crépeau, Laurent; Scott, Noëlle

    2015-04-01

    Observations from infrared hyperspectral sounders, here IASI and AIRS, are interpreted in terms of dust aerosol properties (AOD and mean altitude). The method is based on a "Look-Up-Table" (LUT) approach, where all radiative transfer computation is performed once for all and "off-line", for a large selection of atmospheric situations, of observing conditions, of surface characteristics (in particular the surface emissivity and temperature), and different aerosol refractive index models. The inversion scheme follows two main steps: first, determination of the observed atmospheric thermodynamic situation, second, simultaneous retrieval of the 10µm coarse-mode AOD and of the mean altitude. The method is here applied over sea and over land, at daily scale daytime and nighttime, and at the satellite pixel resolution (12 km at nadir). The geographical study area studied includes the northern tropics from west Atlantic to the Arabian peninsula and Indian ocean, and the Mediterranean basin, all of them characterized by strong, regular dust events. A special focus is given to the hourly variation of aerosol properties within a day. In this context, both IASI overpasses are processed, providing two measurements at 9:30AM and 9:30PM (equator local time) each day. First results obtained from AIRS observations, made at 1:30 AM and PM, open the way to the analysis of the aerosol diurnal cycle. For the AOD, comparisons are made with AERONET ground-based data , when available, in order to 1) evaluate our results, and 2) show the importance of a better knowledge of the aerosol diurnal cycle, especially close to the sources. Mean aerosol layer altitude obtained from IASI is compared at local scale with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol altitude.

  12. Validation of UARS Microwave Limb Sounder Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-01-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (approx. 50 to 100 bPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  13. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  14. Validation of UARS Microwave Limb Sounder Temperature and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-01-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent- point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44 deg N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  15. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  16. Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-01-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  17. The Mini-Mast CSI testbed: Lessons learned

    NASA Technical Reports Server (NTRS)

    Tanner, Sharon E.; Belvin, W. Keith; Horta, Lucas G.; Pappa, R. S.

    1993-01-01

    The Mini-Mast testbed was one of the first large scale Controls-Structure-Interaction (CSI) systems used to evaluate state-of-the-art methodology in flexible structure control. Now that all the testing at Langley Research Center has been completed, a look back is warranted to evaluate the program. This paper describes some of the experiences and technology development studies by NASA, university, and industry investigators. Lessons learned are presented from three categories: the testbed development, control methods, and the operation of a guest investigator program. It is shown how structural safety margins provided a realistic environment to simulate on-orbit CSI research, even though they also reduced the research flexibility afforded to investigators. The limited dynamic coupling between the bending and torsion modes of the cantilevered test article resulted in highly successful SISO and MIMO controllers. However, until accurate models were obtained for the torque wheel actuators, sensors, filters, and the structure itself, most controllers were unstable. Controls research from this testbed should be applicable to cantilevered appendages of future large space structures.

  18. Cyber security analysis testbed : combining real, emulation, and simulation.

    SciTech Connect

    Villamarin, Charles H.; Eldridge, John M.; Van Leeuwen, Brian P.; Urias, Vincent E.

    2010-07-01

    Cyber security analysis tools are necessary to evaluate the security, reliability, and resilience of networked information systems against cyber attack. It is common practice in modern cyber security analysis to separately utilize real systems of computers, routers, switches, firewalls, computer emulations (e.g., virtual machines) and simulation models to analyze the interplay between cyber threats and safeguards. In contrast, Sandia National Laboratories has developed novel methods to combine these evaluation platforms into a hybrid testbed that combines real, emulated, and simulated components. The combination of real, emulated, and simulated components enables the analysis of security features and components of a networked information system. When performing cyber security analysis on a system of interest, it is critical to realistically represent the subject security components in high fidelity. In some experiments, the security component may be the actual hardware and software with all the surrounding components represented in simulation or with surrogate devices. Sandia National Laboratories has developed a cyber testbed that combines modeling and simulation capabilities with virtual machines and real devices to represent, in varying fidelity, secure networked information system architectures and devices. Using this capability, secure networked information system architectures can be represented in our testbed on a single, unified computing platform. This provides an 'experiment-in-a-box' capability. The result is rapidly-produced, large-scale, relatively low-cost, multi-fidelity representations of networked information systems. These representations enable analysts to quickly investigate cyber threats and test protection approaches and configurations.

  19. Assessment of error propagation in ultraspectral sounder data via JPEG2000 compression and turbo coding

    NASA Astrophysics Data System (ADS)

    Olsen, Donald P.; Wang, Charles C.; Sklar, Dean; Huang, Bormin; Ahuja, Alok

    2005-08-01

    Research has been undertaken to examine the robustness of JPEG2000 when corrupted by transmission bit errors in a satellite data stream. Contemporary and future ultraspectral sounders such as Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder (CrIS), Infrared Atmospheric Sounding Interferometer (IASI), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and Hyperspectral Environmental Suite (HES) generate a large volume of three-dimensional data. Hence, compression of ultraspectral sounder data will facilitate data transmission and archiving. There is a need for lossless or near-lossless compression of ultraspectral sounder data to avoid potential retrieval degradation of geophysical parameters due to lossy compression. This paper investigates the simulated error propagation in AIRS ultraspectral sounder data with advanced source and channel coding in a satellite data stream. The source coding is done via JPEG2000, the latest International Organization for Standardization (ISO)/International Telecommunication Union (ITU) standard for image compression. After JPEG2000 compression the AIRS ultraspectral sounder data is then error correction encoded using a rate 0.954 turbo product code (TPC) for channel error control. Experimental results of error patterns on both channel and source decoding are presented. The error propagation effects are curbed via the block-based protection mechanism in the JPEG2000 codec as well as memory characteristics of the forward error correction (FEC) scheme to contain decoding errors within received blocks. A single nonheader bit error in a source code block tends to contaminate the bits until the end of the source code block before the inverse discrete wavelet transform (IDWT), and those erroneous bits propagate even further after the IDWT. Furthermore, a single header bit error may result in the corruption of almost the entire decompressed granule. JPEG2000 appears vulnerable to bit errors in a noisy channel of

  20. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  1. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  2. Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Li, Jinlong; Li, Zhenglong; Schmit, Timothy J.; Bai, Wenguang

    2014-03-01

    Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud detection could reduce cloud contamination and hence improve the assimilation. Although operational numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, collocated high spatial resolution imager data could help sounder subpixel cloud detection and characterization. IR sounder radiances with improved cloud detection using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer (MODIS) were assimilated for Hurricane Sandy (2012). Forecast experiments were run with Weather Research and Forecasting (WRF) as the forecast model and the Three-Dimensional Variational Assimilation (3DVAR)-based Gridpoint Statistical Interpolation (GSI) as the analysis system. Results indicate that forecasts of both hurricane track and intensity are substantially improved when the collocated high spatial resolution MODIS cloud mask is used for AIRS subpixel cloud detection for assimilating radiances. This methodology can be applied to process Crosstrack Infrared Sounder (CRIS)/Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPOESS Preparatory Project (NPP)/Joint Polar Satellite System (JPSS) and Infrared Atmospheric Sounding Interferometer (IASI)/Advanced Very High Resolution Radiometer (AVHRR) onboard the Metop series for improved radiance assimilation in NWP.

  3. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  4. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  5. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  6. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  7. Development of Liquid Propulsion Systems Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald; Nelson, Graham

    2016-01-01

    As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the

  8. Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan

    2007-01-01

    Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).

  9. The computational structural mechanics testbed generic structural-element processor manual

    NASA Technical Reports Server (NTRS)

    Stanley, Gary M.; Nour-Omid, Shahram

    1990-01-01

    The usage and development of structural finite element processors based on the CSM Testbed's Generic Element Processor (GEP) template is documented. By convention, such processors have names of the form ESi, where i is an integer. This manual is therefore intended for both Testbed users who wish to invoke ES processors during the course of a structural analysis, and Testbed developers who wish to construct new element processors (or modify existing ones).

  10. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  11. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  12. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  13. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  14. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Technical Reports Server (NTRS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-01-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  15. Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test S

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test Sets and Networks Integration Management Office Testing for the Tracking and Data Relay Satellite System

  16. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  17. COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment

    NASA Astrophysics Data System (ADS)

    Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.

    2002-01-01

    The paper presents ongoing activities to prepare COLUMBUS for communications and multimedia technology experiments. For this purpose, Astrium SI, Bremen, has studied several options how to best combine the given system architecture with flexible and state-of-the-art interface avionics and software. These activities have been conducted in coordination with, and partially under contract of, DLR and ESA/ESTEC. Moreover, Astrium SI has realized three testbeds for multimedia software and hardware testing under own funding. The experimental core avionics unit - about a half double rack - establishes the core of a new multi-user experiment facility for this type of investigation onboard COLUMBUS, which shall be available to all users of COLUMBUS. It allows for the connection of 2nd generation payload, that is payload requiring broadband data transfer and near-real-time access by the Principal Investigator on ground, to test highly interactive and near-realtime payload operation. The facility is also foreseen to test new equipment to provide the astronauts onboard the ISS/COLUMBUS with bi- directional hi-fi voice and video connectivity to ground, private voice coms and e-mail, and a multimedia workstation for ops training and recreation. Connection to an appropriate Wide Area Network (WAN) on Earth is possible. The facility will include a broadband data transmission front-end terminal, which is mounted externally on the COLUMBUS module. This Equipment provides high flexibility due to the complete transparent transmit and receive chains, the steerable multi-frequency antenna system and its own thermal and power control and distribution. The Equipment is monitored and controlled via the COLUMBUS internal facility. It combines several new hardware items, which are newly developed for the next generation of broadband communication satellites and operates in Ka -Band with the experimental ESA data relay satellite ARTEMIS. The equipment is also TDRSS compatible; the open loop

  18. Automatic Integration Testbeds validation on Open Science Grid

    NASA Astrophysics Data System (ADS)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  19. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  20. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  1. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  2. Performance of the PARCS Testbed Cesium Fountain Frequency Standard

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, William M.

    2004-01-01

    A cesium fountain frequency standard has been developed as a ground testbed for the PARCS (Primary Atomic Reference Clock in Space) experiment, an experiment intended to fly on the International Space Station. We report on the performance of the fountain and describe some of the implementations motivated in large part by flight considerations, but of relevance for ground fountains. In particular, we report on a new technique for delivering cooling and trapping laser beams to the atom collection region, in which a given beam is recirculated three times effectively providing much more optical power than traditional configurations. Allan deviations down to 10 have been achieved with this method.

  3. SCaN Testbed Software Development and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of

  4. The Living With a Star Program Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  5. EMERGE - ESnet/MREN Regional Science Grid Experimental NGI Testbed

    SciTech Connect

    Mambretti, Joe; DeFanti, Tom; Brown, Maxine

    2001-07-31

    This document is the final report on the EMERGE Science Grid testbed research project from the perspective of the International Center for Advanced Internet Research (iCAIR) at Northwestern University, which was a subcontractor to this UIC project. This report is a compilation of information gathered from a variety of materials related to this project produced by multiple EMERGE participants, especially those at Electronic Visualization Lab (EVL) at the University of Illinois at Chicago (UIC), Argonne National Lab and iCAIR. The EMERGE Science Grid project was managed by Tom DeFanti, PI from EVL at UIC.

  6. The CSM testbed matrix processors internal logic and dataflow descriptions

    NASA Technical Reports Server (NTRS)

    Regelbrugge, Marc E.; Wright, Mary A.

    1988-01-01

    This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-18444, Computational Structural Mechanics (CSM) Research. This report contains a detailed description of the coded workings of selected CSM Testbed matrix processors (i.e., TOPO, K, INV, SSOL) and of the arithmetic utility processor AUS. These processors and the current sparse matrix data structures are studied and documented. Items examined include: details of the data structures, interdependence of data structures, data-blocking logic in the data structures, processor data flow and architecture, and processor algorithmic logic flow.

  7. Phoenix Missile Hypersonic Testbed (PMHT): Project Concept Overview

    NASA Technical Reports Server (NTRS)

    Jones, Thomas P.

    2007-01-01

    An over view of research into a low cost hypersonic research flight test capability to increase the amount of hypersonic flight data to help bridge the large developmental gap between ground testing/analysis and major flight demonstrator Xplanes is provided. The major objectives included: develop an air launched missile booster research testbed; accurately deliver research payloads through programmable guidance to hypersonic test conditions; low cost; a high flight rate minimum of two flights per year and utilize surplus air launched missiles and NASA aircraft.

  8. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    NASA Technical Reports Server (NTRS)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently

  9. The Living With a Star Space Environment Testbed Experiments

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  10. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  11. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  12. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  13. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  14. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  15. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  16. Shallow scattering layer in the subarctic pacific ocean: detection by high-frequency echo sounder.

    PubMed

    Barraclough, W E; Lebrasseur, R J; Kennedy, O D

    1969-10-31

    Shallow scattering layers consisting mainly of Calanus cristatus were detected on a trans-Pacific crossing to depths of 60 meters with a high-frequency echo sounder. Biomass estimates of these layers indicate concentrations of zoo-plankton that are greater and more extensive than previously reported in the open ocean. PMID:17778203

  17. Determination of film processing specifications for the Apollo 17 S-209 lunar sounder experiment

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    The lunar sounder is described as a radar system operating at carrier frequencies of 5, 15, and 150 MHz. The radar echoes are recorded onto Kodak type S0-394 film through the use of an optical recorder utilizing a cathode ray tube as the exposing device. A processing configuration is determined with regard to linearity, dynamic range, and noise.

  18. High-powered Radar Sounders for the Investigation of Jupiter's Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Rodriguez, E.; Edelstein, Wendy

    2003-01-01

    This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.

  19. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  20. Evolution of satellite imagers and sounders and for low Earth orbit and technology directions at NASA

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-09-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  1. 77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Pilot Program, 73 FR 76,002 (Dec. 15, 2008). \\3\\ The final Phase I test plan and additional information... National Telecommunications and Information Administration Spectrum Sharing Innovation Test-Bed Pilot... conduct in Phase II/III of the Spectrum Sharing Innovation Test-Bed pilot program to assess...

  2. PORT: A Testbed Paradigm for On-line Digital Archive Development.

    ERIC Educational Resources Information Center

    Keeler, Mary; Kloesel, Christian

    1997-01-01

    Discusses the Peirce On-line Resource Testbed (PORT), a digital archive of primary data. Highlights include knowledge processing testbeds for digital resource development; Peirce's pragmatism in operation; PORT and knowledge processing; obstacles to archive access; and PORT as a paradigm for critical control in knowledge processing. (AEF)

  3. Development of a flexible test-bed for robotics, telemanipulation and servicing research

    NASA Technical Reports Server (NTRS)

    Davies, Barry F.

    1989-01-01

    The development of a flexible operation test-bed, based around a commercially available ASEA industrial robot is described. The test-bed was designed to investigate fundamental human factors issues concerned with the unique problems of robotic manipulation in the hostile environment of Space.

  4. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  5. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  6. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  7. Distributed computing testbed for a remote experimental environment

    SciTech Connect

    Butner, D.N.; Casper, T.A.; Howard, B.C.; Henline, P.A.; Davis, S.L.; Barnes, D.; Greenwood, D.E.

    1995-09-18

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on the DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.

  8. A Battery Certification Testbed for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  9. The Hyperion Project: Partnership for an Advaned Technology Cluster Testbed

    SciTech Connect

    Seager, M; Leininger, M

    2008-04-28

    The Hyperion project offers a unique opportunity to participate in a community-driven testing and development resource at a scale beyond what can be accomplished by one entity alone. Hyperion is a new strategic technology partnership intended to support the member-driven development and testing at scale. This partnership will allow commodity clusters to scale up to meet the growing demands of customers multi-core petascale simulation environments. Hyperion will tightly couple together the outstanding research and development capabilities of Lawrence Livermore National Laboratory with leading technology companies, including Cisco, Data Direct Networks, Dell, Intel, LSI, Mellanox, Qlogic, RedHat, SuperMicro and Sun. The end goal of this project is to revolutionize cluster computing in fundamental ways by providing the critical software and hardware components for a highly scalable simulation environment. This environment will include support for high performance networking, parallel file systems, operating system, and cluster management. This goal will be achieved by building a scalable technology cluster testbed that will be fully dedicated to the partners and provide: (1) A scalable development testing and benchmarking environment for critical enabling Linux cluster technologies; (2) An evaluation testbed for new hardware and software technologies; and (3) A vehicle for forming long term collaborations.

  10. Contrast analysis and stability on the ExAO testbed

    SciTech Connect

    Evans, J; Thomas, S; Gavel, D; Dillon, D; Macintosh, B

    2008-06-10

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. The Laboratory for Adaptive Optics at UC Santa Cruz is investigating limits to high-contrast imaging in support of the Gemini Planet Imager. Previous contrast measurements were made with a simple single-opening prolate spheroid shaped pupil that produced a limited region of high-contrast, particularly when wavefront errors were corrected with the 1024-actuator Boston Micromachines MEMS deformable mirror currently in use on the testbed. A more sophisticated shaped pupil is now being used that has a much larger region of interest facilitating a better understanding of high-contrast measurements. In particular we examine the effect of heat sources in the testbed on PSF stability. We find that rms image motion scales as 0.02 {lambda}/D per watt when the heat source is near the pupil plane. As a result heat sources of greater than 5 watts should be avoided near pupil planes for GPI. The safest place to introduce heat is near a focal plane. Heat also can effect the standard deviation of the high-contrast region but in the final instrument other sources of error should be more significant.

  11. STRS Radio Service Software for NASA's SCaN Testbed

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.

    2012-01-01

    NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.

  12. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

  13. STRS Radio Service Software for NASA's SCaN Testbed

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.

    2013-01-01

    NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.

  14. Characterization of Vegetation using the UC Davis Remote Sensing Testbed

    NASA Astrophysics Data System (ADS)

    Falk, M.; Hart, Q. J.; Bowen, K. S.; Ustin, S. L.

    2006-12-01

    Remote sensing provides information about the dynamics of the terrestrial biosphere with continuous spatial and temporal coverage on many different scales. We present the design and construction of a suite of instrument modules and network infrastructure with size, weight and power constraints suitable for small scale vehicles, anticipating vigorous growth in unmanned aerial vehicles (UAV) and other mobile platforms. Our approach provides the rapid deployment and low cost acquisition of high aerial imagery for applications requiring high spatial resolution and revisits. The testbed supports a wide range of applications, encourages remote sensing solutions in new disciplines and demonstrates the complete range of engineering knowledge required for the successful deployment of remote sensing instruments. The initial testbed is deployed on a Sig Kadet Senior remote controlled plane. It includes an onboard computer with wireless radio, GPS, inertia measurement unit, 3-axis electronic compass and digital cameras. The onboard camera is either a RGB digital camera or a modified digital camera with red and NIR channels. Cameras were calibrated using selective light sources, an integrating spheres and a spectrometer, allowing for the computation of vegetation indices such as the NDVI. Field tests to date have investigated technical challenges in wireless communication bandwidth limits, automated image geolocation, and user interfaces; as well as image applications such as environmental landscape mapping focusing on Sudden Oak Death and invasive species detection, studies on the impact of bird colonies on tree canopies, and precision agriculture.

  15. Off-road perception testbed vehicle design and evaluation

    NASA Astrophysics Data System (ADS)

    Spofford, John R.; Herron, Jennifer B.; Anhalt, David J.; Morgenthaler, Matthew K.; DeHerrera, Clinton

    2003-09-01

    Off-road robotics efforts such as DARPA"s PerceptOR program have motivated the development of testbed vehicles capable of sustained operation in a variety of terrain and environments. This paper describes the retrofitting of a minimally-modified ATV chassis into such a testbed which has been used by multiple programs for autonomous mobility development and sensor characterization. Modular mechanical interfaces for sensors and equipment enclosures enabled integration of multiple payload configurations. The electric power subsystem was capable of short-term operation on batteries with refueled generation for continuous operation. Processing subsystems were mounted in sealed, shock-dampened enclosures with heat exchangers for internal cooling to protect against external dust and moisture. The computational architecture was divided into a real-time vehicle control layer and an expandable high level processing and perception layer. The navigation subsystem integrated real time kinematic GPS with a three-axis IMU for accurate vehicle localization and sensor registration. The vehicle software system was based on the MarsScape architecture developed under DARPA"s MARS program. Vehicle mobility software capabilities included route planning, waypoint navigation, teleoperation, and obstacle detection and avoidance. The paper describes the vehicle design in detail and summarizes its performance during field testing.

  16. Extreme Adaptive Optics Testbed: Results and Future Work

    SciTech Connect

    Evans, J W; Sommargren, G; Poyneer, L; Macintosh, B; Severson, S; Dillon, D; Sheinis, A; Palmer, D; Kasdin, J; Olivier, S

    2004-07-15

    'Extreme' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A simple optical design allows us to minimize wavefront error and maximize the experimentally achievable contrast before progressing to a more complex set-up. A phase shifting diffraction interferometer is used to measure wavefront errors with sub-nm precision and accuracy. We have demonstrated RMS wavefront errors of <1.3 nm and a contrast of >10{sup -7} over a substantial region using a shaped pupil. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical- Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines, which will be used for wavefront control. In our initial experiments we can flatten the deformable mirror to 1.8-nm RMS wavefront error within a control radius of 5-13 cycles per aperture. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  17. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  18. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  19. NASA/Goddard Space Flight Center's testbed for CCSDS compatible systems

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.

    1993-01-01

    A testbed for flight and ground systems compatible with the Consultative Committee for Space Data Systems (CCSDS) Recommendations has been developed at NASA's Goddard Space Flight Center. The subsystems of an end-to-end CCSDS based data system are being developed. All return link CCSDS telemetry services (except Internet) and both versions of the CCSDS frame formats are being implemented. In key areas of uncertainty, multiple design approaches are being performed. In addition, key flight-qualifiable hardware components, such as Reed-Solomon encoders, are being developed to complement the testbed element development. The testbed and its capabilities are described. The method of dissemination of the testbed results are given, as are plans to make the testbed capabilities available to outside users. Plans for the development of standardized conformance and compatibility tests are provided.

  20. High performance testbed for four-beam infrared interferometric nulling and exoplanet detection.

    PubMed

    Martin, Stefan; Booth, Andrew; Liewer, Kurt; Raouf, Nasrat; Loya, Frank; Tang, Hong

    2012-06-10

    Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed.

  1. High performance testbed for four-beam infrared interferometric nulling and exoplanet detection.

    PubMed

    Martin, Stefan; Booth, Andrew; Liewer, Kurt; Raouf, Nasrat; Loya, Frank; Tang, Hong

    2012-06-10

    Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed. PMID:22695670

  2. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  3. SPHERES: Design of a Formation Flying Testbed for ISS

    NASA Astrophysics Data System (ADS)

    Sell, S. W.; Chen, S. E.

    2002-01-01

    The SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) payload is an innovative formation-flying spacecraft testbed currently being developed for use internally aboard the International Space Station (ISS). The purpose of the testbed is to provide a cost-effective, long duration, replenishable, and easily reconfigurable platform with representative dynamics for the development and validation of metrology, formation flying, and autonomy algorithms. The testbed components consist of three 8-inch diameter free-flying "satellites," five ultrasound beacons, and an ISS laptop workstation. Each satellite is self-contained with on-board battery power, cold-gas propulsion (CO2), and processing systems. Satellites use two packs of eight standard AA batteries for approximately 90 minutes of lifetime while beacons last the duration of the mission powered by a single AA battery. The propulsion system uses pressurized carbon dioxide gas, stored in replaceable tanks, distributed through an adjustable regulator and associated tubing to twelve thrusters located on the faces of the satellites. A Texas Instruments C6701 DSP handles control algorithm data while an FPGA manages all sensor data, timing, and communication processes on the satellite. All three satellites communicate with each other and with the controlling laptop via a wireless RF link. Five ultrasound beacons, located around a predetermined work area, transmit ultrasound signals that are received by each satellite. The system effectively acts as a pseudo-GPS system, allowing the satellites to determine position and attitude and to navigate within the test arena. The payload hardware are predominantly Commercial Off The Shelf (COTS) products with the exception of custom electronics boards, selected propulsion system adaptors, and beacon and satellite structural elements. Operationally, SPHERES will run in short duration test sessions with approximately two weeks between each session. During

  4. Space Station technology testbed: 2010 deep space transport

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  5. Space Station technology testbed: 2010 deep space transport

    NASA Astrophysics Data System (ADS)

    Holt, Alan C.

    1993-12-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  6. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  7. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  8. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  9. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  10. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  11. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Grendreau, Keith C.

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  12. SIM Interferometer Testbed (SCDU) Status and Recent Results

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; An, Xin; Goullioud, Renaud; Shao, Michael; Shen, Tsae-Pyng; Wehmeier, Udo J.; Weilert, Mark A.; Wang, Xu; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing

    2010-01-01

    SIM Lite is a space-borne stellar interferometer capable of searching for Earth-size planets in the habitable zones of nearby stars. This search will require measurement of astrometric angles with sub micro-arcsecond accuracy and optical pathlength differences to 1 picometer by the end of the five-year mission. One of the most significant technical risks in achieving this level of accuracy is from systematic errors that arise from spectral differences between candidate stars and nearby reference stars. The Spectral Calibration Development Unit (SCDU), in operation since 2007, has been used to explore this effect and demonstrate performance meeting SIM goals. In this paper we present the status of this testbed and recent results.

  13. Experimental validation of docking and capture using space robotics testbeds

    NASA Astrophysics Data System (ADS)

    Spofford, John; Schmitz, Eric; Hoff, William

    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.

  14. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John; Schmitz, Eric; Hoff, William

    1991-01-01

    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.

  15. MIT-KSC space life sciences telescience testbed

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.

  16. Intelligent Elements for the ISHM Testbed and Prototypes (ITP) Project

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Park, Han; Schwabacher, Mark; Watson, Michael; Mackey, Ryan; Fijany, Amir; Trevino, Luis; Weir, John

    2005-01-01

    Deep-space manned missions will require advanced automated health assessment capabilities. Requirements such as in-space assembly, long dormant periods and limited accessibility during flight, present significant challenges that should be addressed through Integrated System Health Management (ISHM). The ISHM approach will provide safety and reliability coverage for a complete system over its entire life cycle by determining and integrating health status and performance information from the subsystem and component levels. This paper will focus on the potential advanced diagnostic elements that will provide intelligent assessment of the subsystem health and the planned implementation of these elements in the ISHM Testbed and Prototypes (ITP) Project under the NASA Exploration Systems Research and Technology program.

  17. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  18. The computational structural mechanics testbed architecture. Volume 1: The language

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    This is the first set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP, and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 1 presents the basic elements of the CLAMP language and is intended for all users.

  19. The computational structural mechanics testbed architecture. Volume 2: Directives

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the second of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 2 describes the CLIP directives in detail. It is intended for intermediate and advanced users.

  20. The computational structural mechanics testbed architecture. Volume 2: The interface

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    This is the third set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 3 describes the CLIP-Processor interface and related topics. It is intended only for processor developers.

  1. Experimental Testbed for the Study of Hydrodynamic Issues in Supernovae

    SciTech Connect

    Robey, H F; Kane, J O; Remington, B A; Drake, R P; Hurricane, O A; Louis, H; Wallace, R J; Knauer, J; Keiter, P; Arnett, D

    2000-10-09

    More than a decade after the explosion of SN 1987A, unresolved discrepancies still remain in attempts to numerically simulate the mixing processes initiated by the passage of a very strong shock through the layered structure of the progenitor star. Numerically computed velocities of the radioactive {sup 56}Ni and {sup 56}CO, produced by shock-induced explosive burning within the silicon layer for example, are still more than 50% too low as compared with the measured velocities. In order to resolve such discrepancies between observation and simulation, an experimental testbed has been designed on the Omega Laser for the study of hydrodynamic issues of importance to supernovae (SNe). In this paper, we present results from a series of scaled laboratory experiments designed to isolate and explore several issues in the hydrodynamics of SN explosions. The results of the experiments are compared with numerical simulations and are generally found to be in reasonable agreement.

  2. An Overview of Research Activity at the Launch Systems Testbed

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Kandula, Max

    2003-01-01

    This paper summarizes the acoustic testing and analysis activities at the Launch System Testbed (LST) of Kennedy Space Center (KSC). A major goal is to develop passive methods of mitigation of sound from rocket exhaust jets with ducted systems devoid of traditional water injection. Current testing efforts are concerned with the launch-induced vibroacoustic behavior of scaled exhaust jets. Numerical simulations are also developed to study the sound propagation from supersonic jets in free air and through enclosed ducts. Scaling laws accounting for the effects of important parameters such as jet Mach number, jet velocity, and jet temperature on the far-field noise are investigated in order to deduce full-scale environment from small-scale tests.

  3. Modular, Rapid Propellant Loading System/Cryogenic Testbed

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter, Sr.; Jumper, Kevin

    2012-01-01

    The Cryogenic Test Laboratory (CTL) at Kennedy Space Center (KSC) has designed, fabricated, and installed a modular, rapid propellant-loading system to simulate rapid loading of a launch-vehicle composite or standard cryogenic tank. The system will also function as a cryogenic testbed for testing and validating cryogenic innovations and ground support equipment (GSE) components. The modular skid-mounted system is capable of flow rates of liquid nitrogen from 1 to 900 gpm (approx equals 3.8 to 3,400 L/min), of pressures from ambient to 225 psig (approx equals 1.5 MPa), and of temperatures to -320 F (approx equals -195 C). The system can be easily validated to flow liquid oxygen at a different location, and could be easily scaled to any particular vehicle interface requirements

  4. Telescience testbed: Operational support functions for biomedical experiments

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Watanabe, Satoru; Shoji, Takatoshi; Clarke, Andrew H.; Suzuki, Hiroyuki; Yanagihara, Dai

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  5. Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.

  6. Telescience testbed: operational support functions for biomedical experiments.

    PubMed

    Yamashita, M; Watanabe, S; Shoji, T; Clarke, A H; Suzuki, H; Yanagihara, D

    1992-07-01

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  7. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  8. Testbeds for Wind Resource Characterization: Needs and Potential Facilities

    NASA Astrophysics Data System (ADS)

    Shaw, W. J.; Berg, L. K.; Rishel, J. P.; Flaherty, J. E.

    2008-12-01

    With the emergence of wind as a significant source of alternative energy, it is becoming increasingly clear that some problems associated with the installation and operation of wind plants arise because of continuing gaps in our knowledge of fundamental physical processes in the lower atmospheric boundary layer. Over the years, a number of well-designed intensive field campaigns have yielded significant insight into boundary layer structure and turbulence under targeted conditions. However, to be able to usefully simulate the atmosphere for applications of wind power, it is important to evaluate the resulting parameterizations under a realistic spectrum of atmospheric conditions. To do this, facilities - testbeds - are required that operate continually over long periods. Such facilities could also be used, among other things, to establish long-term statistics of mean wind and low-level shear, to explore the representativeness of shorter-period (e.g. one year) statistics, to explore techniques for extrapolating wind statistics in space, and to serve as host infrastructure for boundary layer campaigns targeted to wind energy applications. During the last half of the 20th century, a number of tall instrumented towers were installed at locations around the United States for studies of atmospheric dispersion and other purposes. Many of these are no longer in service, but some have operated continuously for decades and continue to collect calibrated wind and temperature information from multiple heights extending to hub height or higher for many current operational wind turbines. This talk will review the status of tall towers in the U.S. that could anchor testbeds for research related wind power production and will use data from the 120-m meteorological tower on the Hanford Site in southeastern Washington State to illustrate the kind of information is available.

  9. Vacuum Nuller Testbed Performance, Characterization and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  10. Design, performance, and operational characteristics of an FDDI testbed

    SciTech Connect

    Testi, N.; Gossage, S.A.; Ralph, W.D.

    1991-01-01

    Sandia National Laboratories has recently completed a major upgrade of its Central Computing Network (CCN), which is a large heterogeneous network providing scientific supercomputing, file storage, output services, and remote access to network resources. The new network, called the Secure Supercomputing Network (SSN), is based on the HPYERchannel-100 technology platform and is primarily a UNIX-TCP/IP network environment. A migration from the HYPERchannel-100 hardware platform presently in use on the SSN to the Network Systems Corporation (NSC) Fiber Distributed Data Interface (FDDI) hardware platform is currently being considered for several reasons. First, Sandia supports the movement from proprietary hardware and software solutions to standardized solutions. Second, the inherent robustness of the FDDI standard would provide the reliability which is critical to production computing at the Labs. Finally, the potential for tuning the ring for specific applications and connection schemes is an advantage over HYPERchannel. In order to evaluate the NSC FDDI technology platform, an FDDI testbed has been constructed, consisting of two independent FDDI rings. The rings are connected via T3 (44.736 Megabits/second) and T1 (1.544 Megabits/second) link Data Exchange Units (DXUs), and an FE649 FDDI/FDDI router. In addition to a variety of NSC FDDI DXUs and associated host computers, several other vendors' FDDI products are also present on the testbed. Test data on fault isolation and recovery mechanisms, performance, IP routing (within and between rings), IP packet labeling, monitor capabilities, and interoperability'' will be presented. The design and implementation of the underlying fiber optic physical plant will also be discussed.

  11. Demo III: Department of Defense testbed for unmanned ground mobility

    NASA Astrophysics Data System (ADS)

    Shoemaker, Chuck M.; Bornstein, Jonathan A.; Myers, Scott D.; Brendle, Bruce E., Jr.

    1999-07-01

    Robotics has been identified by numerous recent Department of Defense (DOD) studies as a key enabling technology for future military operational concepts. The Demo III Program is a multiyear effort encompassing technology development and demonstration on testbed platforms, together with modeling simulation and experimentation directed toward optimization of operational concepts to employ this technology. Primary program focus is the advancement of capabilities for autonomous mobility through unstructured environments, concentrating on both perception and intelligent control technology. The scout mission will provide the military operational context for demonstration of this technology, although a significant emphasis is being placed upon both hardware and software modularity to permit rapid extension to other military missions. The Experimental Unmanned Vehicle (XUV) is a small (approximately 1150 kg, V-22 transportable) technology testbed vehicle designed for experimentation with multiple military operational concepts. Currently under development, the XUV is scheduled for roll-out in Summer 1999, with an initial troop experimentation to be conducted in September 1999. Though small, and relatively lightweight, modeling has shown the chassis capable of automotive mobility comparable to the current Army lightweight high-mobility, multipurpose, wheeled vehicle (HMMWV). The XUV design couples multisensor perception with intelligent control to permit autonomous cross-country navigation at speeds of up to 32 kph during daylight and 16 kph during hours of darkness. A small, lightweight, highly capable user interface will permit intuitive control of the XUV by troops from current-generation tactical vehicles. When it concludes in 2002, Demo III will provide the military with both the technology and the initial experience required to develop and field the first generation of semi-autonomous tactical ground vehicles for combat, combat support, and logistics applications.

  12. Software management and implementation plan for the Microwave Limb Sounder (MLS) carried on a NASA Earth Observing System (EOS) satellite

    NASA Technical Reports Server (NTRS)

    Shaw, H. Y.; Girard, M. A.; Perun, V. S.; Sherif, J. S.

    2003-01-01

    This paper presents a Software Management and Implementation Plan (SIMP) for managing and controlling the development of the Microwave Limb Sounder (MLS) instrument software, and the Instrument Ground Support Equipment (IGSE) software.

  13. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.

    2008-01-01

    Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.

  14. Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hilliard, L.; Racette, P.; Thompson, E.

    2014-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.

  15. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  16. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  17. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    NASA Astrophysics Data System (ADS)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  18. Feasibility of stratosphere temperature sounding with the Multi-Order Etalon Sounder (MOES) in the infrared

    SciTech Connect

    Wang, J.; Hays, P.B.; Moncet, J.L.

    1994-12-31

    Instruments with very high spectral resolution are needed to sound stratospheric temperatures from satellite. Maximizing the contributions of the stratosphere to the upwelling radiance measured by a particular channel can be achieved by using high spectral resolution channels positioned at strong carbon dioxide (CO{sub 2}) line centers. In this paper, the techniques of stratospheric temperature sounding from satellite are briefly reviewed. The feasibility of high resolution stratospheric temperature sounding with the Multi-Order Etalon Sounder (MOES), a high resolution Fabry-Perot array spectrometer, is discussed. The simulation studies indicate that stratospheric temperatures can be derived with a root-mean-square (RMS) error of about 2--3 K with MOES. A scenario to add MOES to the next generation High Resolution Infrared Sounder (HIRS/3) currently under development with minimal cost is suggested. With its compact size and ruggedness, MOES is an ideal candidate as the stratospheric temperature sounding unit for small environmental satellite platforms.

  19. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  20. The Stratospheric Wind Ingrared Limb Sounder: Investigation of atmospheric dynamics and transport from Eos

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.

    1992-01-01

    The Stratospheric Wind Infrared Limb Sounder (SWIRLS) is one of the instruments in the atmospheric sounder package to be flown by NASA on the Earth Observing System (EOS) B platform in the late 1990's. SWIRLS is designed to measure the horizontal vector wind field, atmospheric temperature, and the abundances and distributions of ozone and nitrous oxide in the middle atmosphere. These measurements will constitute a dynamical climatology of the stratosphere covering time scales ranging from diurnal to interannual. In addition, the SWIRLS investigation will quantify the physical mechanisms responsible for the structure and variations of stratospheric circulation and temperature fields, including the transport of species, particularly ozone, heat and momentum. Existing data sets lack the combination of accuracy, global and temporal coverage, spatial resoultion and simultaneity required to distinguish unambiguosly between the roles of dynamical and chemical processes in determining the current distribution of ozone and its evolution in the future. The measurement objectives, measurement approach, and instrumentation of SWIRLS is described.

  1. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  2. Theoretical computation of trace gases retrieval random error from measurements of high spectral resolution infrared sounder

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.; Woolf, Harold M.; Theriault, J. M.

    1991-01-01

    The purpose of this paper is to demonstrate the trace gas profiling capabilities of future passive high spectral resolution (1 cm(exp -1) or better) infrared (600 to 2700 cm(exp -1)) satellite tropospheric sounders. These sounders, such as the grating spectrometer, Atmospheric InfRared Sounders (AIRS) (Chahine et al., 1990) and the interferometer, GOES High Resolution Interferometer Sounder (GHIS), (Smith et al., 1991) can provide these unique infrared spectra which enable us to conduct this analysis. In this calculation only the total random retrieval error component is presented. The systematic error components contributed by the forward and inverse model error are not considered (subject of further studies). The total random errors, which are composed of null space error (vertical resolution component error) and measurement error (instrument noise component error), are computed by assuming one wavenumber spectral resolution with wavenumber span from 1100 cm(exp -1) to 2300 cm(exp -1) (the band 600 cm(exp -1) to 1100 cm(exp -1) is not used since there is no major absorption of our three gases here) and measurement noise of 0.25 degree at reference temperature of 260 degree K. Temperature, water vapor, ozone and mixing ratio profiles of nitrous oxide, carbon monoxide and methane are taken from 1976 US Standard Atmosphere conditions (a FASCODE model). Covariance matrices of the gases are 'subjectively' generated by assuming 50 percent standard deviation of gaussian perturbation with respect to their US Standard model profiles. Minimum information and maximum likelihood retrieval solutions are used.

  3. Level 1B products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, H. H.; Overoye, Ken

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched May 4, 2002 on the EOS Aqua Spacecraft. A discussion is given of the objectives of the AIRS experiment, including requirements on the data products. We summarize the instrument characteristics, including sensitivity, noise, and spectral response, and preflight calibration results leading to the estimate of the calibration accuracy. The Level 1B calibration algorithm is presented as well as the results of in-flight stability and sensitivity measurements.

  4. The Laser Atmospheric Wind Sounder (LAWS) Phase 2 Preliminary System Design

    NASA Technical Reports Server (NTRS)

    Petheram, John C.; Kenyon, David L.; Wissinger, Alan B.; Lawrence, T. Rhidian

    1992-01-01

    The laser Atmospheric Wind Sounder (LAWS) is intended to measure global wind profiles in the lower and upper troposphere as part of the Earth Observing System (EOS). Global scale wind profiles will lead to a better understanding of large scale circulation processes and climate dynamics, an understanding of mesoscale phenomena, improved numerical weather prediction, and further insights into the coupling of the atmosphere/oceans/biosphere system. Here, details are given of the Phase 2 preliminary design.

  5. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  6. Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.

    2004-01-01

    Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector

  7. A new multibeam echo sounder/sonar for fishery research applications

    NASA Astrophysics Data System (ADS)

    Andersen, Lars Nonboe; Berg, Sverre; Stenersen, Erik; Gammelsaeter, Ole Bernt; Lunde, Even Borte

    2003-10-01

    Fisheries scientists have for many years been requesting a calibrated multibeam echo sounder/sonar specially designed for fishery research applications. Simrad AS has, in cooperation with IFREMER, France, agreed on specifications for a multibeam echo sounder and with IMR, Norway for a multibeam sonar, and contracts were signed for development of such systems in January 2003. The systems have 800 transmitting and receiving channels with similar hardware, but different software, and are characterized by narrow beams, low-sidelobe levels, and operate in the frequency range 70-120 kHz. The echo sounder is designed for high operating flexibility, with 1 to 47 beams of approximately 2°, covering a maximum sector of 60°. In addition, normal split beam mode on 70 and 120 kHz with 7° beams for comparison with standard system is available. The sonar will be mounted on a drop keel, looking horizontally, covering a horizontal sector of +/-30°, and a vertical sector of 45°. Total number of beams is 500, 25 beams horizontally with a resolution of ~3°, and 20 beams vertically with a resolution of ~4°. Both systems are designed for accurate fish-stock assessment and fish-behavior studies.

  8. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  9. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  10. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  11. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  12. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  13. Independent Technology Assessment within the Federation of Earth Science Information Partners (ESIP) Testbed

    NASA Astrophysics Data System (ADS)

    Burgess, A. B.; Robinson, E.; Graybeal, J.

    2015-12-01

    The Federation of Earth Science Information Partners (ESIP) is a community of science, data and information technology practitioners. ESIP's mission is to support the networking and data dissemination needs of our members and the global community. We do this by linking the functional sectors of education, observation, research and application with the ultimate use of Earth science. Amongst the services provided to ESIP members is the Testbed; a collaborative forum for the development of technology standards, services, protocols and best practices. ESIP has partnered with the NASA Advanced Information Systems Technology (AIST) program to integrate independent assessment of Testing Readiness Level (TRL) into the ESIP Testbed. In this presentation we will 1) demonstrate TRL assessment in the ESIP Testbed using three AIST projects, 2) discuss challenges and insights into creating an independent validation/verification framework and 3) outline the versatility of the ESIP Testbed as applied to other technology projects.

  14. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  15. Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems

    NASA Astrophysics Data System (ADS)

    Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan

    2016-03-01

    A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.

  16. Carrier Plus: A Sensor Payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl; Moss, Steven; Howard, Regan; LaBel, Kenneth; Grycewicz, Tom; Barth, Janet; Brewer, Dana

    2003-01-01

    The paper discusses the following: 1. Living with a Star (LWS) program: space environment testbed (SET); natural space environment. 2. Carrier plus: goals and benefits. 3. ON-orbit sensor measurements. 4. Carrier plus architecture. 5. Participation in carrier plus.

  17. Development and Experiments of a Test-Bed for Wheel-Soil Interaction of Lunar Rover

    NASA Astrophysics Data System (ADS)

    Tao, Jianguo; Ding, Liang; Quan, Qiquan; Gao, Haibo

    2012-07-01

    Wheel-soil interaction of lunar exploring rover plays a critical role in rover mechanical design, control and simulation. For presenting and validating effective terramechanics models, as well as evaluating rover wheel performance, a set of wheel-soil interaction test- bed was developed. The test-bed can control the wheel rolling or steering movement at different slippage rates and different speeds, and through a variety of sensors to acquire the measured values of mechanical properties of wheel-soil interaction such as drawbar pull, side force, wheel sinkage displacement, steering torque. In this paper, some characteristics of the test-bed are described, and some experimental works in a rigid rover wheel design and wheel-soil interaction modeling by means of this test-bed are summarized. Experimental results show that the test-bed can accurately and efficiently test wheel-soil interaction for various wheels and loose soil types.

  18. Telescience testbed examination aboard Japanese Experiment Module (JEM): life and material science experiments.

    PubMed

    Matsumoto, K; Fujimori, Y; Shimizu, M; Usami, R; Kusunose, T; Kimura, H; Ohyama, M; Ishikura, S; Nishida, H; Negishi, N; Kawabata, S

    1992-07-01

    A telescience ground testbed experiment was conducted by the National Space Development Agency of Japan (NASDA) at the Tsukuba Space Center in March 1991. The objectives of the ground testbed experiment were to extract scientists' requirements for a communication method, to evaluate the influence of transmission delay and capacity on experiment operations, and to evaluate performance and functions of the system for the testbed experiment. The microscopic operations experiment, the image furnace experiment and the onboard training experiment were selected as typical ground testbed experiments. In these experiments, motion video transmission at 320 kbps was acceptable for observing the experiments and communicating between the principal investigator and the payload specialist. In the microscopic operations experiment, motion video transmission at 1.5 Mbps or more was required for detailed observation. A 4-second transmission delay (roundtrip) was allowable for mutual communication.

  19. Analysis of testbed airborne multispectral scanner data from Superflux II. [Chesapeake Bay plume and James Shelf data

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Hardesty, C. A.; Jobson, D. J.; Bahn, G. S.

    1981-01-01

    A test bed aircraft multispectral scanner (TBAMS) was flown during the James Shelf, Plume Scan, and Chesapeake Bay missions as part of the Superflux 2 experiment. Excellent correlations were obtained between water sample measurements of chlorophyll and sediment and TBAMS radiance data. The three-band algorithms used were insensitive to aircraft altitude and varying atmospheric conditions. This was particularly fortunate due to the hazy conditions during most of the experiments. A contour map of sediment, and also chlorophyll, was derived for the Chesapeake Bay plume along the southern Virginia-Carolina coastline. A sediment maximum occurs about 5 nautical miles off the Virginia Beach coast with a chlorophyll maximum slightly shoreward of this. During the James Shelf mission, a thermal anomaly (or front) was encountered about 50 miles from the coast. There was a minor variation in chlorophyll and sediment across the boundary. During the Chesapeake Bay mission, the Sun elevation increased from 50 degrees to over 70 degrees, interfering with the generation of data products.

  20. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Lyu, C.; Blackwell, W. J.; Leslie, V.; Baker, N.; Mo, T.; Sun, N.; Bi, L.; Anderson, K.; Landrum, M.; De Amici, G.; Gu, D.; Foo, A.; Ibrahim, W.; Robinson, K.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi-NPOESS Preparatory Project (S-NPP) satellite and has just finished its first year on orbit. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface. Designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems), ATMS has 22 channels spanning 23—183 GHz, closely following the channel set of the MSU, AMSU-A1 and A2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately one quarter the volume, one half the mass, and one half the power of the three AMSUs. A summary description of the ATMS design will be presented. Post-launch calibration/validation activities include geolocation determination, radiometric calibration using the on-board warm targets and cold space views, simultaneous observations by microwave sounders on other satellites, comparison vs. pre-launch thermovacuum test performance; observations vs. atmospheric model predicted radiances, and comparisons of soundings vs. radiosondes. Brief descriptions of these

  1. A high-resolution, four-band SAR testbed with real-time image formation

    SciTech Connect

    Walker, B.; Sander, G.; Thompson, M.; Burns, B.; Fellerhoff, R.; Dubbert, D.

    1996-03-01

    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

  2. Validation of the CERTS Microgrid Concept The CEC/CERTS MicrogridTestbed

    SciTech Connect

    Nichols, David K.; Stevens, John; Lasseter, Robert H.; Eto,Joseph H.

    2006-06-01

    The development of test plans to validate the CERTSMicrogrid concept is discussed, including the status of a testbed.Increased application of Distributed Energy Resources on the Distributionsystem has the potential to improve performance, lower operational costsand create value. Microgrids have the potential to deliver these highvalue benefits. This presentation will focus on operationalcharacteristics of the CERTS microgrid, the partners in the project andthe status of the CEC/CERTS microgrid testbed. Index Terms DistributedGeneration, Distributed Resource, Islanding, Microgrid,Microturbine

  3. Versatile simulation testbed for rotorcraft speech I/O system design

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1986-01-01

    A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer command structure and features, feedback from the recognizer, and random access to controls via speech command.

  4. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  5. Closing the contrast gap between testbed and model prediction with WFIRST-CGI shaped pupil coronagraph

    NASA Astrophysics Data System (ADS)

    Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya

    2016-07-01

    JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.

  6. Designing an autonomous helicopter testbed: From conception through implementation

    NASA Astrophysics Data System (ADS)

    Garcia, Richard D.

    Miniature Unmanned Aerial Vehicles (UAVs) are currently being researched for a wide range of tasks, including search and rescue, surveillance, reconnaissance, traffic monitoring, fire detection, pipe and electrical line inspection, and border patrol to name only a few of the application domains. Although small/miniature UAVs, including both Vertical Takeoff and Landing (VTOL) vehicles and small helicopters, have shown great potential in both civilian and military domains, including research and development, integration, prototyping, and field testing, these unmanned systems/vehicles are limited to only a handful of university labs. For VTOL type aircraft the number is less than fifteen worldwide! This lack of development is due to both the extensive time and cost required to design, integrate and test a fully operational prototype as well as the shortcomings of published materials to fully describe how to design and build a "complete" and "operational" prototype system. This dissertation overcomes existing barriers and limitations by describing and presenting in great detail every technical aspect of designing and integrating a small UAV helicopter including the on-board navigation controller, capable of fully autonomous takeoff, waypoint navigation, and landing. The presented research goes beyond previous works by designing the system as a testbed vehicle. This design aims to provide a general framework that will not only allow researchers the ability to supplement the system with new technologies but will also allow researchers to add innovation to the vehicle itself. Examples include modification or replacement of controllers, updated filtering and fusion techniques, addition or replacement of sensors, vision algorithms, Operating Systems (OS) changes or replacements, and platform modification or replacement. This is supported by the testbed's design to not only adhere to the technology it currently utilizes but to be general enough to adhere to a multitude of

  7. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  8. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  9. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  10. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  11. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    successfully retrieved out of the 19 possible cases. Profiles from rising occultations were retrieved with comparable quality to setting occultations. The only missed occultations were due to missing or poor quality ancillary navigation data from the global tracking network and the aircraft turns. We demonstrate that the OL tracking receiver performs much better than the conventional receivers, consistently tracking as low as 0.5 to 3.4 km. Based on this success rate and the improved global network coverage since 2008 providing navigation data bits, the airborne RO system on a straight flight path today would achieve 3 occultations per hour of flight time. The refractivity profiles retrieved with a geometric optics method show a bias with respect to the European Center for Medium Range Weather Forecasting (ECMWF) analysis profiles. The data were compared with a co-located spaceborne RO profile, and although the airborne data shows a larger bias with respect to ECMWF profiles, there is a correlation of the vertical variations observed with both datasets. The standard deviation of the difference with the ECMWF profile refractivity is less than 1 % in terms of refractivity. The comparison of the retrieved refractivity and a co-located radiosonde station profile shows a bias as well, with a standard deviation of 2.3 % from 5-12 km altitude. Future efforts should be directed at resolving the source of the bias, in which case the data will be quite useful for assimilation. The differences are within the range of the observation errors typically assigned to RO data below 10 km during assimilation. Signal tracking and retrieval in the lower troposphere continues to be a major challenge for spaceborne RO, and has limited the impact of all RO data in NWP in the lower troposphere. Full bandwidth signals from airborne measurements could provide a testbed for improving the quality of future spaceborne RO measurements. The airborne RO technique could potentially be implemented on commercial

  12. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder. Final report

    SciTech Connect

    Haines, D.M.; Reinisch, B.W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N{sub e}) as a function of height (the N{sub e} profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year. The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N{sub e} profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al.), has never been put into space. NASA`s 1990 Space Physics Strategy Implementation Study `The NASA Space Physics Program from 1995 to 2010` suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R{sub e} (Reiff et al.; Calvert et al.).

  13. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  14. NN-SITE: A remote monitoring testbed facility

    SciTech Connect

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-08-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide.

  15. F-15B transonic flight research testbed aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is flying a modified McDonnell-Douglas F-15B aircraft as a testbed for a variety of transonic flight experiments. The two-seat aircraft, bearing NASA tail number 836, is shown during a recent flight over the high desert carrying a Drdyen-designed Flight Test Fixture (FTF) upon which aerodynamic experiments are mounted. The FTF is a heavily instrumented fin-like structure which is mounted on the F-15B's underbelly in place of the standard external fuel tank. Since being aquired by NASA in 1993, the aircraft has been modified to include video recording, telemetry and data recording capabilities. The twin-engine aircraft flew several flights recently in support of an experiment to determine the precise location of sonic shockwave development as air passes over an airfoil. The F-15B is currently being prepared for the Boundary Layer Heat Experiment, which will explore the potential drag reduction from heating the turbulent portion of the air that passes over the fuselage of a large aircraft.

  16. Extrasolar Planetary Imaging Coronagraph: Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime ( 5 year goal) and will revisit planets at least three times at intervals of 9 months. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed,

  17. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  18. Development of a Testbed for Distributed Satellite Command and Control

    NASA Astrophysics Data System (ADS)

    Zetocha, Paul; Brito, Margarita

    2002-01-01

    At the Air Force Research Laboratory's Space Vehicles Directorate we are investigating and developing architectures for commanding and controlling a cluster of cooperating satellites through prototype development for the TechSat-21 program. The objective of this paper is to describe a distributed satellite testbed that is currently under development and to summarize near term prototypes being implemented for cluster command and control. To design, develop, and test our architecture we are using eight PowerPC 750 VME-based single board computers, representing eight satellites. Each of these computers is hosting the OSE(TM) real-time operating system from Enea Systems. At the core of our on-board cluster manager is ObjectAgent. ObjectAgent is an agent-based object-oriented framework for flight systems, which is particularly suitable for distributed applications. In order to handle communication with the ground as well as to assist with the cluster management we are using the Spacecraft Command Language (SCL). SCL is also at the centerpiece of our ground control station and handles cluster commanding, telemetry decommutation, state-of-health monitoring, and Fault Detection, Isolation, and Resolution (FDIR). For planning and scheduling activities we are currently using ASPEN from NASA/JPL. This paper will describe each of the above components in detail and then present the prototypes being implemented.

  19. Priority scheme planning for the robust SSM/PMAD testbed

    NASA Astrophysics Data System (ADS)

    Elges, Michael R.; Ashworth, Barry R.

    Whenever mixing priorities of manually controlled resources with those of autonomously controlled resources, the space station module power management and distribution (SSM/PMAD) environment requires cooperating expert system interaction between the planning function and the priority manager. The elements and interactions of the SSM/PMAD planning and priority management functions are presented. Their adherence to cooperating for common achievement are described. In the SSM/PMAD testbed these actions are guided by having a system planning function, KANT, which has insight to the executing system and its automated database. First, the user must be given access to all information which may have an effect on the desired outcome. Second, the fault manager element, FRAMES, must be informed as to the change so that correct diagnoses and operations take place if and when faults occur. Third, some element must engage as mediator for selection of resources and actions to be added or removed at the user's request. This is performed by the priority manager, LPLMS. Lastly, the scheduling mechanism, MAESTRO, must provide future schedules adhering to the user modified resource base.

  20. Biosensing Test-Bed Using Electrochemically Deposited Reduced Graphene Oxide.

    PubMed

    Bhardwaj, Sheetal K; Yadav, Premlata; Ghosh, Subhasis; Basu, Tinku; Mahapatro, Ajit K

    2016-09-21

    The development of an efficient test-bed for biosensors requires stable surfaces, capable of interacting with the functional groups present in bioentities. This work demonstrates the formation of highly stable electrochemically reduced graphene oxide (ERGO) thin films reproducibly on indium tin oxide (ITO)-coated glass substrates using a reliable technique through 60 s chronoamperometric reduction of a colloidal suspension maintained at neutral pH containing graphene oxide in deionized water. Structural optimization and biocompatible interactions of the resulting closely packed and uniformly distributed ERGO flakes on ITO surfaces (ERGO/ITO) are characterized using various microscopic and spectroscopic tools. Lipase enzyme is immobilized on the ERGO surface in the presence of ethyl-3-[3-(dimethylamino)propyl]carbodimide and N-hydroxysuccinimide for the detection of triglyceride in a tributyrin (TBN) solution. The ERGO/ITO surfaces prepared using the current technique indicate the noticeable detection of TBN, a source of triglycerides, at a sensitivity of 37 pA mg dL(-1) cm(-2) in the linear range from 50 to 300 mg dL(-1) with a response time of 12 s. The low apparent Michaelies-Menten constant of 0.28 mM suggests high enzyme affinity to TBN. The currently developed fast, simple, highly reproducible, and reliable technique for the formation of an ERGO electrode could be routinely utilized as a test bed for the detection of clinically active bioentities. PMID:27509332

  1. Expanded Owens Valley Solar Array (EOVSA) Testbed and Prototype

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Nita, G. M.; Sane, N.

    2012-05-01

    NJIT is engaged in constructing a new solar-dedicated radio array, the Expanded Owens Valley Solar Array (EOVSA), which is slated for completion in late 2013. An initial 3-antenna array, the EOVSA Subsystem Testbed (EST), is now in operation from 1-9 GHz based on three of the old OVSA antennas, to test certain design elements of the new array. We describe this instrument and show some results from recent solar flares observed with it. We also describe plans for an upcoming prototype of EOVSA, which will use three antennas of the new design over the full 1-18 GHz signal chain of the entirely new system. The EOVSA prototype will be in operation by late 2012. Highlights of the new design are ability to cover the entire 1-18 GHz in less than 1 s, simultaneous dual polarization, and improved sensitivity and stability. We discuss what can be expected from the prototype, and how it will compare with the full 13-antenna EOVSA. This work was supported by NSF grants AGS-0961867 and AST-0908344, and NASA grant NNX11AB49G to New Jersey Institute of Technology.

  2. User's guide to the Reliability Estimation System Testbed (REST)

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  3. An integrated dexterous robotic testbed for space applications

    NASA Technical Reports Server (NTRS)

    Li, Larry C.; Nguyen, Hai; Sauer, Edward

    1992-01-01

    An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.

  4. Articulated navigation testbed (ANT): an example of adaptable intrinsic mobility

    NASA Astrophysics Data System (ADS)

    Brosinsky, Chris A.; Hanna, Doug M.; Penzes, Steven G.

    2000-07-01

    An important but oft overlooked aspect of any robotic system is the synergistic benefit of designing the chassis to have high intrinsic mobility which complements rather than limits, its system capabilities. This novel concept continues to be investigated by the Defence Research Establishment Suffield (DRES) with the Articulated Navigation Testbed (ANT) Unmanned Ground Vehicle (UGV). The ANT demonstrates high mobility through the combination of articulated steering and a hybrid locomotion scheme which utilizes individually powered wheels on the edge of rigid legs; legs which are capable of approximately 450 degrees of rotation. The configuration can be minimally configured as a 4x4 and modularly expanded to 6x6, 8x8, and so on. This enhanced mobility configuration permits pose control and novel maneuvers such as stepping, bridging, crawling, etc. Resultant mobility improvements, particularly in unstructured and off-road environments, will reduce the resolution with which the UGV sensor systems must perceive its surroundings and decreases the computational requirements of the UGV's perception systems1 for successful semi-autonomous or autonomous terrain negotiation. This paper reviews critical vehicle developments leading up to the ANT concept, describes the basis for its configuration and speculates on the impact of the intrinsic mobility concept for UGV effectiveness.

  5. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

    SciTech Connect

    Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

    2010-12-02

    For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

  6. A Test-Bed Configuration: Toward an Autonomous System

    NASA Astrophysics Data System (ADS)

    Ocaña, F.; Castillo, M.; Uranga, E.; Ponz, J. D.; TBT Consortium

    2015-09-01

    In the context of the Space Situational Awareness (SSA) program of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. In order to fulfill all the security requirements for the TBT project, the use of a autonomous emergency system (AES) is foreseen to monitor the control system. The AES will monitor remotely the health of the observing system and the internal and external environment. It will incorporate both autonomous and interactive actuators to force the protection of the system (i.e., emergency dome close out).

  7. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  8. A satellite orbital testbed for SATCOM using mobile robots

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2016-05-01

    This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.

  9. Microburst characteristics determined from 1988-1991 TDWR testbed measurements

    NASA Technical Reports Server (NTRS)

    Biron, Paul J.; Isaminger, Mark A.

    1992-01-01

    This paper presents some recent results germane to airborne windshear system design and certification. We first discuss the data analysis procedure and the associated caveats. The relative frequency, severity, and duration of microburst hazards at the various locations is important for determining the tradeoffs between safety and operational impact of false alerts which are encompassed in detection system thresholds. We then consider radar/lidar design issues such as reflective in microbursts and the vertical structure of outflows. Finally, we provide recent surface thermodynamic data associated with microbursts.

  10. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  11. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  12. Field-aligned electron density irregularities near 500 km. Equator to polar cap topside sounder Z mode observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1984-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or compuer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  13. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data

  14. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C

    NASA Astrophysics Data System (ADS)

    Liao, Mi; Zhang, Peng; Yang, Guang-Lin; Bi, Yan-Meng; Liu, Yan; Bai, Wei-Hua; Meng, Xiang-Guang; Du, Qi-Fei; Sun, Yue-Qiang

    2016-03-01

    As a new member of the space-based radio occultation sounders, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on Fengyun-3C (FY-3C) has been carrying out atmospheric sounding since 23 September 2013. GNOS takes approximately 800 daily measurements using GPS (Global Positioning System) and Chinese BDS (BeiDou navigation satellite) signals. In this work, the atmospheric refractivity profiles from GNOS were compared with the ones obtained from the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis. The mean bias of the refractivity obtained through GNOS GPS (BDS) was found to be approximately -0.09 % (-0.04 %) from the near surface to up to 46 km. While the average standard deviation was approximately 1.81 % (1.26 %), it was as low as 0.75 % (0.53 %) in the range of 5-25 km, where best sounding results are usually achieved. Further, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and MetOp/ GRAS (GNSS Receiver for Atmospheric Sounding) radio occultation data were compared with the ECMWF reanalysis; the results thus obtained could be used as reference data for GNOS. Our results showed that GNOS/FY-3C meets the design requirements in terms of accuracy and precision of the sounder. It possesses a sounding capability similar to COSMIC and MetOp/GRAS in the vertical range of 0-30 km, though it needs further improvement above 30 km. Overall, it provides a new data source for the global numerical weather prediction (NWP) community.

  15. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  16. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  17. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  18. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  19. A method for the removal of ray refraction effects in multibeam echo sounder systems

    NASA Astrophysics Data System (ADS)

    Ding, Jisheng; Zhou, Xinghua; Tang, Qiuhua

    2008-05-01

    To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measurement accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other parameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.

  20. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  1. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric

  2. Assimilation of hyperspectral infrared sounder radiances under cloudy skies in a regional NWP model

    NASA Astrophysics Data System (ADS)

    Wang, Pei

    Satellite measurements are an important source of global observations in support of numerical weather prediction (NWP). The assimilation of satellite radiances under clear skies has greatly improved NWP forecast scores. Since most of the data assimilation models are used for the clear radiances assimilation, an important step for satellite radiances assimilation is the clear location detection. Good clear detection could effectively remove the cloud contamination and keep the clear observations for assimilation. In this dissertation, a new detection method uses collocated high spatial resolution imager data onboard the same platform as the satellite sounders to help IR sounders subpixel cloud detection, such as the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), the Crosstrack Infrared Sounder (CrIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). The MODIS cloud mask provides a level of confidence for the observed skies to help AIRS Field-of-View (FOVs) cloud detection. By reducing the cloud contamination, a cold bias in the temperature field and a wet bias in the moisture field are corrected for the atmospheric analysis fields. These less cloud affected analysis fields further improve hurricane track and intensity forecast. The availability of satellite observations that can be assimilated in the model is limited if only the clear radiances are assimilation. An effective way to use the thermodynamic information under partially cloudy regions is to assimilate the "cloud-cleared" radiances (CCRs); CCRs are also called clear equivalent radiances. Because the CCRs are the equivalent clear radiances from the partially cloudy FOVs, they can be directly assimilated into the current data assimilation models without modifications. The AIRS CCRs are assimilated and compared with the AIRS using stand-alone cloud detection and collocated cloud detection. The assimilation of AIRS cloud-cleared radiances directly affects

  3. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  4. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder

    PubMed Central

    Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.

    2016-01-01

    The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons. PMID:27630378

  5. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder

    PubMed Central

    Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.

    2016-01-01

    The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons.

  6. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  7. Microwave limb sounder measurement of stratospheric SO[sub 2] from the Mt. Pinatubo Volcano

    SciTech Connect

    Read, W.G.; Froidevaux, L.; Waters, J.W. )

    1993-06-18

    This paper presents measurements of sulfur dioxide densities in the stratosphere made by the microwave limb sounder (MLS) on the upper atmosphere research satellite. The SO[sub 2] came from the eruption of the Mt Pinatubo volcano which injected a massive quantity of gas into the stratosphere. The MLS is able to measure the decay rate of the gas densities based on its extended time and spatial coverage, and from this decay rate infer the OH densities in the stratosphere, since OH is the major reactive species which converts the SO[sub 2] into sulfuric acid.

  8. Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment

    NASA Astrophysics Data System (ADS)

    Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.

    2014-12-01

    The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision <30ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long

  9. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    NASA Astrophysics Data System (ADS)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  10. The Development of a Smart Distribution Grid Testbed for Integrated Information Management Systems

    SciTech Connect

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-07-28

    This paper presents a smart distribution grid testbed to test or compare designs of integrated information management systems (I2MSs). An I2MS extracts and synthesizes information from a wide range of data sources to detect abnormal system behaviors, identify possible causes, assess the system status, and provide grid operators with response suggestions. The objective of the testbed is to provide a modeling environment with sufficient data sources for the I2MS design. The testbed includes five information layers and a physical layer; it generates multi-layer chronological data based on actual measurement playbacks or simulated data sets produced by the physical layer. The testbed models random hardware failures, human errors, extreme weather events, and deliberate tampering attempts to allow users to evaluate the performance of different I2MS designs. Initial results of I2MS performance tests showed that the testbed created a close-to-real-world environment that allowed key performance metrics of the I2MS to be evaluated.

  11. Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS

    NASA Technical Reports Server (NTRS)

    Hron, Anna B.

    1992-01-01

    This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.

  12. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  13. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  14. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  15. Airborne Transmission of Bordetella pertussis

    PubMed Central

    Warfel, Jason M.; Beren, Joel; Merkel, Tod J.

    2012-01-01

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets. PMID:22807521

  16. Improved wide-field collimator for dynamic testing of the GOES imager and sounder

    NASA Astrophysics Data System (ADS)

    Bremer, James C.; Etemad, Shahriar; Zukowski, Barbara J.; Pasquale, Bert A.; Zukowski, Tmitri J.; Prince, Robert E.; Holmes, Vincent; Ryskewich, John A.; O'Neill, Patrick; Murphy-Morris, Jeanine E.

    2002-09-01

    The GOES Imager and Sounder instruments each observe the full Earth disk, 17.4° in diameter, from geostationary orbit. Pre-launch, each instrument's dynamic scanning performance is tested using the projection of a test pattern from a wide-field collimator. We are fabricating a second wide-field collimator (WFC2) to augment this test program. The WFC2 has several significant advantages over the existing WFC1. The WFC2 target illumination system uses an array of light-emitting diodes (LEDs) radiating at 680nm, which is within the visible bands of both the Imager and Sounder. The light from the LEDs is projected through a non-Lambertian diffuser plate and the target plate to the pupil of the projection lens. The WFC2's power dissipation is much lower than that of WFC1, decreasing stabilization time and eliminating the need for cooling fans. The WFC2's custom-designed 5-element projection lens has the same effective focal length (EFL) as the WFC1 projection lens. The WFC2 lens is optimized for the LED's narrow spectral band simplifying the design and improving image quality. The target plate is mounted in a frame with a mechanized micro-positioner system that controls three degrees of freedom: tip, tilt, and focus. The tip and tilt axes intersect in the WFC's image plane, and all adjustments are controlled remotely by the operator observing the target plate through an auto-collimating telescope.

  17. Modification and Development of a Control Mechanism for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Greene, Zach

    2011-01-01

    The scanning microwave limb sounder (SMLS) is the latest instrument to probe the Earth's atmosphere to come out of the Microwave Limb Sounder (MLS) team. Once deployed to the upper stratosphere, it will use microwave detection to measure geo-atmospheric variables such as temperature, pressure, and chemical composition. In addition to previous missions that used vertical limb scans to observe altitudinal variations, the SMLS will rotate laterally allowing it to establish two-dimensional variable dependencies with a single run. A program was originated by a previous intern that will automatically control the movement of the two rotational axes along with a switching mirror and chopper once the instrument is in flight. However, it lacked the code essential to control system's ability to function fully and reliably. By modifying and rewriting parts of the code I sought to have a finished ready-for-flight control system that would be easy to navigate. Three of the major alterations I made including instituting a gyroscope, implementing a restart button, and instigating the automatic creation of a file log with each run to record the position and orientation of the SMLS.

  18. Preliminary validation of refractivity from a new radio occultation sounder GNOS/FY-3C

    NASA Astrophysics Data System (ADS)

    Liao, M.; Zhang, P.; Yang, G. L.; Bi, Y. M.; Liu, Y.; Bai, W. H.; Meng, X. G.; Du, Q. F.; Sun, Y. Q.

    2015-09-01

    As a new member of space-based radio occultation sounder, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on FY-3C has been carrying out the atmospheric sounding since 23 September 2013. GNOS takes a daily measurement up to 800 times with GPS (Global Position System) and Chinese BDS (BeiDou navigation satellite) signals. The refractivity profiles from GNOS are compared with the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) analyses in this paper. Bias and standard deviation have being calculated as the function of altitude. The mean bias is about 0.2 % from the near surface to 35 km. The average standard deviation is within 2 % while it is down to about 1 % in the range 5-30 km where best soundings are usually made. To evaluate the performance of GNOS, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and GRAS/METOP-A (GNSS Receiver for Atmospheric Sounding) data are also compared to ECMWF analyses as the reference. The results show that GNOS/FY-3C meets the requirements of the design well. It possesses a sounding capability similar to COSMIC and GRAS in the vertical range of 0-30 km, though it needs improvement in higher altitude. Generally, it provides a new data source for global NWP (numerical weather prediction) community.

  19. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2015-03-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) and one during nighttime from 1 to 0.0032 hPa. The vertical resolution of this new data set varies from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as photochemical simulations, demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new data set is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  20. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2014-09-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new dataset provides two daily zonal averages, one during daytime and one during nighttime, with a varying vertical resolution from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as, photochemical simulations demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new dataset is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  1. NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Barnet, C.; Gu, D.; Nalli, N. R.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.

  2. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station

    NASA Astrophysics Data System (ADS)

    Inatani, Junji; Ozeki, Hiroyuki; Satoh, Ryouta; Nishibori, Toshiyuki; Ikeda, Naomi; Fujii, Yasunori; Nakajima, Takashi; Iida, Yukiei; Iida, Teruhito; Kikuchi, Ken'ichi; Miura, Takeshi; Masuko, Harunobu; Manabe, Takeshi; Ochiai, Satoshi; Seta, Masumichi; Irimajiri, Yoshihisa; Kasai, Yasuko; Suzuki, Makoto; Shirai, Tomoko; Tsujimaru, Sho; Shibasaki, Kazuo; Shiotani, Masato

    2000-12-01

    A submillimeter limb-emission sounder, that is to be aboard the Japanese Experiment Module (JEM, dubbed as KIBO) at the International Space Station, has been designed. This payload, Superconducting Submillimeter-wave Limb-emission Sounder (SMILES), is aimed at global mappings of stratospheric trace gases by means of the most sensitive submillimeter receiver ever operated in space. Such sensitivity is ascribed to a Superconductor-Insulator- Superconductor (SIS) mixer, which is operated at 4.5 K in a dedicated cryostat combined with a mechanical cooler. SMILES will observe ozone-depletion-related molecules such as ClO, Hcl, HO2, HNO3, BrO and O3 in the frequency bands at 624.32-626.32 GHz and 649.12-650.32 GHz. A scanning antenna will cover tangent altitudes from 10 to 60 km in every 53 seconds, while tracing the latitudes form 38 S to 65 N along its orbit. This global coverage makes SMILES a useful tool of observing the low- and mid- latitudinal areas as well as the Arctic peripheral region. The molecular emissions will be detected by two units of acousto-optic spectrometers (AOS), each of which has coverage of 1.2 GHz with a resolution of 1.8 MHz. This high-resolution spectroscopy will allow us to detect weak emission lines attributing to less-abundant species.

  3. Ultraspectral sounder data compression using the non-exhaustive Tunstall coding

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chieh; Huang, Bormin

    2008-08-01

    With its bulky volume, the ultraspectral sounder data might still suffer a few bits of error after channel coding. Therefore it is beneficial to incorporate some mechanism in source coding for error containment. The Tunstall code is a variable-to- fixed length code which can reduce the error propagation encountered in fixed-to-variable length codes like Huffman and arithmetic codes. The original Tunstall code uses an exhaustive parse tree where internal nodes extend every symbol in branching. It might result in assignment of precious codewords to less probable parse strings. Based on an infinitely extended parse tree, a modified Tunstall code is proposed which grows an optimal non-exhaustive parse tree by assigning the complete codewords only to top probability nodes in the infinite tree. Comparison will be made among the original exhaustive Tunstall code, our modified non-exhaustive Tunstall code, the CCSDS Rice code, and JPEG-2000 in terms of compression ratio and percent error rate using the ultraspectral sounder data.

  4. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  5. Towards an autonomous telescope system: the Test-Bed Telescope project

    NASA Astrophysics Data System (ADS)

    Racero, E.; Ocaña, F.; Ponz, D.; the TBT Consortium

    2015-05-01

    In the context of the Space Situational Awareness (SSA) programme of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. It is foreseen that this test-bed environment will be used to validate future prototype software systems as well as to evaluate remote monitoring and control techniques. The test-bed system will be capable to deliver astrometric and photometric data of the observed objects in near real-time. This contribution describes the current status of the project.

  6. Definition study for variable cycle engine testbed engine and associated test program

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  7. Model-based beam control for illumination of remote objects, part II: laboratory testbed

    NASA Astrophysics Data System (ADS)

    Basu, Santasri; Voelz, David; Chandler, Susan M.; Lukesh, Gordon W.; Sjogren, Jon

    2004-10-01

    When a laser beam propagates through the atmosphere, it is subject to corrupting influences including mechanical vibrations, turbulence and tracker limitations. As a result, pointing errors can occur, causing loss of energy or signal at the target. Nukove Scientific Consulting has developed algorithms to estimate these pointing errors from the statistics of the return photons from the target. To prove the feasibility of this approach for real-time estimation, an analysis tool called RHINO was developed by Nukove. Associated with this effort, New Mexico State University developed a laboratory testbed, the ultimate objective being to test the estimation algorithms under controlled conditions and to stream data into RHINO to prove the feasibility of real-time operation. The present paper outlines the description of this testbed and the results obtained through RHINO when the testbed was used to test the estimation approach.

  8. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  9. Multivesicular Assemblies as Real-World Testbeds for Embryogenic Evolutionary Systems

    NASA Astrophysics Data System (ADS)

    Hadorn, Maik; Eggenberger Hotz, Peter

    Embryogenic evolution emulates in silico cell-like entities to get more powerful methods for complex evolutionary tasks. As simulations have to abstract from the biological model, implicit information hidden in its physics is lost. Here, we propose to use cell-like entities as a real-world in vitro testbed. In analogy to evolutionary robotics, where solutions evolved in simulations may be tested in real-world on macroscale, the proposed vesicular testbed would do the same for the embryogenic evolutionary tasks on mesoscale. As a first step towards a vesicular testbed emulating growth, cell division, and cell differentiation, we present a modified vesicle production method, providing custom-tailored chemical cargo, and present a novel self-assembly procedure to provide vesicle aggregates of programmable composition.

  10. Flight Testing of Guidance, Navigation and Control Systems on the Mighty Eagle Robotic Lander Testbed

    NASA Technical Reports Server (NTRS)

    Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick

    2015-01-01

    During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.

  11. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    NASA Technical Reports Server (NTRS)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and

  12. The Bermuda Testbed Mooring and Emerging Technologies for Interdisciplinary Research

    NASA Astrophysics Data System (ADS)

    Dickey, T. D.

    2001-12-01

    The Bermuda Testbed Mooring (BTM) program provides the oceanographic community with a deep-water platform for testing new instrumentation. Scientific studies also utilize data collected from the BTM, particularly in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) program. Additionally, the BTM has been used for groundtruthing of satellite ocean color imager (SeaWiFS) data. The mooring is located about 80 km southeast of Bermuda. Surface instruments have collected meteorological and spectral radiometric data from the buoy tower and measurements at depth have included: currents, temperature, bio-optical, chemical, and acoustical variables. The BTM captures a broad dynamic range of oceanic variability (minutes to years). Key results include: 1. Data obtained during passages of cold-core eddies have been used to estimate the role of such features on new production and carbon flux to the deep ocean. One of the observed features contained the greatest values of chlorophyll observed during the decade of observations at the site (based on BATS historical data base). The measurements provide high frequency, long-term data, which can be used for a) detailed studies of a variety of physical, chemical, bio-optical, and ecological processes on time scales from minutes to years, b) contextual information for many other observations made near the BTM/BATS sites, c) evaluation of undersampling/aliasing effects, and d) developing/testing models. 2. The dynamics of the upper ocean have been observed during transient re-stratification events and during passages of hurricanes and other intense storms. These observations are unique and the subject of ongoing modeling efforts. 3. BTM papers have provided new insights concerning bio-optical variability on short (minutes to day) time scales and have proven valuable for ocean color satellite groundtruthing. 4. During the BTM project, several new sensors and systems have been tested by U.S. and international groups

  13. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    NASA Technical Reports Server (NTRS)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as

  14. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  15. Interferometric Testbed for Nanometer Level Stabilization of Environmental Motion Over Long Timescales

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2008-01-01

    We developed an interferometric testbed to stabilize environmental motions over timescales of several hours and a lengthscale of 1m. Typically, thermal and seismic motions on the ground are larger than 1 micron over these scales, affecting the precision of more sensitive measurements. To suppress such motions, we built an active stabilization system composed of interferometric sensors, a hexapod actuator, and a frequency stabilized laser. With this stabilized testbed, environmental motions were suppressed down to nm level. This system will allow us to perform sensitive measurements, such as ground testing of LISA (Laser Interferometer Space Antenna), in the presence of environmental noise.

  16. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  17. Experimental demonstration of a classical approach for flexible structure control - The ACES testbed

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    1991-01-01

    This paper describes the results of an active structural control experiment performed for the Advanced Control Evaluation for Structures (ACES) testbed at NASA-Marshall as part of the NASA Control-Structure Interaction Guest Investigator Program. The experimental results successfully demonstrate the effectiveness of a 'dipole' concept for line-of-sight control of a pointing system mounted on a flexible structure. The simplicity and effectiveness of a classical 'single-loop-at-a-time' approach for the active structural control design for a complex structure, such as the ACES testbed, are demonstrated.

  18. Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Electrochemical Technology Branch has led a multiagency effort to design, fabricate, and operate a regenerative fuel cell (RFC) system testbed. Key objectives of this program are to evaluate, characterize, and demonstrate fully integrated RFC's for space, military, and commercial applications. The Lewis-led team is implementing the program through a unique international coalition that encompasses both Government and industry participants. Construction of the 25-kW RFC testbed at the NASA facility at Edwards Air Force Base was completed in January 1995, and the system has been operational since that time.

  19. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  20. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  1. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  2. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  3. Airborne chemicals and forest health

    SciTech Connect

    Woodman, J.N.; Cowling, E.B.

    1987-02-01

    Over the past few years the possible contribution of acid rain to the problem of forest decline has been a cause of increasing public concern. Research has begun to determine whether airborne chemicals are causing or contributing to visible damage and mortality in eastern spruce-fir and sugar maple forests and to changes in tree growth, usually without visible symptoms, in other parts of North America. This paper describes some of the complex biological relationships that determine health and productivity of forests and that make it difficult to distinguish effects of airborne chemicals from effects of natural stress. It describes four major research approaches for assessment of the effects of airborne chemicals on forests, and it summarizes current understanding of the known and possible effects of airborne chemicals on forest trees in North America and Europe. It also briefly describes the major air quality and forest health research programs in North America, and it assesses how ell these programs are likely to meet information needs during the coming decade. 69 references, 2 figures, 1 table.

  4. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  5. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  6. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  7. TIDs in the Bottomside Ionospheric F-region Observed Near Jicamarca Using the TIDDBIT HF Doppler Sounder

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Chau, J. L.

    2012-12-01

    The equatorial ionosphere is the site of complex interactions between various geospace drivers, including thermospheric winds, electric fields, and tides propagating from below. Less well known is the effect of gravity waves, and their manifestation as traveling ionospheric disturbances (TIDs). HF Doppler sounders represent a low-cost and low-maintenance solution for monitoring wave activity in the F region ionosphere. Together with modern data analysis techniques, they can provide comprehensive TID characteristics, including both horizontal and vertical TID velocities and wavelengths across the entire spectrum from periods of 1 min to over an hour. In this invited talk, we review some of the previous observations of TIDs at low latitudes, and present new observations from the TIDDBIT HF Doppler Sounder recently developed by Atmospheric and Space Technology Research Associates LLC, and deployed at Jicamarca, Peru. The completeness of the wave information obtained from the TIDDBIT system makes it possible to reconstruct the vertical displacement of isoionic contours over the 200 km horizontal dimension of the sounder array, and movies revealing the detailed shape and motion of isoionic surfaces over Peru will be shown. We demonstrate how the TID characteristics in Peru vary with season and magnetic activity. We discuss their possible impact on triggering of ionospheric bubbles and irregularities. Such information will be relevant for various operational needs involving navigation, communication, and surveillance systems. Crowley G., and F.S. Rodrigues (2012), Characteristics of Traveling Ionospheric Disturbances Observed by the TIDDBIT Sounder, Radio Sci., doi:10.1029/2011RS004959.

  8. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  9. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  10. High-Power Radar Sounders for the Investigation of Jupiter Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.

    2005-01-01

    The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design

  11. Application of Infrared Hyperspectral Sounder Data to Climate Research: Interannual Variability and climate trend evaluation.

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Gregorich, D. T.

    2007-12-01

    Satellite measurements of the spectrally resolved upwelling infrared radiances have a unique role in the observation of climate and climate change: They give direct insight into the way the Earth Climate System responds to periodic and long term changes in forcing with changes in surface and atmospheric temperatures and changes in large scale atmospheric circulation patterns. The Atmospheric Infrared Sounder (AIRS), the first in a series of hyper-spectral polar orbiting sounders, was launch on the EOS Aqua into a 1:30 pm polar orbit at 705 km altitude in May 2002, with an anticipated lifetime of 12 years. The Infrared Atmospheric Sounding Interferometer (IASI) was launched in October 2006 into a 9:30 AM orbit, to be followed by the Crosstrack InfraRed Sounder (CRIS) in a 2 PM orbit in 2010. The AIRS radiometric stability since 2002 has been verified at the better than 0.01 K/year level. We report on observations of the oceans between 30S and 30N. The 0.05 K/year trend in co2 sensitive channels due to the 2 ppmv/year increase in the co2 column abundance is readily detectable and statistically reliable. The AIRS data show very consistent seasonal modulations of key surface, cloud, water vapor and atmospheric temperatures. After removing the seasonal variation, the anomaly shows interannual rms variability in the monthly means larger than 0.1 K. The rms variability in the monthly means in the mid- tropospheric temperature with peak excursions as large as 0.6 K are observed by the AIRS 2388 cm-1 channel and AMSU channel 5 at 57 GHz. The interannual variability is not obviously correlated with the Multivariate Enso Index (MEI). This variability places limits on the length of time required to measure global warming trends at the 0.1 K/decade level. These limits exceed the expected 12 year lifetime of AIRS and need to be taken into account in the design of space missions and instruments to measure climate change.

  12. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    NASA Technical Reports Server (NTRS)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  13. VISSR Atmospheric Sounder (VAS) simulation experiment for a severe storm environment

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L. W.; Mostek, A.

    1981-01-01

    Radiance fields were simulated for prethunderstorm environments in Oklahoma to demonstrate three points: (1) significant moisture gradients can be seen directly in images of the VISSIR Atmospheric Sounder (VAS) channels; (2) temperature and moisture profiles can be retrieved from VAS radiances with sufficient accuracy to be useful for mesoscale analysis of a severe storm environment; and (3) the quality of VAS mesoscale soundings improves with conditioning by local weather statistics. The results represent the optimum retrievability of mesoscale information from VAS radiance without the use of ancillary data. The simulations suggest that VAS data will yield the best soundings when a human being classifies the scene, picks relatively clear areas for retrieval, and applies a "local" statistical data base to resolve the ambiguities of satellite observations in favor of the most probable atmospheric structure.

  14. Analysis of data from the Pioneer Venus Sounder Probe mass spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1981-01-01

    The composition of the lower atmosphere of the planet Venus from 62 km to the surface was measured by a neutral gas mass spectrometer onboard of the Pioneer Venus Sounder Probe. Fifty-one mass spectra were obtained with an average altitude resolution of approximately 1 km. The instrument measured the composition of the gases relative to CO2, the dominant gas, that is sampled from the Venus atmosphere through a special leak. The mass range extended from 1 to 208 amu with a sensitivity of the order of 1 ppm relative to CO2, but for the noble gases it was nearly 100 times better. A description of the instrument and the initial results are reported.

  15. Analysis of data from the Pioneer Venus Sounder Probe mass spectrometer

    SciTech Connect

    Hoffman, J.H.

    1981-05-01

    The composition of the lower atmosphere of the planet Venus from 62 km to the surface was measured by a neutral gas mass spectrometer onboard of the Pioneer Venus Sounder Probe. Fifty-one mass spectra were obtained with an average altitude resolution of approximately 1 km. The instrument measured the composition of the gases relative to CO2, the dominant gas, that is sampled from the Venus atmosphere through a special leak. The mass range extended from 1 to 208 amu with a sensitivity of the order of 1 ppm relative to CO2, but for the noble gases it was nearly 100 times better. A description of the instrument and the initial results are reported.

  16. Observation of the exhaust plume from the space shuttle main engine using the Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Pumphrey, H. C.; Lambert, A.; Livesey, N. J.

    2010-08-01

    A space shuttle launch deposits 700 t of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS) on the Aura satellite. Approximately 50% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane, Proton) are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  17. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    NASA Astrophysics Data System (ADS)

    Pumphrey, H. C.; Lambert, A.; Livesey, N. J.

    2011-01-01

    A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS) on the Aura satellite. Approximately 50%-65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton) are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  18. On the potential use of satellite sounder data in forecasting tropical cyclone motion

    NASA Technical Reports Server (NTRS)

    Kidder, S. Q.; Shyu, K.

    1984-01-01

    Although many prediction schemes are available, tropical cyclone track forecast errors are still unacceptably large. A primary difficulty is that tropical cyclones and their environments are poorly observed by conventional data networks. Satellite sounders, however, routinely provide numerous observations near these storms. Mean layer temperatures from the Scanning Microwave Spectrometer (SCAMS) on board the Nimbus-6 satellite are decomposed using empirical orthogonal functions, and the expansion coefficients are related to deviations from persistence track forecasts. Based on multiple correlation coefficients it appears that upper-level (250-100 mb) temperatures contain significant information about the right-angle error of the persistence forecast location. Temperatures from the 1000-500 mb layer seemed to contain little forecast information. Implications of these results for further work are offered.

  19. Efficient simultaneous image deconvolution and upsampling algorithm for low-resolution microwave sounder data

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yanovsky, Igor; Yin, Wotao

    2015-01-01

    Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multipliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the outstanding performance of the proposed method.

  20. A Field Method for Backscatter Calibration Applied to NOAA's Reson 7125 Multibeam Echo-Sounders

    NASA Astrophysics Data System (ADS)

    Welton, Briana

    Acoustic seafloor backscatter measurements made by multiple Reson multibeam echo-sounders (MBES) used for hydrographic survey are observed to be inconsistent, affecting the quality of data products and impeding large-scale processing efforts. A method to conduct a relative inter and intea sonar calibration in the field using dual frequency Reson 7125 MBES has been developed, tested, and evaluated to improve the consistency of backscatter measurements made from multiple MBES systems. The approach is unique in that it determines a set of corrections for power, gain, pulse length, and an angle dependent calibration term relative to a single Reson 7125 MBES calibrated in an acoustic test tank. These corrections for each MBES can then be applied during processing for any acquisition setting combination. This approach seeks to reduce the need for subjective and inefficient manual data or data product manipulation during post processing, providing a foundation for improved automated seafloor characterization using data from more than one MBES system.